151
|
Yan J, Du F, Li SD, Yuan Y, Jiang JY, Li S, Li XY, Du ZX. AUF1 modulates TGF-β signal in renal tubular epithelial cells via post-transcriptional regulation of Nedd4L expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:48-56. [PMID: 28986222 DOI: 10.1016/j.bbamcr.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation process plays important roles in renal disease pathogenesis. AU-rich element RNA-binding protein (AUF1) interacts with and destabilizes mRNAs containing AU-rich elements (AREs) in their 3'UTR. The current study demonstrated that AUF1 was increased in unilateral ureteral obstruction (UUO) animal models. While proliferation and migration of HK2 cells was unaltered by AUF1 downregulation under normal condition, proliferative inhibition and migratory promotion mediated by TGF-β was significantly compromised. Mechanically, AUF1 downregulation decreased phosphorylated Smad2/3 via increasing their E3 ligase Nedd4L at the posttranscriptional level. In addition, the current study identified Nedd4L as a previously unreported target of AUF1. AUF1 regulates Nedd4L expression at the posttranscriptional level by interaction with AREs in the 3'UTR of the Nedd4L mRNA. Collectively, the current study indicates that AUF1 might be a potential player in renal tubulointerstitial fibrosis through modulation of TGF-β signal transduction via posttranscriptional regulation of Nedd4L.
Collapse
Affiliation(s)
- Jing Yan
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China; Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Feng Du
- Department of Nephrology, Sheng Jing Hospital, China Medical University, Shenyang 110005, China
| | - Sheng-Dong Li
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Ye Yuan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Si Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Xin-Yu Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
152
|
van den Akker GG, van Beuningen HM, Vitters EL, Koenders MI, van de Loo FA, van Lent PL, Blaney Davidson EN, van der Kraan PM. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells. Cell Signal 2017; 40:190-199. [PMID: 28943409 DOI: 10.1016/j.cellsig.2017.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chondrogenic differentiation of mesenchymal stem cells (MSC) requires transforming growth factor beta (TGFβ) signaling. TGFβ binds to the type I receptor activin-like kinase (ALK)5 and results in C-terminal SMAD2/3 phosphorylation (pSMAD2/3C). In turn pSMAD2/3C translocates to the nucleus and regulates target gene expression. Inflammatory mediators are known to exert an inhibitory effect on MSC differentiation. In this study we investigated the effect of interleukin 1 β (IL1β) on SMAD2/3 signaling dynamics and post-translational modifications. RESULTS Co-stimulation of MSC with TGFβ and IL1β did not affect peak pSMAD2C levels at 1h post-stimulation. Surprisingly, SMAD3 transcriptional activity, as determined by the CAGA12-luciferase reporter construct, was enhanced by co-stimulation of TGFβ and IL1β compared to TGFβ alone. Furthermore, IL1β stimulation induced CAGA12-luciferase activity in a SMAD dependent way. As SMAD function can be modulated independent of canonical TGFβ signaling through the SMAD linker domain, we studied SMAD2 linker phosphorylation at specific threonine and serine residues. SMAD2 linker threonine and serine modifications were observed within 1h following TGFβ, IL1β or TGFβ and IL1β stimulation. Upon co-stimulation linker modified SMAD2 accumulated in the cytoplasm and SMAD2/3 target gene transcription (ID1, JUNB) at 2-4h was inhibited. A detailed time course analysis of IL1β-induced SMAD2 linker modifications revealed a distinct temperospatial pattern compared to TGFβ. Co-stimulation with both factors resulted in a similar kinetic profile as TGFβ alone. Nevertheless, IL1β did subtly alter TGFβ-induced pSMAD2C levels between 8 and 24h post-stimulation, which was reflected by TGFβ target gene expression (PAI1, JUNB). Direct evidence for the importance of SMAD3 linker modifications for the effect of IL1β on TGFβ signaling was obtained by over-expression of SMAD3 or a SMAD3 linker phospho-mutant. Finally, an inhibitor screening was performed to identify kinases involved in SMAD2/3 linker modifications. We identified TAK1 kinase activity as crucial for IL1β-induced SMAD2 linker modifications and CAGA12-luciferase activity. CONCLUSIONS TGFβ and IL1β signaling interact at the SMAD2/3 level in human primary MSC. Down-stream TGFβ target genes were repressed by IL1β independent of C-terminal SMAD2 phosphorylation. We demonstrate that SMAD2/3 linker modifications are required for this interplay and identified TAK1 as a crucial mediator of IL1β-induced TGFβ signal modulation.
Collapse
Affiliation(s)
- Guus G van den Akker
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henk M van Beuningen
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Elly L Vitters
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marije I Koenders
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Fons A van de Loo
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter L van Lent
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Esmeralda N Blaney Davidson
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
153
|
Thomas AL, Lind H, Hong A, Dokic D, Oppat K, Rosenthal E, Guo A, Thomas A, Hamden R, Jeruss JS. Inhibition of CDK-mediated Smad3 phosphorylation reduces the Pin1-Smad3 interaction and aggressiveness of triple negative breast cancer cells. Cell Cycle 2017; 16:1453-1464. [PMID: 28678584 DOI: 10.1080/15384101.2017.1338988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. Although TNBC is not defined by specific therapeutic targets, a subset of patients have tumors that overexpress cyclins. High cyclin D/E expression catalyzes CDK4/2 activity. In turn, CDK4/2 can non-canonically phosphorylate Smad3, a key TGFβ signaling intermediate, and this phosphorylation has been associated with the shift from tumor-suppressive to oncogenic TGFβ pathway action in breast oncogenesis. Additionally, CDK-mediated Smad3 phosphorylation facilitates an interaction between Smad3 and Pin1, a cis-trans isomerase that is also overexpressed in aggressive breast cancers. Treatment with CYC065, a CDK2/9 inhibitor, decreased non-canonical Smad3 phosphorylation and inhibited the Pin1-Smad3 interaction. We hypothesized that the interaction of Pin1 and Smad3, facilitated by CDK-mediated Smad3 phosphorylation, promotes TNBC cell aggressiveness. Inhibition of the Pin1-Smad3 interaction in TNBC cell lines, through depletion of Pin1 or CYC065 treatment, resulted in decreased cell migration/invasion and impeded the EMT program. Inhibition of CDK-mediated phosphorylation of Smad3 by mutagenesis also decreased cell migration, underscoring the importance of non-canonical CDK2 phosphorylation of Smad3 to enable cell motility. Pin1 depletion restored Smad3 protein levels and tumor-suppressive activity, suggesting that the Pin1-Smad3 interaction has a negative impact on canonical Smad3 action. Collectively, the data show that the Pin1-Smad3 interaction, facilitated by CDK-mediated Smad3 phosphorylation, is associated with oncogenic TGFβ signaling and breast cancer progression. Inhibition of this interaction with CYC065 treatment may provide an important therapeutic option for TNBC patients.
Collapse
Affiliation(s)
- Alexandra L Thomas
- a Driskill Graduate Program , Northwestern University , Chicago , IL , USA
| | - Hanne Lind
- b University of Michigan , Ann Arbor , MI , USA
| | - Angela Hong
- b University of Michigan , Ann Arbor , MI , USA
| | - Danijela Dokic
- c Department of Obstetrics and Gynecology , Northwestern University , Chicago , IL , USA
| | | | | | - Amina Guo
- b University of Michigan , Ann Arbor , MI , USA
| | - Aaron Thomas
- d Department of Surgery , University of Michigan , Ann Arbor , MI , USA
| | - Randala Hamden
- e Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Jacqueline S Jeruss
- d Department of Surgery , University of Michigan , Ann Arbor , MI , USA.,e Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,f Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
154
|
Gwoździńska P, Buchbinder BA, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia Impairs ENaC Cell Surface Stability by Promoting Phosphorylation, Polyubiquitination and Endocytosis of β-ENaC in a Human Alveolar Epithelial Cell Line. Front Immunol 2017; 8:591. [PMID: 28588583 PMCID: PMC5440515 DOI: 10.3389/fimmu.2017.00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/04/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury is associated with formation of pulmonary edema leading to impaired gas exchange. Patients with acute respiratory distress syndrome (ARDS) require mechanical ventilation to improve oxygenation; however, the use of relatively low tidal volumes (to minimize further injury of the lung) often leads to further accumulation of carbon dioxide (hypercapnia). Hypercapnia has been shown to impair alveolar fluid clearance (AFC), thereby causing retention of pulmonary edema, and may lead to worse outcomes; however, the underlying molecular mechanisms remain incompletely understood. AFC is critically dependent on the epithelial sodium channel (ENaC), which drives the vectorial transport of Na+ across the alveolar epithelium. Thus, in the current study, we investigated the mechanisms by which hypercapnia effects ENaC cell surface stability in alveolar epithelial cells (AECs). Elevated CO2 levels led to polyubiquitination of β-ENaC and subsequent endocytosis of the α/β-ENaC complex in AECs, which were prevented by silencing the E3 ubiquitin ligase, Nedd4-2. Hypercapnia-induced ubiquitination and cell surface retrieval of ENaC were critically dependent on phosphorylation of the Thr615 residue of β-ENaC, which was mediated by the extracellular signal-regulated kinase (ERK)1/2. Furthermore, activation of ERK1/2 led to subsequent activation of AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK)1/2 that in turn phosphorylated Nedd4-2 at the Thr899 residue. Importantly, mutation of Thr899 to Ala markedly inhibited the CO2-induced polyubiquitination of β-ENaC and restored cell surface stability of the ENaC complex, highlighting the critical role of Nedd4-2 phosphorylation status in targeting ENaC. Collectively, our data suggest that elevated CO2 levels promote activation of the ERK/AMPK/JNK axis in a human AEC line, in which ERK1/2 phosphorylates β-ENaC whereas JNK mediates phosphorylation of Nedd4-2, thereby facilitating the channel-ligase interaction. The hypercapnia-induced ENaC dysfunction may contribute to impaired alveolar edema clearance and thus, interfering with these molecular mechanisms may improve alveolar fluid balance and lead to better outcomes in patients with ARDS.
Collapse
Affiliation(s)
- Paulina Gwoździńska
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Benno A Buchbinder
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
155
|
Iyengar PV. Regulation of Ubiquitin Enzymes in the TGF-β Pathway. Int J Mol Sci 2017; 18:ijms18040877. [PMID: 28425962 PMCID: PMC5412458 DOI: 10.3390/ijms18040877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) pathway has a tumor suppressor role in normal and premalignant cells but promotes oncogenesis in advanced cancer cells. Components of the pathway are tightly controlled by ubiquitin modifying enzymes and aberrations in these enzymes are frequently observed to dysregulate the pathway causing diseases such as bone disorders, cancer and metastasis. These enzymes and their counterparts are increasingly being tested as druggable targets, and thus a deeper understanding of the enzymes is required. This review summarizes the roles of specific ubiquitin modifying enzymes in the TGF-β pathway and how they are regulated.
Collapse
|
156
|
Islam R, Yoon WJ, Ryoo HM. Pin1, the Master Orchestrator of Bone Cell Differentiation. J Cell Physiol 2017; 232:2339-2347. [PMID: 27225727 DOI: 10.1002/jcp.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Pin1 is an enzyme that specifically recognizes the peptide bond between phosphorylated serine or threonine (pS/pT-P) and proline. This recognition causes a conformational change of its substrate, which further regulates downstream signaling. Pin1-/- mice show developmental bone defects and reduced mineralization. Pin1 targets RUNX2 (Runt-Related Transcription Factor 2), SMAD1/5, and β-catenin in the FGF, BMP, and WNT pathways, respectively. Pin1 has multiple roles in the crosstalk between different anabolic bone signaling pathways. For example, it controls different aspects of osteoblastogenesis and increases the transcriptional activity of Runx2, both directly and indirectly. Pin1 also influences osteoclastogenesis at different stages by targeting PU.1 (Purine-rich nucleic acid binding protein 1), C-FOS, and DC-STAMP. The phenotype of Pin1-/- mice has led to the recent identification of multiple roles of Pin1 in different molecular pathways in bone cells. These roles suggest that Pin1 can be utilized as an efficient drug target in congenital and acquired bone diseases. J. Cell. Physiol. 232: 2339-2347, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
157
|
TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022145. [PMID: 27920038 DOI: 10.1101/cshperspect.a022145] [Citation(s) in RCA: 454] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transforming growth factor β (TGF-β) family controls many fundamental aspects of cellular behavior. With advances in the molecular details of the TGF-β signaling cascade and its cross talk with other signaling pathways, we now have a more coherent understanding of the cytostatic program induced by TGF-β. However, the molecular mechanisms are still largely elusive for other cellular processes that are regulated by TGF-β and determine a cell's proliferation and survival, apoptosis, dormancy, autophagy, and senescence. The difficulty in defining TGF-β's roles partly stems from the context-dependent nature of TGF-β signaling. Here, we review our current understanding and recent progress on the biological effects of TGF-β at the cellular level, with the hope of providing a framework for understanding how cells respond to TGF-β signals in specific contexts, and why disruption of such mechanisms may result in different human diseases including cancer.
Collapse
|
158
|
Malonis RJ, Fu W, Jelcic MJ, Thompson M, Canter BS, Tsikitis M, Esteva FJ, Sánchez I. RNF11 sequestration of the E3 ligase SMURF2 on membranes antagonizes SMAD7 down-regulation of transforming growth factor β signaling. J Biol Chem 2017; 292:7435-7451. [PMID: 28292929 DOI: 10.1074/jbc.m117.783662] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/17/2023] Open
Abstract
The activity of the E3 ligase, SMURF2, is antagonized by an intramolecular, autoinhibitory interaction between its C2 and Hect domains. Relief of SMURF2 autoinhibition is induced by TGFβ and is mediated by the inhibitory SMAD, SMAD7. In a proteomic screen for endomembrane interactants of the RING-domain E3 ligase, RNF11, we identified SMURF2, among a cohort of Hect E3 ligases previously implicated in TGFβ signaling. Reconstitution of the SMURF2·RNF11 complex in vitro unexpectedly revealed robust SMURF2 E3 ligase activity, with biochemical properties previously restricted to the SMURF2·SMAD7 complex. Using in vitro binding assays, we find that RNF11 can directly compete with SMAD7 for SMURF2 and that binding is mutually exclusive and dependent on a proline-rich domain. Moreover, we found that co-expression of RNF11 and SMURF2 dramatically reduced SMURF2 ubiquitylation in the cell. This effect is strictly dependent on complex formation and sorting determinants that regulate the association of RNF11 with membranes. RNF11 is overexpressed in certain tumors, and, importantly, we found that depletion of this protein down-regulated gene expression of several TGFβ-responsive genes, dampened cell proliferation, and dramatically reduced cell migration in response to TGFβ. Our data suggest for the first time that the choice of binding partners for SMURF2 can sustain or repress TGFβ signaling, and RNF11 may promote TGFβ-induced cell migration.
Collapse
Affiliation(s)
- Ryan J Malonis
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016.,the Albert Einstein School of Medicine, Bronx, New York 10461
| | - Wenxiang Fu
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016.,Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Mark J Jelcic
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016.,the Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Marae Thompson
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016
| | - Brian S Canter
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016.,the Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, and
| | - Mary Tsikitis
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016.,the Division of Cell Biology, Academy of Athens, Athens 11527, Greece
| | - Francisco J Esteva
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016
| | - Irma Sánchez
- From the Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York 10016,
| |
Collapse
|
159
|
A High-Fat Diet Promotes Mammary Gland Myofibroblast Differentiation through MicroRNA 140 Downregulation. Mol Cell Biol 2017; 37:MCB.00461-16. [PMID: 27895151 DOI: 10.1128/mcb.00461-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/19/2016] [Indexed: 12/19/2022] Open
Abstract
Human breast adipose tissue is a heterogeneous cell population consisting of mature white adipocytes, multipotent mesenchymal stem cells, committed progenitor cells, fibroblasts, endothelial cells, and immune cells. Dependent on external stimulation, adipose-derived stem cells differentiate along diverse lineages into adipocytes, chondrocytes, osteoblasts, fibroblasts, and myofibroblasts. It is currently not fully understood how a high-fat diet reprograms adipose-derived stem cells into myofibroblasts. In our study, we used mouse models of a regular diet and of high-fat-diet-induced obesity to investigate the role of dietary fat on myofibroblast differentiation in the mammary stromal microenvironment. We found that a high-fat diet promotes myofibroblast differentiation by decreasing microRNA 140 (miR-140) expression in mammary adipose tissue through a novel negative-feedback loop. Increased transforming growth factor β1 (TGF-β1) in mammary adipose tissue in obese mice activates SMAD3 signaling, causing phospho-SMAD3 to bind to the miR-140 locus and inhibit miR-140 transcription. This prevents miR-140 from targeting SMAD3 for degradation, resulting in amplified TGF-β1/SMAD3 signaling and miR-140 downregulation-dependent myofibroblast differentiation. Using tissue and coculture models, we found that myofibroblasts and the fibrotic microenvironment created by myofibroblasts impact the stemness and proliferation of normal ductal epithelial cells and early-stage breast cancer invasion and stemness.
Collapse
|
160
|
Totland MZ, Bergsland CH, Fykerud TA, Knudsen LM, Rasmussen NL, Eide PW, Yohannes Z, Sørensen V, Brech A, Lothe RA, Leithe E. E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin43 to promote loss of gap junctions. J Cell Sci 2017; 130:2867-2882. [DOI: 10.1242/jcs.202408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin43 is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Connexin43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of connexin43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the connexin43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of connexin43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and connexin43 degradation in human carcinoma cells.
Collapse
Affiliation(s)
- Max Z. Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Christian H. Bergsland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Tone A. Fykerud
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Lars M. Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline L. Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Zeremariam Yohannes
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Vigdis Sørensen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
161
|
Chiba T, Ishisaki A, Kyakumoto S, Shibata T, Yamada H, Kamo M. Transforming growth factor-β1 suppresses bone morphogenetic protein-2-induced mesenchymal-epithelial transition in HSC-4 human oral squamous cell carcinoma cells via Smad1/5/9 pathway suppression. Oncol Rep 2016; 37:713-720. [PMID: 28035402 PMCID: PMC5355686 DOI: 10.3892/or.2016.5338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022] Open
Abstract
Squamous cell carcinoma is the most common cancer in the oral cavity. We previously demonstrated that transforming growth factor-β1 (TGF-β1) promotes the epithelial-mesenchymal transition (EMT) of human oral squamous cell carcinoma (hOSCC) cells; however, it remains to be clarified whether the TGF-β superfamily member bone morphogenetic protein (BMP) affects this process in hOSCC cells. Here, we examined the independent and collective effects of TGF-β1 and BMP-2 on EMT and mesenchymal‑epithelial transition (MET) in a panel of four hOSCC cell lines. Notably, we found that HSC-4 cells were the most responsive to BMP-2 stimulation, which resulted in the upregulation of Smad1/5/9 target genes such as the MET inducers ID1 and cytokeratin 9 (CK9). Furthermore, BMP-2 downregulated the mesenchymal marker N-cadherin and the EMT inducer Snail, but upregulated epithelial CK9 expression, indicating that BMP-2 prefers to induce MET rather than EMT. Moreover, TGF-β1 dampened BMP-2-induced epithelial gene expression by inhibiting Smad1/5/9 expression and phosphorylation. Functional analysis revealed that TGF-β1 and BMP-2 significantly enhanced HSC-4 cell migration and proliferation, respectively. Collectively, these data suggest that TGF-β positively regulates hOSCC invasion in the primary tumor, whereas BMP-2 facilitates cancer cell colonization at secondary metastatic sites. Thus, the invasive and metastatic characteristics of hOSCC appear to be reciprocally regulated by BMP and TGF-β.
Collapse
Affiliation(s)
- Takahiro Chiba
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu-shi, Gifu 501-1194, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| |
Collapse
|
162
|
Abstract
Zhao and Zhang discuss a new study by Nazio et al. that demonstrates that NEDD4L and mTOR regulate autophagy via modulation of ULK1 levels. The Ser/Thr kinase ULK1/Atg1 controls autophagy initiation under nutrient starvation conditions. In this issue, Nazio et al. (2016. J. Cell Biol.https://doi.org/10.1083/jcb.201605089) demonstrate that oscillatory modulation of NEDD4L-mediated proteasomal degradation and mTOR-dependent de novo protein synthesis of ULK1 ensures the proper amplitude and duration of the autophagy response during prolonged starvation, thus maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Yan G Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
163
|
Nazio F, Carinci M, Valacca C, Bielli P, Strappazzon F, Antonioli M, Ciccosanti F, Rodolfo C, Campello S, Fimia GM, Sette C, Bonaldo P, Cecconi F. Fine-tuning of ULK1 mRNA and protein levels is required for autophagy oscillation. J Cell Biol 2016; 215:841-856. [PMID: 27932573 PMCID: PMC5166502 DOI: 10.1083/jcb.201605089] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/19/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
ULK1 is a key kinase in autophagy initiation. Nazio et al. demonstrate that the E3 ubiquitin ligase NEDD4L targets ULK1 for degradation soon after autophagy induction, whereas a simultaneous ULK1 mRNA transcription is needed for priming subsequent rounds of autophagy. Autophagy is an intracellular degradation pathway whose levels are tightly controlled to secure cell homeostasis. Unc-51–like kinase 1 (ULK1) is a conserved serine–threonine kinase that plays a central role in the initiation of autophagy. Here, we report that upon autophagy progression, ULK1 protein levels are specifically down-regulated by the E3 ligase NEDD4L, which ubiquitylates ULK1 for degradation by the proteasome. However, whereas ULK1 protein is degraded, ULK1 mRNA is actively transcribed. Upon reactivation of mTOR-dependent protein synthesis, basal levels of ULK1 are promptly restored, but the activity of newly synthesized ULK1 is inhibited by mTOR. This prepares the cell for a new possible round of autophagy stimulation. Our results thus place NEDD4L and ULK1 in a key position to control oscillatory activation of autophagy during prolonged stress to keep the levels of this process under a safe and physiological threshold.
Collapse
Affiliation(s)
- Francesca Nazio
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, 00146 Rome, Italy.,Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marianna Carinci
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cristina Valacca
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pamela Bielli
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Flavie Strappazzon
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Manuela Antonioli
- Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany.,National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico "L. Spallanzani," 00149 Rome, Italy
| | - Fabiola Ciccosanti
- National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico "L. Spallanzani," 00149 Rome, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico "L. Spallanzani," 00149 Rome, Italy.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Claudio Sette
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Cecconi
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, 00146 Rome, Italy .,Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.,Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| |
Collapse
|
164
|
Chen X, Cao X, Sun X, Lei R, Chen P, Zhao Y, Jiang Y, Yin J, Chen R, Ye D, Wang Q, Liu Z, Liu S, Cheng C, Mao J, Hou Y, Wang M, Siebenlist U, Eugene Chin Y, Wang Y, Cao L, Hu G, Zhang X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis 2016; 7:e2508. [PMID: 27906182 PMCID: PMC5261001 DOI: 10.1038/cddis.2016.405] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
Transforming growth factor beta (TGFβ) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFβ signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFβ signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFβ treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis.
Collapse
Affiliation(s)
- Xi Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xinwei Cao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xiaohua Sun
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Rong Lei
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Pengfei Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yongxu Zhao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yuhang Jiang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Yin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Ran Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Deji Ye
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Qi Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Zhanjie Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Sanhong Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Chunyan Cheng
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Mao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan
Hospital, Fudan University School of Medicine, Shanghai
200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin
Hospital, Shanghai Jiao-Tong University School of Medicine,
Shanghai
200025, China
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology,
National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, MD
20892, USA
| | - Y Eugene Chin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Ying Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Liu Cao
- Liaoning Province Collaborative
Innovation Center of Aging Related Disease Diagnosis and Treatment and
Prevention, Shenyang
110001, China
- Key laboratory of Medical Cell
Biology, China Medical University, Shenyang
110001, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Xiaoren Zhang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| |
Collapse
|
165
|
Xu P, Lin X, Feng XH. Posttranslational Regulation of Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022087. [PMID: 27908935 DOI: 10.1101/cshperspect.a022087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor β (TGF-β) family signaling dictates highly complex programs of gene expression responses, which are extensively regulated at multiple levels and vary depending on the physiological context. The formation, activation, and destruction of two major functional complexes in the TGF-β signaling pathway (i.e., the TGF-β receptor complexes and the Smad complexes that act as central mediators of TGF-β signaling) are direct targets for posttranslational regulation. Dysfunction of these complexes often leads or contributes to pathogenesis in cancer and fibrosis and in cardiovascular, and autoimmune diseases. Here we discuss recent insights into the roles of posttranslational modifications in the functions of the receptor-activated Smads in the common Smad4 and inhibitory Smads, and in the control of the physiological responses to TGF-β. It is now evident that these modifications act as decisive factors in defining the intensity and versatility of TGF-β responsiveness. Thus, the characterization of posttranslational modifications of Smads not only sheds light on how TGF-β controls physiological and pathological processes but may also guide us to manipulate the TGF-β responses for therapeutic benefits.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
166
|
Wu B, Guo B, Kang J, Deng X, Fan Y, Zhang X, Ai K. Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-β-induced tumor formation. Tumour Biol 2016; 37:16077–16091. [PMID: 27730540 DOI: 10.1007/s13277-016-5432-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide range of cellular responses. However, the exact mechanism whereby Smurf2 controls TGF-β-induced signaling pathways remains unknown. Here, we identified the relationship between the alternate TGF-β signaling pathways: TGF-β/PI3K/Akt/β-catenin and TGF-β/Smad2/3/FoxO1/PUMA and Smurf2. The results showed that TGF-β promoted proliferation, invasion, and migration of human pancreatic carcinoma (PANC-1) cells through the PI3K/Akt/β-catenin pathway. Inhibiting the PI3K/Akt signal transformed the TGF-β-induced cell response from promoting proliferation to Smad2/3/FoxO1/PUMA-mediated apoptosis. The activation of Akt inhibited the phosphorylation/activation of Smad3 and promoted the phosphorylation/inactivation of FoxO1, inhibiting the nuclear translocation of both Smad3 and FoxO1 and inhibiting the expression of PUMA, a key apoptotic mediator. However, downregulation of Smurf2 in PANC-1 cells removed Akt-mediated suppression of Smad3 and FoxO1, allowing TGF-β-induced phosphorylation/activation of Smad2/3, dephosphorylation/activation of FoxO1, nuclear translocation of both factors, and activation of PUMA-mediated apoptosis. Downregulation of Smurf2 also decreased invasion and migration in TGF-β-induced PANC-1 cells. The in vivo experiments also revealed that downregulation of Smurf2 delayed the growth of xenograft tumors originating from PANC-1 cells especially when treated with TGF-β. Taken together, these results indicate that expression of Smurf2 plays a central role in the determination and activation/inhibition of particular cellular pathways and the ultimate fate of cells induced by TGF-β. An increased understanding of the intricacies of the TGF-β signaling pathway may provide a new anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Jie Kang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xianzhao Deng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xiaoping Zhang
- Institution of Interventional and Vascular Surgery, Tongji Univerity, No. 301 Middle Yan Chang Rd, Shanghai, 200072, China.
| | - Kaixing Ai
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
167
|
Ordulu Z, Kammin T, Brand H, Pillalamarri V, Redin CE, Collins RL, Blumenthal I, Hanscom C, Pereira S, Bradley I, Crandall BF, Gerrol P, Hayden MA, Hussain N, Kanengisser-Pines B, Kantarci S, Levy B, Macera MJ, Quintero-Rivera F, Spiegel E, Stevens B, Ulm JE, Warburton D, Wilkins-Haug LE, Yachelevich N, Gusella JF, Talkowski ME, Morton CC. Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis. Am J Hum Genet 2016; 99:1015-1033. [PMID: 27745839 PMCID: PMC5097935 DOI: 10.1016/j.ajhg.2016.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022] Open
Abstract
In this exciting era of "next-gen cytogenetics," integrating genomic sequencing into the prenatal diagnostic setting is possible within an actionable time frame and can provide precise delineation of balanced chromosomal rearrangements at the nucleotide level. Given the increased risk of congenital abnormalities in newborns with de novo balanced chromosomal rearrangements, comprehensive interpretation of breakpoints could substantially improve prediction of phenotypic outcomes and support perinatal medical care. Herein, we present and evaluate sequencing results of balanced chromosomal rearrangements in ten prenatal subjects with respect to the location of regulatory chromatin domains (topologically associated domains [TADs]). The genomic material from all subjects was interpreted to be "normal" by microarray analyses, and their rearrangements would not have been detected by cell-free DNA (cfDNA) screening. The findings of our systematic approach correlate with phenotypes of both pregnancies with untoward outcomes (5/10) and with healthy newborns (3/10). Two pregnancies, one with a chromosomal aberration predicted to be of unknown clinical significance and another one predicted to be likely benign, were terminated prior to phenotype-genotype correlation (2/10). We demonstrate that the clinical interpretation of structural rearrangements should not be limited to interruption, deletion, or duplication of specific genes and should also incorporate regulatory domains of the human genome with critical ramifications for the control of gene expression. As detailed in this study, our molecular approach to both detecting and interpreting the breakpoints of structural rearrangements yields unparalleled information in comparison to other commonly used first-tier diagnostic methods, such as non-invasive cfDNA screening and microarray analysis, to provide improved genetic counseling for phenotypic outcome in the prenatal setting.
Collapse
Affiliation(s)
- Zehra Ordulu
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Kammin
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Harrison Brand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Vamsee Pillalamarri
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Claire E Redin
- Harvard Medical School, Boston, MA 02115, USA; Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Ryan L Collins
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ian Blumenthal
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carrie Hanscom
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shahrin Pereira
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - India Bradley
- Department of Psychiatry, Prenatal Diagnosis Center, David Geffen School of Medicine, University of California, Los Angeles, Medical Plaza, Los Angeles, CA 90095, USA
| | - Barbara F Crandall
- Department of Psychiatry, Prenatal Diagnosis Center, David Geffen School of Medicine, University of California, Los Angeles, Medical Plaza, Los Angeles, CA 90095, USA
| | - Pamela Gerrol
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mark A Hayden
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Naveed Hussain
- Department of Pediatrics, Connecticut Children's Medical Center, University of Connecticut, Farmington, CT 06030, USA
| | | | - Sibel Kantarci
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michael J Macera
- New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erica Spiegel
- Department of Maternal Fetal Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Blair Stevens
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Janet E Ulm
- Regional Obstetrical Consultants, Chattanooga, TN 37403, USA
| | - Dorothy Warburton
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Louise E Wilkins-Haug
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Yachelevich
- Department of Pediatrics, Clinical Genetics Services, New York University School of Medicine, New York, NY 10003, USA
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Genetics, Harvard Medical School, Boson, MA 02115, USA
| | - Michael E Talkowski
- Harvard Medical School, Boston, MA 02115, USA; Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Departments of Psychiatry and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cynthia C Morton
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Evolution and Genomic Science, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Center, Manchester 03101, UK.
| |
Collapse
|
168
|
Chaikuad A, Bullock AN. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022111. [PMID: 27549117 DOI: 10.1101/cshperspect.a022111] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
169
|
Tripathi V, Sixt KM, Gao S, Xu X, Huang J, Weigert R, Zhou M, Zhang YE. Direct Regulation of Alternative Splicing by SMAD3 through PCBP1 Is Essential to the Tumor-Promoting Role of TGF-β. Mol Cell 2016; 64:549-564. [PMID: 27746021 DOI: 10.1016/j.molcel.2016.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 01/17/2023]
Abstract
In advanced stages of cancers, TGF-β promotes tumor progression in conjunction with inputs from receptor tyrosine kinase pathways. However, mechanisms that underpin the signaling cooperation and convert TGF-β from a potent growth inhibitor to a tumor promoter are not fully understood. We report here that TGF-β directly regulates alternative splicing of cancer stem cell marker CD44 through a phosphorylated T179 of SMAD3-mediated interaction with RNA-binding protein PCBP1. We show that TGF-β and EGF respectively induce SMAD3 and PCBP1 to colocalize in SC35-positive nuclear speckles, and the two proteins interact in the variable exon region of CD44 pre-mRNA to inhibit spliceosome assembly in favor of expressing the mesenchymal isoform CD44s over the epithelial isoform CD44E. We further show that the SMAD3-mediated alternative splicing is essential to the tumor-promoting role of TGF-β and has a global influence on protein products of genes instrumental to epithelial-to-mesenchymal transition and metastasis.
Collapse
Affiliation(s)
- Veenu Tripathi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Katherine M Sixt
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shaojian Gao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xuan Xu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ming Zhou
- Laboratory of Protein Characterization, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
170
|
Baas R, Sijm A, van Teeffelen HAAM, van Es R, Vos HR, Marc Timmers HT. Quantitative Proteomics of the SMAD (Suppressor of Mothers against Decapentaplegic) Transcription Factor Family Identifies Importin 5 as a Bone Morphogenic Protein Receptor SMAD-specific Importin. J Biol Chem 2016; 291:24121-24132. [PMID: 27703004 DOI: 10.1074/jbc.m116.748582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Indexed: 01/11/2023] Open
Abstract
Gene-specific transcription factors (GSTFs) control gene transcription by DNA binding and specific protein complex recruitment, which regulates promoter accessibility for transcription initiation by RNA polymerase II. Mutations in the GSTFs Suppressor of Mothers Against Decapentaplegic 2 (SMAD2) and SMAD4 are frequently associated with colon and rectal carcinomas. These proteins play an important role in bone morphogenic protein (BMP) and transforming growth factor β (TGF-β) signaling pathways controlling cell fate and proliferation. To study the protein interactome of the SMAD protein family we generated a quantitative proteomics pipeline that allows for inducible expression of GFP-tagged SMAD proteins followed by affinity purification and quantitative mass spectrometry analysis. Data are available via ProteomeXchange with identifier PXD004529. The nuclear importin IPO5 was identified as a novel interacting protein of SMAD1. Overexpression of IPO5 in various cell lines specifically increases nuclear localization of BMP receptor-activated SMADs (R-SMADs) confirming a functional relationship between IPO5 and BMP but not TGF-β R-SMADs. Finally, we provide evidence that variation in length of the lysine stretch of the nuclear localization sequence is a determinant for importin specificity.
Collapse
Affiliation(s)
- Roy Baas
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ayestha Sijm
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Hetty A A M van Teeffelen
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert van Es
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Harmjan R Vos
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - H Th Marc Timmers
- From the Departments of Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
171
|
Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet 2016; 48:1349-1358. [PMID: 27694961 PMCID: PMC5086093 DOI: 10.1038/ng.3676] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022]
Abstract
Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.
Collapse
|
172
|
Abstract
The pathogenetic heterogeneity of pulmonary fibrosis yields both challenges and opportunities for therapy. Its complexity implicates a variety of cellular processes, signaling pathways, and genetics as drivers of disease. TGF-β stimulation is one avenue, and is central to pro-fibrotic protein expression, leading to decreased pulmonary function. Here we report our recent findings, introducing the E3 ligase Fibrosis Inducing E3 Ligase 1 (FIEL1) as an important regulator of TGF-β signaling through the selective degradation of PIAS4. FIEL1 exacerbates bleomycin-induced murine pulmonary fibrosis, while its silencing attenuates the fibrotic phenotype. Further, we developed a small molecule inhibitor of FIEL1 (BC-1485) that inhibits the degradation of PIAS4, and ameliorates fibrosis in murine models. New understanding of this pathway illustrates the many targeting opportunities among the complexity of pulmonary fibrosis in the continuing search for therapy.
Collapse
|
173
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
174
|
Zhao J, Wei J, Dong S, Bowser RK, Zhang L, Jacko AM, Zhao Y. Destabilization of Lysophosphatidic Acid Receptor 1 Reduces Cytokine Release and Protects Against Lung Injury. EBioMedicine 2016; 10:195-203. [PMID: 27448760 PMCID: PMC5006730 DOI: 10.1016/j.ebiom.2016.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/02/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is a druggable target for treating pulmonary inflammatory diseases. However, the molecular regulation of LPA1 stability, a factor that critically impacts its biological activity, remains largely unknown. Here we identify two enzymes that regulate the balance of LPA1 ubiquitination and deubiquitination. Ubiquitin E3 ligase Nedd4L targets LPA1 for its site specific ubiquitination and degradation in the lysosome. Nedd4L negatively regulates LPA-LPA1-mediated cytokine release. The stability of LPA1 is up-regulated by ubiquitin-specific protease 11 (USP11), which deubiquitinates LPA1 and enhances LPA1-mediated pro-inflammatory effects. LPA1 is associated with USP11 in quiescent cells, while LPA treatment triggers LPA1 dis-association with USP11 and in turn binding to Nedd4L. Knockdown or inhibition of USP11 reduces LPA1 stability, levels of LPA1, and LPA1-CD14 interaction complex; thereby diminishing both LPA- and LPS-induced inflammatory responses and lung injury in preclinical murine models. Thus, our findings identify an ubiquitin E3 ligase and a deubiquitinating enzyme responsible for regulation of LPA1 stability and biological activities. This study provides potential targets for the development of anti-inflammatory molecules to lessen lung injury. Nedd4L ubiquitinates LPA1 and diminishes LPA1 signaling. USP11 deubiquitinates and stabilizes LPA1, thus promotes LPA1- and LPS-mediated pro-inflammatory response. Inhibition of USP11 reduces LPS-induced acute lung injury.
Lysophosphatidic acid (LPA) and its receptor (LPA1) play a critical role in lung inflammation through triggering cytokine release and neutrophil influx to the lungs. Here, we show that LPA1 is ubiquitinated and degraded in the lysosome, and the process is mediated by the ubiquitin E3 ligase Nedd4L. Further, we reveal that a deubiquitination enzyme USP11 stabilizes LPA1 by targeting and deubiquitinating LPA1. To investigate whether destabilization of LPA1 diminishes lung injury, USP11 was inhibited or down-regulated prior to endotoxin challenge. Destabilization of LPA1 reduces cytokine release and lung inflammation in a preclinical murine model of lung injury.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh, School of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh, School of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Su Dong
- Department of Medicine, University of Pittsburgh, School of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Rachel K Bowser
- Department of Medicine, University of Pittsburgh, School of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anastasia M Jacko
- Department of Medicine, University of Pittsburgh, School of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh, School of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
175
|
Huang XL, Zhang L, Duan Y, Wang YJ, Zhao JH, Wang J. E3 ubiquitin ligase: A potential regulator in fibrosis and systemic sclerosis. Cell Immunol 2016; 306-307:1-8. [PMID: 27406900 DOI: 10.1016/j.cellimm.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 01/11/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis in the skin and internal organs. The pathogenesis of SSc is not completely understood until now. Recently, many studies have focused on the role of E3 ubiquitin ligases in organ fibrosis. However, the possible regulatory mechanisms of E3 ubiquitin ligases in fibrosis and SSc are not well documented. In this review, we summarized that E3 ubiquitin ligases regulated fibrosis through ubiquitin-mediated degradation of TGF-β/Smad signaling pathway. Moreover, E3 ubiquitin ligases participated in regulating fibrosis by other methods, such as inducing epithelial transition to mesenchymal cell, enhancing the production of TGF-β and protecting activated hepatic stellate cells from apoptosis. However, the specific regulatory mechanisms of E3 ubiquitin ligases in scleroderma is still not fully understood. There are more works to be done to specify the mechanism of E3 ubiquitin ligases in regulation of fibrosis in SSc.
Collapse
Affiliation(s)
- Xiao-Lei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Zhang
- Medical Genetics Center, Anhui Medical College, Hefei, China
| | - Yu Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiu-Hua Zhao
- West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
176
|
Chen CL, Kao YC, Yang PH, Sung PJ, Wen ZH, Chen JJ, Huang YB, Chen PY. A Small Dibromotyrosine Derivative Purified From Pseudoceratina Sp. Suppresses TGF-β Responsiveness by Inhibiting TGF-β Type I Receptor Serine/Threonine Kinase Activity. J Cell Biochem 2016; 117:2800-2814. [PMID: 27153151 DOI: 10.1002/jcb.25581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/02/2016] [Indexed: 01/05/2023]
Abstract
For clinical application, there is a great need for small-molecule inhibitors (SMIs) that could control pathogenic effects of transforming growth factor (TGF-β) and/or modulate effects of TGF-β in normal responses. Selective SMIs of the TGF-β signaling pathway developed for therapeutics will also be powerful tools in experimentally dissecting this complex pathway, especially its cross-talk with other signaling pathways. In this study, we characterized (1'R,5'S,6'S)-2-(3',5'-dibromo-1',6'-dihydroxy-4'-oxocyclohex-2'-enyl) acetonitrile (DT), a member of a new class of small-molecule inhibitors related to bromotyrosine derivate from Pseudoceratina sp., which inhibits the TGF-β type I receptor serine/threonine kinase known as activin receptor-like kinase (ALK) 5. The inhibitory effects of DT on TGF-β-induced Smad signaling and epithelial-to-mesenchymal transition (EMT) were investigated in epithelial cells using in vitro kinase assay, luciferase reporter assays, immunoblotting, confocal microscopy, and wound healing assays. The novel ALK5 inhibitor, DT, inhibited the TGF-β-stimulated transcriptional activations of 3TP-Lux. In addition, DT decreased phosphorylated Smad2/3 levels and the nuclear translocation of Smad2/3 increased by TGF-β. In addition, DT inhibited TGF-β-induced EMT and wound healing of A549 cells. Our results suggest that DT is a potential therapeutic agent for fibrotic disease and cancer treatment. J. Cell. Biochem. 117: 2800-2814, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 80424, Taiwan, ROC.
| | - Yu-Chen Kao
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Hua Yang
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien 97401, Taiwan, ROC.,National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Jih-Jung Chen
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 907, Taiwan, ROC
| | - Yaw-Bin Huang
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Yu Chen
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| |
Collapse
|
177
|
RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Sci Rep 2016; 6:26813. [PMID: 27254118 PMCID: PMC4890585 DOI: 10.1038/srep26813] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/09/2016] [Indexed: 01/19/2023] Open
Abstract
Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis.
Collapse
|
178
|
Liu F, Matsuura I. Phosphorylation of Smads by Intracellular Kinases. Methods Mol Biol 2016; 1344:93-109. [PMID: 26520119 DOI: 10.1007/978-1-4939-2966-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Smad proteins transduce the TGF-ß family signal at the cell surface into gene regulation in the nucleus. In addition to being phosphorylated by the TGF-ß family receptors, Smads are phosphorylated by a variety of intracellular kinases. The most studied are by cyclin-dependent kinases, the MAP kinase family members, and GSK-3. Phosphorylation by these kinases regulates Smad activities, leading to various biological effects. This chapter describes the methods for analyzing Smad phosphorylation by these kinases.
Collapse
Affiliation(s)
- Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Isao Matsuura
- Division of Molecular Genomics and Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, 350, Taiwan
| |
Collapse
|
179
|
Feng L, Cook B, Tsai SY, Zhou T, LaFlamme B, Evans T, Chen S. Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation. Cell Rep 2016; 15:2063-75. [PMID: 27210748 DOI: 10.1016/j.celrep.2016.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/06/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
Sorely missing from the "toolkit" for directed differentiation of stem/progenitor cells are agonists of the BMP-signaling pathway. Using a high-throughput chemical screen, we discovered that PD407824, a checkpoint kinase 1 (CHK1) inhibitor, increases the sensitivity of cells to sub-threshold amounts of BMP4. We show utility of the compound in the directed differentiation of human embryonic stem cells toward mesoderm or cytotrophoblast stem cells. Blocking CHK1 activity using pharmacological compounds or CHK1 knockout using single guide RNA (sgRNA) confirmed that CHK1 inhibition increases the sensitivity to BMP4 treatment. Additional mechanistic studies indicate that CHK1 inhibition depletes p21 levels, thereby activating CDK8/9, which then phosphorylates the SMAD2/3 linker region, leading to decreased levels of SMAD2/3 protein and enhanced levels of nuclear SMAD1. This study provides insight into mechanisms controlling the BMP/transforming growth factor beta (TGF-β) signaling pathways and a useful pharmacological reagent for directed differentiation of stem cells.
Collapse
Affiliation(s)
- Lingling Feng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China; Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brandoch Cook
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Su-Yi Tsai
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brooke LaFlamme
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
180
|
Escobedo A, Gomes T, Aragón E, Martín-Malpartida P, Ruiz L, Macias MJ. Structural basis of the activation and degradation mechanisms of the E3 ubiquitin ligase Nedd4L. Structure 2016; 22:1446-57. [PMID: 25295397 DOI: 10.1016/j.str.2014.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
We investigated the mechanisms of activation and degradation of the E3 ubiquitin ligase Nedd4L combining the available biochemical information with complementary biophysical techniques. Using nuclear magnetic resonance spectroscopy, we identified that the C2 domain binds Ca(2+) and inositol 1,4,5-trisphosphate (IP3) using the same interface that is used to interact with the HECT domain. Thus, we propose that the transition from the closed to the active form is regulated by a competition of IP3 and Ca(2+) with the HECT domain for binding to the C2 domain. We performed relaxation experiments and molecular dynamic simulations to determine the flexibility of the HECT structure and observed that its conserved PY motif can become solvent-exposed when the unfolding process is initiated. The structure of the WW3 domain bound to the HECT-PY site reveals the details of this interaction, suggesting a possible auto-ubquitination mechanism using two molecules, a partially unfolded one and a fully functional Nedd4L counterpart.
Collapse
Affiliation(s)
- Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Tiago Gomes
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Pau Martín-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
181
|
The proto-oncogenic protein TAL1 controls TGF-β1 signaling through interaction with SMAD3. BIOCHIMIE OPEN 2016; 2:69-78. [PMID: 29632840 PMCID: PMC5889486 DOI: 10.1016/j.biopen.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/07/2016] [Indexed: 01/13/2023]
Abstract
TGF-β1 is involved in many aspects of tissue development and homeostasis including hematopoiesis. The TAL1 transcription factor is also an important player of this latter process and is expressed very early in the myeloid and erythroid lineages. We previously established a link between TGF-β1 signaling and TAL1 by showing that the cytokine was able to induce its proteolytic degradation by the ubiquitin proteasome pathway. In this manuscript we show that TAL1 interacts with SMAD3 that acts in the pathway downstream of TGF-β1 association with its receptor. TAL1 expression strengthens the positive or negative effect of SMAD3 on various genes. Both transcription factors activate the inhibitory SMAD7 factor through the E box motif present in its transcriptional promoter. DNA precipitation assays showed that TAL1 present in Jurkat or K562 cells binds to this SMAD binding element in a SMAD3 dependent manner. SMAD3 and TAL1 also inhibit several genes including ID1, hTERT and TGF-β1 itself. In this latter case TAL1 and SMAD3 can impair the positive effect exerted by E47. Our results indicate that TAL1 expression can modulate TGF-β1 signaling by interacting with SMAD3 and by increasing its transcriptional properties. They also suggest the existence of a negative feedback loop between TAL1 expression and TGF-β1 signaling.
Collapse
|
182
|
Boehme SA, Franz-Bacon K, DiTirro DN, Ly TW, Bacon KB. MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis. PLoS One 2016; 11:e0154874. [PMID: 27144281 PMCID: PMC4856290 DOI: 10.1371/journal.pone.0154874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating disease for which two medications, pirfenidone and nintedanib, have only recently been approved for treatment. The cytokine TGF-β has been shown to be a central mediator in the disease process. We investigated the role of a novel kinase, MAP3K19, upregulated in IPF tissue, in TGF-β-induced signal transduction and in bleomycin-induced pulmonary fibrosis. MAP3K19 has a very limited tissue expression, restricted primarily to the lungs and trachea. In pulmonary tissue, expression was predominantly localized to alveolar and interstitial macrophages, bronchial epithelial cells and type II pneumocytes of the epithelium. MAP3K19 was also found to be overexpressed in bronchoalveolar lavage macrophages from IPF patients compared to normal patients. Treatment of A549 or THP-1 cells with either MAP3K19 siRNA or a highly potent and specific inhibitor reduced phospho-Smad2 & 3 nuclear translocation following TGF-β stimulation. TGF-β-induced gene transcription was also strongly inhibited by both the MAP3K19 inhibitor and nintedanib, whereas pirfenidone had a much less pronounced effect. In combination, the MAP3K19 inhibitor appeared to act synergistically with either pirfenidone or nintedanib, at the level of target gene transcription or protein production. Finally, in an animal model of IPF, inhibition of MAP3K19 strongly attenuated bleomycin-induced pulmonary fibrosis when administered either prophylactically ortherapeutically. In summary, these results strongly suggest that inhibition of MAP3K19 may have a beneficial therapeutic effect in the treatment of IPF and represents a novel strategy to target this disease.
Collapse
Affiliation(s)
- Stefen A. Boehme
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Karin Franz-Bacon
- DNA Consulting, Inc., San Diego, California, United States of America
| | - Danielle N. DiTirro
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Tai Wei Ly
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Kevin B. Bacon
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| |
Collapse
|
183
|
The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal 2016; 28:956-66. [PMID: 27153775 DOI: 10.1016/j.cellsig.2016.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/15/2023]
Abstract
Hyperelongation of glycosaminoglycan chains on proteoglycans facilitates increased lipoprotein binding in the blood vessel wall and the development of atherosclerosis. Increased mRNA expression of glycosaminoglycan chain synthesizing enzymes in vivo is associated with the development of atherosclerosis. In human vascular smooth muscle, transforming growth factor-β (TGF-β) regulates glycosaminoglycan chain hyperelongation via ERK and p38 as well as Smad2 linker region (Smad2L) phosphorylation. In this study, we identified the involvement of TGF-β receptor, intracellular serine/threonine kinases and specific residues on transcription factor Smad2L that regulate glycosaminoglycan synthesizing enzymes. Of six glycosaminoglycan synthesizing enzymes, xylosyltransferase-1, chondroitin sulfate synthase-1, and chondroitin sulfotransferase-1 were regulated by TGF-β. In addition ERK, p38, PI3K and CDK were found to differentially regulate mRNA expression of each enzyme. Four individual residues in the TGF-β receptor mediator Smad2L can be phosphorylated by these kinases and in turn regulate the synthesis and activity of glycosaminoglycan synthesizing enzymes. Smad2L Thr220 was phosphorylated by CDKs and Smad2L Ser250 by ERK. p38 selectively signalled via Smad2L Ser245. Phosphorylation of Smad2L serine residues induced glycosaminoglycan synthesizing enzymes associated with glycosaminoglycan chain elongation. Phosphorylation of Smad2L Thr220 was associated with XT-1 enzyme regulation, a critical enzyme in chain initiation. These findings provide a deeper understanding of the complex signalling pathways that contribute to glycosaminoglycan chain modification that could be targeted using pharmacological agents to inhibit the development of atherosclerosis.
Collapse
|
184
|
Yao Y, Jiang Q, Jiang L, Wu J, Zhang Q, Wang J, Feng H, Zang P. Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling. Oncotarget 2016; 7:20549-60. [PMID: 26942879 PMCID: PMC4991474 DOI: 10.18632/oncotarget.7823] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023] Open
Abstract
Serum and glucocorticoid-inducible kinase (SGK) 1can be triggered in several malignancies. Most research on SGK1has focused on its role in cancer cells, and we sought to investigate its potential upstream non-coding RNA nominated as Lnc-SGK1, and their expression and diagnostic value in T cells in human gastric cancer (GC). Excessive expression of Lnc-SGK1 and SGK1 were observed in T cell either within the tumor or peripheral T cells, and furthermore associated with Helicobacter pylori infection and high-salt diet (HSD). Within T cells, Helicobacter pylori (Hp) infection and high-salt dietcan up-regulated SGK1 expression and in turn enhance expression of Lnc-SGK1 through JunB activation. And expression of Lnc-SGK1 can further enhance transcription of SGK1 through cis regulatory mode. Lnc-SGK1 can induce Th2 and Th17 and reduce Th1 differentiation via SGK1/JunB signaling. Serum Lnc-SGK1 expression in combination with H. pylori infection and/or HSD in T cells was associated with poor prognosis of GC patients, and could be an ideal diagnostic index in human GC.
Collapse
Affiliation(s)
- Yongliang Yao
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Qingbo Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Lixing Jiang
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, China
| | - Jianhong Wu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Huang Feng
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Panpan Zang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
185
|
Qu MH, Han C, Srivastava AK, Cui T, Zou N, Gao ZQ, Wang QE. miR-93 promotes TGF-β-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells. Tumour Biol 2016; 37:5645-5651. [PMID: 26581907 PMCID: PMC6528179 DOI: 10.1007/s13277-015-4328-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-β-mediated EMT in lung cancer cells. miR-93 binds directly to the 3'-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-β signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-β treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-β-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Mei-Hua Qu
- Department of Pharmacology, Key Lab of Applied Pharmacology in Universities of Shandong, Weifang Medical University, 7166 Baotong West St, Weifang, 261053, Shandong, China.
- Department of Radiology, The Ohio State University Wexner Medical Center, Room 1014, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| | - Chunhua Han
- Department of Radiology, The Ohio State University Wexner Medical Center, Room 1014, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Amit Kumar Srivastava
- Department of Radiology, The Ohio State University Wexner Medical Center, Room 1014, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Tiantian Cui
- Department of Radiology, The Ohio State University Wexner Medical Center, Room 1014, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Ning Zou
- Department of Radiology, The Ohio State University Wexner Medical Center, Room 1014, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Zhi-Qin Gao
- Department of Pharmacology, Key Lab of Applied Pharmacology in Universities of Shandong, Weifang Medical University, 7166 Baotong West St, Weifang, 261053, Shandong, China
| | - Qi-En Wang
- Department of Radiology, The Ohio State University Wexner Medical Center, Room 1014, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
186
|
Christinat Y, Pawłowski R, Krek W. jSplice: a high-performance method for accurate prediction of alternative splicing events and its application to large-scale renal cancer transcriptome data. Bioinformatics 2016; 32:2111-9. [PMID: 27153587 DOI: 10.1093/bioinformatics/btw145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/11/2016] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Alternative splicing represents a prime mechanism of post-transcriptional gene regulation whose misregulation is associated with a broad range of human diseases. Despite the vast availability of transcriptome data from different cell types and diseases, bioinformatics-based surveys of alternative splicing patterns remain a major challenge due to limited availability of analytical tools that combine high accuracy and rapidity. RESULTS We describe here a novel junction-centric method, jSplice, that enables de novo extraction of alternative splicing events from RNA-sequencing data with high accuracy, reliability and speed. Application to clear cell renal carcinoma (ccRCC) cell lines and 65 ccRCC patients revealed experimentally validatable alternative splicing changes and signatures able to prognosticate ccRCC outcome. In the aggregate, our results propose jSplice as a key analytic tool for the derivation of cell context-dependent alternative splicing patterns from large-scale RNA-sequencing datasets. AVAILABILITY AND IMPLEMENTATION jSplice is a standalone Python application freely available at http://www.mhs.biol.ethz.ch/research/krek/jsplice CONTACT wilhelm.krek@biol.ethz.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yann Christinat
- Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Rafał Pawłowski
- Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
187
|
Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, Chan L, De Freitas K, Bialik JF, Majumder S, Boo S, Hinz B, Dan Q, Advani A, John R, Wrana JL, Kapus A, Yuen DA. YAP/TAZ Are Mechanoregulators of TGF- β-Smad Signaling and Renal Fibrogenesis. J Am Soc Nephrol 2016; 27:3117-3128. [PMID: 26961347 DOI: 10.1681/asn.2015050499] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/02/2016] [Indexed: 11/03/2022] Open
Abstract
Like many organs, the kidney stiffens after injury, a process that is increasingly recognized as an important driver of fibrogenesis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are related mechanosensory proteins that bind to Smad transcription factors, the canonical mediators of profibrotic TGF-β responses. Here, we investigated the role of YAP/TAZ in the matrix stiffness dependence of fibroblast responses to TGF-β In contrast to growth on a stiff surface, fibroblast growth on a soft matrix led to YAP/TAZ sequestration in the cytosol and impaired TGF-β-induced Smad2/3 nuclear accumulation and transcriptional activity. YAP knockdown or treatment with verteporfin, a drug that was recently identified as a potent YAP inhibitor, elicited similar changes. Furthermore, verteporfin reduced YAP/TAZ levels and decreased the total cellular levels of Smad2/3 after TGF-β stimulation. Verteporfin treatment of mice subjected to unilateral ureteral obstruction similarly reduced YAP/TAZ levels and nuclear Smad accumulation in the kidney, and attenuated renal fibrosis. Our data suggest that organ stiffening cooperates with TGF-β to induce fibrosis in a YAP/TAZ- and Smad2/3-dependent manner. Interference with this YAP/TAZ and TGF-β/Smad crosstalk likely underlies the antifibrotic activity of verteporfin. Finally, through repurposing of a clinically used drug, we illustrate the therapeutic potential of a novel mechanointerference strategy that blocks TGF-β signaling and renal fibrogenesis.
Collapse
Affiliation(s)
- Stephen G Szeto
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Masahiro Narimatsu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics
| | - Mingliang Lu
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Xiaolin He
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Ahmad M Sidiqi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Monica F Tolosa
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Department of Laboratory Medicine and Pathobiology, School of Graduate Studies
| | - Lauren Chan
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Krystale De Freitas
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Janne Folke Bialik
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, and
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, and
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Rohan John
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and .,Institute of Medical Science and.,Department of Laboratory Medicine and Pathobiology, School of Graduate Studies
| |
Collapse
|
188
|
Liu J, Wan L, Liu J, Yuan Z, Zhang J, Guo J, Malumbres M, Liu J, Zou W, Wei W. Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discov 2016; 2:15044. [PMID: 27462441 PMCID: PMC4860961 DOI: 10.1038/celldisc.2015.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
Anaphase-promoting complex/cyclosome/Cdh1 is a multi-subunit ubiquitin E3 ligase that drives M to G1 cell cycle progression through primarily earmarking various substrates for ubiquitination and subsequent degradation by the 26S proteasome. Notably, emerging evidence suggested that Cdh1 could also function in various cellular processes independent of anaphase-promoting complex/cyclosome. To this end, we recently identified an anaphase-promoting complex/cyclosome-independent function of Cdh1 in modulating osteoblast differentiation through activating Smurf1, one of the NEDD4 family of HECT domain-containing E3 ligases. However, it remains largely unknown whether Cdh1 could exert its tumor suppressor role through similarly modulating the E3 ligase activities of other NEDD4 family members, most of which have characterized important roles in tumorigenesis. Here we report that in various tumor cells, Cdh1, conversely, suppresses the E3 ligase activity of WWP2, another NEDD4 family protein, in an anaphase-promoting complex/cyclosome-independent manner. As such, loss of Cdh1 activates WWP2, leading to reduced abundance of WWP2 substrates including PTEN, which subsequently activates PI3K/Akt oncogenic signaling to facilitate tumorigenesis. This study expands the non-anaphase-promoting complex/cyclosome function of Cdh1 in regulating the NEDD4 family E3 ligases, and further suggested that enhancing Cdh1 to inhibit the E3 ligase activity of WWP2 could be a promising strategy for treating human cancers.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China; Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhu Yuan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Jianfeng Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO) , Madrid, Spain
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University , Xi'an, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
189
|
The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction. Kidney Int 2015. [DOI: 10.1038/ki.2015.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
190
|
Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH, Chen YG. Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. J Biol Chem 2015; 291:382-92. [PMID: 26555259 DOI: 10.1074/jbc.m115.694281] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
TGF-β is a pleiotropic cytokine that regulates a wide range of cellular actions and pathophysiological processes. TGF-β signaling is spatiotemporally fine-tuned. As a key negative regulator of TGF-β signaling, Smad7 exerts its inhibitory effects by blocking receptor activity, inducing receptor degradation or interfering with Smad-DNA binding. However, the functions and the molecular mechanisms underlying the actions of Smad7 in TGF-β signaling are still not fully understood. In this study we report a novel mechanism whereby Smad7 antagonizes TGF-β signaling at the Smad level. Smad7 oligomerized with R-Smad proteins upon TGF-β signaling and directly inhibited R-Smad activity, as assessed by Gal4-luciferase reporter assays. Mechanistically, Smad7 competes with Smad4 to associate with R-Smads and recruits the E3 ubiquitin ligase NEDD4L to activated R-Smads, leading to their polyubiquitination and proteasomal degradation. Similar to the R-Smad-Smad4 oligomerization, the interaction between R-Smads and Smad7 is mediated by their mad homology 2 (MH2) domains. A positive-charged basic region including the L3/β8 loop-strand module and adjacent amino acids in the MH2 domain of Smad7 is essential for the interaction. These results shed new light on the regulation of TGF-β signaling by Smad7.
Collapse
Affiliation(s)
- Xiaohua Yan
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China,
| | - Hongwei Liao
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Minzhang Cheng
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiaojing Shi
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058 China, and
| | - Ye-Guang Chen
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China,
| |
Collapse
|
191
|
Guo TW, Yu FH, Huang KJ, Wang CT. p6gag domain confers cis HIV-1 Gag-Pol assembly and release capability. J Gen Virol 2015; 97:209-219. [PMID: 26489905 DOI: 10.1099/jgv.0.000321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During virus assembly, HIV-1 Gag-Pol is packaged into virions via interaction with Pr55gag. Studies suggest that Gag-Pol by itself is incapable of virus particle assembly or cell release, perhaps due to the lack of a budding domain in the form of p6gag, which is truncated within Gag-Pol because of a ribosomal frameshift during Gag translation. Additionally (or alternatively), large molecular size may not support Gag-Pol assembly into virus-like particles (VLPs) or release from cells. To test these hypotheses, we constructed Gag-Pol expression vectors retaining and lacking p6gag, and then reduced Gag-Pol molecular size by removing various lengths of the Pol sequence. Results indicate that Gag-Pol constructs retaining p6gag were capable of forming VLPs with a WT HIV-1 particle density. Gag-Pol molecular size reduction via partial removal of the Pol sequence mitigated the Gag-Pol assembly defect to a moderate degree. Our results suggest that the Gag-Pol assembly and budding defects are largely due to a lack of p6gag, but also in part due to size limitation.
Collapse
Affiliation(s)
- Ting-Wei Guo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Fu-Hsien Yu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Jung Huang
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chin-Tien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
192
|
Kim TM, Jung SH, An CH, Lee SH, Baek IP, Kim MS, Park SW, Rhee JK, Lee SH, Chung YJ. Subclonal Genomic Architectures of Primary and Metastatic Colorectal Cancer Based on Intratumoral Genetic Heterogeneity. Clin Cancer Res 2015; 21:4461-72. [PMID: 25979483 DOI: 10.1158/1078-0432.ccr-14-2413] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The intratumoral heterogeneity (ITH) and the evolution of genomic architectures associated with the development of distant metastases are not well understood in colorectal cancers. EXPERIMENTAL DESIGN We performed multiregion biopsies of primary and liver metastatic regions from five colorectal cancers with whole-exome sequencing and copy number profiling. RESULTS In addition to a substantial level of genetic ITH, multiregion genetic profiling identifies the subclonal mutational architecture, leading to the region-based or spatial categorization of somatic mutations and the inference of intratumoral evolutionary history of cancers. The universal mutations (those observed in all the regional biopsies) are enriched in known cancer genes such as APC and TP53 with distinct mutational spectra compared with biopsy- or region-specific mutations, suggesting that major operative mutational mechanisms and their selective pressures are not constant across the metastatic progression. The phylogenies inferred from genomic data show branching evolutionary patterns where some primary biopsies are often segregated with metastastic lesions. Our analyses also revealed that copy number changes such as the chromosomal gains of c-MYC and chromothripsis can be region specific and the potential source of genetic ITH. CONCLUSIONS Our data show that the genetic ITH is prevalent in colorectal cancer serving as a potential driving force to generate metastasis-initiating clones and also as a means to infer the intratumoral evolutionary history of cancers. The paucity of recurrent metastasis-clonal events suggests that colorectal cancer distant metastases may not follow a uniform course of genomic evolution, which should be considered in the genetic diagnosis and the selection of therapeutic targets for the advanced colorectal cancer.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Hyun Jung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Hyeok An
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Pyo Baek
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min Sung Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Won Park
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Je-Keun Rhee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sug-Hyung Lee
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Yeun-Jun Chung
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
193
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015. [PMID: 26389119 DOI: 10.3389/fmed.2015.00059.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
194
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2:59. [PMID: 26389119 PMCID: PMC4558529 DOI: 10.3389/fmed.2015.00059] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
195
|
Zhang K, Rajput SK, Lee KB, Wang D, Huang J, Folger JK, Knott JG, Zhang J, Smith GW. Evidence supporting a role for SMAD2/3 in bovine early embryonic development: potential implications for embryotropic actions of follistatin. Biol Reprod 2015; 93:86. [PMID: 26289443 DOI: 10.1095/biolreprod.115.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
The TGF-beta-SMAD signaling pathway is involved in regulation of various aspects of female reproduction. However, the intrinsic functional role of SMADs in early embryogenesis remains poorly understood. Previously, we demonstrated that treatment with follistatin, an activin (TGF-beta superfamily ligand)-binding protein, is beneficial for bovine early embryogenesis and specific embryotropic actions of follistatin are dependent on SMAD4. Because SMAD4 is a common SMAD that can bind both SMAD2/3 and SMAD1/5, the objective of this study was to further determine the intrinsic role of SMAD2/3 in the control of early embryogenesis and delineate if embryotropic actions of follistatin in early embryos are SMAD2/3 dependent. By using a combination of pharmacological and small interfering RNA-mediated inhibition of SMAD2/3 signaling in the presence or absence of follistatin treatment, our results indicate that SMAD2 and SMAD3 are both required for bovine early embryonic development and stimulatory actions of follistatin on 8- to 16-cell and that blastocyst rates, but not early cleavage, are muted when SMAD2/3 signaling is inhibited. SMAD2 deficiency also results in reduced expression of the bovine trophectoderm cell-specific gene CTGF. In conclusion, the present work provides evidence supporting a functional role of SMAD2/3 in bovine early embryogenesis and that specific stimulatory actions of follistatin are not observed in the absence of SMAD2/3 signaling.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Kyung-Bon Lee
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Biology Education, College of Education, Chonnam National University, Gwangju, Korea
| | - Dongliang Wang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Shuozhou Vocational and Technical College, Shuozhou, Shanxi, China
| | - Juncheng Huang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, Michigan Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan
| | - Jiuzhen Zhang
- Shuozhou Vocational and Technical College, Shuozhou, Shanxi, China
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
196
|
Chesarino NM, McMichael TM, Yount JS. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog 2015; 11:e1005095. [PMID: 26263374 PMCID: PMC4532365 DOI: 10.1371/journal.ppat.1005095] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023] Open
Abstract
Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection. IFITM3 is critical for limiting the severity of influenza virus infections in humans and mice. Optimal antiviral activity of IFITM3 is achieved when it is present at high levels within cells. Our results indicate that the E3 ubiquitin ligase NEDD4 decreases baseline IFITM3 levels by ubiquitinating IFITM3 and promoting its turnover. Depleting NEDD4 from cells results in IFITM3 accumulation and greater resistance to infection by influenza viruses. Therefore, we have identified NEDD4 as a regulator of IFITM3 levels and as a novel drug target for preventing influenza virus and other IFITM3-sensitive virus infections.
Collapse
Affiliation(s)
- Nicholas M. Chesarino
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Temet M. McMichael
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
197
|
Zou X, Levy-Cohen G, Blank M. Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:91-106. [DOI: 10.1016/j.bbcan.2015.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
|
198
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
199
|
Zhao R, Cui T, Han C, Zhang X, He J, Srivastava AK, Yu J, Wani AA, Wang QE. DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L. Nucleic Acids Res 2015; 43:7838-49. [PMID: 26130719 PMCID: PMC4652750 DOI: 10.1093/nar/gkv667] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023] Open
Abstract
The expression of DNA damage-binding protein 2 (DDB2) has been linked to the prognosis of ovarian cancer and its underlying transcription regulatory function was proposed to contribute to the favorable treatment outcome. By applying gene microarray analysis, we discovered neural precursor cell expressed, developmentally downregulated 4-Like (NEDD4L) as a previously unidentified downstream gene regulated by DDB2. Mechanistic investigation demonstrated that DDB2 can bind to the promoter region of NEDD4L and recruit enhancer of zeste homolog 2 histone methyltransferase to repress NEDD4L transcription by enhancing histone H3 lysine 27 trimethylation (H3K27me3) at the NEDD4L promoter. Given that NEDD4L plays an important role in constraining transforming growth factor β signaling by targeting activated Smad2/Smad3 for degradation, we investigated the role of DDB2 in the regulation of TGF-β signaling in ovarian cancer cells. Our data indicate that DDB2 enhances TGF-β signal transduction and increases the responsiveness of ovarian cancer cells to TGF-β-induced growth inhibition. The study has uncovered an unappreciated regulatory mode that hinges on the interaction between DDB2 and NEDD4L in human ovarian cancer cells. The novel mechanism proposes the DDB2-mediated fine-tuning of TGF-β signaling and its downstream effects that impinge upon tumor growth in ovarian cancers.
Collapse
Affiliation(s)
- Ran Zhao
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Tiantian Cui
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Chunhua Han
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jinshan He
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Amit Kumar Srivastava
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Altaf A Wani
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qi-En Wang
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
200
|
Sun G, Hu Z, Min Z, Yan X, Guan Z, Su H, Fu Y, Ma X, Chen YG, Zhang MQ, Tao Q, Wu W. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos. J Biol Chem 2015; 290:17239-49. [PMID: 26013826 DOI: 10.1074/jbc.m115.655605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/27/2023] Open
Abstract
Germ layer induction is one of the earliest events shortly after fertilization that initiates body formation of vertebrate embryos. In Xenopus, the maternally deposited transcriptional factor VegT promotes the expression of zygotic Nodal/Activin ligands that further form a morphogen gradient along the vegetal-animal axis and trigger the induction of the three germ layers. Here we found that SCP3 (small C-terminal domain phosphatase 3) is maternally expressed and vegetally enriched in Xenopus embryos and is essential for the timely induction of germ layers. SCP3 is required for the full activation of Nodal/Activin and bone morphogenetic protein signals and functions via dephosphorylation in the linker regions of receptor-regulated Smads. Consistently, the linker regions of receptor-regulated Smads are heavily phosphorylated in fertilized eggs, and this phosphorylation is gradually removed when embryos approach the midblastula transition. Knockdown of maternal SCP3 attenuates these dephosphorylation events and the activation of Nodal/Activin and bone morphogenetic protein signals after midblastula transition. This study thus suggested that the maternal SCP3 serves as a vegetally enriched, intrinsic factor to ensure a prepared status of Smads for their activation by the upcoming ligands during germ layer induction of Xenopus embryos.
Collapse
Affiliation(s)
- Guanni Sun
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhirui Hu
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Zheying Min
- the School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Zhenpo Guan
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanxia Su
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Fu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaopeng Ma
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Michael Q Zhang
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China, the Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080
| | - Qinghua Tao
- the School of Life Sciences, Tsinghua University, Beijing 100084, China,
| | - Wei Wu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|