151
|
Bochner R, Ziv Y, Zeevi D, Donyo M, Abraham L, Ashery-Padan R, Ast G. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 2013; 22:2785-94. [PMID: 23515154 DOI: 10.1093/hmg/ddt126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.
Collapse
Affiliation(s)
- Ron Bochner
- Department of Human Molecular Genetics and Biochemistry
| | | | | | | | | | | | | |
Collapse
|
152
|
Structural insights into Elongator function. Curr Opin Struct Biol 2013; 23:235-42. [PMID: 23510783 DOI: 10.1016/j.sbi.2013.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
The eukaryotic Elongator complex was initially identified in yeast as a RNA polymerase II (Pol II) associated transcription elongation factor, although there is accumulating evidence that its main cellular function is the specific modification of uridines at the wobble base position of tRNAs. Elongator complex is built up by six highly conserved subunits and was shown to be involved in a variety of different cellular activities. Here, we summarize structural and functional information on individual Elongator subunits or subcomplexes. On the basis of homology models of the Elp1, Elp2 and Elp3 subunits and the crystal structure of the Elp456 subcomplex, the role of each subunit in Elongator complex assembly and catalytic activity is discussed.
Collapse
|
153
|
Zhu Y, Xie Z, Wang J, Liu Y, Wang J. Cloning and characterization of two genes coding for the histone acetyltransferases, Elp3 and Mof, in brown planthopper (BPH), Nilaparvata lugens (Stål). Gene 2013; 513:63-70. [DOI: 10.1016/j.gene.2012.10.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 10/28/2012] [Indexed: 01/01/2023]
|
154
|
Bauer F, Hermand D. A coordinated codon-dependent regulation of translation by Elongator. Cell Cycle 2012; 11:4524-9. [PMID: 23165209 DOI: 10.4161/cc.22689] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
More than a decade ago, the purification of the form of the RNA polymerase II (PolII) engaged in elongation led to the discovery of an associated, multi-subunit (Elp1-6) complex named "Elongator" by the Svejstrup lab. Although further evidence supported the original notion that Elongator is involved in transcription, Elongator lacked some of the expected features for a regulator of the elongating PolII. The discovery by the Byström lab, based on genetic dissection, that Elongator is pivotal for tRNA modifications, and that all the reported phenotypes of Elongator mutants are suppressed by the overexpression of two tRNAs added to the confusion. The increasing range of both potential substrates and biological processes regulated by Elongator in higher eukaryotes indicates that the major challenge of the field is to determine the biologically relevant function of Elongator. Our recent proteome-wide study in fission yeast supports a coordinated codon-dependent regulation of translation by Elongator. Here we provide additional analyses extending this hypothesis to budding yeast and worm.
Collapse
Affiliation(s)
- Fanelie Bauer
- Namur Research College (NARC), The University of Namur, Namur, Belgium
| | | |
Collapse
|
155
|
Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA (NEW YORK, N.Y.) 2012; 18:1921-33. [PMID: 22912484 PMCID: PMC3446714 DOI: 10.1261/rna.035287.112] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/19/2012] [Indexed: 05/17/2023]
Abstract
Post-transcriptional modification of the tRNA anticodon loop is critical for translation. Yeast Trm7 is required for 2'-O-methylation of C(32) and N(34) of tRNA(Phe), tRNA(Trp), and tRNA(Leu(UAA)) to form Cm(32) and Nm(34), and trm7-Δ mutants have severe growth and translation defects, but the reasons for these defects are not known. We show here that overproduction of tRNA(Phe) suppresses the growth defect of trm7-Δ mutants, suggesting that the crucial biological role of Trm7 is the modification of tRNA(Phe). We also provide in vivo and in vitro evidence that Trm7 interacts with ORF YMR259c (now named Trm732) for 2'-O-methylation of C(32), and with Rtt10 (named Trm734) for 2'-O-methylation of N(34) of substrate tRNAs and provide evidence for a complex circuitry of anticodon loop modification of tRNA(Phe), in which formation of Cm(32) and Gm(34) drives modification of m(1)G(37) (1-methylguanosine) to yW (wyebutosine). Further genetic analysis shows that the slow growth of trm7-Δ mutants is due to the lack of both Cm(32) and Nm(34), and the accompanying loss of yW, because trm732-Δ trm734-Δ mutants phenocopy trm7-Δ mutants, whereas each single mutant is healthy; nonetheless, TRM732 and TRM734 each have distinct roles, since mutations in these genes have different genetic interactions with trm1-Δ mutants, which lack m(2,2)G(26) in their tRNAs. We speculate that 2'-O-methylation of the anticodon loop may be important throughout eukaryotes because of the widespread conservation of Trm7, Trm732, and Trm734 proteins, and the corresponding modifications, and because the putative human TRM7 ortholog FTSJ1 is implicated in nonsyndromic X-linked mental retardation.
Collapse
Affiliation(s)
- Michael P. Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Brandon M. Podyma
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Melanie A. Preston
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Hussam H. Shaheen
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kady L. Krivos
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | - Anita K. Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
- Corresponding authorE-mail
| |
Collapse
|
156
|
Dewe JM, Whipple JM, Chernyakov I, Jaramillo LN, Phizicky EM. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA (NEW YORK, N.Y.) 2012; 18:1886-96. [PMID: 22895820 PMCID: PMC3446711 DOI: 10.1261/rna.033654.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.
Collapse
Affiliation(s)
- Joshua M. Dewe
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Joseph M. Whipple
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Irina Chernyakov
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Laura N. Jaramillo
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
- Corresponding authorE-mail
| |
Collapse
|
157
|
Close P, Gillard M, Ladang A, Jiang Z, Papuga J, Hawkes N, Nguyen L, Chapelle JP, Bouillenne F, Svejstrup J, Fillet M, Chariot A. DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator. J Biol Chem 2012; 287:32535-45. [PMID: 22854966 PMCID: PMC3463322 DOI: 10.1074/jbc.m112.402727] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 12/17/2022] Open
Abstract
The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This acetyltransferase complex directly or indirectly regulates numerous biological processes ranging from exocytosis and resistance to heat shock in yeast to cell migration and neuronal differentiation in higher eukaryotes. The identity of human ELP1 through ELP4 has been reported but human ELP5 and ELP6 have remained uncharacterized. Here, we report that DERP6 (ELP5) and C3ORF75 (ELP6) encode these subunits of human Elongator. We further investigated the importance and function of these two subunits by a combination of biochemical analysis and cellular assays. Our results show that DERP6/ELP5 is required for the integrity of Elongator and directly connects ELP3 to ELP4. Importantly, the migration and tumorigenicity of melanoma-derived cells are significantly decreased upon Elongator depletion through ELP1 or ELP3. Strikingly, DERP6/ELP5 and C3ORF75/ELP6-depleted melanoma cells have similar defects, further supporting the idea that DERP6/ELP5 and C3ORF75/ELP6 are essential for Elongator function. Together, our data identify DERP6/ELP5 and C3ORF75/ELP6 as key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator.
Collapse
Affiliation(s)
- Pierre Close
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Magali Gillard
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Aurélie Ladang
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Zheshen Jiang
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Jessica Papuga
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Nicola Hawkes
- the Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom
| | - Laurent Nguyen
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- Developmental Neurobiology Unit and GIGA Neurosciences
| | - Jean-Paul Chapelle
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | | | - Jesper Svejstrup
- the Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom
| | - Marianne Fillet
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmacy, CIRM, and
| | - Alain Chariot
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), GIGA-R, University of Liège, CHU, Sart-Tilman, B-4000 Liège, Belgium and
| |
Collapse
|
158
|
Dietrich P, Alli S, Shanmugasundaram R, Dragatsis I. IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 2012; 21:5078-90. [PMID: 22922231 DOI: 10.1093/hmg/dds354] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
159
|
Satwika D, Klassen R, Meinhardt F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 2012; 96:345-56. [PMID: 22899498 DOI: 10.1007/s00253-012-4349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
Abstract
A variety of yeast species are known to host systems of cytoplasmic linear dsDNA molecules that establish replication and transcription independent of the nucleus via self-encoded enzymes that are phylogenetically related to those encoded by true infective viruses. Such yeast virus-like elements (VLE) fall into two categories: autonomous VLEs encode all the essential functions for their inheritance, and additional, dependent VLEs, which may encode a toxin-antitoxin system, generally referred to as killer toxin and immunity. In the two cases studied in depth, killer toxin action relies on chitin binding and hydrophobic domains, together allowing a separate toxic subunit to sneak into the target cell. Mechanistically, the latter sabotages codon-anticodon interaction by endonucleolytic cleavage of specific tRNAs 3' of the wobble nucleotide. This primary action provokes a number of downstream effects, including DNA damage accumulation, which contribute to the cell-killing efficiency and highlight the importance of proper transcript decoding capacity for other cellular processes than translation itself. Since wobble uridine modifications are crucial for efficient anticodon nuclease (ACNase) action of yeast killer toxins, the latter are valuable tools for the characterization of a surprisingly complex network regulating the addition of wobble base modifications in tRNA.
Collapse
Affiliation(s)
- Dhira Satwika
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, 48149, Münster, Germany
| | | | | |
Collapse
|
160
|
Abstract
The conserved multi-subunit Elongator complex was initially described as a RNA polymerase II (RNAPII) associated transcription elongation factor, but since has been shown to be involved a variety of different cellular activities. Here, we summarize recent developments in the field and discuss the resulting implications for the proposed multi-functionality of Elongator.
Collapse
Affiliation(s)
- Sebastian Glatt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | | | | |
Collapse
|
161
|
Lin Z, Zhao W, Diao W, Xie X, Wang Z, Zhang J, Shen Y, Long J. Crystal structure of elongator subcomplex Elp4-6. J Biol Chem 2012; 287:21501-8. [PMID: 22556426 DOI: 10.1074/jbc.m112.341560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Elongator is a multiprotein complex composed of two subcomplexes, Elp1-3 and Elp4-6. Elongator is highly conserved between yeast and humans and plays an important role in RNA polymerase II-mediated transcriptional elongation and many other processes, including cytoskeleton organization, exocytosis, and tRNA modification. Here, we determined the crystal structure of the Elp4-6 subcomplex of yeast. The overall structure of Elp4-6 revealed that Elp6 acts as a bridge to assemble Elp4 and Elp5. Detailed structural and sequence analyses revealed that each subunit in the Elp4-6 subcomplex forms a RecA-ATPase-like fold, although it lacks the key sequence signature of ATPases. Site-directed mutagenesis and biochemical analyses indicated that the Elp4-6 subcomplex can assemble into a hexameric ring-shaped structure in vitro and in vivo. Furthermore, GST pulldown assays showed that the ring-shaped assembly of the Elp4-6 subcomplex is important for its specific histone H3 binding. Our results may shed light on the substrate recognition and assembly of the holo-Elongator complex.
Collapse
Affiliation(s)
- Zhijie Lin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Armengod ME, Moukadiri I, Prado S, Ruiz-Partida R, Benítez-Páez A, Villarroya M, Lomas R, Garzón MJ, Martínez-Zamora A, Meseguer S, Navarro-González C. Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 2012; 94:1510-20. [PMID: 22386868 DOI: 10.1016/j.biochi.2012.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.
Collapse
Affiliation(s)
- M-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Molecular Genetics, Avenida Autopista del Saler, 16-3, 46012-Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Glatt S, Létoquart J, Faux C, Taylor NMI, Séraphin B, Müller CW. The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol 2012; 19:314-20. [PMID: 22343726 DOI: 10.1038/nsmb.2234] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022]
Abstract
Elongator was initially described as an RNA polymerase II-associated factor but has since been associated with a broad range of cellular activities. It has also attracted clinical attention because of its role in certain neurodegenerative diseases. Here we describe the crystal structure of the Saccharomyces cerevisiae subcomplex of Elongator proteins 4, 5 and 6 (Elp456). The subunits each show almost identical RecA folds that form a heterohexameric ring-like structure resembling hexameric RecA-like ATPases. This structural finding is supported by different complementary in vitro and in vivo approaches, including the specific binding of the hexameric Elp456 subcomplex to tRNAs in a manner regulated by ATP. Our results support a role of Elongator in tRNA modification, explain the importance of each of the Elp4, Elp5 and Elp6 subunits for complex integrity and suggest a model for the overall architecture of the holo-Elongator complex.
Collapse
Affiliation(s)
- Sebastian Glatt
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
164
|
Boone N, Bergon A, Loriod B, Devèze A, Nguyen C, Axelrod FB, Ibrahim EC. Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 2012; 33:530-40. [PMID: 22190446 DOI: 10.1002/humu.22010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022]
Abstract
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder. The most common mutation is a c.2204+6T>C transition in the 5' splice site (5'ss) of IKBKAP intron 20, which causes a tissue-specific skipping of exon 20, resulting in lower synthesis of IKAP/hELP1 protein. To better understand the specificity of neuron loss in FD, we modeled the molecular mechanisms of IKBKAP mRNA splicing by studying human olfactory ecto-mesenchymal stem cells (hOE-MSCs) derived from FD patient nasal biopsies. We explored how the modulation of IKBKAP mRNA alternative splicing impacts the transcriptome at the genome-wide level. We found that the FD transcriptional signature was highly associated with biological functions related to the development of the nervous system. In addition, we identified target genes of kinetin, a plant cytokinin that corrects IKBKAP mRNA splicing and increases the expression of IKAP/hELP1. We identified this compound as a putative regulator of splicing factors and added new evidence for a sequence-specific correction of splicing. In conclusion, hOE-MSCs isolated from FD patients represent a promising avenue for modeling the altered genetic expression of FD, demonstrating a methodology that can be applied to a host of other genetic disorders to test the therapeutic potential of candidate molecules.
Collapse
Affiliation(s)
- Nathalie Boone
- Aix-Marseille Université, NICN, UMR 6184, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
165
|
Suaud L, Miller K, Panichelli AE, Randell RL, Marando CM, Rubenstein RC. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells. J Biol Chem 2011; 286:45083-92. [PMID: 22069317 DOI: 10.1074/jbc.m111.293282] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.
Collapse
Affiliation(s)
- Laurence Suaud
- Division of Pulmonary Medicine and Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
166
|
Lee G, Studer L. Modelling familial dysautonomia in human induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2011; 366:2286-96. [PMID: 21727134 DOI: 10.1098/rstb.2011.0026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of such phenotypes using genetic or pharmacological approaches. Finally, the system needs to be scalable for use in modern drug discovery. Here, we will discuss these points in the context of modelling familial dysautonomia (FD, Riley-Day syndrome, hereditary sensory and autonomic neuropathy III (HSAN-III)), a rare genetic disorder in the peripheral nervous system. We have demonstrated three disease-specific phenotypes in FD-iPS-derived cells that can be partially rescued by treating cells with the plant hormone kinetin. Here, we will discuss how to use FD-iPS cells further in high throughput drug discovery assays, in modelling disease severity and in performing mechanistic studies aimed at understanding disease pathogenesis. FD is a rare disease but represents an important testing ground for exploring the potential of iPS cell technology in modelling and treating human disease.
Collapse
Affiliation(s)
- Gabsang Lee
- Centre for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
167
|
Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 2011; 6:e27015. [PMID: 22046433 PMCID: PMC3203942 DOI: 10.1371/journal.pone.0027015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP - the protein encoded by Ikbkap - remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.
Collapse
|
168
|
Sasarman F, Antonicka H, Horvath R, Shoubridge EA. The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet 2011; 20:4634-43. [PMID: 21890497 DOI: 10.1093/hmg/ddr397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MTU1 (TRMU) is a mitochondrial enzyme responsible for the 2-thiolation of the wobble U in tRNA(Lys), tRNA(Glu) and tRNA(Gln), a post-transcriptional modification believed to be important for accurate and efficient synthesis of the 13 respiratory chain subunits encoded by mtDNA. Mutations in MTU1 are associated with acute infantile liver failure, and this has been ascribed to a transient lack of cysteine, the sulfur donor for the thiouridylation reaction, resulting in a mitochondrial translation defect during early development. A mutation in tRNA(Lys) that causes myoclonic epilepsy with ragged-red fibers (MERRF) is also reported to prevent modification of the wobble U. Here we show that mitochondrial translation is unaffected in fibroblasts from an MTU1 patient, in which MTU1 is undetectable by immunoblotting, despite the severe reduction in the 2-thiolation of mitochondrial tRNA(Lys), tRNA(Glu) and tRNA(Gln). The only respiratory chain abnormality that we could observe in these cells was an accumulation of a Complex II assembly intermediate, which, however, did not affect the level of the fully assembled enzyme. The identical phenotype was observed by siRNA-mediated knockdown of MTU1 in HEK 293 cells. Further, the mitochondrial translation deficiencies present in myoblasts from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode and MERRF patients, which are associated with defects in post-transcriptional modification of mitochondrial tRNAs, did not worsen following knockdown of MTU1 in these cells. This study demonstrates that MTU1 is not required for mitochondrial translation at normal steady-state levels of tRNAs, and that it may possess an as yet uncharacterized function in another sulfur-trafficking pathway.
Collapse
Affiliation(s)
- Florin Sasarman
- Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| | | | | | | |
Collapse
|
169
|
Chen C, Huang B, Eliasson M, Rydén P, Byström AS. Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 2011; 7:e1002258. [PMID: 21912530 PMCID: PMC3164696 DOI: 10.1371/journal.pgen.1002258] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/12/2011] [Indexed: 11/25/2022] Open
Abstract
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNALyss2UUU, tRNAGlns2UUG, and tRNAGlus2UUC, which in a wild-type background contain the mcm5s2U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s2U nucleoside in tRNALysmcm5s2UUU, tRNAGlnmcm5s2UUG, and tRNAGlumcm5s2UUC. These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants. Elongator is a conserved protein complex in eukaryotes. Studies in yeast, worms, and plants have revealed that Elongator complex is required for formation of mcm5 and ncm5 side chains at wobble uridines in a subset of tRNA species. The primary function of Elongator complex in yeast is to modify U34 in tRNAs. Lack of these tRNA modifications causes pleiotropic phenotypes in yeast Elongator mutants due to inefficient translation. In this report, we demonstrate that the defects in telomeric silencing and DNA damage response observed in yeast Elongator mutants are a consequence of a tRNA modification defect. We suggest that the requirement of Elongator complex in tRNA modification is conserved in all eukaryotes, and diseases linked to human Elongator mutations may involve impaired translation due to lack of tRNA modifications.
Collapse
MESH Headings
- Chromatin/genetics
- Chromatin/metabolism
- DNA Damage/genetics
- Gene Expression Regulation
- Gene Silencing
- Humans
- Mutation
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Protein Biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Lys/genetics
- Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
- Telomere/genetics
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bo Huang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of Epidemiology, Department of Medicine and Public Health, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mattias Eliasson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Anders S. Byström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
170
|
Shetty RS, Gallagher CS, Chen YT, Hims MM, Mull J, Leyne M, Pickel J, Kwok D, Slaugenhaupt SA. Specific correction of a splice defect in brain by nutritional supplementation. Hum Mol Genet 2011; 20:4093-101. [PMID: 21821670 DOI: 10.1093/hmg/ddr333] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent studies emphasize the importance of mRNA splicing in human genetic disease, as 20-30% of all disease-causing mutations are predicted to result in mRNA splicing defects. The plasticity of the mRNA splicing reaction has made these mutations attractive candidates for the development of therapeutics. Familial dysautonomia (FD) is a severe neurodegenerative disorder, and all patients have an intronic IVS20+6T>C splice site mutation in the IKBKAP gene, which results in tissue-specific skipping of exon 20 and a corresponding reduction in ikappaB kinase complex associated protein (IKAP) levels. We created transgenic mouse lines using a human IKBKAP bacterial artificial chromosome (BAC) into which we inserted the IKBKAP splice mutation (FD BAC) and have shown that the transgenic mice exhibit the same tissue-specific aberrant splicing patterns as seen in FD patients. We have previously demonstrated that the plant cytokinin kinetin can significantly improve the production of wild-type IKBKAP transcripts in FD lymphoblast cell lines by improving exon inclusion. In this study, we tested the ability of kinetin to alter IKBKAP splicing in the transgenic mice carrying the FD BAC and show that it corrects IKBKAP splicing in all major tissues assayed, including the brain. The amount of wild-type IKBKAP mRNA and IKAP protein was significantly higher in the kinetin-treated mice. These exciting results prove that treatment of FD, as well as other mechanistically related splicing disorders, with kinetin holds great promise as a potential therapeutic aimed at increasing normal protein levels, which may, in turn, slow disease progression.
Collapse
Affiliation(s)
- Ranjit S Shetty
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, CPZN-5254, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Leihne V, Kirpekar F, Vågbø CB, van den Born E, Krokan HE, Grini PE, Meza TJ, Falnes PØ. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA. Nucleic Acids Res 2011; 39:7688-701. [PMID: 21653555 PMCID: PMC3177185 DOI: 10.1093/nar/gkr406] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm5U), 5-carbamoylmethyluridine (ncm5U) or derivatives thereof. Here, we demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm5U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm5U to (S)-mchm5U in tRNAGlyUCC, and has a function similar to the mammalian dioxygenase ALKBH8. Interestingly, atalkbh8 mutant plants displayed strongly increased levels of mcm5U, and also of mcm5Um, its 2′-O-ribose methylated derivative. This suggests that accumulated mcm5U is prone to further ribose methylation by a non-specialized mechanism, and may challenge the notion that the existence of mcm5U- and mcm5Um-containing forms of the selenocysteine-specific tRNASec in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines.
Collapse
Affiliation(s)
- Vibeke Leihne
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
172
|
D'Silva S, Haider SJ, Phizicky EM. A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop. RNA (NEW YORK, N.Y.) 2011; 17:1100-10. [PMID: 21518804 PMCID: PMC3096042 DOI: 10.1261/rna.2652611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/09/2011] [Indexed: 05/25/2023]
Abstract
The 3-methylcytidine (m³C) modification is widely found in eukaryotic species of tRNA(Ser), tRNA(Thr), and tRNA(Arg); at residue 32 in the anti-codon loop; and at residue e2 in the variable stem of tRNA(Ser). Little is known about the function of this modification or about the specificity of the corresponding methyltransferase, since the gene has not been identified. We have used a primer extension assay to screen a battery of methyltransferase candidate knockout strains in the yeast Saccharomyces cerevisiae, and find that tRNA(Thr(IGU)) from abp140-Δ strains lacks m³C. Curiously, Abp140p is composed of a poorly conserved N-terminal ORF fused by a programed +1 frameshift in budding yeasts to a C-terminal ORF containing an S-adenosylmethionine (SAM) domain that is highly conserved among eukaryotes. We show that ABP140 is required for m³C modification of substrate tRNAs, since primer extension is similarly affected for all tRNA species expected to have m³C and since quantitative analysis shows explicitly that tRNA(Thr(IGU)) from an abp140-Δ strain lacks m³C. We also show that Abp140p (now named Trm140p) purified after expression in yeast or Escherichia coli has m³C methyltransferase activity, which is specific for tRNA(Thr(IGU)) and not tRNA(Phe) and occurs specifically at C₃₂. We suggest that the C-terminal ORF of Trm140p is necessary and sufficient for activity in vivo and in vitro, based on analysis of constructs deleted for most or all of the N-terminal ORF. We also suggest that m³C has a role in translation, since trm140-Δ trm1-Δ strains (also lacking m²,²G₂₆) are sensitive to low concentrations of cycloheximide.
Collapse
Affiliation(s)
- Sonia D'Silva
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | |
Collapse
|
173
|
Walker J, Kwon SY, Badenhorst P, East P, McNeill H, Svejstrup JQ. Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity. Genetics 2011; 187:1067-75. [PMID: 21288872 PMCID: PMC3070516 DOI: 10.1534/genetics.110.123893] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/12/2011] [Indexed: 12/23/2022] Open
Abstract
The Elongator complex has been implicated in several cellular processes, including gene expression and tRNA modification. We investigated the biological importance of the Elp3 gene in Drosophila melanogaster. Deletion of Elp3 results in larval lethality at the pupal stage. During early development, larval growth is dramatically impaired, with progression to the third instar delayed for ∼24 hr, and pupariation occurring only at day 14 after egg laying. Melanotic nodules appear after 4 days. Microarray analysis shows that stress response genes are induced and ecdysone-induced transcription factors are severely repressed in the mutant. Interestingly, the phenotypes of Elp3 flies are similar to those of flies lacking the domino gene, encoding a SWI/SNF-like ATP-dependent chromatin-remodeling enzyme. Indeed, the gene expression profiles of these mutants are also remarkably similar. Together, these data demonstrate that Drosophila Elp3 is essential for viability, normal development, and hematopoiesis and suggest a functional overlap with the chromatin remodeler Domino.
Collapse
Affiliation(s)
- Jane Walker
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
174
|
Genome-wide identification of genes that play a role in boron stress response in yeast. Genomics 2011; 97:106-11. [DOI: 10.1016/j.ygeno.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/21/2022]
|
175
|
Cheishvili D, Maayan C, Cohen-Kupiec R, Lefler S, Weil M, Ast G, Razin A. IKAP/Elp1 involvement in cytoskeleton regulation and implication for familial dysautonomia. Hum Mol Genet 2011; 20:1585-94. [PMID: 21273291 DOI: 10.1093/hmg/ddr036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Deficiency in the IKAP/Elp1 protein leads to the recessive sensory autosomal congenital neuropathy which is called familial dysautonomia (FD). This protein was originally identified as a role player in transcriptional elongation being a subunit of the RNAPII transcriptional Elongator multi-protein complex. Subsequently, IKAP/Elp1 was shown to play various functions in the cytoplasm. Here, we describe experiments performed with IKAP/Elp1 downregulated cell lines and FD-derived cells and tissues. Immunostaining of the cytoskeleton component α-tubulin in IKAP/Elp1 downregulated cells revealed disorganization of the microtubules (MTs) that was reflected in aberrant cell shape and process formation. In contrast to a recent report on the decrease in α-tubulin acetylation in IKAP/Elp1 downregulated cells, we were unable to observe any effect of IKAP/Elp1 deficiency on α-tubulin acetylation in the FD cerebrum and in a variety of IKAP/Elp1 downregulated cell lines. To explore possible candidates involved in the observed aberrations in MTs, we focused on superior cervical ganglion-10 protein (SCG10), also called STMN2, which is known to be an MT destabilizing protein. We have found that SCG10 is upregulated in the IKAP/Elp1-deficient FD cerebrum, FD fibroblasts and in IKAP/Elp1 downregulated neuroblastoma cell line. To better understand the effect of IKAP/Elp1 deficiency on SCG10 expression, we investigated the possible involvement of RE-1-silencing transcription factor (REST), a known repressor of the SCG10 gene. Indeed, REST was downregulated in the IKAP/Elp1-deficient FD cerebrum and IKAP/Elp1 downregulated neuroblastoma cell line. These results could shed light on a possible link between IKAP/Elp1 deficiency and cytoskeleton destabilization.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
176
|
Elongator: an ancestral complex driving transcription and migration through protein acetylation. J Biomed Biotechnol 2011; 2011:924898. [PMID: 21274405 PMCID: PMC3025403 DOI: 10.1155/2011/924898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/05/2010] [Indexed: 11/17/2022] Open
Abstract
Elongator is an evolutionary highly conserved complex. At least two of its cellular functions rely on the intrinsic lysine acetyl-transferase activity of the elongator complex. Its two known substrates--histone H3 and α-tubulin--reflect the different roles of elongator in the cytosol and the nucleus. A picture seems to emerge in which nuclear elongator could regulate the transcriptional elongation of a subset of stress-inducible genes through acetylation of histone H3 in the promoter-distal gene body. In the cytosol, elongator-mediated acetylation of α-tubulin contributes to intracellular trafficking and cell migration. Defects in both functions of elongator have been implicated in neurodegenerative disorders.
Collapse
|
177
|
Sadoul K, Wang J, Diagouraga B, Khochbin S. The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotechnol 2011; 2011:970382. [PMID: 21151618 PMCID: PMC2997609 DOI: 10.1155/2011/970382] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/29/2010] [Indexed: 12/21/2022] Open
Abstract
Reversible posttranslational modification of internal lysines in many cellular or viral proteins is now emerging as part of critical signalling processes controlling a variety of cellular functions beyond chromatin and transcription. This paper aims at demonstrating the role of lysine acetylation in the cytoplasm driving and coordinating key events such as cytoskeleton dynamics, intracellular trafficking, vesicle fusion, metabolism, and stress response.
Collapse
Affiliation(s)
- Karin Sadoul
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
- *Karin Sadoul:
| | - Jin Wang
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
- 2State Key Laboratory of Medical Genomics, Department of Hematology, Ruijin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Boubou Diagouraga
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
| | - Saadi Khochbin
- 1INSERM, U823, Institut Albert Bonniot, Université Joseph Fourier Grenoble 1, 38700 Grenoble, France
| |
Collapse
|
178
|
Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS One 2010; 5:e15884. [PMID: 21209961 PMCID: PMC3012102 DOI: 10.1371/journal.pone.0015884] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.
Collapse
|
179
|
Boone N, Loriod B, Bergon A, Sbai O, Formisano-Tréziny C, Gabert J, Khrestchatisky M, Nguyen C, Féron F, Axelrod FB, Ibrahim EC. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 2010; 5:e15590. [PMID: 21187979 PMCID: PMC3004942 DOI: 10.1371/journal.pone.0015590] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/13/2010] [Indexed: 12/29/2022] Open
Abstract
Background Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. Methodology/Principal Findings We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. Conclusions/Significance hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases.
Collapse
Affiliation(s)
- Nathalie Boone
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | | | - Oualid Sbai
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | - Jean Gabert
- Plateforme Transcriptome, CRO2, Faculté de Médecine, Marseille, France
- Biochemistry and Molecular Biology, Hôpital Nord, AP-HM, Marseille, France
| | - Michel Khrestchatisky
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | - François Féron
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | - Felicia B. Axelrod
- Department of Pediatrics, New York University School of Medicine, New York, New York, United States of America
| | - El Chérif Ibrahim
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
- * E-mail:
| |
Collapse
|
180
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
181
|
Singh N, Lorbeck MT, Zervos A, Zimmerman J, Elefant F. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 2010; 115:493-504. [PMID: 20626565 DOI: 10.1111/j.1471-4159.2010.06892.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histone acetyltransferase Elp3 (Elongator Protein 3) is the catalytic subunit of the highly conserved Elongator complex. Elp3 is essential for the complex functions of Elongator in both the nucleus and cytoplasm of neurons, including the epigenetic control of neuronal motility genes and the acetylation of α-tubulin that affects axonal branching and cortical neuron migration. Accordingly, misregulation of Elp3 has been implicated in human disorders that specifically affect neuronal function, including familial dysautonomia, a disease characterized by degeneration of the sensory and autonomic nervous system, and the motor neuron degenerative disorder amyotrophic lateral sclerosis. These studies underscore the importance of Elp3 in neurodevelopment and disease, and the need to further characterize the multiple nuclear and cytoplasmic based roles of ELP3 required for neurogenesis in animal models, in vivo. In this report, we investigate the behavioral and morphological consequences that result from targeted reduction of ELP3 specifically in the developing Drosophila nervous system. We demonstrate that loss of Elp3 during neurodevelopment leads to a hyperactive phenotype and sleep loss in the adult flies, a significant expansion in synaptic bouton number and axonal length and branching in the larval neuromuscular junction as well as the misregulation of certain genes known to be involved in these processes. Our results uncover a novel role for Elp3 in the regulation of synaptic bouton expansion during neurogenesis that may be linked with a requirement for sleep.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
182
|
Mazauric MH, Dirick L, Purushothaman SK, Björk GR, Lapeyre B. Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J Biol Chem 2010; 285:18505-15. [PMID: 20400505 PMCID: PMC2881776 DOI: 10.1074/jbc.m110.113100] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/16/2010] [Indexed: 11/06/2022] Open
Abstract
The degenerate base at position 34 of the tRNA anticodon is the target of numerous modification enzymes. In Saccharomyces cerevisiae, five tRNAs exhibit a complex modification of uridine 34 (mcm(5)U(34) and mcm(5)s(2)U(34)), the formation of which requires at least 25 different proteins. The addition of the last methyl group is catalyzed by the methyltransferase Trm9p. Trm9p interacts with Trm112p, a 15-kDa protein with a zinc finger domain. Trm112p is essential for the activity of Trm11p, another tRNA methyltransferase, and for Mtq2p, an enzyme that methylates the translation termination factor eRF1/Sup45. Here, we report that Trm112p is required in vivo for the formation of mcm(5)U(34) and mcm(5)s(2)U(34). When produced in Escherichia coli, Trm112p forms a complex with Trm9p, which renders the latter soluble. This recombinant complex catalyzes the formation of mcm(5)U(34) on tRNA in vitro but not mcm(5)s(2)U(34). An mtq2-0 trm9-0 strain exhibits a synthetic growth defect, thus revealing the existence of an unexpected link between tRNA anticodon modification and termination of translation. Trm112p is associated with other partners involved in ribosome biogenesis and chromatin remodeling, suggesting that it has additional roles in the cell.
Collapse
Affiliation(s)
| | - Léon Dirick
- Institut de Génétique Moléculaire, University of Montpellier 1 and 2, 34293 Montpellier, France and
| | | | - Glenn R. Björk
- the
Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Bruno Lapeyre
- From the
Centre de Recherche de Biochimie Macromoléculaire and
| |
Collapse
|
183
|
Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström AS, Schaffrath R, Breunig KD. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 2010; 76:1082-94. [PMID: 20398216 PMCID: PMC2904499 DOI: 10.1111/j.1365-2958.2010.07163.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2010] [Indexed: 01/17/2023]
Abstract
Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator-dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator's tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeast-plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Daniel Jablonowski
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Uta Wrackmeyer
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Susan Tschitschmann
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - David Sondermann
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Gunilla Jäger
- Department of Molecular Biology, Umea University90187 Umea, Sweden
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing 100094, China
| | - Anders S Byström
- Department of Molecular Biology, Umea University90187 Umea, Sweden
| | - Raffael Schaffrath
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Karin D Breunig
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| |
Collapse
|
184
|
Allele-specific suppressors of lin-1(R175Opal) identify functions of MOC-3 and DPH-3 in tRNA modification complexes in Caenorhabditis elegans. Genetics 2010; 185:1235-47. [PMID: 20479142 DOI: 10.1534/genetics.110.118406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The elongator (ELP) complex consisting of Elp1-6p has been indicated to play roles in multiple cellular processes. In yeast, the ELP complex has been shown to genetically interact with Uba4p/Urm1p and Kti11-13p for a function in tRNA modification. Through a Caenorhabditis elegans genetic suppressor screen and positional cloning, we discovered that loss-of-function mutations of moc-3 and dph-3, orthologs of the yeast UBA4 and KTI11, respectively, effectively suppress the Multivulva (Muv) phenotype of the lin-1(e1275, R175Opal) mutation. These mutations do not suppress the Muv phenotype caused by other lin-1 alleles or by gain-of-function alleles of ras or raf that act upstream of lin-1. The suppression can also be reverted by RNA interference of lin-1. Furthermore, we showed that dph-3(lf) also suppressed the defect of lin-1(e1275) in promoting the expression of a downstream target (egl-17). These results indicate that suppression by the moc-3 and dph-3 mutations is due to the elevated activity of lin-1(e1275) itself rather than the altered activity of a factor downstream of lin-1. We further showed that loss-of-function mutations of urm-1 and elpc-1-4, the worm counterparts of URM1 and ELP complex components in yeast, also suppressed lin-1(e1275). We also confirmed that moc-3(lf) and dph-3(lf) have defects in tRNA modifications as do the mutants of their yeast orthologs. These results, together with the observation of a likely readthrough product from a lin-1(e1275)::gfp fusion transgene indicate that the aberrant tRNA modification led to failed recognition of a premature stop codon in lin-1(e1275). Our genetic data suggest that the functional interaction of moc-3/urm-1 and dph-3 with the ELP complex is an evolutionarily conserved mechanism involved in tRNA functions that are important for accurate translation.
Collapse
|
185
|
Paris Z, Changmai P, Rubio MAT, Zíková A, Stuart KD, Alfonzo JD, Lukes J. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J Biol Chem 2010; 285:22394-402. [PMID: 20442400 DOI: 10.1074/jbc.m109.083774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis. Recently, Isd11 was discovered as an integral part of the Nfs activity at an early step of Fe/S cluster assembly. Here we show, using a combination of genetic, molecular, and biochemical approaches, that Isd11, in line with its strong association with Nfs, is localized in the mitochondrion of T. brucei. In addition to its involvement in Fe/S assembly, Isd11 also partakes in both cytoplasmic and mitochondrial tRNA thiolation, whereas Mtu1, another protein proposed to collaborate with Nfs in tRNA thiolation, is required for this process solely within the mitochondrion. Taken together these data place Isd11 at the center of these sulfur transactions and raises the possibility of a connection between Fe/S metabolism and protein synthesis, helping integrate two seemingly unrelated pathways.
Collapse
Affiliation(s)
- Zdenek Paris
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005 Ceské Budejovice (Budweis), Czech Republic
| | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
Post-transcriptional modifications on transfer RNA (tRNA) molecules occur frequently but their implication on the translational regulation is only recently becoming fully appreciated. Several tRNA molecules in the eukaryotic cytoplasm carry a methoxycarbonylmethyl (mcm) or carbamoylmethyl (ncm) group on their wobble uridine to ensure the efficient and reliable decoding of A- or G-ending codons. Evidence suggests that the six subunits of the conserved Elongator complex are all required for an early step in the synthesis of the mcm and ncm groups in Saccharomyces cerevisiae as well as in Caenorhabditis elegans. In this issue of Molecular Microbiology, Mehlgarten et al. convincingly show that the tRNA-modifying role of Elongator is also conserved in the plant Arabidopsis thaliana. Moreover, combinations of subunits of the Arabidopsis Elongator complex can structurally and functionally complement deletion mutants in yeast and substitute for the tRNA modification activity. The data suggest that Elongator might be a unique multitasking complex with at least two conserved roles in all eukaryotes, i.e. transcriptional activation via histone acetylation in the nucleus and translational control through tRNA modification in the cytoplasm.
Collapse
Affiliation(s)
- Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
187
|
RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33:249-58. [PMID: 20227117 DOI: 10.1016/j.tins.2010.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
The pathogenic mechanisms of degenerative diseases of the nervous system are not well understood. Recent evidence suggests that proteins with a role in RNA synthesis, processing, function and degradation play a role in the mechanism of degenerative disorders affecting the motor neuron. However, most of these proteins also affect cellular processes other than RNA processing. Furthermore, many of the familial diseases are inherited dominantly, suggesting a gain-of-function as their pathogenic mechanism. This newly gained function could be unrelated to their normal role in the cell. Therefore, here we review some of the recent data linking RNA metabolism and motor neuron disorders, but also critically assess their relevance for our understanding of the mechanism of neurodegeneration.
Collapse
|
188
|
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St. Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Hin Yan Tong A, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. The genetic landscape of a cell. Science 2010; 327:425-31. [PMID: 20093466 PMCID: PMC5600254 DOI: 10.1126/science.1180823] [Citation(s) in RCA: 1619] [Impact Index Per Article: 107.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
Collapse
Affiliation(s)
- Michael Costanzo
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anastasia Baryshnikova
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jeremy Bellay
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungil Kim
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric D. Spear
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Carolyn S. Sevier
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Huiming Ding
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Judice L.Y. Koh
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kiana Toufighi
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sara Mostafavi
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Jeany Prinz
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Robert P. St. Onge
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taras Makhnevych
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Franco J. Vizeacoumar
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Solmaz Alizadeh
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sondra Bahr
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Renee L. Brost
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yiqun Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Murat Cokol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhijian Li
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Wendy Liang
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michaela Marback
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jadine Paw
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ermira Shuteriqi
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Nydia van Dyk
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Iain M. Wallace
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Pharmacy, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Joseph A. Whitney
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Matthew T. Weirauch
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Guoqing Zhong
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Hongwei Zhu
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael Brudno
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Sasan Ragibizadeh
- S&P Robotics, Inc., 1181 Finch Avenue West, North York, Ontario M3J 2V8, Canada
| | - Balázs Papp
- Institute of Biochemistry, Biological Research Center, H-6701 Szeged, Hungary
| | - Csaba Pál
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Institute of Biochemistry, Biological Research Center, H-6701 Szeged, Hungary
| | - Frederick P. Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Guri Giaever
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Pharmacy, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Corey Nislow
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Olga G. Troyanskaya
- Department of Computer Science, Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Howard Bussey
- Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Gary D. Bader
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Quaid D. Morris
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Philip M. Kim
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Chris A. Kaiser
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brenda J. Andrews
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
189
|
Abstract
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
Collapse
Affiliation(s)
- Luke A Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
190
|
Phizicky EM, Alfonzo JD. Do all modifications benefit all tRNAs? FEBS Lett 2009; 584:265-71. [PMID: 19931536 DOI: 10.1016/j.febslet.2009.11.049] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Despite the universality of tRNA modifications, some tRNAs lacking specific modifications are subject to degradation pathways, while other tRNAs lacking the same modifications are resistant. Here, we suggest a model in which some modifications have minor, possibly redundant, roles in specific tRNAs. This model is consistent with the low specificity of some modification enzymes. Limitations of this model include the limited assays and growth conditions on which these conclusions are based, as well as the high specificity exhibited by many modification enzymes with important roles in translation. The specificity of these enzymes is often enhanced by complex substrate recognition patterns and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
191
|
Nguyen L, Humbert S, Saudou F, Chariot A. Elongator - an emerging role in neurological disorders. Trends Mol Med 2009; 16:1-6. [PMID: 20036197 DOI: 10.1016/j.molmed.2009.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/04/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Neurological disorders are becoming a major public health issue in our aging society. An important objective is to understand the molecular events that underlie these diseases to prevent their onset and/or halt their progression. Acetylation of alpha-tubulin is a post-translational modification of microtubules that serves as a recognition signal for the anchoring of molecular motors and, as such, underlies the transport of various proteins or organelles in neurons. This process is affected in striatal and cortical neurons from Huntington's disease patients. Recent studies have shown that Elp3, the catalytic subunit of the Elongator complex, promotes the acetylation of alpha-tubulin in microtubules. Elongator complex activity is impaired in patients with familial dysautonomia. Based on converging experimental and clinical evidence, we propose that Elongator might be commonly targeted in different neurological disorders, and thus might represent a strong candidate for research and development efforts to design drug-based therapies.
Collapse
Affiliation(s)
- Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research), University of Liège, C.H.U. Sart Tilman, Liège, Belgium.
| | | | | | | |
Collapse
|
192
|
Gu J, Sun D, Zheng Q, Wang X, Yang H, Miao J, Jiang J, Wei W. Human Elongator complex is involved in cell cycle and suppresses cell growth in 293T human embryonic kidney cells. Acta Biochim Biophys Sin (Shanghai) 2009; 41:831-8. [PMID: 19779648 DOI: 10.1093/abbs/gmp072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Elongator complex has been associated with hyperphosphorylated RNA polymerase II and is known to play critical roles in transcriptional elongation, as well as in tRNA modification and exocytosis. However, the specific mechanism of how human Elongator complex regulates cell growth and cell cycle remains unclear. To investigate the composition of human Elongator complex and its effects on cell growth, 293T cells were established that stably overexpressed Flag-Elp3 and Flag-Elp4. By using anti-Flag M2 antibody-bound resin, a core Elongator complex was purified from cells that stably overexpressed Flag-Elp3. No Elongator complex was purified from cells stably transfected with pFlagCMV4-Elp4. Interestingly, the cell growth was inhibited in 293T cells transfected with pFlagCMV4- Elp3. Flow cytometry analysis showed that most of the cells stably overexpressing Flag-Elp3 were found in G1 stage, indicating a role of the core Elongator in the G1 checkpoint for the regulation of cell cycle. We observed increased basal transcription and remarkably enhanced transcription stimulated by VP16 in 293T cells overexpressing Flag-Elp3. The transcription could also be synergistically activated by overexpressing both Elp3 and Elp4. Taken together, our results suggested that the core Elongator complex formed by Elp1, Elp2, and Elp3 was rather stable, whereas Elp4, Elp5, and Elp6 might loosely contact and work together with the core Elongator to regulate cell functions.
Collapse
Affiliation(s)
- Junxia Gu
- Department of Cellular and Molecular Biology, School of Medicine, Suzhou University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Zhou X, Hua D, Chen Z, Zhou Z, Gong Z. Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:79-90. [PMID: 19500300 DOI: 10.1111/j.1365-313x.2009.03931.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Elongator is a histone acetyl-transferase complex consisting of six subunits, and is highly conserved in eukaryotic organisms. Here, we isolated two novel mutants, elp2 and elp6, during a genetic screening for ABA-hypersensitive Arabidopsis mutants. Map-based cloning identified ELP2 and ELP6, which encode the orthologs of the yeast Elongator subunits, ELP2 and ELP6, respectively. Another Elongator subunit mutant, elp4/elo1, was obtained from the SALK T-DNA collection. The elp1/abo1/elo2 mutant was isolated in a previous study. All four of the Elongator mutants had narrow leaves, reduced root growth, ABA hypersensitivity and an increased accumulation of anthocyanins. Mutations in the core subcomplex subunits ELP1/ABO1 and ELP2, but not in the accessory subcomplex subunits ELP4/ELO1 and ELP6, caused stomatal closing to be supersensitive to ABA. In addition, the four mutants were all more resistant than the wild type to oxidative stress produced by methyl viologen, and to CsCl. Gene expression analysis indicated that the four mutants had increased transcript levels of CAT3 under normal conditions, increased transcript levels of ZAT10 when treated with ABA and reduced transcript levels of MYBL2, which encodes a single-repeat MYB protein, acting as a negative regulator of anthocyanin biosynthesis. Our results suggest that Elongator plays crucial roles in regulating plant responses to ABA, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
194
|
Lu PY, Lévesque N, Kobor MS. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and componentsThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2009; 87:799-815. [DOI: 10.1139/o09-062] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.Z, whereas NuA4 is a histone acetyltransferase for histones H4, H2A, and H2A.Z. Together the NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent chromatin remodelling, and histone variant incorporation. These 2 multi-protein complexes share 4 subunits and function together to regulate the circuitry of H2A.Z biology. The components and functions of both multi-protein complexes are evolutionarily conserved and play important roles in multi-cellular development and cellular differentiation in higher eukaryotes. This review will summarize recent findings about NuA4 and SWR1-C and will focus on the connection between these complexes by investigating their physical and functional interactions through eukaryotic evolution.
Collapse
Affiliation(s)
- Phoebe Y.T. Lu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
195
|
Distinct subsets of Sit4 holophosphatases are required for inhibition of Saccharomyces cerevisiae growth by rapamycin and zymocin. EUKARYOTIC CELL 2009; 8:1637-47. [PMID: 19749176 DOI: 10.1128/ec.00205-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatase Sit4 is required for growth inhibition of Saccharomyces cerevisiae by the antifungals rapamycin and zymocin. Here, we show that the rapamycin effector Tap42, which interacts with Sit4, is dispensable for zymocin action. Although Tap42 binding-deficient sit4 mutants are resistant to zymocin, these mutations also block interaction between Sit4 and the Sit4-associating proteins Sap185 and Sap190, previously shown to mediate zymocin toxicity. Among the four different SAP genes, we found that SAP190 deletions specifically induce rapamycin resistance but that this phenotype is reversed in the additional absence of SAP155. Similarly, the rapamycin resistance of an rrd1Delta mutant lacking the Sit4 interactor Rrd1 specifically requires the Sit4/Sap190 complex. Thus, Sit4/Sap190 and Sit4/Sap155 holophosphatases apparently play opposing roles following rapamycin treatment, although rapamycin inhibition is operational in the absence of all Sap family members or Sit4. We further identified a Sit4-interacting region on Sap185 in sap190Delta cells that mediates Sit4/Sap185 complex formation and is essential for dephosphorylation of Elp1, a subunit of the Elongator complex. This suggests that Sit4/Sap185 and Sit4/Sap190 holophosphatases promote Elongator functions, a notion supported by data showing that their inactivation eliminates Elongator-dependent processes, including tRNA suppression by SUP4 and tRNA cleavage by zymocin.
Collapse
|
196
|
Strug LJ, Clarke T, Chiang T, Chien M, Baskurt Z, Li W, Dorfman R, Bali B, Wirrell E, Kugler SL, Mandelbaum DE, Wolf SM, McGoldrick P, Hardison H, Novotny EJ, Ju J, Greenberg DA, Russo JJ, Pal DK. Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). Eur J Hum Genet 2009; 17:1171-81. [PMID: 19172991 PMCID: PMC2729813 DOI: 10.1038/ejhg.2008.267] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 11/09/2022] Open
Abstract
Rolandic epilepsy (RE) is the most common human epilepsy, affecting children between 3 and 12 years of age, boys more often than girls (3:2). Focal sharp waves in the centrotemporal area define the electroencephalographic (EEG) trait for the syndrome, are a feature of several related childhood epilepsies and are frequently observed in common developmental disorders (eg, speech dyspraxia, attention deficit hyperactivity disorder and developmental coordination disorder). Here we report the first genome-wide linkage scan in RE for the EEG trait, centrotemporal sharp waves (CTS), with genome-wide linkage of CTS to 11p13 (HLOD 4.30). Pure likelihood statistical analysis refined our linkage peak by fine mapping CTS to variants in Elongator Protein Complex 4 (ELP4) in two independent data sets; the strongest evidence was with rs986527 in intron 9 of ELP4, providing a likelihood ratio of 629:1 (P=0.0002) in favor of an association. Resequencing of ELP4 coding, flanking and promoter regions revealed no significant exonic polymorphisms. This is the first report of a gene implicated in a common focal epilepsy and the first human disease association of ELP4. ELP4 is a component of the Elongator complex, involved in transcription and tRNA modification. Elongator depletion results in the brain-specific downregulation of genes implicated in cell motility and migration. We hypothesize that a non-coding mutation in ELP4 impairs brain-specific Elongator-mediated interaction of genes implicated in brain development, resulting in susceptibility to seizures and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lisa J Strug
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Tara Clarke
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Theodore Chiang
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Minchen Chien
- The Judith P. Sulzberger MD Columbia Genome Center, New York, NY, USA
- Department of Chemical Engineering, Columbia University Medical Center, New York, NY, USA
| | - Zeynep Baskurt
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Weili Li
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ruslan Dorfman
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhavna Bali
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Elaine Wirrell
- Division of Pediatric Neurology, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Steven L Kugler
- Division of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - David E Mandelbaum
- Department of Clinical Neurosciences, Hasbro Children's Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Steven M Wolf
- Epilepsy Monitoring Unit, Beth Israel Medical Center, New York, NY, USA
| | | | - Huntley Hardison
- Division of Pediatric Neurology, St Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Edward J Novotny
- Department of Pediatrics, Yale University Medical Center, New Haven, CT, USA
| | - Jingyue Ju
- The Judith P. Sulzberger MD Columbia Genome Center, New York, NY, USA
- Department of Chemical Engineering, Columbia University Medical Center, New York, NY, USA
| | - David A Greenberg
- Division of Statistical Genetics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - James J Russo
- The Judith P. Sulzberger MD Columbia Genome Center, New York, NY, USA
- Department of Chemical Engineering, Columbia University Medical Center, New York, NY, USA
| | - Deb K Pal
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
- Division of Statistical Genetics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
197
|
Mehlgarten C, Jablonowski D, Breunig KD, Stark MJR, Schaffrath R. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 2009; 73:869-81. [PMID: 19656297 DOI: 10.1111/j.1365-2958.2009.06811.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In yeast, the role for the Elongator complex in tRNA anticodon modification is affected by phosphorylation of Elongator subunit Elp1. Thus, hyperphosphorylation of Elp1 due to inactivation of protein phosphatase Sit4 correlates with Elongator-minus phenotypes including resistance towards zymocin, a tRNase cleaving anticodons of Elongator-dependent tRNAs. Here we show that zymocin resistance of casein kinase hrr25 mutants associates with hypophosphorylation of Elp1 and that nonsense suppression by the Elongator-dependent SUP4 tRNA is abolished in hrr25 or sit4 mutants. Thus changes that perturb the evenly balanced ratio between hyper- and hypophosphorylated Elp1 forms present in wild-type cells lead to Elongator inactivation. Antagonistic roles for Hrr25 and Sit4 in Elongator function are further supported by our data that Sit4 inactivation is capable of restoring both zymocin sensitivity and normal ratios between the two Elp1 forms in hrr25 mutants. Hrr25 binds to Elongator in a fashion dependent on Elongator partner Kti12. Like sit4 mutants, overexpression of Kti12 triggers Elp1 hyperphosphorylation. Intriguingly, this effect of Kti12 is blocked by hrr25 mutations, which also show enhanced binding of Kti12 to Elongator. Collectively, our data suggest that rather than directly targeting Elp1, the Hrr25 kinase indirectly affects Elp1 phosphorylation states through control of Sit4-dependent dephosphorylation of Elp1.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
198
|
The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast. EUKARYOTIC CELL 2009; 8:1362-72. [PMID: 19633267 DOI: 10.1128/ec.00015-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transduction pathways control multiple aspects of cellular behavior, including global changes to the cell cycle, cell polarity, and gene expression, which can result in the formation of a new cell type. In the budding yeast Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth induces a dimorphic foraging response under nutrient-limiting conditions. How nutritional cues feed into MAPK activation remains an open question. Here we report a functional connection between the elongator tRNA modification complex (ELP genes) and activity of the filamentous growth pathway. Elongator was required for filamentous growth pathway signaling, and elp mutants were defective for invasive growth, cell polarization, and MAPK-dependent mat formation. Genetic suppression analysis showed that elongator functions at the level of Msb2p, the signaling mucin that operates at the head of the pathway, which led to the finding that elongator regulates the starvation-dependent expression of the MSB2 gene. The Elp complex was not required for activation of related pathways (pheromone response or high osmolarity glycerol response) that share components with the filamentous growth pathway. Because protein translation provides a rough metric of cellular nutritional status, elongator may convey nutritional information to the filamentous growth pathway at the level of MSB2 expression.
Collapse
|
199
|
Chen C, Tuck S, Byström AS. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 2009; 5:e1000561. [PMID: 19593383 PMCID: PMC2702823 DOI: 10.1371/journal.pgen.1000561] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/12/2009] [Indexed: 11/18/2022] Open
Abstract
Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5′methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development. The efficiency of protein synthesis can be modulated by alterations of various components of the translation machinery. In translation, transfer RNAs act as adapter molecules that decode mRNA into protein and thereby play a central role in gene expression. In the tRNA maturation process, a subset of the normal nucleosides undergoes modifications. Modified nucleosides in the tRNA anticodon region are important for efficient translation. We found that, in the worm C. elegans, components of the Elongator complex are required for the formation of a certain set of tRNA modifications in the anticodon region. We observed a reduced efficiency of translation as well as a lower production of neurotransmitters in Elongator mutant worms. Elongator is conserved in eukaryotes, and mutations in a subunit of human Elongator cause a severe neurodegenerative disease, familial dysautonomia (FD). It is unclear in humans whether Elongator acts on the translational level through tRNA modification to regulate neuronal processes. Our observations in C. elegans, together with the role of yeast Elongator in translation, show that the function of Elongator in tRNA modification is conserved. Inactivation of Elongator may cause neuronal defects by affecting translation.
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Simon Tuck
- Umeå Centre of Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail: (ST); (ASB)
| | - Anders S. Byström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail: (ST); (ASB)
| |
Collapse
|
200
|
Barton D, Braet F, Marc J, Overall R, Gardiner J. ELP3 localises to mitochondria and actin-rich domains at edges of HeLa cells. Neurosci Lett 2009; 455:60-4. [DOI: 10.1016/j.neulet.2009.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/20/2009] [Accepted: 03/03/2009] [Indexed: 11/29/2022]
|