151
|
Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Nichol Edamura K, Wang YH, Pearson CE. Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 2010; 39:1749-62. [PMID: 21051337 PMCID: PMC3061079 DOI: 10.1093/nar/gkq935] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
R-loops have been described at immunoglobulin class switch sequences, prokaryotic and mitochondrial replication origins, and disease-associated (CAG)n and (GAA)n trinucleotide repeats. The determinants of trinucleotide R-loop formation are unclear. Trinucleotide repeat expansions cause diseases including DM1 (CTG)n, SCA1 (CAG)n, FRAXA (CGG)n, FRAXE (CCG)n and FRDA (GAA)n. Bidirectional convergent transcription across these disease repeats can occur. We find R-loops formed when CTG or CGG and their complementary strands CAG or CCG were transcribed; GAA transcription, but not TTC, yielded R-loops. R-loop formation was sensitive to DNA supercoiling, repeat length, insensitive to repeat interruptions, and formed by extension of RNA:DNA hybrids in the RNA polymerase. R-loops arose by transcription in one direction followed by transcription in the opposite direction, and during simultaneous convergent bidirectional transcription of the same repeat forming double R-loop structures. Since each transcribed disease repeat formed R-loops suggests they may have biological functions.
Collapse
Affiliation(s)
- Kaalak Reddy
- Program of Genetics & Genome Biology, The Hospital for Sick Children, 101 College Street, East Tower, 15-312 TMDT, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
152
|
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 2010; 20:1-15. [PMID: 21044947 DOI: 10.1093/hmg/ddq427] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, Department of Pediatrics, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
153
|
Kumari D, Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet 2010; 19:4634-42. [PMID: 20843831 DOI: 10.1093/hmg/ddq394] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and the most common known cause of autism. Most cases of FXS result from the expansion of a CGG·CCG repeat in the 5' UTR of the FMR1 gene that leads to gene silencing. It has previously been shown that silenced alleles are associated with histone H3 dimethylated at lysine 9 (H3K9Me2) and H3 trimethylated at lysine 27 (H3K27Me3), modified histones typical of developmentally repressed genes. We show here that these alleles are also associated with elevated levels of histone H3 trimethylated at lysine 9 (H3K9Me3) and histone H4 trimethylated at lysine 20 (H4K20Me3). All four of these modified histones are present on exon 1 of silenced alleles at levels comparable to that seen on pericentric heterochromatin. The two groups of histone modifications show a different distribution on fragile X alleles: H3K9Me2 and H3K27Me3 have a broad distribution, whereas H3K9Me3 and H4K20Me3 have a more focal distribution with the highest level of these marks being present in the vicinity of the repeat. This suggests that the trigger for gene silencing may be local to the repeat itself and perhaps involves a mechanism similar to that involved in the formation of pericentric heterochromatin.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Disease/NIH, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
154
|
Cleary JD, Tomé S, López Castel A, Panigrahi GB, Foiry L, Hagerman KA, Sroka H, Chitayat D, Gourdon G, Pearson CE. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 2010; 17:1079-87. [DOI: 10.1038/nsmb.1876] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/24/2010] [Indexed: 01/30/2023]
|
155
|
Ohlsson R, Bartkuhn M, Renkawitz R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 2010; 119:351-60. [PMID: 20174815 PMCID: PMC2910314 DOI: 10.1007/s00412-010-0262-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/17/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.
Collapse
Affiliation(s)
- Rolf Ohlsson
- Institute for Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
156
|
Convergent transcription through a long CAG tract destabilizes repeats and induces apoptosis. Mol Cell Biol 2010; 30:4435-51. [PMID: 20647539 DOI: 10.1128/mcb.00332-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Short repetitive sequences are common in the human genome, and many fall within transcription units. We have previously shown that transcription through CAG repeat tracts destabilizes them in a way that depends on transcription-coupled nucleotide excision repair and mismatch repair. Recent observations that antisense transcription accompanies sense transcription in many human genes led us to test the effects of antisense transcription on triplet repeat instability in human cells. Here, we report that simultaneous sense and antisense transcription (convergent transcription) initiated from two inducible promoters flanking a CAG95 tract in a nonessential gene enhances repeat instability synergistically, arrests the cell cycle, and causes massive cell death via apoptosis. Using chemical inhibitors and small interfering RNA (siRNA) knockdowns, we identified the ATR (ataxia-telangiectasia mutated [ATM] and Rad3 related) signaling pathway as a key mediator of this cellular response. RNA polymerase II, replication protein A (RPA), and components of the ATR signaling pathway accumulate at convergently transcribed repeat tracts, accompanied by phosphorylation of ATR, CHK1, and p53. Cell death depends on simultaneous sense and antisense transcription and is proportional to their relative levels, it requires the presence of the repeat tract, and it occurs in both proliferating and nonproliferating cells. Convergent transcription through a CAG repeat represents a novel mechanism for triggering a cellular stress response, one that is initiated by events at a single locus in the genome and resembles the response to DNA damage.
Collapse
|
157
|
Kitchen NS, Schoenherr CJ. Sumoylation modulates a domain in CTCF that activates transcription and decondenses chromatin. J Cell Biochem 2010; 111:665-75. [DOI: 10.1002/jcb.22751] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
158
|
Mulders SAM, van Engelen BGM, Wieringa B, Wansink DG. Molecular therapy in myotonic dystrophy: focus on RNA gain-of-function. Hum Mol Genet 2010; 19:R90-7. [DOI: 10.1093/hmg/ddq161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
159
|
Li LB, Bonini NM. Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci 2010; 33:292-8. [PMID: 20398949 DOI: 10.1016/j.tins.2010.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
A large number of human diseases are caused by expansion of repeat sequences - typically trinucleotide repeats - within the respective disease genes. The abnormally expanded sequence can lead to a variety of effects on the gene: sometimes the gene is silenced, but in many cases the expanded repeat sequences confer toxicity to the mRNA and, in the case of polyglutamine diseases, to the encoded protein. This article highlights mechanisms by which the mRNAs with abnormally expanded repeats can confer toxicity leading to neuronal dysfunction and loss. Greater understanding of these mechanisms will provide the foundation for therapeutic advances for this set of human disorders.
Collapse
Affiliation(s)
- Ling-Bo Li
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
160
|
Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010; 1338:20-35. [PMID: 20380817 DOI: 10.1016/j.brainres.2010.03.110] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) development, homeostasis, stress responses, and plasticity are all mediated by epigenetic mechanisms that modulate gene expression and promote selective deployment of functional gene networks in response to complex profiles of interoceptive and environmental signals. Thus, not surprisingly, disruptions of these epigenetic processes are implicated in the pathogenesis of a spectrum of neurological and psychiatric diseases. Epigenetic mechanisms involve chromatin remodeling by relatively generic complexes that catalyze DNA methylation and various types of histone modifications. There is increasing evidence that these complexes are directed to their sites of action by long non-protein-coding RNAs (lncRNAs), of which there are tens if not hundreds of thousands specified in the genome. LncRNAs are transcribed in complex intergenic, overlapping and antisense patterns relative to adjacent protein-coding genes, suggesting that many lncRNAs regulate the expression of these genes. LncRNAs also participate in a wide array of subcellular processes, including the formation and function of cellular organelles. Most lncRNAs are transcribed in a developmentally regulated and cell type specific manner, particularly in the CNS, wherein over half of all lncRNAs are expressed. While the numerous biological functions of lncRNAs are yet to be characterized fully, a number of recent studies suggest that lnRNAs are important for mediating cell identity. This function seems to be especially important for generating the enormous array of regional neuronal and glial cell subtypes that are present in the CNS. Further studies have also begun to elucidate additional roles played by lncRNAs in CNS processes, including homeostasis, stress responses and plasticity. Herein, we review emerging evidence that highlights the expression and function of lncRNAs in the CNS and suggests that lncRNA deregulation is an important factor in various CNS pathologies including neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | |
Collapse
|
161
|
Batra R, Charizanis K, Swanson MS. Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum Mol Genet 2010; 19:R77-82. [PMID: 20368264 DOI: 10.1093/hmg/ddq132] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nearly two decades have passed since the discovery that the expansion of microsatellite trinucleotide repeats is responsible for a prominent class of neurological disorders, including Huntington disease and fragile X syndrome. These hereditary diseases are characterized by genetic anticipation or the intergenerational increase in disease severity accompanied by a decrease in age-of-onset. The revelation that the variable expansion of simple sequence repeats accounted for anticipation spawned a number of pathogenesis models and a flurry of studies designed to reveal the molecular events affected by these expansions. This work led to our current understanding that expansions in protein-coding regions result in extended homopolymeric amino acid tracts, often polyglutamine or polyQ, and deleterious protein gain-of-function effects. In contrast, expansions in noncoding regions cause RNA-mediated toxicity. However, the realization that the transcriptome is considerably more complex than previously imagined, as well as the emerging regulatory importance of antisense RNAs, has blurred this distinction. In this review, we summarize evidence for bidirectional transcription of microsatellite disease genes and discuss recent suggestions that some repeat expansions produce variable levels of both toxic RNAs and proteins that influence cell viability, disease penetrance and pathological severity.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
162
|
Hahn M, Dambacher S, Schotta G. Heterochromatin dysregulation in human diseases. J Appl Physiol (1985) 2010; 109:232-42. [PMID: 20360431 DOI: 10.1152/japplphysiol.00053.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that is characterized by densely packed DNA and low transcriptional activity. Heterochromatin-induced gene silencing is important for mediating developmental transitions, and in addition, it has more global functions in ensuring chromosome segregation and genomic integrity. Here we discuss how altered heterochromatic states can impair normal gene expression patterns, leading to the development of different diseases. Over the last years, therapeutic strategies that aim toward resetting the epigenetic state of dysregulated genes have been tested. However, due to the complexity of epigenetic gene regulation, the "first-generation drugs" that function globally by inhibiting epigenetic machineries might also introduce severe side effects. Thus detailed understanding of how repressive chromatin states are established and maintained at specific loci will be fundamental for the development of more selective epigenetic treatment strategies in the future.
Collapse
Affiliation(s)
- Matthias Hahn
- Munich Center for Integrated Protein Science (CiPSM) and Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
163
|
La Spada AR, Taylor JP. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 2010; 11:247-58. [PMID: 20177426 PMCID: PMC4704680 DOI: 10.1038/nrg2748] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeat expansion mutations cause at least 22 inherited neurological diseases. The complexity of repeat disease genetics and pathobiology has revealed unexpected shared themes and mechanistic pathways among the diseases, such as RNA toxicity. Also, investigation of the polyglutamine diseases has identified post-translational modification as a key step in the pathogenic cascade and has shown that the autophagy pathway has an important role in the degradation of misfolded proteins--two themes that are likely to be relevant to the entire neurodegeneration field. Insights from repeat disease research are catalysing new lines of study that should not only elucidate molecular mechanisms of disease but also highlight opportunities for therapeutic intervention for these currently untreatable disorders.
Collapse
Affiliation(s)
- Albert R La Spada
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, University of California-San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
164
|
Epigenetic changes and non-coding expanded repeats. Neurobiol Dis 2010; 39:21-7. [PMID: 20171282 DOI: 10.1016/j.nbd.2010.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/31/2022] Open
Abstract
Many neurogenetic disorders are caused by unstable expansions of tandem repeats. Some of the causal mutations are located in non-protein-coding regions of genes. When pathologically expanded, these repeats can trigger focal epigenetic changes that repress the expression of the mutant allele. When the mutant gene is not repressed, the transcripts containing the expanded repeat can give rise to a toxic gain-of-function by the mutant RNA. These two mechanisms, heterochromatin-mediated gene repression and RNA dominance, produce a wide range of neurodevelopmental and neurodegenerative abnormalities. Here we review the mechanisms of gene dysregulation induced by non-coding repeat expansions, and early indications that some of these disorders may prove to be responsive to therapeutic intervention.
Collapse
|
165
|
Goto Y, Kimura H. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 2010; 37:7416-28. [PMID: 19843608 PMCID: PMC2794193 DOI: 10.1093/nar/gkp860] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals, the dosage compensation of sex chromosomes between males and females is achieved by transcriptional inactivation of one of the two X chromosomes in females. However, a number of genes escape X-inactivation in humans. It remains poorly understood how the transcriptional activity of these ‘escape genes’ is maintained despite the chromosome-wide heterochromatin formation. To address this question, we analyzed a putative chromatin boundary between the inactivated RBM10 and an escape gene, UBA1/UBE1. Chromatin immunoprecipitation revealed that trimethylated histone H3 lysine 9 and H4 lysine 20 were enriched in the last exon through the proximal downstream region of RBM10, but were remarkably diminished at ∼2 kb upstream of the UBA1 transcription start site. Whereas RNA polymerase II was not loaded onto the intergenic region, CTCF (CCCTC binding factor) was enriched around the boundary, where some CpG sites were hypomethylated specifically on inactive X. These findings suggest that local DNA hypomethylation and CTCF binding are involved in the formation of a chromatin boundary, which protects the UBA1 escape gene against the chromosome-wide transcriptional silencing.
Collapse
Affiliation(s)
- Yuji Goto
- Nuclear Function and Dynamics Unit, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
166
|
Abstract
The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.
Collapse
Affiliation(s)
- Rolf Ohlsson
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Box 280, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Victor Lobanenkov
- Molecular Pathology Section, Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (LIP/NIAID/NIH), Twinbrook Building, Room 1329, MSC-8152, 5640 Fisher Lane, Rockville, MD 20852, USA
| | - Elena Klenova
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
167
|
Olovnikov AM. Biological evolution based on nonrandom variability regulated by the organism. BIOCHEMISTRY (MOSCOW) 2009; 74:1404-8. [PMID: 19961425 DOI: 10.1134/s0006297909120177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A hypothetical mechanism for rapid and nonrandom emergence of evolutionary adaptations is proposed. It is supposed that some transcription factors and transcription regulators that are able to cross membranes can leave the cells of their origin and move within the organism using a specialized transport system when individual development occurs under conditions extreme for the given species. This system, in particular, connects soma with germline. The supply of germline cells with unusual transcription regulators changes the balance of their nuclear regulatory RNAs, thus initiating RNA-dependent epigenetic modifications of the germline genome and therefore changes in phenotypes of the progeny. It is highly probable that some of these phenotypes are adaptive and lay the basis for the origin of the next biological species. The proposed mechanism can serve as a basis for a new theory of the origin of species.
Collapse
Affiliation(s)
- A M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
168
|
Moltó E, Fernández A, Montoliu L. Boundaries in vertebrate genomes: different solutions to adequately insulate gene expression domains. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:283-96. [PMID: 19752046 DOI: 10.1093/bfgp/elp031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression domains are normally not arranged in vertebrate genomes according to their expression patterns. Instead, it is not unusual to find genes expressed in different cell types, or in different developmental stages, sharing a particular region of a chromosome. Therefore, the existence of boundaries, or insulators, as non-coding gene regulatory elements, is instrumental for the adequate organization and function of vertebrate genomes. Through the evolution and natural selection at the molecular level, and according to available DNA sequences surrounding a locus, previously existing or recently mobilized, different elements have been recruited to serve as boundaries, depending on their suitability to properly insulate gene expression domains. In this regard, several gene regulatory elements, including scaffold/matrix-attachment regions, members of families of DNA repetitive elements (such as LINEs or SINEs), target sites for the zinc-finger multipurpose nuclear factor CTCF, enhancers and locus control regions, have been reported to show functional activities as insulators. In this review, we will address how such a variety of apparently different genomic sequences converge in a similar function, namely, to adequately insulate a gene expression domain, thereby allowing the locus to be expressed according to their own gene regulatory elements without interfering itself and being interfered by surrounding loci. The identification and characterization of genomic boundaries is not only interesting as a theoretical exercise for better understanding how vertebrate genomes are organized, but also allows devising new and improved gene transfer strategies to ensure the expression of heterologous DNA constructs in ectopic genomic locations.
Collapse
Affiliation(s)
- Eduardo Moltó
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Department of Molecular and Cellular Biology, Campus de Cantoblanco, C/Darwin 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
169
|
Morris KV. RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides 2009; 19:299-306. [PMID: 19943804 PMCID: PMC2861411 DOI: 10.1089/oli.2009.0212] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/01/2009] [Indexed: 11/13/2022]
Abstract
The overt loss or uncontrolled gain of gene expression is found at some level in virtually every malady afflicting humans. From cancer to HIV-1, the uncontrolled expression or loss of gene expression is prevalent in human diseases. Approaches toward the specific control of gene expression at the transcriptional level could have the potential to revert or reduce disease pathologies. Over the last several years, researchers have developed methodologies that utilize small antisense non-coding RNAs to specifically silence transcription. Only recently has the endogenous molecular pathway usurped by the introduction of these small RNAs to regulate transcription in human cells been defined. Observations suggest that long antisense non-coding RNAs function as the endogenous epigenetic regulators of transcription in human cells, thus explaining why small antisense RNAs were observed early on to silence transcription via directed epigenetic changes at the target loci. The mechanism of action whereby small regulatory RNAs can either turn gene transcription on or off will be discussed as evidence that one day it may be possible to develop therapeutics to regulate gene transcription and ameliorate particular disease conditions.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
170
|
Oude Ophuis RJA, Wijers M, Bennink MB, van de Loo FAJ, Fransen JAM, Wieringa B, Wansink DG. A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis. PLoS One 2009; 4:e8024. [PMID: 19946639 PMCID: PMC2778554 DOI: 10.1371/journal.pone.0008024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 01/21/2023] Open
Abstract
Background Studies on the myotonic dystrophy protein kinase (DMPK) gene and gene products have thus far mainly concentrated on the fate of length mutation in the (CTG)n repeat at the DNA level and consequences of repeat expansion at the RNA level in DM1 patients and disease models. Surprisingly little is known about the function of DMPK protein products. Methodology/Principal Findings We demonstrate here that transient expression of one major protein product of the human gene, the hDMPK A isoform with a long tail anchor, results in mitochondrial fragmentation and clustering in the perinuclear region. Clustering occurred in a variety of cell types and was enhanced by an intact tubulin cytoskeleton. In addition to morphomechanical changes, hDMPK A expression induces physiological changes like loss of mitochondrial membrane potential, increased autophagy activity, and leakage of cytochrome c from the mitochondrial intermembrane space accompanied by apoptosis. Truncation analysis using YFP-hDMPK A fusion constructs revealed that the protein's tail domain was necessary and sufficient to evoke mitochondrial clustering behavior. Conclusion/Significance Our data suggest that the expression level of the DMPK A isoform needs to be tightly controlled in cells where the hDMPK gene is expressed. We speculate that aberrant splice isoform expression might be a codetermining factor in manifestation of specific DM1 features in patients.
Collapse
Affiliation(s)
- Ralph J. A. Oude Ophuis
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Miranda B. Bennink
- Rheumatology Research and Advanced Therapeutics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Fons A. J. van de Loo
- Rheumatology Research and Advanced Therapeutics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Derick G. Wansink
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
171
|
De Biase I, Chutake YK, Rindler PM, Bidichandani SI. Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription. PLoS One 2009; 4:e7914. [PMID: 19956589 PMCID: PMC2780319 DOI: 10.1371/journal.pone.0007914] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Over 15 inherited diseases are caused by expansion of triplet-repeats. Friedreich ataxia (FRDA) patients are homozygous for an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. The expanded GAA triplet-repeat results in deficiency of FXN gene transcription, which is reversed via administration of histone deacetylase inhibitors indicating that transcriptional silencing is at least partially due to an epigenetic abnormality. METHODOLOGY/PRINCIPAL FINDINGS We found a severe depletion of the chromatin insulator protein CTCF (CCCTC-binding factor) in the 5'UTR of the FXN gene in FRDA, and coincident heterochromatin formation involving the +1 nucleosome via enrichment of H3K9me3 and recruitment of heterochromatin protein 1. We identified FAST-1 (FXNAntisense Transcript - 1), a novel antisense transcript that overlaps the CTCF binding site in the 5'UTR, which was expressed at higher levels in FRDA. The reciprocal relationship of deficient FXN transcript and higher levels of FAST-1 seen in FRDA was reproduced in normal cells via knockdown of CTCF. CONCLUSIONS/SIGNIFICANCE CTCF depletion constitutes an epigenetic switch that results in increased antisense transcription, heterochromatin formation and transcriptional deficiency in FRDA. These findings provide a mechanistic basis for the transcriptional silencing of the FXN gene in FRDA, and broaden our understanding of disease pathogenesis in triplet-repeat diseases.
Collapse
Affiliation(s)
- Irene De Biase
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yogesh K. Chutake
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Paul M. Rindler
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
172
|
Cicero AF, Ertek S. Metabolic and cardiovascular effects of berberine: from preclinical evidences to clinical trial results. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.41] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
173
|
Marmolino D, Acquaviva F. Friedreich's Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. CEREBELLUM (LONDON, ENGLAND) 2009; 8:245-59. [PMID: 19165552 DOI: 10.1007/s12311-008-0084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/14/2008] [Indexed: 10/25/2022]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease due to a pathological expansion of a GAA triplet repeat in the first intron of the FXN gene encoding for the mitochondrial protein frataxin. The expansion is responsible for most cases of FRDA through the formation of a nonusual B-DNA structure and heterochromatin conformation that determine a direct transcriptional silencing and the subsequent reduction in frataxin expression. Among other functions, frataxin is an iron chaperone central for the assembly of iron-sulfur clusters in mitochondria; its reduction is associated with iron accumulation in mitochondria, increased cellular sensitivity to oxidative stress and cell damage. There is, nowadays, no effective therapy for FRDA and current therapeutic strategies mainly act to slow down the consequences of frataxin deficiency. Therefore, drugs that are able to increase the amount of frataxin are excellent candidates for a rational approach to FRDA therapy. Recently, several drugs have been assessed for their ability to increase the amount of cellular frataxin, including human recombinant erythropoietin, histone deacetylase inhibitors, and the PPAR-gamma agonists.
Collapse
Affiliation(s)
- Daniele Marmolino
- Laboratoire de Neurologie Expérimentale, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium,
| | | |
Collapse
|
174
|
Yu Z, Wang AM, Robins DM, Lieberman AP. Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. Dis Model Mech 2009; 2:500-7. [PMID: 19692580 DOI: 10.1242/dmm.003301] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here, we used a mouse model of Kennedy disease, a degenerative disorder caused by an expanded CAG repeat in the androgen receptor (AR) gene, to explore pathways leading to cellular dysfunction. We demonstrate that male mice containing a targeted Ar allele with 113 CAG repeats (AR113Q mice) exhibit hormone- and glutamine length-dependent missplicing of Clcn1 RNA in skeletal muscle. Changes in RNA splicing are associated with increased expression of the RNA-binding protein CUGBP1. Furthermore, we show that skeletal muscle denervation in the absence of a repeat expansion leads to increased CUGBP1 expression. However, this induction of CUGBP1 is not sufficient to alter Clcn1 RNA splicing, indicating that changes mediated by both denervation and AR113Q toxicity contribute to altered RNA processing. To test this notion directly, we exogenously expressed the AR in vitro and observed hormone-dependent changes in the splicing of pre-mRNAs from a human cardiac troponin T minigene. These effects were notably similar to changes mediated by RNA with expanded CUG tracts, but not CAG tracts, highlighting unanticipated similarities between CAG and CUG repeat diseases. The expanded glutamine AR also altered hormone-dependent splicing of a calcitonin/calcitonin gene-related peptide minigene, suggesting that toxicity of the mutant protein additionally affects RNA processing pathways that are distinct from those regulated by CUGBP1. Our studies demonstrate the occurrence of hormone-dependent alterations in RNA splicing in Kennedy disease models, and they indicate that these changes are mediated by both the cell-autonomous effects of the expanded glutamine AR protein and by alterations in skeletal muscle that are secondary to denervation.
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
175
|
Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, Swanson MS, Ranum LPW. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 2009; 5:e1000600. [PMID: 19680539 PMCID: PMC2719092 DOI: 10.1371/journal.pgen.1000600] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/14/2009] [Indexed: 01/19/2023] Open
Abstract
Microsatellite expansions cause a number of dominantly-inherited neurological diseases. Expansions in coding-regions cause protein gain-of-function effects, while non-coding expansions produce toxic RNAs that alter RNA splicing activities of MBNL and CELF proteins. Bi-directional expression of the spinocerebellar ataxia type 8 (SCA8) CTG CAG expansion produces CUG expansion RNAs (CUGexp) from the ATXN8OS gene and a nearly pure polyglutamine expansion protein encoded by ATXN8 CAGexp transcripts expressed in the opposite direction. Here, we present three lines of evidence that RNA gain-of-function plays a significant role in SCA8: 1) CUGexp transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons in the brain; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUGexp transcripts trigger splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4). In vivo optical imaging studies in SCA8 mice confirm that Gabt4 upregulation is associated with the predicted loss of GABAergic inhibition within the granular cell layer. These data demonstrate that CUGexp transcripts dysregulate MBNL/CELF regulated pathways in the brain and provide mechanistic insight into the CNS effects of other CUGexp disorders. Moreover, our demonstration that relatively short CUGexp transcripts cause RNA gain-of-function effects and the growing number of antisense transcripts recently reported in mammalian genomes suggest unrecognized toxic RNAs contribute to the pathophysiology of polyglutamine CAG CTG disorders. We describe several lines of evidence that RNA gain-of-function effects play a significant role in spinocerebellar ataxia type 8 (SCA8) and has broader implications for understanding the CNS effects of other trinucleotide expansion disorders including myotonic dystrophy type 1, Huntington disease like-2, and spinocerebellar ataxia type 7. The SCA8 mutation is bidirectionally transcribed resulting in the expression of CUGexp transcripts from ATXN8OS and CAGexp transcripts and polyglutamine protein from the overlapping ATXN8 gene. These data suggest that SCA8 pathogenesis involves toxic gain-of-function effects at the RNA (CUGexp) and/or protein (PolyQ) levels. We present three lines of evidence that CUGexp transcripts play a significant role in SCA8: 1) CUGexp transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUGexp transcripts trigger alternative splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4) which is associated with the predicted loss of GABAergic inhibition within the granular cell layer in SCA8 mice. Additionally, alternative splicing changes and GAT4 upregulation are induced by CUGexp but not CAGexp transcripts. From a therapeutic viewpoint, it is promising that this change is reversed in cells overexpressing MBNL1.
Collapse
Affiliation(s)
- Randy S. Daughters
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel L. Tuttle
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Wangcai Gao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yoshio Ikeda
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melinda L. Moseley
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Laura P. W. Ranum
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
176
|
Affiliation(s)
- Karine Merienne
- Department of Neurobiology and Genetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, BP10142, Illkirch, CU de Strasbourg, France
| | - Yvon Trottier
- Department of Neurobiology and Genetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, BP10142, Illkirch, CU de Strasbourg, France
- * E-mail:
| |
Collapse
|
177
|
Morris KV. Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells. Epigenetics 2009; 4:296-301. [PMID: 19633414 DOI: 10.4161/epi.4.5.9282] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetic silencing of tumor suppressor gene promoters is one of the most common observations found in cancer. Despite the plethora of observed epigenetically silenced cancer related genes little is known about what is guiding the silencing to these particular loci. Two recent articles suggest that long antisense non-coding RNAs function as epigenetic regulators of transcription in human cells. These reports, along with previous observations that small antisense non-coding RNAs can epigenetically regulate transcription, imply that long antisense non-coding RNAs function as endogenous transcriptional regulatory RNAs in humans. Mechanistically, these long antisense non-coding RNAs may be involved in maintaining balanced transcription at bidirectionally transcribed loci as a method to modulate gene expression according to the selective pressures placed on the cell. The loss of this intricate bidirectional RNA based regulatory network can result in overt epigenetic silencing of gene expression. In the case of tumor suppressor genes this silencing can lead to the loss of cellular regulation and be a contributing factor in cancer. This perspective will highlight the endogenous effector RNAs and mechanism of action whereby long antisense non-coding RNAs transcriptionally regulate gene expression in human cells.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
178
|
Zeng W, de Greef JC, Chen YY, Chien R, Kong X, Gregson HC, Winokur ST, Pyle A, Robertson KD, Schmiesing JA, Kimonis VE, Balog J, Frants RR, Ball AR, Lock LF, Donovan PJ, van der Maarel SM, Yokomori K. Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 2009; 5:e1000559. [PMID: 19593370 PMCID: PMC2700282 DOI: 10.1371/journal.pgen.1000559] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/12/2009] [Indexed: 12/11/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.
Collapse
Affiliation(s)
- Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Jessica C. de Greef
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Heather C. Gregson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Sara T. Winokur
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - April Pyle
- Institute for Stem Cell Biology and Medicine, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Keith D. Robertson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - John A. Schmiesing
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Medical Genetics and Metabolism, Department of Pediatrics, University of California Irvine Medical Center, Orange, California, United States of America
| | - Judit Balog
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Rune R. Frants
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Leslie F. Lock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Peter J. Donovan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | | | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| |
Collapse
|
179
|
Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 2009; 25:288-97. [PMID: 19540013 DOI: 10.1016/j.tig.2009.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 12/16/2022]
Abstract
Trinucleotide repeat expansion underlies at least 17 neurological diseases. In affected individuals, the expanded locus is characterized by dramatic changes in chromatin structure and in repeat tract length. Interestingly, recent studies show that several chromatin modifiers, including a histone acetyltransferase, a DNA methyltransferase and the chromatin insulator CTCF can modulate repeat instability. Here, we propose that the unusual chromatin structure of expanded repeats directly impacts their instability. We discuss several potential models for how this might occur, including a role for DNA repair-dependent epigenetic reprogramming in increasing repeat instability, and the capacity of epigenetic marks to alter sense and antisense transcription, thereby affecting repeat instability.
Collapse
|
180
|
Ikeda Y, Daughters RS, Ranum LPW. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. THE CEREBELLUM 2009; 7:150-8. [PMID: 18418692 DOI: 10.1007/s12311-008-0010-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spinocerebellar ataxia type 8 (SCA8) is a dominantly inherited, slowly progressive neurodegenerative disorder caused by a CTG.CAG repeat expansion located on chromosome 13q21. The expansion mutation was isolated directly from the DNA of a single patient using RAPID cloning and subsequently shown to co-segregate with disease in additional ataxia families including a seven-generation kindred (the MN-A family). The size-dependent penetrance of the repeat found in the large MN-A kindred makes it appear as though some parts of the family have a dominant disorder while other parts of this same family have recessive or sporadic forms of ataxia. While the linkage and size-dependent penetrance of the SCA8 CTG.CAG expansion in the MN-A family argue that the SCA8 expansion causes ataxia, the reduced penetrance in other SCA8 families and the discovery of expansions in the general population have led to a controversy surrounding whether or not the SCA8 expansion is pathogenic. A recently reported mouse model in which SCA8 BAC-expansion but not BAC-control lines develop a progressive neurological phenotype now demonstrates the pathogenicity of the (CTG.CAG)(n) expansion. These mice show a loss of cerebellar GABAergic inhibition and, similar to human patients, have 1C2-positive intranuclear inclusions in Purkinje cells and other neurons. Additional studies demonstrate that the SCA8 expansion is expressed in both directions (CUG and CAG) and that a novel gene expressed in the CAG direction encodes a pure polyglutamine expansion protein (ataxin 8, ATXN8). Moreover, the expression of non-coding (CUG)(n) expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and the discovery of intranuclear polyglutamine inclusions suggest SCA8 pathogenesis may involve toxic gain-of-function mechanisms at both the protein and RNA levels. Our data, combined with the recently reported antisense transcripts spanning the DM1 repeat expansion in the CAG direction and the growing number of reports of antisense transcripts expressed throughout the mammalian genome, raises the possibility that bidirectional expression across pathogenic microsatellite expansions may occur in other expansion disorders, and that potential pathogenic effects of mutations expressed from both strands should be considered.
Collapse
Affiliation(s)
- Yoshio Ikeda
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
181
|
Abstract
CTCF is a ubiquitous transcription factor that is involved in numerous, seemingly unrelated functions. These functions include, but are not limited to, positive or negative regulation of transcription, enhancer-blocking activities at developmentally regulated gene clusters and at imprinted loci, and X-chromosome inactivation. Here, we review recent data acquired with state-of-the-art technologies that illuminate possible mechanisms behind the diversity of CTCF functions. CTCF interacts with numerous protein partners, including cohesin, nucleophosmin, PARP1, Yy1 and RNA polymerase II. We propose that CTCF interacts with one or two different partners according to the biological context, applying the Roman principle of governance, 'divide and rule' (divide et impera).
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
182
|
Abstract
Triplet repeat expansion is the molecular basis for several human diseases. Intensive studies using systems in bacteria, yeast, flies, mammalian cells, and mice have provided important insights into the molecular processes that are responsible for mediating repeat instability. The age-dependent, ongoing repeat instability in somatic tissues, especially in terminally differentiated neurons, strongly suggests a robust role for pathways that are independent of DNA replication. Several genetic studies have indicated that transcription can play a critical role in repeat instability, potentially providing a basis for the instability observed in neurons. Transcription-induced repeat instability can be modulated by several DNA repair proteins, including those involved in mismatch repair (MMR) and transcription-coupled nucleotide excision repair (TC-NER). Though the mechanism is unclear, it is likely that transcription facilitates the formation of repeat-specific secondary structures, which act as intermediates to trigger DNA repair, eventually leading to changes in the length of the repeat tract. In addition, other processes associated with transcription can also modulate repeat instability, as shown in a variety of different systems. Overall, the mechanisms underlying repeat instability in humans are unexpectedly complicated. Because repeat-disease genes are widely expressed, transcription undoubtedly contributes to the repeat instability observed in many diseases, but it may be especially important in nondividing cells. Transcription-induced instability is likely to involve an extensive interplay not only of the core transcription machinery and DNA repair proteins, but also of proteins involved in chromatin remodeling, regulation of supercoiling, and removal of stalled RNA polymerases, as well as local DNA sequence effects.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
183
|
The ATTCT repeats of spinocerebellar ataxia type 10 display strong nucleosome assembly which is enhanced by repeat interruptions. Gene 2009; 434:29-34. [DOI: 10.1016/j.gene.2008.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/07/2008] [Accepted: 12/15/2008] [Indexed: 12/19/2022]
|
184
|
Wendt KS, Peters JM. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res 2009; 17:201-14. [PMID: 19308701 DOI: 10.1007/s10577-008-9017-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/30/2022]
Abstract
Cohesin is a DNA-binding protein complex that is essential for sister chromatid cohesion and facilitates the repair of damaged DNA. In addition, cohesin has important roles in regulating gene expression, but the molecular mechanisms of this function are poorly understood. Recent experiments have revealed that cohesin binds to the same sites in mammalian genomes as the zinc finger transcription factor CTCF. At a few loci CTCF has been shown to function as an enhancer-blocking transcriptional insulator, and recent observations indicate that this function depends on cohesin. Here we review what is known about the roles of cohesin and CTCF in regulating gene expression in mammalian cells, and we discuss how cohesin might mediate the insulator function of CTCF.
Collapse
Affiliation(s)
- Kerstin S Wendt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
185
|
Abstract
Cellular functions depend on numerous protein-coding and noncoding RNAs and the RNA-binding proteins associated with them, which form ribonucleoprotein complexes (RNPs). Mutations that disrupt either the RNA or protein components of RNPs or the factors required for their assembly can be deleterious. Alternative splicing provides cells with an exquisite capacity to fine-tune their transcriptome and proteome in response to cues. Splicing depends on a complex code, numerous RNA-binding proteins, and an enormously intricate network of interactions among them, increasing the opportunity for exposure to mutations and misregulation that cause disease. The discovery of disease-causing mutations in RNAs is yielding a wealth of new therapeutic targets, and the growing understanding of RNA biology and chemistry is providing new RNA-based tools for developing therapeutics.
Collapse
Affiliation(s)
- Thomas A. Cooper
- Departments of Pathology and Molecular and Cellular Biology Baylor College of Medicine Houston, TX 77030, USA
| | - Lili Wan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, PA 19104, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, PA 19104, USA
| |
Collapse
|
186
|
Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 2008; 19:24-32. [PMID: 19056695 DOI: 10.1101/gr.082800.108] [Citation(s) in RCA: 511] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulators are DNA elements that prevent inappropriate interactions between the neighboring regions of the genome. They can be functionally classified as either enhancer blockers or domain barriers. CTCF (CCCTC-binding factor) is the only known major insulator-binding protein in the vertebrates and has been shown to bind many enhancer-blocking elements. However, it is not clear whether it plays a role in chromatin domain barriers between active and repressive domains. Here, we used ChIP-seq to map the genome-wide binding sites of CTCF in three cell types and identified significant binding of CTCF to the boundaries of repressive chromatin domains marked by H3K27me3. Although we find an extensive overlapping of CTCF-binding sites across the three cell types, its association with the domain boundaries is cell-type-specific. We further show that the nucleosomes flanking CTCF-binding sites are well positioned. Interestingly, we found a complementary pattern between the repressive H3K27me3 and the active H2AK5ac regions, which are separated by CTCF. Our data indicate that CTCF may play important roles in the barrier activity of insulators, and this study provides a resource for further investigation of the CTCF function in organizing chromatin in the human genome.
Collapse
Affiliation(s)
- Suresh Cuddapah
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
187
|
Abstract
Epigenetic modifications of our genome involve DNA methylation, covalent modifications of the histone tails, nucleosome occupancy and turnover and higher-order chromatin folding. These mitotically heritable epigenetic modifications can affect transcription regulation and are increasingly recognised to be causally involved in a broad spectrum of human conditions, ranging from monogenic to multifactorial disorders. While our understanding of these epigenetic disease mechanisms steadily increases, the challenge will be to develop new drugs that specifically deal with the epigenetic lesion.
Collapse
Affiliation(s)
- S M van der Maarel
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
188
|
Libby RT, Hagerman KA, Pineda VV, Lau R, Cho DH, Baccam SL, Axford MM, Cleary JD, Moore JM, Sopher BL, Tapscott SJ, Filippova GN, Pearson CE, La Spada AR. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet 2008; 4:e1000257. [PMID: 19008940 PMCID: PMC2573955 DOI: 10.1371/journal.pgen.1000257] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/07/2008] [Indexed: 12/16/2022] Open
Abstract
At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting “instability elements,” and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability. The human genome contains many repetitive sequences. In 1991, we discovered that excessive lengthening of a three-nucleotide (trinucleotide) repeat sequence could cause a human genetic disease. We now know that this unique type of genetic mutation, known as a “repeat expansion,” occurs in at least 25 different diseases, including inherited neurological disorders such as the fragile X syndrome of mental retardation, myotonic muscular dystrophy, and Huntington's disease. An interesting feature of repeat expansion mutations is that they are genetically unstable, meaning that the repeat expansion changes in length when transmitted from parent to offspring. Thus, expanded repeats violate one major tenet of genetics—i.e., that any given sequence has a low likelihood for mutation. For expanded repeats, the likelihood of further mutation approaches 100%. Understanding why expanded repeats are so mutable has been a challenging problem for genetics research. In this study, we implicate the CTCF protein in the repeat expansion process by showing that mutation of a CTCF binding site, next to an expanded repeat sequence, increases genetic instability in mice. CTCF is an important regulatory factor that controls the expression of genes. As binding sites for CTCF are associated with many repeat sequences, CTCF may play a role in regulating genetic instability in various repeat diseases—not just the one we studied.
Collapse
Affiliation(s)
- Randell T. Libby
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Katharine A. Hagerman
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Victor V. Pineda
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Rachel Lau
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Diane H. Cho
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sandy L. Baccam
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Michelle M. Axford
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John D. Cleary
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - James M. Moore
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Bryce L. Sopher
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Stephen J. Tapscott
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Neurology (Neurogenetics), University of Washington Medical Center, Seattle, Washington, United States of America
| | - Galina N. Filippova
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Albert R. La Spada
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
- Department of Neurology (Neurogenetics), University of Washington Medical Center, Seattle, Washington, United States of America
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, Washington, United States of America
- Center for Neurogenetics & Neurotherapeutics, University of Washington Medical Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
189
|
Soragni E, Herman D, Dent SYR, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 2008; 36:6056-65. [PMID: 18820300 PMCID: PMC2577344 DOI: 10.1093/nar/gkn604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 12/25/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii) heterozygous GAA*TTC expansion carriers with approximately 50% decrease of the frataxin are asymptomatic. The discovery of therapeutic strategies for FRDA is hampered by a lack of appropriate molecular models of the disease. Herein, we present the development of a new cell line as a molecular model of FRDA by inserting 560 GAA*TTC repeats into an intron of a GFP reporter minigene. The GFP_(GAA*TTC)(560) minigene recapitulates the molecular hallmarks of the mutated FXN gene, i.e. inhibition of transcription of the reporter gene, decreased levels of the reporter protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats. Additionally, selected histone deacetylase inhibitors, known to stimulate the FXN gene expression, increase the expression of the GFP_(GAA*TTC)(560) reporter. This FRDA model can be adapted to high-throughput analyses in a search for new therapeutics for the disease.
Collapse
Affiliation(s)
- E. Soragni
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - D. Herman
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - S. Y. R. Dent
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - J. M. Gottesfeld
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R. D. Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - M. Napierala
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
190
|
Ruan H, Wang YH. Friedreich's Ataxia GAA·TTC Duplex and GAA·GAA·TTC Triplex Structures Exclude Nucleosome Assembly. J Mol Biol 2008; 383:292-300. [DOI: 10.1016/j.jmb.2008.08.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/18/2008] [Indexed: 11/30/2022]
|
191
|
Kumari D, Usdin K. Chromatin remodeling in the noncoding repeat expansion diseases. J Biol Chem 2008; 284:7413-7. [PMID: 18957431 DOI: 10.1074/jbc.r800026200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Friedreich ataxia, myotonic dystrophy type 1 and 3 forms of intellectual disability, fragile X syndrome, FRAXE mental retardation, and FRA12A mental retardation are repeat expansion diseases caused by expansion of CTG.CAG, GAA.TTC, or CGG.CCG repeat tracts. These repeats are transcribed but not translated. They are located in different parts of different genes and cause symptoms that range from ataxia and hypertrophic cardiomyopathy to muscle wasting, male infertility, and mental retardation, yet recent reports suggest that, despite these differences, the repeats may share a common property, namely the ability to initiate repeat-mediated epigenetic changes that result in heterochromatin formation.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
192
|
Abstract
Recent mapping of functional sequence elements in the human genome has led to the realization that transcription is pervasive and that noncoding RNAs compose a significant portion of the transcriptome. Some dominantly inherited neurological disorders are associated with the expansion of microsatellite repeats in noncoding regions that result in the synthesis of pathogenic RNAs. Here, we review RNA gain-of-function mechanisms underlying three of these microsatellite expansion disorders to illustrate how some mutant RNAs cause disease.
Collapse
Affiliation(s)
- Jason R O'Rourke
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610-3610, USA
| | | |
Collapse
|
193
|
Seim I, Carter SL, Herington AC, Chopin LK. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene. BMC Mol Biol 2008; 9:95. [PMID: 18954468 PMCID: PMC2621237 DOI: 10.1186/1471-2199-9-95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022] Open
Abstract
Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | |
Collapse
|
194
|
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 2008; 18:1011-9. [PMID: 18593815 DOI: 10.1101/gr.070409.107] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tandem repeats are common features of both prokaryote and eukaryote genomes, where they can be found not only in intergenic regions but also in both the noncoding and coding regions of a variety of different genes. The repeat expansion diseases are a group of human genetic disorders caused by long and highly polymorphic tandem repeats. These disorders provide many examples of the effects that such repeats can have on many biological processes. While repeats in the coding sequence can result in the generation of toxic or malfunctioning proteins, noncoding repeats can also have significant effects including the generation of chromosome fragility, the silencing of the genes in which they are located, the modulation of transcription and translation, and the sequestering of proteins involved in processes such as splicing and cell architecture.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
195
|
Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, Pasini D, Miró X, Donohoe ME, Lee JT, Helin K, Soloway PD. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet 2008; 4:e1000145. [PMID: 18670629 PMCID: PMC2475503 DOI: 10.1371/journal.pgen.1000145] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/30/2008] [Indexed: 12/18/2022] Open
Abstract
At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal DMD inappropriately acquired DNA methylation; and by analyzing materials from cells and embryos lacking SUZ12 and YY1. SUZ12 is part of the PRC2 complex, which is needed for placing H3K27me3, and YY1 recruits PRC2 to sites of action. Results from each experimental system consistently demonstrated antagonism between H3K27me3 and DNA methylation. When DNA methylation was lost, H3K27me3 encroached into sites where it had not been before; inappropriate acquisition of DNA methylation excluded normal placement of H3K27me3, and loss of factors needed for H3K27 methylation enabled DNA methylation to appear where it had been excluded. These data reveal the previously unknown antagonism between H3K27 and DNA methylation and identify a means by which epigenetic states may change during disease and development. Methylation of DNA and histones exert profound and inherited effects on gene expression. These occur without changes to the underlying DNA sequence and are considered epigenetic effects. Disrupting epigenetic states can cause developmental abnormalities and cancer. Very little is known about how locations in the mammalian genome are chosen to receive these chemical modifications, or how their placement is regulated. We have identified a DNA sequence that acts as a methylation programmer at the Rasgrf1 locus in mice. It is required for methylation of nearby DNA sequences and can also influence the levels of local histone methylation. The methylation programmer has different effects on paternally and maternally derived chromosomes, directing DNA methylation on the paternal allele and histone H3 lysine 27 trimethylation on the maternal allele. These two methylation marks are not only mutually exclusive; they are also mutually antagonizing, whereby one blocks the placement of the other. Manipulations that cause aberrant changes in the levels of one of these marks had the opposite effect on the other mark. These observations identify novel mechanisms that specify epigenetic states in vivo and provide a framework for understanding how pathological epigenetic changes can arise, including those emerging at tumor suppressors during carcinogenesis.
Collapse
Affiliation(s)
- Anders M. Lindroth
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Yoon Jung Park
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Chelsea M. McLean
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Gregoriy A. Dokshin
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jenna M. Persson
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Herry Herman
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Orthopaedic Surgery, School of Medicine, Padjadjaran State University–Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Diego Pasini
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Miró
- Department of Molecular Cell Biology, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Mary E. Donohoe
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeannie T. Lee
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
196
|
Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, Fedoriw A, Lobanenkov V, Latham KE, Schultz RM, Bartolomei MS. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 2008; 135:2729-38. [PMID: 18614575 DOI: 10.1242/dev.024539] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CTCF is a multifunctional nuclear factor involved in epigenetic regulation. Despite recent advances that include the systematic discovery of CTCF-binding sites throughout the mammalian genome, the in vivo roles of CTCF in adult tissues and during embryonic development are largely unknown. Using transgenic RNAi, we depleted maternal stores of CTCF from growing mouse oocytes, and identified hundreds of misregulated genes. Moreover, our analysis suggests that CTCF predominantly activates or derepresses transcription in oocytes. CTCF depletion causes meiotic defects in the egg, and mitotic defects in the embryo that are accompanied by defects in zygotic gene expression, and culminate in apoptosis. Maternal pronuclear transfer and CTCF mRNA microinjection experiments indicate that CTCF is a mammalian maternal effect gene, and that persistent transcriptional defects rather than persistent chromosomal defects perturb early embryonic development. This is the first study detailing a global and essential role for CTCF in mouse oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Le-Ben Wan
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 2008; 105:8309-14. [PMID: 18550811 PMCID: PMC2448833 DOI: 10.1073/pnas.0801273105] [Citation(s) in RCA: 390] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Indexed: 12/24/2022] Open
Abstract
Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesin's association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element. Both allele-specific binding of CTCF and Scc3/SA1 at the imprinted IGF2/H19 gene locus and our analyses of human DM1 alleles containing base substitutions at CTCF-binding motifs indicate that cohesin recruitment to chromosomal sites depends on the presence of CTCF. A large-scale genomic survey using ChIP-Chip demonstrates that Scc3/SA1 binding strongly correlates with the CTCF-binding site distribution in chromosomal arms. However, some chromosomal sites interact exclusively with CTCF, whereas others interact with Scc3/SA1 only. Furthermore, immunofluorescence microscopy and ChIP-Chip experiments demonstrate that CTCF associates with both centromeres and chromosomal arms during metaphase. These results link cohesin to gene regulatory functions and suggest an essential role for CTCF during sister chromatid cohesion. These results have implications for the functional role of cohesin subunits in the pathogenesis of Cornelia de Lange syndrome and Roberts syndromes.
Collapse
Affiliation(s)
| | | | - Piri L. Welcsh
- Department of Medicine, Division of Medical Genetics, and
| | - Christine M. Disteche
- Department of Medicine, Division of Medical Genetics, and
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - Galina N. Filippova
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | | | - Ruedi Aebersold
- Institute for Systems Biology, Seattle, WA 98103
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH), and Faculty of Science, University of Zürich, CH-8006 Zürich, Switzerland
| | | | - Anton Krumm
- *Department of Radiation Oncology
- **Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98195
| |
Collapse
|
198
|
Lepère G, Bétermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev 2008; 22:1501-12. [PMID: 18519642 PMCID: PMC2418586 DOI: 10.1101/gad.473008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/28/2008] [Indexed: 12/22/2022]
Abstract
The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.
Collapse
Affiliation(s)
- Gersende Lepère
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Mireille Bétermier
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Eric Meyer
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| |
Collapse
|
199
|
Slean MM, Panigrahi GB, Ranum LP, Pearson CE. Mutagenic roles of DNA "repair" proteins in antibody diversity and disease-associated trinucleotide repeat instability. DNA Repair (Amst) 2008; 7:1135-54. [PMID: 18485833 DOI: 10.1016/j.dnarep.2008.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While DNA repair proteins are generally thought to maintain the integrity of the whole genome by correctly repairing mutagenic DNA intermediates, there are cases where DNA "repair" proteins are involved in causing mutations instead. For instance, somatic hypermutation (SHM) and class switch recombination (CSR) require the contribution of various DNA repair proteins, including UNG, MSH2 and MSH6 to mutate certain regions of immunoglobulin genes in order to generate antibodies of increased antigen affinity and altered effector functions. Another instance where "repair" proteins drive mutations is the instability of gene-specific trinucleotide repeats (TNR), the causative mutations of numerous diseases including Fragile X mental retardation syndrome (FRAXA), Huntington's disease (HD), myotonic dystrophy (DM1) and several spinocerebellar ataxias (SCAs) all of which arise via various modes of pathogenesis. These healthy and deleterious mutations that are induced by repair proteins are distinct from the genome-wide mutations that arise in the absence of repair proteins: they occur at specific loci, are sensitive to cis-elements (sequence context and/or epigenetic marks) and transcription, occur in specific tissues during distinct developmental windows, and are age-dependent. Here we review and compare the mutagenic role of DNA "repair" proteins in the processes of SHM, CSR and TNR instability.
Collapse
Affiliation(s)
- Meghan M Slean
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1L7
| | | | | | | |
Collapse
|
200
|
DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res 2008; 18:1259-69. [PMID: 18456864 DOI: 10.1101/gr.075713.107] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Macrosatellite DNA is composed of large repeat units, arranged in tandem over hundreds of kilobases. The macrosatellite repeat DXZ4, localized at Xq23-24, consists of 50-100 copies of a CpG-rich 3-kb monomer. Here I report that on the active X chromosome (Xa), DXZ4 is organized into constitutive heterochromatin characterized by a highly organized pattern of H3K9me3. DXZ4 is expressed from both strands and generates an antisense transcript that is processed into small RNAs that directly correlate with H3K9me3 nucleosomes. In contrast, on the inactive X chromosome (Xi) a proportion of DXZ4 is packaged into euchromatin characterized by H3K4me2 and H3K9Ac. The Xi copy of DXZ4 is bound by the chromatin insulator, CTCF, within a sequence that unidirectionally blocks enhancer-promoter communication. Immediately adjacent to the CTCF-binding site is a bidirectional promoter that, like the sequence flanking the CTCF-binding region, is completely devoid of CpG methylation on the Xi. As on the Xa, both strands are expressed, but longer antisense transcripts can be detected in addition to the processed small RNAs. The euchromatic organization of DXZ4 on the otherwise heterochromatic Xi, its binding of CTCF, and its function as a unidirectional insulator suggest that this macrosatellite has acquired a novel function unique to the process of X chromosome inactivation.
Collapse
|