151
|
Ao M, Pan Z, Qian Y, Tang B, Feng Z, Fang H, Wu Z, Chen J, Xue Y, Fang M. Design, synthesis, and biological evaluation of AV6 derivatives as novel dual reactivators of latent HIV-1. RSC Adv 2018; 8:17279-17292. [PMID: 35539279 PMCID: PMC9080425 DOI: 10.1039/c8ra01216d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 01/31/2023] Open
Abstract
The “shock and kill” strategy might be a promising therapeutic approach for HIV/AIDS due to the existence of latent viral reservoirs. A major challenge of the “shock and kill” strategy arises from the general lack of clinically effective latency-reversing agents (LRAs). The 2-methylquinoline derivative, antiviral 6 (AV6) has been reported to induce latent HIV-1 expression and act synergistically with a HDAC inhibitor VA to reverse HIV latency. We report herein the design and identification of AV6 analogues which possess the zinc-binding group of HDAC inhibitors and have dual acting mechanism for the reactivation of HIV-1 from latency. Evaluation of compounds for the reactivation of HIV-1 latency identified two excellent active compounds 12c and 12d. Further bioassays revealed that these two compounds reactivated latent HIV-1 through dual mechanism, the inhibition of HDACs and NFAT-required for early HIV-1 gene expression. Additionally, it was found that 12c and 12d could reactivate HIV-1 transcription by releasing P-TEFb from the inactive complex 7SK snRNP. At last, molecular docking identified their orientation and binding interactions at the active site of HDAC2. This experimental data suggests that 12c and 12d can be served as effective HIV-1 LRAs which can be taken up for further studies. As dual-acting HIV LRAs, compounds 12c and 12d could activate latent HIV-1 via the NFAT-required mechanism and as histone deacetylase (HDAC) inhibitors.![]()
Collapse
|
152
|
Faust TB, Binning JM, Gross JD, Frankel AD. Making Sense of Multifunctional Proteins: Human Immunodeficiency Virus Type 1 Accessory and Regulatory Proteins and Connections to Transcription. Annu Rev Virol 2017; 4:241-260. [PMID: 28961413 DOI: 10.1146/annurev-virology-101416-041654] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viruses are completely dependent upon cellular machinery to support replication and have therefore developed strategies to co-opt cellular processes to optimize infection and counter host immune defenses. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode a relatively small number of genes. Viruses with limited genetic content often encode multifunctional proteins that function at multiple stages of the viral replication cycle. In this review, we discuss the functions of HIV-1 regulatory (Tat and Rev) and accessory (Vif, Vpr, Vpu, and Nef) proteins. Each of these proteins has a highly conserved primary activity; however, numerous additional activities have been attributed to these viral proteins. We explore the possibility that HIV-1 proteins leverage their multifunctional nature to alter host transcriptional networks to elicit a diverse set of cellular responses. Although these transcriptional effects appear to benefit the virus, it is not yet clear whether they are strongly selected for during viral evolution or are a ripple effect from the primary function. As our detailed knowledge of these viral proteins improves, we will undoubtedly uncover how the multifunctional nature of these HIV-1 regulatory and accessory proteins, and in particular their transcriptional functions, work to drive viral pathogenesis.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158; ,
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; ,
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; ,
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158; ,
| |
Collapse
|
153
|
The bromodomain and extraterminal domain inhibitor bromosporine synergistically reactivates latent HIV-1 in latently infected cells. Oncotarget 2017; 8:94104-94116. [PMID: 29212213 PMCID: PMC5706859 DOI: 10.18632/oncotarget.21585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022] Open
Abstract
The long-lived latent HIV-1 reservoir is the major barrier for complete cure of Acquired Immune Deficiency Syndrome (AIDS). Here we report that a novel bromodomain and extraterminal domain (BET) inhibitor bromosporine which can broadly target BETs, is able to potently reactivate HIV-1 replication in different latency models alone and more powerful when combined with prostratin or TNF-α. Furthermore, the treatment with bromosporine induced HIV-1 full-length transcripts in resting CD4+ T cells from infected individuals with suppressive antiretroviral therapy (ART) ex vivo, with no obvious cytotoxicity or global activation of T cell. Finally, our data suggest that Tat plays a critical role in the bromosporine-mediated reactivation of latent HIV-1, which involved the increase of CDK9 T-loop phosphorylation. In summary, we found that the BET inhibitor bromosporine, alone or with other activators, might be a candidate for future HIV-1 eradication strategies.
Collapse
|
154
|
Wang Y, Shen Y, Dai Q, Yang Q, Zhang Y, Wang X, Xie W, Luo Z, Lin C. A permissive chromatin state regulated by ZFP281-AFF3 in controlling the imprinted Meg3 polycistron. Nucleic Acids Res 2017; 45:1177-1185. [PMID: 28180295 PMCID: PMC5388394 DOI: 10.1093/nar/gkw1051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is an epigenetic regulation that leads to gene expression in a parent-of-origin specific manner. AFF3, the central component of the Super Elongation Complex-like 3 (SEC-L3), is enriched at both the intergenic-differentially methylated region (IG-DMR) and the Meg3 enhancer within the imprinted Dlk1-Dio3 locus to regulate the allele-specific gene expression in this locus. The localization of AFF3 to IG-DMR requires ZFP57. However, how AFF3 functions at the Meg3 enhancer in maintaining allele-specific gene expression remains unclear. Here, we demonstrate that AFF3 is associated with the Krüppel-like zinc finger protein ZFP281 in mouse embryonic stem (ES) cells. ZFP281 recruits AFF3 to the Meg3 enhancer within the imprinted Dlk1-Dio3 locus, thus regulating the allele-specific expression of the Meg3 polycistron. Our genome-wide analyses further identify ZFP281 as a critical factor generally associating with AFF3 at enhancers and functioning together with AFF3 in regulating the expression of a subset of genes. Our study suggests that different zinc finger proteins can recruit AFF3 to different regulatory elements and differentially regulate the function of AFF3 in a context-dependent manner.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yang Shen
- Bioinformatics Core, A*STAR Genome Institute of Singapore, 60 Biopolis Street, Singapore
| | - Qian Dai
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Qian Yang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yue Zhang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xin Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Wei Xie
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zhuojuan Luo
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chengqi Lin
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
155
|
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
156
|
A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Sci Rep 2017; 7:10657. [PMID: 28878233 PMCID: PMC5587564 DOI: 10.1038/s41598-017-10728-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
The principal barrier to the eradication of HIV/AIDS is the existence of latent viral reservoirs. One strategy to overcome this barrier is to use latency-reversing agents (LRAs) to reactivate the latent proviruses, which can then be eliminated by effective anti-retroviral therapy. Although a number of LRAs have been found to reactivate latent HIV, they have not been used clinically due to high toxicity and poor efficacy. In this study, we report the identification of a chalcone analogue called Amt-87 that can significantly reactivate the transcription of latent HIV provirses and act synergistically with known LRAs such as prostratin and JQ1 to reverse latency. Amt-87 works by activating the human transcriptional elongation factor P-TEFb, a CDK9-cyclin T1 heterodimer that is part of the super elongation complex (SEC) used by the viral encoded Tat protein to activate HIV transcription. Amt-87 does so by promoting the phosphorylation of CDK9 at the T-loop, liberating P-TEFb from the inactive 7SK snRNP, and inducing the formation of the Tat-SEC complex at the viral promoter. Together, our data reveal chalcones as a promising category of compounds that should be further explored to identify effective LRAs for targeted reversal of HIV latency.
Collapse
|
157
|
Shin Y, Choi BS, Kim KC, Kang C, Kim K, Yoon CH. Development of a dual reporter screening assay for distinguishing the inhibition of HIV Tat-mediated transcription from off-target effects. J Virol Methods 2017; 249:1-9. [PMID: 28807730 DOI: 10.1016/j.jviromet.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV) encodes a transcription trans-activator (Tat) with an essential role in the transcriptional elongation of viral RNA based on the viral promoter long terminal repeat (LTR). Tat-mediated transcription is conserved and can be distinguished from host transcription, so it is a therapeutic target for combating HIV replication. Traditional screening assays for Tat-mediated transcriptional inhibitors are based on the biochemical properties of Tat and transactivation-responsive RNA. We developed an inducible system based on two lentiviral expression cassettes for doxycycline (Dox)-inducible Tat and Renilla luciferase (R-Luc) using TZM-bl cells harboring LTR-driven firefly luciferase (F-Luc). The cells simultaneously expressed both Tat-induced F-Luc and R-Luc, so it was possible to recognize off-target effects in the presence of Dox. The system was validated with known inhibitors: CYC202 obtained high sensitivity and specificity, whereas 6Bio and DRB had off-target effects. The MTT-based cytotoxicity test indicated the resistance of the system even at concentrations with off-target effects. The specificity of the system was confirmed using antiretroviral drugs. Our dual reporter system can simply detect Tat inhibitory effects, as well as precisely discriminate between the inhibitory and off-target effects of inhibitors, and may be useful for the development of a therapeutic anti-HIV drug.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Byeong-Sun Choi
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Kyung-Chang Kim
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Chun Kang
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Diseases, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Kisoon Kim
- Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Cheol-Hee Yoon
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| |
Collapse
|
158
|
Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, Roeder RG, Shi X, Allis CD, Li H. Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Mol Cell 2017; 62:181-193. [PMID: 27105114 DOI: 10.1016/j.molcel.2016.03.028] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/27/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
Abstract
Recognition of histone covalent modifications by chromatin-binding protein modules ("readers") constitutes a major mechanism for epigenetic regulation, typified by bromodomains that bind acetyllysine. Non-acetyl histone lysine acylations (e.g., crotonylation, butyrylation, propionylation) have been recently identified, but readers that prefer these acylations have not been characterized. Here we report that the AF9 YEATS domain displays selectively higher binding affinity for crotonyllysine over acetyllysine. Structural studies revealed an extended aromatic sandwiching cage with crotonyl specificity arising from π-aromatic and hydrophobic interactions between crotonyl and aromatic rings. These features are conserved among the YEATS, but not the bromodomains. Using a cell-based model, we showed that AF9 co-localizes with crotonylated histone H3 and positively regulates gene expression in a YEATS domain-dependent manner. Our studies define the evolutionarily conserved YEATS domain as a family of crotonyllysine readers and specifically demonstrate that the YEATS domain of AF9 directly links histone crotonylation to active transcription.
Collapse
Affiliation(s)
- Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Beijing 100084, PRC; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, PRC
| | - Benjamin R Sabari
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Tatyana Panchenko
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Zhao
- MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Beijing 100084, PRC; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, PRC
| | - Haipeng Guan
- MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Beijing 100084, PRC; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, PRC
| | - Liling Wan
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Beijing 100084, PRC; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, PRC; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC.
| |
Collapse
|
159
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
160
|
Gates LA, Shi J, Rohira AD, Feng Q, Zhu B, Bedford MT, Sagum CA, Jung SY, Qin J, Tsai MJ, Tsai SY, Li W, Foulds CE, O'Malley BW. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J Biol Chem 2017; 292:14456-14472. [PMID: 28717009 DOI: 10.1074/jbc.m117.802074] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
The transition from transcription initiation to elongation is a key regulatory step in gene expression, which requires RNA polymerase II (pol II) to escape promoter proximal pausing on chromatin. Although elongation factors promote pause release leading to transcription elongation, the role of epigenetic modifications during this critical transition step is poorly understood. Two histone marks on histone H3, lysine 4 trimethylation (H3K4me3) and lysine 9 acetylation (H3K9ac), co-localize on active gene promoters and are associated with active transcription. H3K4me3 can promote transcription initiation, yet the functional role of H3K9ac is much less understood. We hypothesized that H3K9ac may function downstream of transcription initiation by recruiting proteins important for the next step of transcription. Here, we describe a functional role for H3K9ac in promoting pol II pause release by directly recruiting the super elongation complex (SEC) to chromatin. H3K9ac serves as a substrate for direct binding of the SEC, as does acetylation of histone H4 lysine 5 to a lesser extent. Furthermore, lysine 9 on histone H3 is necessary for maximal pol II pause release through SEC action, and loss of H3K9ac increases the pol II pausing index on a subset of genes in HeLa cells. At select gene promoters, H3K9ac loss or SEC depletion reduces gene expression and increases paused pol II occupancy. We therefore propose that an ordered histone code can promote progression through the transcription cycle, providing new mechanistic insight indicating that SEC recruitment to certain acetylated histones on a subset of genes stimulates the subsequent release of paused pol II needed for transcription elongation.
Collapse
Affiliation(s)
- Leah A Gates
- From the Departments of Molecular and Cellular Biology and
| | - Jiejun Shi
- Division of Biostatistics, Dan L. Duncan Cancer Center
| | - Aarti D Rohira
- From the Departments of Molecular and Cellular Biology and
| | - Qin Feng
- From the Departments of Molecular and Cellular Biology and
| | - Bokai Zhu
- From the Departments of Molecular and Cellular Biology and
| | - Mark T Bedford
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Cari A Sagum
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | | | - Jun Qin
- From the Departments of Molecular and Cellular Biology and.,Biochemistry and Molecular Biology
| | - Ming-Jer Tsai
- From the Departments of Molecular and Cellular Biology and
| | - Sophia Y Tsai
- From the Departments of Molecular and Cellular Biology and
| | - Wei Li
- From the Departments of Molecular and Cellular Biology and.,Division of Biostatistics, Dan L. Duncan Cancer Center
| | - Charles E Foulds
- From the Departments of Molecular and Cellular Biology and .,Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030, and
| | | |
Collapse
|
161
|
Liu K, Shen D, Shen J, Gao SM, Li B, Wong C, Feng W, Song Y. The Super Elongation Complex Drives Neural Stem Cell Fate Commitment. Dev Cell 2017; 40:537-551.e6. [PMID: 28350987 DOI: 10.1016/j.devcel.2017.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
Abstract
Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.
Collapse
Affiliation(s)
- Kun Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Dan Shen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingwen Shen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shihong M Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weidong Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
162
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
163
|
Alfonso-Dunn R, Turner AMW, Jean Beltran PM, Arbuckle JH, Budayeva HG, Cristea IM, Kristie TM. Transcriptional Elongation of HSV Immediate Early Genes by the Super Elongation Complex Drives Lytic Infection and Reactivation from Latency. Cell Host Microbe 2017; 21:507-517.e5. [PMID: 28407486 DOI: 10.1016/j.chom.2017.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
Abstract
The cellular transcriptional coactivator HCF-1 is required for initiation of herpes simplex virus (HSV) lytic infection and for reactivation from latency in sensory neurons. HCF-1 stabilizes the viral Immediate Early (IE) gene enhancer complex and mediates chromatin transitions to promote IE transcription initiation. In infected cells, HCF-1 was also found to be associated with a network of transcription elongation components including the super elongation complex (SEC). IE genes exhibit characteristics of genes controlled by transcriptional elongation, and the SEC-P-TEFb complex is specifically required to drive the levels of productive IE mRNAs. Significantly, compounds that enhance the levels of SEC-P-TEFb also potently stimulated HSV reactivation from latency both in a sensory ganglia model system and in vivo. Thus, transcriptional elongation of HSV IE genes is a key limiting parameter governing both the initiation of HSV infection and reactivation of latent genomes.
Collapse
Affiliation(s)
- Roberto Alfonso-Dunn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Anne-Marie W Turner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | | | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Hanna G Budayeva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
164
|
Okuda H, Stanojevic B, Kanai A, Kawamura T, Takahashi S, Matsui H, Takaori-Kondo A, Yokoyama A. Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia. J Clin Invest 2017; 127:1918-1931. [PMID: 28394257 DOI: 10.1172/jci91406] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/16/2017] [Indexed: 11/17/2022] Open
Abstract
The eleven-nineteen leukemia (ENL) protein family, composed of ENL and AF9, is a common component of 3 transcriptional modulators: AF4-ENL-P-TEFb complex (AEP), DOT1L-AF10-ENL complex (referred to as the DOT1L complex) and polycomb-repressive complex 1 (PRC1). Each complex associates with chromatin via distinct mechanisms, conferring different transcriptional properties including activation, maintenance, and repression. The mixed-lineage leukemia (MLL) gene often fuses with ENL and AF10 family genes in leukemia. However, the functional interrelationship among those 3 complexes in leukemic transformation remains largely elusive. Here, we have shown that MLL-ENL and MLL-AF10 constitutively activate transcription by aberrantly inducing both AEP-dependent transcriptional activation and DOT1L-dependent transcriptional maintenance, mostly in the absence of PRC1, to fully transform hematopoietic progenitors. These results reveal a cooperative transcriptional activation mechanism of AEP and DOT1L and suggest a molecular rationale for the simultaneous inhibition of the MLL fusion-AF4 complex and DOT1L for more effective treatment of MLL-rearranged leukemia.
Collapse
|
165
|
Meyer NO, O'Donoghue AJ, Schulze-Gahmen U, Ravalin M, Moss SM, Winter MB, Knudsen GM, Craik CS. Multiplex Substrate Profiling by Mass Spectrometry for Kinases as a Method for Revealing Quantitative Substrate Motifs. Anal Chem 2017; 89:4550-4558. [PMID: 28322550 DOI: 10.1021/acs.analchem.6b05002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The more than 500 protein kinases comprising the human kinome catalyze hundreds of thousands of phosphorylation events to regulate a diversity of cellular functions; however, the extended substrate specificity is still unknown for many of these kinases. We report here a method for quantitatively describing kinase substrate specificity using an unbiased peptide library-based approach with direct measurement of phosphorylation by tandem liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide sequencing (multiplex substrate profiling by mass spectrometry, MSP-MS). This method can be deployed with as low as 10 nM enzyme to determine activity against S/T/Y-containing peptides; additionally, label-free quantitation is used to ascertain catalytic efficiency values for individual peptide substrates in the multiplex assay. Using this approach we developed quantitative motifs for a selection of kinases from each branch of the kinome, with and without known substrates, highlighting the applicability of the method. The sensitivity of this approach is evidenced by its ability to detect phosphorylation events from nanogram quantities of immunoprecipitated material, which allows for wider applicability of this method. To increase the information content of the quantitative kinase motifs, a sublibrary approach was used to expand the testable sequence space within a peptide library of approximately 100 members for CDK1, CDK7, and CDK9. Kinetic analysis of the HIV-1 Tat (transactivator of transcription)-positive transcription elongation factor b (P-TEFb) interaction allowed for localization of the P-TEFb phosphorylation site as well as characterization of the stimulatory effect of Tat on P-TEFb catalytic efficiency.
Collapse
Affiliation(s)
- Nicole O Meyer
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Anthony J O'Donoghue
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Ursula Schulze-Gahmen
- Department of Molecular and Cell Biology, University of California Berkeley , Berkeley, California 94720, United States
| | - Matthew Ravalin
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Steven M Moss
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
166
|
Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency. Viruses 2017; 9:v9040067. [PMID: 28368303 PMCID: PMC5408673 DOI: 10.3390/v9040067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a virus-encoded trans-activator that plays a central role in viral transcription. We used our recently developed parallel analysis of in vitro translated open reading frames (ORFs) (PLATO) approach to identify host proteins that associate with HIV-1 Tat. From this proteomic assay, we identify 89 Tat-associated proteins (TAPs). We combine our results with other datasets of Tat or long terminal repeat (LTR)-associated proteins. For some of these proteins (NAT10, TINP1, XRCC5, SIN3A), we confirm their strong association with Tat. These TAPs also suppress Tat-mediated HIV-1 transcription. Removing suppression of HIV-1 transcription benefits the reversal of post-integrated, latent HIV-1 proviruses. We demonstrate that these transcriptionally suppressing TAPs contribute to HIV-1 latency in Jurkat latency (J-LAT) cells. Therefore, our proteomic analysis highlights the previously unappreciated TAPs that play a role in maintaining HIV-1 latency and can be further studied as potential pharmacological targets for the “shock and kill” HIV-1 cure strategy.
Collapse
|
167
|
Meeks JJ, Shilatifard A. Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
168
|
Egloff S, Vitali P, Tellier M, Raffel R, Murphy S, Kiss T. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression. EMBO J 2017; 36:934-948. [PMID: 28254838 DOI: 10.15252/embj.201695740] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.
Collapse
Affiliation(s)
- Sylvain Egloff
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France
| | - Patrice Vitali
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Raoul Raffel
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France .,Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
169
|
Kuzmina A, Krasnopolsky S, Taube R. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb. Transcription 2017; 8:133-149. [PMID: 28340332 DOI: 10.1080/21541264.2017.1295831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb.
Collapse
Affiliation(s)
- Alona Kuzmina
- a The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences , Ben-Gurion University of the Negev , Israel
| | - Simona Krasnopolsky
- a The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences , Ben-Gurion University of the Negev , Israel
| | - Ran Taube
- a The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences , Ben-Gurion University of the Negev , Israel
| |
Collapse
|
170
|
Asamitsu K, Hirokawa T, Okamoto T. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding. PLoS One 2017; 12:e0171727. [PMID: 28178316 PMCID: PMC5298246 DOI: 10.1371/journal.pone.0171727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.
Collapse
Grants
- Ministry of Education, Culture, Sports, Science, and Technology "The Platform Project for Supporting Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science)"
- Ministry of Education, Culture, Sports, Science, and Technology
- Asahi Grass Foundation
- Japan Agency for Medical Research and Development
- Junwakai Foundation
Collapse
Affiliation(s)
- Kaori Asamitsu
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TH); (TO)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- * E-mail: (TH); (TO)
| |
Collapse
|
171
|
Qiu X, Pascal LE, Song Q, Zang Y, Ai J, O'Malley KJ, Nelson JB, Wang Z. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia 2017; 19:207-215. [PMID: 28167296 PMCID: PMC5293724 DOI: 10.1016/j.neo.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 12/24/2022] Open
Abstract
Elongation factor, RNA polymerase II, 2 (ELL2) is expressed and regulated by androgens in the prostate. ELL2 and ELL-associated factor 2 (EAF2) form a stable complex, and their orthologs in Caenorhabditis elegans appear to be functionally similar. In C. elegans, the EAF2 ortholog eaf-1 was reported to interact with the retinoblastoma (RB) pathway to control development and fertility in worms. Because RB loss is frequent in prostate cancer, ELL2 interaction with RB might be important for prostate homeostasis. The present study explored physical and functional interaction of ELL2 with RB in prostate cancer. ELL2 expression in human prostate cancer specimens was detected using quantitative polymerase chain reaction coupled with laser capture microdissection. Co-immunoprecipitation coupled with deletion mutagenesis was used to determine ELL2 association with RB. Functional interaction between ELL2 and RB was tested using siRNA knockdown, BrdU incorporation, Transwell, and/or invasion assays in LNCaP, C4-2, and 22Rv1 prostate cancer cells. ELL2 expression was downregulated in high-Gleason score prostate cancer specimens. ELL2 could be bound and stabilized by RB, and this interaction was mediated through the N-terminus of ELL2 and the C-terminus of RB. Concurrent siRNA knockdown of ELL2 and RB enhanced cell proliferation, migration, and invasion as compared to knockdown of ELL2 or RB alone in prostate cancer cells. ELL2 and RB can interact physically and functionally to suppress prostate cancer progression.
Collapse
Affiliation(s)
- Xiaonan Qiu
- Tsinghua MD Program, School of Medicine, Tsinghua University, Beijing, China; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Yachen Zang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Urology, The Second Affiliate Hospital of Soochow University, Suzhou, China.
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Katherine J O'Malley
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
172
|
Structural basis for ELL2 and AFF4 activation of HIV-1 proviral transcription. Nat Commun 2017; 8:14076. [PMID: 28134250 PMCID: PMC5290273 DOI: 10.1038/ncomms14076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 02/05/2023] Open
Abstract
The intrinsically disordered scaffold proteins AFF1/4 and the transcription elongation factors ELL1/2 are core components of the super elongation complex required for HIV-1 proviral transcription. Here we report the 2.0-Å resolution crystal structure of the human ELL2 C-terminal domain bound to its 50-residue binding site on AFF4, the ELLBow. The ELL2 domain has the same arch-shaped fold as the tight junction protein occludin. The ELLBow consists of an N-terminal helix followed by an extended hairpin that we refer to as the elbow joint, and occupies most of the concave surface of ELL2. This surface is important for the ability of ELL2 to promote HIV-1 Tat-mediated proviral transcription. The AFF4–ELL2 interface is imperfectly packed, leaving a cavity suggestive of a potential binding site for transcription-promoting small molecules. The host super elongation complex (SEC) is hijacked by HIV-1 for viral transcription. Here the authors present the structure of RNA polymerase elongation factor ELL2 bound to the intrinsically disordered scaffold protein AFF4, identifying an ELL2 surface important for HIV-1 transcription.
Collapse
|
173
|
Yokoyama A. Transcriptional activation by MLL fusion proteins in leukemogenesis. Exp Hematol 2016; 46:21-30. [PMID: 27865805 DOI: 10.1016/j.exphem.2016.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/16/2022]
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause aggressive leukemia. Fusion proteins of MLL and a component of the AF4 family/ENL family/P-TEFb complex (AEP) are responsible for two-thirds of MLL-associated leukemia cases. MLL-AEP fusion proteins trigger aberrant self-renewal of hematopoietic progenitors by constitutively activating self-renewal-related genes. MLL-AEP fusion proteins activate transcription initiation by loading the TATA-binding protein (TBP) to the TATA element via selectivity factor 1. Although AEP retains transcription elongation and mediator recruiting activities, the rate-limiting step activated by MLL-AEP fusion proteins appears to be the TBP-loading step. This is contrary to prevailing views, in which the recruitment of transcription elongation activities are emphasized. Here, I review recent advances towards elucidating the mechanisms underlying gene activation by MLL-AEP fusion proteins in leukemogenesis.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
174
|
Abstract
INTRODUCTION A number of cyclin-dependent kinases (CDKs) mediate key steps in the HIV-1 replication cycle and therefore have potential to serve as therapeutic targets for HIV-1 infection, especially in HIV-1 cure strategies. Current HIV-1 cure strategies involve the development of small molecules that are able to activate HIV-1 from latent infection, thereby allowing the immune system to recognize and clear infected cells. Areas covered: The role of seven CDK family members in the HIV-1 replication cycle is reviewed, with a focus on CDK9, as the mechanism whereby the viral Tat protein utilizes CDK9 to enhance viral replication is known in considerable detail. Expert opinion: Given the essential roles of CDKs in cellular proliferation and gene expression, small molecules that inhibit CDKs are unlikely to be feasible therapeutics for HIV-1 infection. However, small molecules that activate CDK9 and other select CDKs such as CDK11 have potential to reactivate latent HIV-1 and contribute to a functional cure of infection.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX USA
| |
Collapse
|
175
|
Schulze-Gahmen U, Echeverria I, Stjepanovic G, Bai Y, Lu H, Schneidman-Duhovny D, Doudna JA, Zhou Q, Sali A, Hurley JH. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex. eLife 2016; 5. [PMID: 27731797 PMCID: PMC5072841 DOI: 10.7554/elife.15910] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/07/2016] [Indexed: 01/04/2023] Open
Abstract
HIV-1 Tat hijacks the human superelongation complex (SEC) to promote proviral transcription. Here we report the 5.9 Å structure of HIV-1 TAR in complex with HIV-1 Tat and human AFF4, CDK9, and CycT1. The TAR central loop contacts the CycT1 Tat-TAR recognition motif (TRM) and the second Tat Zn2+-binding loop. Hydrogen-deuterium exchange (HDX) shows that AFF4 helix 2 is stabilized in the TAR complex despite not touching the RNA, explaining how it enhances TAR binding to the SEC 50-fold. RNA SHAPE and SAXS data were used to help model the extended (Tat Arginine-Rich Motif) ARM, which enters the TAR major groove between the bulge and the central loop. The structure and functional assays collectively support an integrative structure and a bipartite binding model, wherein the TAR central loop engages the CycT1 TRM and compact core of Tat, while the TAR major groove interacts with the extended Tat ARM. DOI:http://dx.doi.org/10.7554/eLife.15910.001
Collapse
Affiliation(s)
- Ursula Schulze-Gahmen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,California Institute of Quantitative Biosciences, University of California San, Francisco, San Francisco, United States
| | - Goran Stjepanovic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Huasong Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,California Institute of Quantitative Biosciences, University of California San, Francisco, San Francisco, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,California Institute of Quantitative Biosciences, University of California San, Francisco, San Francisco, United States
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
176
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
177
|
Mück F, Bracharz S, Marschalek R. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex. AMERICAN JOURNAL OF BLOOD RESEARCH 2016; 6:28-45. [PMID: 27679741 PMCID: PMC5030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of "super elongation complexes" (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs.
Collapse
Affiliation(s)
- Fabian Mück
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Silvia Bracharz
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
178
|
Okuda H, Takahashi S, Takaori-Kondo A, Yokoyama A. TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription. Cell Cycle 2016; 15:2712-22. [PMID: 27564129 DOI: 10.1080/15384101.2016.1222337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Gene rearrangement of the mixed lineage leukemia (MLL) gene causes leukemia by inducing the constitutive expression of a gene subset normally expressed only in the immature haematopoietic progenitor cells. MLL gene rearrangements often generate fusion products of MLL and a component of the AF4 family/ENL family/P-TEFb (AEP) complex. MLL-AEP fusion proteins have the potential of constitutively recruiting the P-TEFb elongation complex. Thus, it is hypothesized that relieving the promoter proximal pausing of RNA polymerase II is the rate-limiting step of MLL fusion-dependent transcription. AEP also has the potential to recruit the mediator complex via MED26. We recently showed that AEP activates transcription initiation by facilitating TBP loading to the TATA element through the SL1 complex. In the present study, we show that the key activity responsible for the oncogenic property of MLL-AEP fusion proteins is the TBP loading activity, and not the mediator recruitment or transcriptional elongation activities. Thus, we propose that TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription.
Collapse
Affiliation(s)
- Hiroshi Okuda
- a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Satoshi Takahashi
- b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| | - Akifumi Takaori-Kondo
- b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| | - Akihiko Yokoyama
- a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan.,b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| |
Collapse
|
179
|
Zhao Y, Karijolich J, Glaunsinger B, Zhou Q. Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcription and escape from latency. EMBO Rep 2016; 17:1441-1451. [PMID: 27558685 DOI: 10.15252/embr.201642682] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022] Open
Abstract
The 7SK snRNA sequesters P-TEFb, a general transcription elongation factor and human co-factor for HIV-1 Tat protein, into the catalytically inactive 7SK snRNP Little is known about how 7SK RNA is regulated to perform this function. Here, we show that most of 7SK is pseudouridylated at position U250 by the predominant cellular pseudouridine synthase machinery, the DKC1-box H/ACA RNP Pseudouridylation is critical to stabilize 7SK snRNP, as its abolishment by either mutation at or around U250 or depletion of DKC1, the catalytic component of the box H/ACA RNP, disrupts 7SK snRNP and releases P-TEFb to form the super elongation complex (SEC) and the Brd4-P-TEFb complex. The SEC is then recruited by Tat to the HIV-1 promoter to stimulate viral transcription and escape from latency. Thus, although 7SK RNA levels remain mostly unchanged, its function is modulated by pseudouridylation, which in turn controls transcription of both HIV-1 and cellular genes.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Britt Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
180
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
181
|
Abstract
Extracellular vesicles (EVs) released by various cells are small phospholipid membrane-enclosed entities that can carry miRNA. They are now central to research in many fields of biology because they seem to constitute a new system of cell-cell communication. Physical and chemical characteristics of many EVs, as well as their biogenesis pathways, resemble those of retroviruses. Moreover, EVs generated by virus-infected cells can incorporate viral proteins and fragments of viral RNA, being thus indistinguishable from defective (noninfectious) retroviruses. EVs, depending on the proteins and genetic material incorporated in them, play a significant role in viral infection, both facilitating and suppressing it. Deciphering the mechanisms of EV-cell interactions may facilitate the design of EVs that inhibit viral infection and can be used as vehicles for targeted drug delivery.
Collapse
|
182
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. Bioessays 2016; 38 Suppl 1:S75-85. [DOI: 10.1002/bies.201670912] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/31/2023]
Affiliation(s)
| | - Nur F. Isa
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
- Department of Biotechnology; Kulliyyah of Science, IIUM; Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
| |
Collapse
|
183
|
C Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016; 44:7527-39. [PMID: 27369380 PMCID: PMC5027500 DOI: 10.1093/nar/gkw585] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Release of RNA polymerase II (Pol II) from promoter-proximal pausing has emerged as a critical step regulating gene expression in multicellular organisms. The transition of Pol II into productive elongation requires the kinase activity of positive transcription elongation factor b (P-TEFb), which is itself under a stringent control by the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Here, we provide an overview on stimulating Pol II pause release by P-TEFb and on sequestering P-TEFb into 7SK snRNP. Furthermore, we highlight mechanisms that govern anchoring of 7SK snRNP to chromatin as well as means that release P-TEFb from the inhibitory complex, and propose a unifying model of P-TEFb activation on chromatin. Collectively, these studies shine a spotlight on the central role of RNA binding proteins (RBPs) in directing the inhibition and activation of P-TEFb, providing a compelling paradigm for controlling Pol II transcription with a non-coding RNA.
Collapse
Affiliation(s)
- Alexandre J C Quaresma
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Matjaz Barboric
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
184
|
Lu X, Zhu X, Li Y, Liu M, Yu B, Wang Y, Rao M, Yang H, Zhou K, Wang Y, Chen Y, Chen M, Zhuang S, Chen LF, Liu R, Chen R. Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II. Nucleic Acids Res 2016; 44:6853-67. [PMID: 27353326 PMCID: PMC5001612 DOI: 10.1093/nar/gkw571] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
The association of DSIF and NELF with initiated RNA Polymerase II (Pol II) is the general mechanism for inducing promoter-proximal pausing of Pol II. However, it remains largely unclear how the paused Pol II is released in response to stimulation. Here, we show that the release of the paused Pol II is cooperatively regulated by multiple P-TEFbs which are recruited by bromodomain-containing protein Brd4 and super elongation complex (SEC) via different recruitment mechanisms. Upon stimulation, Brd4 recruits P-TEFb to Spt5/DSIF via a recruitment pathway consisting of Med1, Med23 and Tat-SF1, whereas SEC recruits P-TEFb to NELF-A and NELF-E via Paf1c and Med26, respectively. P-TEFb-mediated phosphorylation of Spt5, NELF-A and NELF-E results in the dissociation of NELF from Pol II, thereby transiting transcription from pausing to elongation. Additionally, we demonstrate that P-TEFb-mediated Ser2 phosphorylation of Pol II is dispensable for pause release. Therefore, our studies reveal a co-regulatory mechanism of Brd4 and SEC in modulating the transcriptional pause release by recruiting multiple P-TEFbs via a Mediator- and Paf1c-coordinated recruitment network.
Collapse
Affiliation(s)
- Xiaodong Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinxing Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Bin Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Muhua Rao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Haiyang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Kai Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanheng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Meihua Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Songkuan Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Runzhong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
185
|
Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, Daouad F, Marban C, Rohr O, Schwartz C. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets 2016; 20:1311-1324. [PMID: 27266557 DOI: 10.1080/14728222.2016.1198777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.
Collapse
Affiliation(s)
- Valentin Le Douce
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,c UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science , University College Dublin , Dublin 4 , Ireland
| | - Amina Ait-Amar
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faezeh Forouzan Far
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Jose Quiel
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Fadoua Daouad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Céline Marban
- d Faculté de Chirurgie Dentaire , Inserm UMR 1121 , Strasbourg , France
| | - Olivier Rohr
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,e Institut Universitaire de France , Paris , France
| | - Christian Schwartz
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France
| |
Collapse
|
186
|
Anwar D, Takahashi H, Watanabe M, Suzuki M, Fukuda S, Hatakeyama S. p53 represses the transcription of snRNA genes by preventing the formation of little elongation complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:975-82. [PMID: 27268141 DOI: 10.1016/j.bbagrm.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/12/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
Abstract
The regulation of transcription by RNA polymerase II (Pol II) is important for a variety of cellular functions. ELL/EAF-containing little elongation complex (LEC) was found to be required for transcription of Pol II-dependent small nuclear RNA (snRNA) genes. It was shown that the tumor suppressor p53 interacts with ELL and inhibits transcription elongation activity of ELL. Here, we show that p53 inhibits interaction between ELL/EAF and ICE1 in LEC and thereby p53 represses transcription of Pol II-dependent snRNA genes through inhibiting LEC function. Furthermore, induction of p53 expression by ultraviolet (UV) irradiation decreases the occupancy of ICE1 at Pol II-dependent snRNA genes. Consistent with the results, knockdown of p53 increased both the expression of snRNA genes and the occupancy of Pol II and components of LEC at snRNA genes. Our results indicate that p53 interferes with the interaction between ELL/EAF and ICE1 and represses transcription of snRNA genes by Pol II.
Collapse
Affiliation(s)
- Delnur Anwar
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; Department of Otolaryngology, Head & Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masanobu Suzuki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; Department of Otolaryngology, Head & Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Fukuda
- Department of Otolaryngology, Head & Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
187
|
Asamitsu K, Omagari K, Okuda T, Hibi Y, Okamoto T. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis. Genes Cells 2016; 21:706-16. [PMID: 27193293 DOI: 10.1111/gtc.12375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/17/2016] [Indexed: 01/16/2023]
Abstract
The virus-encoded Tat protein is essential for HIV transcription in infected cells. The interaction of Tat with the cellular transcription elongation factor P-TEFb (positive transcriptional elongation factor b) containing cyclin T1 (CycT1) and cyclin-dependent kinase 9 (CDK9) is critical for its activity. In this study, we use the Fluoppi (fluorescent-based technology detecting protein-protein interaction) system, which enables the quantification of interactions between biomolecules, such as proteins, in live cells. Quantitative measurement of the molecular interactions among Tat, CycT1 and CDK9 has showed that any third molecule enhances the binding between the other two molecules. These findings suggest that each component of the Tat:P-TEFb complex stabilizes the overall complex, thereby supporting the efficient transcriptional elongation during viral RNA synthesis. These interactions may serve as appropriate targets for novel anti-HIV therapy.
Collapse
Affiliation(s)
- Kaori Asamitsu
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Katsumi Omagari
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Tomoya Okuda
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
188
|
McNamara RP, Bacon CW, D'Orso I. Transcription elongation control by the 7SK snRNP complex: Releasing the pause. Cell Cycle 2016; 15:2115-2123. [PMID: 27152730 DOI: 10.1080/15384101.2016.1181241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability for the eukaryotic cell to transcriptionally respond to various stimuli is critical for the overall homeostasis of the cell, and in turn, the organism. The human RNA polymerase II complex (Pol II), which is responsible for the transcription of protein-encoding genes and non-coding RNAs, is paused at promoter-proximal regions to ensure their rapid activation. In response to stimulation, Pol II pause release is facilitated by the action of positive transcription elongation factors such as the P-TEFb kinase. However, the majority of P-TEFb is held in a catalytically inactivate state, assembled into the 7SK small nuclear ribonucleoprotein (snRNP) complex, and must be dislodged to become catalytically active. In this review, we discuss mechanisms of 7SK snRNP recruitment to promoter-proximal regions and P-TEFb disassembly from the inhibitory snRNP to regulate 'on site' kinase activation and Pol II pause release.
Collapse
Affiliation(s)
- Ryan P McNamara
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Curtis W Bacon
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Iván D'Orso
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
189
|
The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6:24100. [PMID: 27067814 PMCID: PMC4828723 DOI: 10.1038/srep24100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Collapse
|
190
|
Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, Zhang D, Wang J, Liu X, Ouyang G, Zhou J, Xiao W. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun 2016; 7:11057. [PMID: 27009366 PMCID: PMC4820845 DOI: 10.1038/ncomms11057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence supports that ELL (eleven-nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor.
Collapse
Affiliation(s)
- Yu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Chi Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Ji
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Zhichao Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Bo Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Dawei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Xing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jiangang Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wuhan Xiao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| |
Collapse
|
191
|
Saito Y, Nakagawa T, Kakihana A, Nakamura Y, Nabika T, Kasai M, Takamori M, Yamagishi N, Kuga T, Hatayama T, Nakayama Y. Yeast Two-Hybrid and One-Hybrid Screenings Identify Regulators ofhsp70Gene Expression. J Cell Biochem 2016; 117:2109-17. [DOI: 10.1002/jcb.25517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Youhei Saito
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takanobu Nakagawa
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Ayana Kakihana
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Yoshia Nakamura
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Tomomi Nabika
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Michihiro Kasai
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Mai Takamori
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Nobuyuki Yamagishi
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takumi Hatayama
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| |
Collapse
|
192
|
Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV. Future Med Chem 2016; 8:421-42. [PMID: 26933891 DOI: 10.4155/fmc.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The current anti-HIV combination therapy does not eradicate the virus that persists mainly in quiescent infected CD4(+) T cells as a latent integrated provirus that resumes after therapy interruption. The Tat-mediated transactivation (TMT) is a critical step in the HIV replication cycle that could give the opportunity to reduce the size of latent reservoirs. More than two decades of research led to the identification of various TMT inhibitors. While none of them met the criteria to reach the market, the search for a suitable TMT inhibitor is still actively pursued. Really promising compounds, including one in a Phase III clinical trial, have been recently identified, thus warranting an update.
Collapse
|
193
|
Jamaluddin MS, Hu PW, Jan Y, Siwak EB, Rice AP. Short Communication: The Broad-Spectrum Histone Deacetylase Inhibitors Vorinostat and Panobinostat Activate Latent HIV in CD4(+) T Cells In Part Through Phosphorylation of the T-Loop of the CDK9 Subunit of P-TEFb. AIDS Res Hum Retroviruses 2016; 32:169-73. [PMID: 26727990 DOI: 10.1089/aid.2015.0347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cessation of highly active antiretroviral therapy (HAART) in HIV-infected individual leads to a rebound of viral replication due to reactivation of a viral reservoir composed largely of latently infected memory CD4(+) T cells. Efforts to deplete this reservoir have focused on reactivation of transcriptionally silent latent proviruses. HIV provirus transcription depends critically on the positive transcription elongation factor b (P-TEFb), whose core components are cyclin-dependent kinase 9 (CDK9) and cyclin T1. In resting CD4(+) cells, the functional levels of P-TEFb are extremely low. Cellular activation upregulates cyclin T1 protein levels and CDK9 T-loop (T186) phosphorylation. The broad-spectrum histone deacetylase inhibitors (HDACis) vorinostat and panobinostat have been shown to reactivate latent virus in vivo in HAART-treated individuals. In this study, we have found that vorinostat and panobinostat activate P-TEFb in resting primary CD4(+) T cells through induction of CDK9 T-loop phosphorylation. In contrast, tacedinaline and romidepsin, HDAC 1 and 2 inhibitors, were unable to activate CDK9 T-loop phosphorylation. We used a CCL19 primary CD4(+) T-cell model HIV latency to assess the correlation between induction of CDK9 T-loop phosphorylation and reactivation of latent HIV virus by HDACis. Vorinostat and panobinostat treatment of cells harboring latent HIV increased CDK9 T-loop phosphorylation and reactivation of latent virus, whereas tacedinaline and romidepsin failed to induce T-loop phosphorylation or reactivate latent virus. We conclude that the ability of vorinostat and panobinostat to induce latent HIV is, in part, likely due to the ability of the broad-spectrum HDACis to upregulate P-TEFb through increased CDK9 T-loop phosphorylation.
Collapse
Affiliation(s)
- Md Saha Jamaluddin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Pei-Wen Hu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Yih Jan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Edward B. Siwak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Andrew P. Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
194
|
Musinova YR, Sheval EV, Dib C, Germini D, Vassetzky YS. Functional roles of HIV-1 Tat protein in the nucleus. Cell Mol Life Sci 2016; 73:589-601. [PMID: 26507246 PMCID: PMC11108392 DOI: 10.1007/s00018-015-2077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.
Collapse
Affiliation(s)
- Yana R Musinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Carla Dib
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Diego Germini
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
195
|
A Minor Subset of Super Elongation Complexes Plays a Predominant Role in Reversing HIV-1 Latency. Mol Cell Biol 2016; 36:1194-205. [PMID: 26830226 DOI: 10.1128/mcb.00994-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/21/2016] [Indexed: 11/20/2022] Open
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a key rate-limiting step in HIV-1 transcription and latency reversal. The viral Tat protein recruits human super elongation complexes (SECs) to paused Pol II to overcome this restriction. Despite the recent progress in understanding the functions of different subsets of SECs in controlling cellular and Tat-activated HIV transcription, little is known about the SEC subtypes that help reverse viral latency in CD4(+) T cells. Here, we used the CRISPR-Cas9 genome-editing tool to knock out the gene encoding the SEC subunit ELL2, AFF1, or AFF4 in Jurkat/2D10 cells, a well-characterized HIV-1 latency model. Depletion of these proteins drastically reduced spontaneous and drug-induced latency reversal by suppressing HIV-1 transcriptional elongation. Surprisingly, a low-abundance subset of SECs containing ELL2 and AFF1 was found to play a predominant role in cooperating with Tat to reverse latency. By increasing the cellular level/activity of these Tat-friendly SECs, we could potently activate latent HIV-1 without using any drugs. These results implicate the ELL2/AFF1-SECs as an important target in the future design of a combinatorial therapeutic approach to purge latent HIV-1.
Collapse
|
196
|
Murphy TM, Wong CCY, Arseneault L, Burrage J, Macdonald R, Hannon E, Fisher HL, Ambler A, Moffitt TE, Caspi A, Mill J. Methylomic markers of persistent childhood asthma: a longitudinal study of asthma-discordant monozygotic twins. Clin Epigenetics 2015; 7:130. [PMID: 26691723 PMCID: PMC4684622 DOI: 10.1186/s13148-015-0163-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/11/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Asthma is the most common chronic inflammatory disorder in children. The aetiology of asthma pathology is complex and highly heterogeneous, involving the interplay between genetic and environmental risk factors that is hypothesized to involve epigenetic processes. Our aim was to explore whether methylomic variation in early childhood is associated with discordance for asthma symptoms within monozygotic (MZ) twin pairs recruited from the Environmental Risk (E-Risk) longitudinal twin study. We also aimed to identify differences in DNA methylation that are associated with asthma that develops in childhood and persists into early adulthood as these may represent useful prognostic biomarkers. RESULTS We examined genome-wide patterns of DNA methylation in buccal cell samples collected from 37 MZ twin pairs discordant for asthma at age 10. DNA methylation at individual CpG sites demonstrated significant variability within discordant MZ twin pairs with the top-ranked nominally significant differentially methylated position (DMP) located in the HGSNAT gene. We stratified our analysis by assessing DNA methylation differences in a sub-group of MZ twin pairs who remained persistently discordant for asthma at age 18. The top-ranked nominally significant DMP associated with persisting asthma is located in the vicinity of the HLX gene, which has been previously implicated in childhood asthma. CONCLUSIONS We identified DNA methylation differences associated with childhood asthma in peripheral DNA samples from discordant MZ twin pairs. Our data suggest that differences in DNA methylation associated with childhood asthma which persists into early adulthood are distinct from those associated with asthma which remits.
Collapse
Affiliation(s)
- Therese M Murphy
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Chloe C Y Wong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Louise Arseneault
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Helen L Fisher
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Antony Ambler
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Terrie E Moffitt
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK ; Department of Psychology and Neuroscience, Duke University, Durham, NC USA ; Department of Psychiatry and Behavioral Sciences, Duke University Medical School, Durham, NC USA
| | - Avshalom Caspi
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK ; Department of Psychology and Neuroscience, Duke University, Durham, NC USA ; Department of Psychiatry and Behavioral Sciences, Duke University Medical School, Durham, NC USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK ; MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
197
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. ACTA ACUST UNITED AC 2015; 1:106-116. [PMID: 27398404 PMCID: PMC4863834 DOI: 10.1002/icl3.1037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/30/2023]
Abstract
Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents.
Collapse
Affiliation(s)
| | - Nur F Isa
- Sir William Dunn School of Pathology University of Oxford Oxford UK; Department of Biotechnology Kulliyyah of Science, IIUM Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology University of Oxford Oxford UK
| |
Collapse
|
198
|
Okuda H, Kanai A, Ito S, Matsui H, Yokoyama A. AF4 uses the SL1 components of RNAP1 machinery to initiate MLL fusion- and AEP-dependent transcription. Nat Commun 2015; 6:8869. [PMID: 26593443 PMCID: PMC4673504 DOI: 10.1038/ncomms9869] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/12/2015] [Indexed: 01/24/2023] Open
Abstract
Gene rearrangements generate MLL fusion genes, which can lead to aggressive leukemia. In most cases, MLL fuses with a gene encoding a component of the AEP (AF4 family/ENL family/P-TEFb) coactivator complex. MLL-AEP fusion proteins constitutively activate their target genes to immortalize haematopoietic progenitors. Here we show that AEP and MLL-AEP fusion proteins activate transcription through selectivity factor 1 (SL1), a core component of the pre-initiation complex (PIC) of RNA polymerase I (RNAP1). The pSER domain of AF4 family proteins associates with SL1 on chromatin and loads TATA-binding protein (TBP) onto the promoter to initiate RNA polymerase II (RNAP2)-dependent transcription. These results reveal a previously unknown transcription initiation mechanism involving AEP and a role for SL1 as a TBP-loading factor in RNAP2-dependent gene activation.
Collapse
Affiliation(s)
- Hiroshi Okuda
- Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Ito
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirotaka Matsui
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akihiko Yokoyama
- Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
199
|
Wang C, Yang S, Lu H, You H, Ni M, Shan W, Lin T, Gao X, Chen H, Zhou Q, Xue Y. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb's Release from 7SK snRNP. PLoS One 2015; 10:e0142739. [PMID: 26569506 PMCID: PMC4646521 DOI: 10.1371/journal.pone.0142739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023] Open
Abstract
The latent reservoirs of HIV represent a major impediment to eradication of HIV/AIDS. To overcome this problem, agents that can activate latent HIV proviruses have been actively sought after, as they can potentially be used in combination with the highly active antiretroviral therapy (HAART) to eliminate the latent reservoirs. Although several chemical compounds have been shown to activate latency, they are of limited use due to high toxicity and poor clinical outcomes. In an attempt to identify natural products as effective latency activators from traditional Chinese medicinal herbs that have long been widely used in human population, we have isolated procyanidin C-13,3',3"-tri-O-gallate (named as REJ-C1G3) from Polygonum cuspidatum Sieb. et Zucc., that can activate HIV in latently infected Jurkat T cells. REJ-C1G3 preferentially stimulates HIV transcription in a process that depends on the viral encoded Tat protein and acts synergistically with prostratin (an activator of the NF-κB pathway) or JQ1 (an inhibitor of Brd4) to activate HIV latency. Our mechanistic analyses further show that REJ-C1G3 accomplishes these tasks by inducing the release of P-TEFb, a host cofactor essential for Tat-activation of HIV transcription, from the cellular P-TEFb reservoir 7SK snRNP.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuiyuan Yang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Hongchao You
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Man Ni
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjun Shan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ting Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Haifeng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
200
|
Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol 2015; 22:261-74. [PMID: 26572787 DOI: 10.1007/s13365-015-0398-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
Collapse
Affiliation(s)
- Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA. .,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
| | - Jaime Weber
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| |
Collapse
|