151
|
Donovan M, Doonan F, Cotter TG. Differential roles of ERK1/2 and JNK in retinal development and degeneration. J Neurochem 2010; 116:33-42. [DOI: 10.1111/j.1471-4159.2010.07056.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
152
|
Abstract
Second messenger molecules relay, amplify, and diversify cell surface receptor signals. Two important examples are phosphorylated D-myo-inositol derivatives, such as phosphoinositide lipids within cellular membranes, and soluble inositol phosphates. Here, we review how phosphoinositide metabolism generates multiple second messengers with important roles in T-cell development and function. They include soluble inositol(1,4,5)trisphosphate, long known for its Ca(2+)-mobilizing function, and phosphatidylinositol(3,4,5)trisphosphate, whose generation by phosphoinositide 3-kinase and turnover by the phosphatases PTEN and SHIP control a key "hub" of TCR signaling. More recent studies unveiled important second messenger functions for diacylglycerol, phosphatidic acid, and soluble inositol(1,3,4,5)tetrakisphosphate (IP(4)) in immune cells. Inositol(1,3,4,5)tetrakisphosphate acts as a soluble phosphatidylinositol(3,4,5)trisphosphate analog to control protein membrane recruitment. We propose that phosphoinositide lipids and soluble inositol phosphates (IPs) can act as complementary partners whose interplay could have broadly important roles in cellular signaling.
Collapse
Affiliation(s)
- Yina H Huang
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
153
|
Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the BH3-only proteins Bim and Bid. Cell Death Dis 2010; 1:e86. [PMID: 21368859 PMCID: PMC3035907 DOI: 10.1038/cddis.2010.66] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells.
Collapse
|
154
|
|
155
|
During EPO or anemia challenge, erythroid progenitor cells transit through a selectively expandable proerythroblast pool. Blood 2010; 116:5334-46. [PMID: 20810925 DOI: 10.1182/blood-2009-12-258947] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Investigations of bone marrow (BM) erythroblast development are important for clinical concerns but are hindered by progenitor cell and tissue availability. We therefore sought to more specifically define dynamics, and key regulators, of the formation of developing BM erythroid cell cohorts. A unique Kit(-)CD71(high)Ter119(-) "stage E2" proerythroblast pool first is described, which (unlike its Kit(+) "stage E1" progenitors, or maturing Ter119(+) "stage E3" progeny) proved to selectively expand ∼ 7-fold on erythropoietin challenge. During short-term BM transplantation, stage E2 proerythroblasts additionally proved to be a predominantly expanded progenitor pool within spleen. This E1→E2→E3 erythroid series reproducibly formed ex vivo, enabling further characterizations. Expansion, in part, involved E1 cell hyperproliferation together with rapid E2 conversion plus E2 stage restricted BCL2 expression. Possible erythropoietin/erythropoietin receptor proerythroblast stage specific events were further investigated in mice expressing minimal erythropoietin receptor alleles. For a hypomorphic erythropoietin receptor-HM allele, major defects in erythroblast development occurred selectively at stage E2. In addition, stage E2 cells proved to interact productively with primary BM stromal cells in ways that enhanced both survival and late-stage development. Overall, findings reveal a novel transitional proerythroblast compartment that deploys unique expansion devices.
Collapse
|
156
|
Kurtulus S, Tripathi P, Opferman JT, Hildeman DA. Contracting the 'mus cells'--does down-sizing suit us for diving into the memory pool? Immunol Rev 2010; 236:54-67. [PMID: 20636808 PMCID: PMC2907539 DOI: 10.1111/j.1600-065x.2010.00920.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of T-cell homeostasis is critical for normal functioning of the immune system. After thymocyte selection, T cells enter the peripheral lymphoid organs, where they are maintained as naive cells. Transient disruption of homeostasis occurs when naive T cells undergo antigen-driven expansion and acquire effector functions. Effector T cells then either undergo apoptosis (i.e. contraction at the population level) or survive to become memory cells. This apoptotic process is crucial: it resets T-cell homeostasis, promotes protective immunity, and limits autoimmunity. Although initial studies using in vitro models supported a role for death receptor signaling, more recent in vivo studies have implicated Bcl-2 family members as being critical for the culling of T-cell responses. While several Bcl-2 family members likely contribute to T-cell contraction, the pro-apoptotic molecule Bim and its anti-apoptotic antagonist Bcl-2 are essential regulators of the process. This review discusses the progress made in our understanding of the mechanisms underlying contraction of T-cell responses and how some cells avoid this cell death and become memory T cells.
Collapse
Affiliation(s)
- Sema Kurtulus
- Division of Immunobiology in the Department of Pediatrics at the University of Cincinnati and Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pulak Tripathi
- Division of Immunobiology in the Department of Pediatrics at the University of Cincinnati and Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph T. Opferman
- Department of Biochemistry at St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David A. Hildeman
- Division of Immunobiology in the Department of Pediatrics at the University of Cincinnati and Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
157
|
Lopez AF, Hercus TR, Ekert P, Littler DR, Guthridge M, Thomas D, Ramshaw HS, Stomski F, Perugini M, D'Andrea R, Grimbaldeston M, Parker MW. Molecular basis of cytokine receptor activation. IUBMB Life 2010; 62:509-18. [DOI: 10.1002/iub.350] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
158
|
Leon R, Bhagavatula N, Ulukpo O, McCollum M, Wei J. BimEL as a possible molecular link between proteasome dysfunction and cell death induced by mutant huntingtin. Eur J Neurosci 2010; 31:1915-25. [PMID: 20497470 DOI: 10.1111/j.1460-9568.2010.07215.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded polyglutamine repeat within the N-terminus of the huntingtin protein. It is characterized by a selective loss of medium spiny neurons in the striatum. It has been suggested that impaired proteasome function and endoplasmic reticulum (ER) stress play important roles in mutant huntingtin (mHtt)-induced cell death. However, the molecular link involved is poorly understood. In the present study, we identified the essential role of the extra long form of Bim (Bcl-2 interacting mediator of cell death), BimEL, in mHtt-induced cell death. BimEL protein expression level was significantly increased in cell lines expressing the N-terminus of mHtt and in a mouse model of HD. Although quantitative RT-PCR analysis indicated that BimEL mRNA was increased in cells expressing mHtt, we provided evidence showing that, at the post-translational level, phosphorylation of BimEL played a more important role in regulating BimEL expression. Up-regulation of BimEL facilitated the translocation of Bax to the mitochondrial membrane, which further led to cytochrome c release and cell death. On the other hand, knocking down BimEL expression prevented mHtt-induced cell death. Taken together, these findings suggest that BimEL is a key element in regulating mHtt-induced cell death. A model depicting the role of BimEL in linking mHtt-induced ER stress and proteasome dysfunction to cell death is proposed.
Collapse
Affiliation(s)
- Rebecca Leon
- Department of Basic Science, Charles E. Schmidt College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | |
Collapse
|
159
|
Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 2010; 130:418-26. [PMID: 20465565 DOI: 10.1111/j.1365-2567.2009.03244.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Interleukin-7 (IL-7) is a crucial cytokine involved in T-cell survival and development but its signalling in human T cells, particularly in effector/memory T cells, is poorly documented. In this study, we found that IL-7 protects human CD4(+) effector/memory T cells from apoptosis induced upon the absence of stimulation and cytokines. We show that IL-7 up-regulates not only Bcl-2 but also Bcl-xL and Mcl-1 as well. Interleukin-7-induced activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway is sufficient for cell survival and up-regulation of Bcl-2 proteins. In contrast to previous studies with naive T cells, we found that IL-7 is a weak activator of the phosphatidylinositol 3 kinase (PI3K)/AKT (also referred as protein kinase B) pathway and IL-7-mediated cell survival occurs independently from the PI3K/AKT pathway as well as from activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Considering the contribution of both IL-7 and CD4(+) effector/memory T cells to the pathogenesis of autoimmune diseases such as rheumatoid arthritis and colitis, our study suggests that IL-7 can contribute to these diseases by promoting cell survival. A further understanding of the mechanisms of IL-7 signalling in effector/memory T cells associated with autoimmune inflammatory diseases may lead to potential new therapeutic avenues.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | | | | | | |
Collapse
|
160
|
Wiggins CM, Johnson M, Cook SJ. Refining the minimal sequence required for ERK1/2-dependent poly-ubiquitination and proteasome-dependent turnover of BIM. Cell Signal 2010; 22:801-8. [DOI: 10.1016/j.cellsig.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/03/2010] [Accepted: 01/05/2010] [Indexed: 12/23/2022]
|
161
|
Brumatti G, Salmanidis M, Ekert PG. Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cell Mol Life Sci 2010; 67:1619-30. [PMID: 20157838 PMCID: PMC11115775 DOI: 10.1007/s00018-010-0288-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/08/2023]
Abstract
Cytokines and growth factors play a crucial role in the maintenance of haematopoietic homeostasis. They transduce signals that regulate the competing commitments of haematopoietic stem cells, quiescence or proliferation, retention of stem cell pluripotency or differentiation, and survival or demise. When the balance between these commitments and the requirements of the organisms is disturbed, particularly when it favours survival and proliferation, cancer may result. Cell death provoked by loss of growth factor signalling is regulated by the Bcl-2 family of apoptosis regulators, and thus survival messages transduced by growth factors must regulate the activity of these proteins. Many aspects of direct interactions between cytokine signalling and regulation of apoptosis remain elusive. In this review, we explore the mechanisms by which cytokines, in particular Interleukin-3 and granulocyte-macrophage colony-stimulating factor, promote cell survival and suppress apoptosis as models of how cytokine signalling and apoptotic pathways intersect.
Collapse
Affiliation(s)
- Gabriela Brumatti
- Children's Cancer Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Flemington Rd Parkville, Melbourne, 3052, Australia.
| | | | | |
Collapse
|
162
|
De Bruyne E, Bos TJ, Schuit F, Van Valckenborgh E, Menu E, Thorrez L, Atadja P, Jernberg-Wiklund H, Vanderkerken K. IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood 2010; 115:2430-40. [PMID: 20086250 DOI: 10.1182/blood-2009-07-232801] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important growth and survival factor in multiple myeloma (MM). Here, we demonstrate that IGF-1 induces significant down-regulation of the proapoptotic BH3-only protein Bim in MM cells. Reduced Bim levels by RNA interference (RNAi) protected cells from drug-induced cell death. The IGF-1-mediated down-regulation of Bim was the result of (1) reduced transcription by activation of the Akt pathway and inactivation of the transcription factor FoxO3a, (2) increased proteasome-mediated degradation of the Bim extra-long protein by activation of the mitogen-activated protein kinase pathway, and (3) epigenetic regulation of both the Bim and the FoxO3a promoter. Treatment of cells with the histone deacetylase inhibitor LBH589 resulted in a clear up-regulation in the expression of Bim. Furthermore, the methylation inhibitor 5-aza-2'deoxycytidine (decitabine) significantly increased the effects of LBH589. On IGF-1 treatment, the Bim promoter region was found to be unmethylated, whereas chromatin immunoprecipitation analysis of the IGF-1-treated cells showed both a reduced histone H3 tail Lys9 (H3K9) acetylation and an increased H3K9 dimethylation, which contributed actively to its silencing. These data identify a new mechanism in the IGF-1-dependent survival of MM cells and emphasize the need for IGF-1-targeted drug therapy.
Collapse
Affiliation(s)
- Elke De Bruyne
- Department of Hematology and Immunology, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Akiyama T, Dass CR, Choong PFM. Bim-targeted cancer therapy: a link between drug action and underlying molecular changes. Mol Cancer Ther 2010; 8:3173-80. [PMID: 19934277 DOI: 10.1158/1535-7163.mct-09-0685] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the past few years, the pro-apoptotic molecule Bim has attracted increasing attention as a plausible target for tumor therapy. A variety of normal and pathological systems regulated by Bim, dependent on cell type, apoptotic stimulation, and chemotherapeutic agents, have been documented. Bim promotes anoikis of many tumor cells, such as lung cancer, breast cancer, osteosarcoma, and melanoma. Various chemotherapeutic agents use Bim as a mediating executioner of cell death. Hence, Bim suppression supports metastasis and chemoresistance. Imatinib, gefitinib, bortezomib, and Bim protein itself are spotlighted as current and future Bim-targeting therapeutic agents. The potential benefits of Bim-targeted therapies are selectivity of treatment for tumor cells and reduction in tumor-associated phenomena such as chemoresistance and metastasis. Thus, Bim-targeting therapies may provide more effective and unique tumor management modalities in future. This review article discusses all these issues.
Collapse
Affiliation(s)
- Toru Akiyama
- Department of Orthopaedics, University of Melbourne, and St. Vincent's Hospital Melbourne, L3-Daly Wing, 35 Victoria Pde., Fitzroy, Melbourne, VIC 3065 Australia
| | | | | |
Collapse
|
164
|
Gordon PM, Fisher DE. Role for the proapoptotic factor BIM in mediating imatinib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J Biol Chem 2010; 285:14109-14. [PMID: 20231287 DOI: 10.1074/jbc.m109.078592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The c-KIT receptor tyrosine kinase is constitutively activated and oncogenic in the majority of gastrointestinal stromal tumors. The identification of selective inhibitors of c-KIT, such as imatinib, has provided a novel therapeutic approach in the treatment of this chemotherapy refractory tumor. However, despite the clinical importance of these findings and the potential it provides as a model system for understanding targeted therapy, this approach has not yielded curative outcomes in most patients, and the biochemical pathways connecting c-KIT inhibition to cell death are not completely understood. Here, we show that inhibition of c-KIT with imatinib in gastrointestinal stromal tumors (GISTs) triggered the up-regulation of the proapoptotic protein BIM via both transcriptional and post-translational mechanisms. The inhibition of c-KIT by imatinib increased levels of the dephosphorylated and deubiquitinated form of BIM as well as triggered the accumulation of the transcription factor FOXO3a on the BIM promoter to activate transcription of BIM mRNA. Furthermore, using RNA interference directed against BIM, we demonstrated that BIM knockdown attenuated the effects of imatinib, suggesting that BIM functionally contributes to imatinib-induced apoptosis in GIST. The identification and characterization of the pathways that mediate imatinib-induced cell death in GIST provide for a better understanding of targeted therapy and may facilitate the development of new therapeutic approaches to further exploit these pathways.
Collapse
Affiliation(s)
- Peter M Gordon
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
165
|
Gutiérrez-Uzquiza A, Arechederra M, Molina I, Baños R, Maia V, Benito M, Guerrero C, Porras A. C3G down-regulates p38 MAPK activity in response to stress by Rap-1 independent mechanisms: involvement in cell death. Cell Signal 2010; 22:533-42. [PMID: 19925863 DOI: 10.1016/j.cellsig.2009.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/26/2009] [Accepted: 11/10/2009] [Indexed: 02/03/2023]
Abstract
We present here evidences supporting a negative regulation of p38alpha MAPK activity by C3G in MEFs triggered by stress, which can mediate cell death or survival depending on the stimuli. Upon serum deprivation, C3G induces survival through inhibition of p38alpha activation, which mediates apoptosis. In contrast, in response to H2O2, C3G behaves as a pro-apoptotic molecule, as its knock-down or knock-out enhances survival through up-regulation of p38alpha activation, which plays an anti-apoptotic role under these conditions. Moreover, the C3G target, Rap-1, plays an opposite role, also through regulation of p38alpha MAPK activity. Our data also suggest that changes in the protein levels of some members of the Bcl-2 family could account for the regulation of cell death by C3G and/or Rap-1 through p38alpha MAPK. Bim/Bcl-xL ratio appears to be important in the regulation of cell survival, both upon serum deprivation and in response to H2O2. In addition, the increase in BNIP-3 levels induced by C3G knock-down in wt cells treated with H2O2 might play a role preventing cell death. Therefore, we can conclude that C3G is a negative regulator of p38alpha MAPK in MEFs, while Rap-1 is a positive regulator, but both, through the regulation of p38alpha activity, can promote cell survival or cell death depending on the stimuli.
Collapse
Affiliation(s)
- Alvaro Gutiérrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Functional cooperation of the proapoptotic Bcl2 family proteins Bmf and Bim in vivo. Mol Cell Biol 2010; 30:98-105. [PMID: 19841067 DOI: 10.1128/mcb.01155-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH(2)-terminal kinase (JNK) on Ser(74), or mimic Bmf phosphorylation on Ser(74). We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser(74) can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf.
Collapse
|
167
|
Gillings AS, Balmanno K, Wiggins CM, Johnson M, Cook SJ. Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics. FEBS J 2009; 276:6050-62. [PMID: 19788418 DOI: 10.1111/j.1742-4658.2009.07329.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The BCL-2 homology domain 3 (BH3)-only protein, B-cell lymphoma 2 interacting mediator of cell death (BIM) is a potent pro-apoptotic protein belonging to the B-cell lymphoma 2 protein family. In recent years, advances in basic biology have provided a clearer picture of how BIM kills cells and how BIM expression and activity are repressed by growth factor signalling pathways, especially the extracellular signal-regulated kinase 1/2 and protein kinase B pathways. In tumour cells these oncogene-regulated pathways are used to counter the effects of BIM, thereby promoting tumour cell survival. In parallel, a new generation of targeted therapeutics has been developed, which show remarkable specificity and efficacy in tumour cells that are addicted to particular oncogenes. It is now apparent that the expression and activation of BIM is a common response to these new therapeutics. Indeed, BIM has emerged from this marriage of basic and applied biology as an important mediator of tumour cell death in response to such drugs. The induction of BIM alone may not be sufficient for significant tumour cell death, as BIM is more likely to act in concert with other BH3-only proteins, or other death pathways, when new targeted therapeutics are used in combination with traditional chemotherapy agents. Here we discuss recent advances in understanding BIM regulation and review the role of BIM as a mediator of tumour cell death in response to novel oncogene-targeted therapeutics.
Collapse
Affiliation(s)
- Annette S Gillings
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | | | | | | |
Collapse
|
168
|
Piñon JD, Labi V, Egle A, Villunger A. Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 2009; 27 Suppl 1:S41-52. [PMID: 19641506 DOI: 10.1038/onc.2009.42] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all BH3-only proteins known to date, most information is available on the biological role and function of Bim (Bcl-2 interacting mediator of cell death)/BOD (Bcl-2 related ovarian death agonist), whereas little is still known about its closest relative, Bcl-2 modifying factor (Bmf). Although Bim has been implicated in the regulation of cell death induction in multiple cell types and tissues in response to a large number of stimuli, including growth factor or cytokine deprivation, calcium flux, ligation of antigen receptors on T and B cells, glucocorticoid or loss of adhesion, Bmf seems to play a more restricted role by supporting Bim in some of these cell death processes. This review aims to highlight similarities between Bim and Bmf function in apoptosis signaling and their role in normal development and disease.
Collapse
Affiliation(s)
- J D Piñon
- Laboratory for Immunological and Molecular Cancer Research, University Hospital Salzburg, Salzburg, Austria
| | | | | | | |
Collapse
|
169
|
Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2009; 27 Suppl 1:S2-19. [PMID: 19641503 DOI: 10.1038/onc.2009.39] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BH3-only BCL-2 family proteins are effectors of canonical mitochondrial apoptosis. They discharge their pro-apoptotic functions through BH1-3 pro-apoptotic proteins such as BAX and BAK, while their activity is suppressed by BH1-4 anti-apoptotic BCL-2 family members. The precise mechanism by which BH3-only proteins mediate apoptosis remains unresolved. The existing data are consistent with three mutually non-exclusive models (1) displacement of BH1-3 proteins from complexes with BH1-4 proteins; (2) direct interaction with and conformational activation of BH1-3 proteins; and (3) membrane insertion and membrane remodeling. The BH3-only proteins appear to play critical roles in restraining cancer and inflammatory diseases such as rheumatoid arthritis. Molecules that mimic the effect of BH3-only proteins are being used in treatments against these diseases. The cell death activity of a subclass of BH3-only members (BNIP3 and BNIP3L) is linked to cardiomyocyte loss during heart failure. In addition to their established role in apoptosis, several BH3-only members also regulate diverse cellular functions in cell-cycle regulation, DNA repair and metabolism. Several members are implicated in the induction of autophagy and autophagic cell death, possibly through unleashing of the BH3-only autophagic effector Beclin 1 from complexes with BCL-2/BCL-xL. The Chapters included in the current Oncogene Review issues provide in-depth discussions on various aspects of major BH3-only proteins.
Collapse
Affiliation(s)
- E Lomonosova
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St Louis, MO 63104, USA
| | | |
Collapse
|
170
|
Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell 2009; 35:164-80. [PMID: 19647514 DOI: 10.1016/j.molcel.2009.05.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 01/19/2009] [Accepted: 05/28/2009] [Indexed: 11/22/2022]
Abstract
Glutamyl-prolyl tRNA synthetase (EPRS) is a component of the heterotetrameric gamma-interferon-activated inhibitor of translation (GAIT) complex that binds 3'UTR GAIT elements in multiple interferon-gamma (IFN-gamma)-inducible mRNAs and suppresses their translation. Here, we elucidate the specific EPRS phosphorylation events that regulate GAIT-mediated gene silencing. IFN-gamma induces sequential phosphorylation of Ser(886) and Ser(999) in the noncatalytic linker connecting the synthetase cores. Phosphorylation of both sites is essential for EPRS release from the parent tRNA multisynthetase complex. Ser(886) phosphorylation is required for the interaction of NSAP1, which blocks EPRS binding to target mRNAs. The same phosphorylation event induces subsequent binding of ribosomal protein L13a and GAPDH and restores mRNA binding. Finally, Ser(999) phosphorylation directs the formation of a functional GAIT complex that binds initiation factor eIF4G and represses translation. Thus, two-site phosphorylation provides structural and functional pliability to EPRS and choreographs the repertoire of activities that regulates inflammatory gene expression.
Collapse
|
171
|
O'Reilly LA, Kruse EA, Puthalakath H, Kelly PN, Kaufmann T, Huang DCS, Strasser A. MEK/ERK-mediated phosphorylation of Bim is required to ensure survival of T and B lymphocytes during mitogenic stimulation. THE JOURNAL OF IMMUNOLOGY 2009; 183:261-9. [PMID: 19542438 DOI: 10.4049/jimmunol.0803853] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Survival and death of lymphocytes are regulated by the balance between pro- and antiapoptotic members of the Bcl-2 family; this is coordinated with the control of cell cycling and differentiation. Bim, a proapoptotic BH3-only member of the Bcl-2 family, can be regulated by MEK/ERK-mediated phosphorylation, which affects its binding to pro-survival Bcl-2 family members and its turnover. We investigated Bim modifications in mouse B and T lymphoid cells after exposure to apoptotic stimuli and during mitogenic activation. Treatment with ionomycin or cytokine withdrawal caused an elevation in Bim(EL), the most abundant Bim isoform. In contrast, in mitogenically stimulated T and B cells, Bim(EL) was rapidly phosphorylated, and its levels declined. Pharmacological inhibitors of MEK/ERK signaling prevented both of these changes in Bim, reduced proliferation, and triggered apoptosis of mitogen-stimulated T and B cells. Loss of Bim prevented this cell killing but did not restore cell cycling. These results show that during mitogenic stimulation of T and B lymphocytes MEK/ERK signaling is critical for two distinct processes, cell survival, mediated (at least in part) through phosphorylation and consequent inhibition of Bim, and cell cycling, which proceeds independently of Bim inactivation.
Collapse
Affiliation(s)
- Lorraine A O'Reilly
- Water and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
The relative importance of the intrinsic and extrinsic apoptotic pathways in the control of haematopoietic cell homeostasis has been a matter of debate for many years. Cell death is omnipresent in this cellular compartment and ensures the removal of cells that are not properly equipped to assume their function as well as those that have assumed function but are no longer required. In this Review we focus on the roles of CD95 (also known as FAS) and BCL-2-interacting mediator of cell death (BIM), two major regulators of apoptosis in T cell homeostasis, with a particular emphasis on their cooperation in the shutdown of T cell responses.
Collapse
|
173
|
Wildey GM, Howe PH. Runx1 is a co-activator with FOXO3 to mediate transforming growth factor beta (TGFbeta)-induced Bim transcription in hepatic cells. J Biol Chem 2009; 284:20227-39. [PMID: 19494111 DOI: 10.1074/jbc.m109.027201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) regulates essential cellular functions such as cellular proliferation, differentiation, and apoptosis. The Bcl-2 family of proteins has been implicated as mediators of TGFbeta-induced apoptosis. We demonstrated previously that TGFbeta induces the expression of Bim (Bcl-2-interacting mediator of cell death), a member of the BH3-only family of pro-apoptotic Bcl-2 proteins, to induce cell death in B-lymphocytes. Here, we investigated the mechanism of TGFbeta-mediated Bim expression in two hepatocyte cell lines that undergo apoptosis with TGFbeta, AML-12 and Hep3B. We show that TGFbeta induces Bim protein and mRNA levels, and its expression is sufficient to induce cell death. Gene array results revealed that Runx1, a member of the Runx family of transcription factors, was induced by TGFbeta, and this induction was confirmed at the mRNA and protein levels. Interestingly, TGFbeta specifically induced the expression of Runx1 protein from an internal ribosome entry site (IRES)-dependent, cap-independent, mRNA transcript, and its overexpression was sufficient to induce hepatocyte apo pto sis. Deletion and mutation analyses of the murine Bim promoter identified a putative forkhead binding element, at position -174 to -168 from the transcription start site, as the mediator of Runx1 induction. Co-immunoprecipitation, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays demonstrated that Runx1 does not bind directly to the identified forkhead binding element but rather binds the transcriptional regulator FOXO3, which occupies this site. Finally, small interfering RNA knockdown of Runx1 or FOXO3 decreased TGFbeta-induced Bim expression. Our results support a mechanism in which TGFbeta stimulates Bim transcription by up-regulating Runx1 expression, which binds FOXO3, and the two cooperate in the transcriptional induction of Bim.
Collapse
Affiliation(s)
- Gary M Wildey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
174
|
Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol 2009; 29:3845-52. [PMID: 19433446 DOI: 10.1128/mcb.00279-09] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mcl-1 is a member of the Bcl2-related protein family that is a critical mediator of cell survival. Exposure of cells to stress causes inhibition of Mcl-1 mRNA translation and rapid destruction of Mcl-1 protein by proteasomal degradation mediated by a phosphodegron created by glycogen synthase kinase 3 (GSK3) phosphorylation of Mcl-1. Here we demonstrate that prior phosphorylation of Mcl-1 by the c-Jun N-terminal protein kinase (JNK) is essential for Mcl-1 phosphorylation by GSK3. Stress-induced Mcl-1 degradation therefore requires the coordinated activity of JNK and GSK3. Together, these data establish that Mcl-1 functions as a site of signal integration between the proapoptotic activity of JNK and the prosurvival activity of the AKT pathway that inhibits GSK3.
Collapse
|
175
|
Wang X, Xing D, Liu L, Chen WR. BimL directly neutralizes Bcl-xL to promote Bax activation during UV-induced apoptosis. FEBS Lett 2009; 583:1873-9. [PMID: 19427863 DOI: 10.1016/j.febslet.2009.04.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 01/27/2023]
Abstract
Bcl-2-interacting mediator of cell death (Bim) has been considered to initiate intrinsic apoptotic pathway through Bax activation. Previous studies indicated that BimL was involved in UV-induced apoptosis, but it remains unclear whether Bim activates Bax by directly engaging it or by releasing it from pro-survival relatives such as Bcl-xL. In this study, we attempt to determine the interactions between BimL and Bax/Bcl-xL during Ultraviolet (UV)-induced apoptosis. BimL activation appeared to be an important event in our experiments, as demonstrated by the significant inhibition of cell death, caspase-3 activity, and Bax translocation in cells with knockdown of endogenous BimL by RNAi approach. Both fluorescence resonance energy transfer (FRET) and Co-immunoprecipitation (CO-IP) assays indicated that Bcl-xL directly bound to Bax to inhibit its activation, while BimL directly neutralized Bcl-xL, followed by Bax release and activation upon UV irradiation. Not detected in our experiment was the interaction between BimL and Bax either using FRET approach in living cells or endogenous CO-IP assay. Thus, our findings provide strong evidence in living cells for the first time that BimL initiates apoptosis by abrogating Bcl-xL and promoting Bax activation under UV irradiation.
Collapse
Affiliation(s)
- Xianwang Wang
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | | | |
Collapse
|
176
|
Abstract
Deregulation of Bcl2 family members is a frequent feature of human malignant diseases and causal for therapy resistance. A number of studies have recently shed light onto the role of pro- and anti-apoptotic Bcl2 family members in tumour-pathogenesis and in mediating the effects of classical as well as novel front-line anticancer agents, allowing the development of more efficient and more precisely targeted treatment regimens. Most excitingly, recent progress in our understanding of how Bcl2-like proteins maintain or perturb mitochondrial integrity has finally enabled the development of rational-design based anticancer therapies that directly target Bcl2 regulated events at the level of mitochondria. This review aims to give an overview on the most recent findings on the role of the Bcl2 family in tumour development in model systems of cancer, to relate these findings with observations made in human pathologies and drug-action.
Collapse
|
177
|
Abstract
Multisite phosphorylation is an important mechanism for fine-tuned regulation of protein function. Mathematical models developed over recent years have contributed to elucidation of the functional consequences of a variety of molecular mechanisms involved in processing of the phosphorylation sites. Here we review the results of such models, together with salient experimental findings on multisite protein phosphorylation. We discuss how molecular mechanisms that can be distinguished with respect to the order and processivity of phosphorylation, as well as other factors, regulate changes in the sensitivity and kinetics of the response, the synchronization of molecular events, signalling specificity, and other functional implications.
Collapse
Affiliation(s)
- Carlos Salazar
- Research Group Modeling of Biological Systems (B086), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | |
Collapse
|
178
|
Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009; 8:1168-75. [PMID: 19282669 DOI: 10.4161/cc.8.8.8147] [Citation(s) in RCA: 749] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase super family that can mediate cell proliferation and apoptosis. The Ras-Raf-MEK-ERK signaling cascade controlling cell proliferation has been well studied but the mechanisms involved in ERK1/2-mediated cell death are largely unknown. This review focuses on recent papers that define ERK1/2 translocation to the nucleus and the proteins involved in the cytosolic retention of activated ERK1/2. Cytosolic retention of ERK1/2 denies access to the transcription factor substrates that are responsible for the mitogenic response. In addition, cytosolic ERK1/2, besides inhibiting survival and proliferative signals in the nucleus, potentiates the catalytic activity of some proapoptotic proteins such as DAP kinase in the cytoplasm. Studies that further define the function of cytosolic ERK1/2 and its cytosolic substrates that enhance cell death will be essential to harness this pathway for developing effective treatments for cancer and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yohannes Mebratu
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | | |
Collapse
|
179
|
Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO J 2009; 28:1757-68. [PMID: 19339988 DOI: 10.1038/emboj.2009.90] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 03/13/2009] [Indexed: 01/25/2023] Open
Abstract
Bak and Bax are critical apoptotic mediators that naturally localize to both mitochondria and the endoplasmic reticulum (ER). Although it is generally accepted that mitochondrial expression of Bak or Bax suffices for apoptosis initiated by BH3-only homologues, it is currently unclear whether their reticular counterparts may have a similar potential. In this study, we show that cells exclusively expressing Bak in endoplasmic membranes undergo cytochrome c mobilization and mitochondrial apoptosis in response to BimEL and Puma, even when these BH3-only molecules are also targeted to the ER. Surprisingly, calcium was necessary but not sufficient to drive the pathway, despite normal ER calcium levels. We provide evidence that calcium functions coordinately with the ER-stress surveillance machinery IRE1alpha/TRAF2 to transmit apoptotic signals from the reticulum to mitochondria. These results indicate that BH3-only mediators can rely on reticular Bak to activate an ER-to-mitochondria signalling route able to induce cytochrome c release and apoptosis independently of the canonical Bak,Bax-dependent mitochondrial gateway, thus revealing a new layer of complexity in apoptotic regulation.
Collapse
|
180
|
Tabrizi SJ, Niiro H, Masui M, Yoshimoto G, Iino T, Kikushige Y, Wakasaki T, Baba E, Shimoda S, Miyamoto T, Hara T, Akashi K. T cell leukemia/lymphoma 1 and galectin-1 regulate survival/cell death pathways in human naive and IgM+ memory B cells through altering balances in Bcl-2 family proteins. THE JOURNAL OF IMMUNOLOGY 2009; 182:1490-9. [PMID: 19155496 DOI: 10.4049/jimmunol.182.3.1490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BCR signaling plays a critical role in purging the self-reactive repertoire, or in rendering it anergic to establish self-tolerance in the periphery. Differences in self-reactivity between human naive and IgM(+) memory B cells may reflect distinct mechanisms by which BCR signaling dictates their survival and death. Here we demonstrate that BCR stimulation protected naive B cells from apoptosis with induction of prosurvival Bcl-2 family proteins, Bcl-x(L) and Mcl-1, whereas it rather accelerated apoptosis of IgM(+) memory B cells by inducing proapoptotic BH3-only protein Bim. We found that BCR-mediated PI3K activation induced the expression of Mcl-1, whereas it inhibited Bim expression in B cells. Phosphorylation of Akt, a downstream molecule of PI3K, was more sustained in naive than IgM(+) memory B cells. Abundant expression of T cell leukemia/lymphoma 1 (Tcl1), an Akt coactivator, was found in naive B cells, and enforced expression of Tcl1 induced a high level of Mcl-1 expression, resulting in prolonged B cell survival. In contrast, Galectin-1 (Gal-1) was abundantly expressed in IgM(+) memory B cells, and inhibited Akt phosphorylation, leading to Bim up-regulation. Enforced expression of Gal-1 induced accelerated apoptosis in B cells. These results suggest that a unique set of molecules, Tcl1 and Gal-1, defines distinct BCR signaling cascades, dictating survival and death of human naive and IgM(+) memory B cells.
Collapse
|
181
|
Stang SL, Lopez-Campistrous A, Song X, Dower NA, Blumberg PM, Wender PA, Stone JC. A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells. Exp Hematol 2009; 37:122-134. [PMID: 19100522 DOI: 10.1016/j.exphem.2008.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Bryostatin-1 and related diacylglycerol (DAG) analogues activate RasGRPs in lymphocytes, thereby activating Ras and mimicking some aspects of immune receptor signaling. To define the role of RasGRPs in lymphocyte apoptosis and to identify potential therapeutic uses for DAG analogues in lymphocyte disorders, we characterized the response of lymphoma-derived cell lines to DAG analogues. MATERIALS AND METHODS Human lymphoma-derived B cell lines and mouse primary B cells were treated with bryostatin-1 or its synthetic analogue "pico." Ras signaling partners and Bcl-2 family members were studied with biochemical assays. Cellular responses were monitored using growth and apoptosis assays. RESULTS Stimulation of B cells with DAG analogues results in activation of protein kinase C/RasGRP-Ras-Raf-Mek-Erk signaling and phosphorylation of the proapoptotic BH3-only protein Bim. In vitro, Bim is phosphorylated by Erk on sites previously associated with increased apoptotic activity. In Toledo B cells derived from a non-Hodgkin's lymphoma (B-NHL), DAG analogue stimulation leads to extensive apoptosis. Apoptosis can be suppressed by either downregulation of Bim or overexpression of Bcl-2. It is associated with the formation of Bak-Bax complexes and increased mitochondrial membrane permeability. Toledo B-NHL cell apoptosis shows a striking dependence on sustained signaling. CONCLUSION In B cells, Erk activation leads directly to phosphorylation of Bim on sites associated with activation of Bim. In Toledo B-NHL cells, the dependence of apoptosis on sustained signaling suggests that Bcl-2 family members could interpret signal duration, an important determinant of B cell receptor-mediated negative selection. Certain cases of B-NHL might respond to DAG analogue treatment by the mechanism outlined here.
Collapse
Affiliation(s)
- Stacey L Stang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
182
|
betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell 2009; 33:109-16. [PMID: 19150432 PMCID: PMC2655121 DOI: 10.1016/j.molcel.2008.12.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/02/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
Abstract
The BimEL tumor suppressor is a potent proapoptotic BH3-only protein. We found that, in response to survival signals, BimEL was rapidly phosphorylated on three serine residues in a conserved degron, facilitating binding and degradation via the F box protein betaTrCP. Phosphorylation of the BimEL degron was executed by Rsk1/2 and promoted by the Erk1/2-mediated phosphorylation of BimEL on Ser69. Compared to wild-type BimEL, a BimEL phosphorylation mutant unable to bind betaTrCP was stabilized and consequently potent at inducing apoptosis by the intrinsic mitochondrial pathway. Moreover, although non-small cell lung cancer (NSCLC) cells often become resistant to gefitinib (a clinically relevant tyrosine kinase inhibitor that induces apoptosis through BimEL), silencing of either betaTrCP or Rsk1/2 resulted in BimEL-mediated apoptosis of both gefitinib-sensitive and gefitinib-insensitive NSCLC cells. Our findings reveal that betaTrCP promotes cell survival in cooperation with the ERK-RSK pathway by targeting BimEL for degradation.
Collapse
|
183
|
Ramesh S, Wildey GM, Howe PH. Transforming growth factor beta (TGFbeta)-induced apoptosis: the rise & fall of Bim. Cell Cycle 2009; 8:11-7. [PMID: 19106608 DOI: 10.4161/cc.8.1.7291] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) regulates essential cellular functions such as cellular proliferation, differentiation and apoptosis. Multiple apoptotic mediators and signaling pathways have been implicated in TGFbeta-induced apoptosis. Bim, a BH3-only protein, is critical for apoptosis in a variety of cell types. In resting cells, BimEL expression levels, the major and most abundant isoform, are controlled by Erk1/2-mediated phosphorylation, which targets BimEL for ubiquitination and degradation. We previously reported that TGFbeta induces the expression of the pro-apoptotic protein Bim through a Smad3-dependent mechanism to induce cell death in B-lymphocytes. A number of studies have shown TGFbeta to cause transcriptional induction of Bim in many cell types. Recently, we demonstrated that, in addition to its transcriptional effects on Bim, TGFbeta induces a MAPK phosphatase (MKP), MKP2/DUSP4, to rapidly increase BimEL levels by inactivation of Erk1/2, resulting in dephosphorylation and escape of BimEL from ubiquitin-mediated degradation. Our findings are of importance not only in the context that we implicate TGFbeta to increase BimEL levels through both an immediate post-translational regulatory mechanism and a long-term effect through transcriptional induction, but also in the context of implicating MKPs as regulatory players in apoptosis. Here we summarize these recent findings and their significance to our understanding of how TGFbeta mediates apoptosis, and we explore the possible regulatory mechanisms controlling Bim expression levels.
Collapse
Affiliation(s)
- Sneha Ramesh
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
184
|
Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 2008; 16:368-77. [PMID: 18846109 DOI: 10.1038/cdd.2008.148] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several advances in recent years have focused increasing attention on the role of the RAF-MEK-ERK1/2 pathway in promoting cell survival. The demonstration that BRAF is a human oncogene mutated at high frequency in melanoma, thyroid and colon cancer has provided a pathophysiological context, whilst the description of potent and highly selective inhibitors of BRAF or MEK has allowed a more informed and rational intervention in both normal and tumour cells. In addition, separate studies have uncovered new mechanisms by which the ERK1/2 pathway can control the activity or abundance of members of the BCL-2 protein family to promote cell survival. It is now apparent that various oncogenes co-opt ERK1/2 signalling to de-regulate these BCL-2 proteins and this contributes to, and even underpins, survival signalling in some tumours. New oncogene-targeted therapies allow direct or indirect inhibition of ERK1/2 signalling and can cause quite striking tumour cell death. In other cases, inhibition of the ERK1/2 pathway may be more effective in combination with other conventional and novel therapeutics. Here, we review recent advances in our understanding of how the ERK1/2 pathway regulates BCL-2 proteins to promote survival, how this is de-regulated in tumour cells and the opportunities this might afford with the use of new targeted therapies.
Collapse
Affiliation(s)
- K Balmanno
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | | |
Collapse
|