151
|
Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C. PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 2023; 64:100352. [PMID: 36871792 PMCID: PMC10119612 DOI: 10.1016/j.jlr.2023.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jake Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
152
|
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22:870-905. [PMID: 36648057 PMCID: PMC10054233 DOI: 10.1080/15384101.2023.2165632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
153
|
Liu S, Sharma U. Sperm RNA Payload: Implications for Intergenerational Epigenetic Inheritance. Int J Mol Sci 2023; 24:5889. [PMID: 36982962 PMCID: PMC10052761 DOI: 10.3390/ijms24065889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is mounting evidence that ancestral life experiences and environment can influence phenotypes in descendants. The parental environment regulates offspring phenotypes potentially via modulating epigenetic marks in the gametes. Here, we review examples of across-generational inheritance of paternal environmental effects and the current understanding of the role of small RNAs in such inheritance. We discuss recent advances in revealing the small RNA payload of sperm and how environmental conditions modulate sperm small RNAs. Further, we discuss the potential mechanism of inheritance of paternal environmental effects by focusing on sperm small RNA-mediated regulation of early embryonic gene expression and its role in influencing offspring phenotypes.
Collapse
Affiliation(s)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
154
|
Ritter GS, Proskurina AS, Meschaninova MI, Potter EA, Petrova DD, Ruzanova VS, Dolgova EV, Kirikovich SS, Levites EV, Efremov YR, Nikolin VP, Popova NA, Venyaminova AG, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Impact of Double-Stranded RNA Internalization on Hematopoietic Progenitors and Krebs-2 Cells and Mechanism. Int J Mol Sci 2023; 24:ijms24054858. [PMID: 36902311 PMCID: PMC10003629 DOI: 10.3390/ijms24054858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.
Collapse
Affiliation(s)
- Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Potter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Daria D. Petrova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Aliya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-49-63 (ext. 3411)
| |
Collapse
|
155
|
Lee S, Hoyt S, Wu X, Garvie C, McGaunn J, Shekhar M, Tötzl M, Rees MG, Cherniack AD, Meyerson M, Greulich H. Velcrin-induced selective cleavage of tRNA Leu(TAA) by SLFN12 causes cancer cell death. Nat Chem Biol 2023; 19:301-310. [PMID: 36302897 DOI: 10.1038/s41589-022-01170-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022]
Abstract
Velcrin compounds kill cancer cells expressing high levels of phosphodiesterase 3A (PDE3A) and Schlafen family member 12 (SLFN12) by inducing complex formation between these two proteins, but the mechanism of cancer cell killing by the PDE3A-SLFN12 complex is not fully understood. Here, we report that the physiological substrate of SLFN12 RNase is tRNALeu(TAA). SLFN12 selectively digests tRNALeu(TAA), and velcrin treatment promotes the cleavage of tRNALeu(TAA) by inducing PDE3A-SLFN12 complex formation in vitro. We found that distinct sequences in the variable loop and acceptor stem of tRNALeu(TAA) are required for substrate digestion. Velcrin treatment of sensitive cells results in downregulation of tRNALeu(TAA), ribosome pausing at Leu-TTA codons and global inhibition of protein synthesis. Velcrin-induced cleavage of tRNALeu(TAA) by SLFN12 and the concomitant global inhibition of protein synthesis thus define a new mechanism of apoptosis initiation.
Collapse
Affiliation(s)
- Sooncheol Lee
- Cancer Program, Broad Institute, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Xiaoyun Wu
- Cancer Program, Broad Institute, Cambridge, MA, USA
- Astra-Zeneca, Waltham, MA, USA
| | - Colin Garvie
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | | | - Mrinal Shekhar
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Marcus Tötzl
- Cancer Program, Broad Institute, Cambridge, MA, USA
- Children's Cancer Research Institute, Vienna, Austria
| | | | - Andrew D Cherniack
- Cancer Program, Broad Institute, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Heidi Greulich
- Cancer Program, Broad Institute, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
156
|
Guo J, Peng Y. A tRF oligomerizes Nucleolin to stabilize metastasis-favoring transcripts. SCIENCE CHINA. LIFE SCIENCES 2023; 66:646-648. [PMID: 36422759 DOI: 10.1007/s11427-022-2234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
157
|
Mohideen AMSH, Johansen SD, Babiak I. mtR_find: A Parallel Processing Tool to Identify and Annotate RNAs Derived from the Mitochondrial Genome. Int J Mol Sci 2023; 24:ijms24054373. [PMID: 36901804 PMCID: PMC10001721 DOI: 10.3390/ijms24054373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
RNAs originating from mitochondrial genomes are abundant in transcriptomic datasets produced by high-throughput sequencing technologies, primarily in short-read outputs. Specific features of mitochondrial small RNAs (mt-sRNAs), such as non-templated additions, presence of length variants, sequence variants, and other modifications, necessitate the need for the development of an appropriate tool for their effective identification and annotation. We have developed mtR_find, a tool to detect and annotate mitochondrial RNAs, including mt-sRNAs and mitochondria-derived long non-coding RNAs (mt-lncRNA). mtR_find uses a novel method to compute the count of RNA sequences from adapter-trimmed reads. When analyzing the published datasets with mtR_find, we identified mt-sRNAs significantly associated with the health conditions, such as hepatocellular carcinoma and obesity, and we discovered novel mt-sRNAs. Furthermore, we identified mt-lncRNAs in early development in mice. These examples show the immediate impact of miR_find in extracting a novel biological information from the existing sequencing datasets. For benchmarking, the tool has been tested on a simulated dataset and the results were concordant. For accurate annotation of mitochondria-derived RNA, particularly mt-sRNA, we developed an appropriate nomenclature. mtR_find encompasses the mt-ncRNA transcriptomes in unpreceded resolution and simplicity, allowing re-analysis of the existing transcriptomic databases and the use of mt-ncRNAs as diagnostic or prognostic markers in the field of medicine.
Collapse
|
158
|
Drino A, König L, Capitanchik C, Sanadgol N, Janisiw E, Rappol T, Vilardo E, Schaefer MR. Identification of RNA helicases with unwinding activity on angiogenin-processed tRNAs. Nucleic Acids Res 2023; 51:1326-1352. [PMID: 36718960 PMCID: PMC9943664 DOI: 10.1093/nar/gkad033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Stress-induced tRNA fragmentation upon environmental insult is a conserved cellular process catalysed by endonucleolytic activities targeting mature tRNAs. The resulting tRNA-derived small RNAs (tsRNAs) have been implicated in various biological processes that impact cell-to-cell signalling, cell survival as well as gene expression regulation during embryonic development. However, how endonuclease-targeted tRNAs give rise to individual and potentially biologically active tsRNAs remains poorly understood. Here, we report on the in vivo identification of proteins associated with stress-induced tsRNAs-containing protein complexes, which, together with a 'tracer tRNA' assay, were used to uncover enzymatic activities that can bind and process specific endonuclease-targeted tRNAs in vitro. Among those, we identified conserved ATP-dependent RNA helicases which can robustly separate tRNAs with endonuclease-mediated 'nicks' in their anticodon loops. These findings shed light on the existence of cellular pathways dedicated to producing individual tsRNAs after stress-induced tRNA hydrolysis, which adds to our understanding as to how tRNA fragmentation and the resulting tsRNAs might exert physiological impact.
Collapse
Affiliation(s)
- Aleksej Drino
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Lisa König
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | | | - Nasim Sanadgol
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Eva Janisiw
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Tom Rappol
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Elisa Vilardo
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| |
Collapse
|
159
|
Kaymak E, Rando OJ. Staying together after the breakup: tRNA halves in extracellular fluids. Proc Natl Acad Sci U S A 2023; 120:e2300300120. [PMID: 36780520 PMCID: PMC9974496 DOI: 10.1073/pnas.2300300120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01605
| |
Collapse
|
160
|
Yang M, Mo Y, Ren D, Liu S, Zeng Z, Xiong W. Transfer RNA-derived small RNAs in tumor microenvironment. Mol Cancer 2023; 22:32. [PMID: 36797764 PMCID: PMC9933334 DOI: 10.1186/s12943-023-01742-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Transfer RNAs (tRNAs) are a class of non-coding RNAs responsible for amino acid translocation during protein synthesis and are ubiquitously found in organisms. With certain modifications and under specific conditions, tRNAs can be sheared and fragmented into small non-coding RNAs, also known as tRNA-derived small RNAs (tDRs). With the development of high-throughput sequencing technologies and bioinformatic strategies, more and more tDRs have been identified and their functions in organisms have been characterized. tRNA and it derived tDRs, have been shown to be essential not only for transcription and translation, but also for regulating cell proliferation, apoptosis, metastasis, and immunity. Aberrant expression of tDRs is associated with a wide range of human diseases, especially with tumorigenesis and tumor progression. The tumor microenvironment (TME) is a complex ecosystem consisting of various cellular and cell-free components that are mutually compatible with the tumor. It has been shown that tDRs regulate the TME by regulating cancer stem cells, immunity, energy metabolism, epithelial mesenchymal transition, and extracellular matrix remodeling, playing a pro-tumor or tumor suppressor role. In this review, the biogenesis, classification, and function of tDRs, as well as their effects on the TME and the clinical application prospects will be summarized and discussed based on up to date available knowledge.
Collapse
Affiliation(s)
- Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shun Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| |
Collapse
|
161
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
162
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
163
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369 DOI: 10.5483/bmbrep.2022-0199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
164
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
165
|
Wang C, Chen W, Aili M, Zhu L, Chen Y. tRNA-derived small RNAs in plant response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1131977. [PMID: 36798699 PMCID: PMC9928184 DOI: 10.3389/fpls.2023.1131977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) represent a novel category of small non-coding RNAs and serve as a new regulator of gene expression at both transcriptional and post-transcriptional levels. Growing evidence indicates that tsRNAs can be induced by diverse stimuli and regulate stress-responsive target genes, allowing plants to adapt to unfavorable environments. Here, we discuss the latest developments about the biogenesis and classification of tsRNAs and highlight the expression regulation and potential function of tsRNAs in plant biotic and abiotic stress responses. Of note, we also collect useful bioinformatics tools and resources for tsRNAs study in plants. Finally, we propose current limitations and future directions for plant tsRNAs research. These recent discoveries have refined our understanding of whether and how tsRNAs enhance plant stress tolerance.
Collapse
Affiliation(s)
- Chaojun Wang
- Institute of Education Science, Leshan Normal University, Leshan, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Maimaiti Aili
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
166
|
Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc Natl Acad Sci U S A 2023; 120:e2216330120. [PMID: 36652478 PMCID: PMC9942843 DOI: 10.1073/pnas.2216330120] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.
Collapse
|
167
|
Zhang S, Yu X, Xie Y, Ye G, Guo J. tRNA derived fragments:A novel player in gene regulation and applications in cancer. Front Oncol 2023; 13:1063930. [PMID: 36761955 PMCID: PMC9904238 DOI: 10.3389/fonc.2023.1063930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The heterogeneous species of tRNA-derived fragments (tRFs) with specific biological functions was recently identified. Distinct roles of tRFs in tumor development and viral infection, mediated through transcriptional and post-transcriptional regulation, has been demonstrated. In this review, we briefly summarize the current literatures on the classification of tRFs and the effects of tRNA modification on tRF biogenesis. Moreover, we highlight the tRF repertoire of biological roles such as gene silencing, and regulation of translation, cell apoptosis, and epigenetics. We also summarize the biological roles of various tRFs in cancer development and viral infection, their potential value as diagnostic and prognostic biomarkers for different types of cancers, and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
168
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
169
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
170
|
Li W, Wang Y. Stress granules: potential therapeutic targets for infectious and inflammatory diseases. Front Immunol 2023; 14:1145346. [PMID: 37205103 PMCID: PMC10185834 DOI: 10.3389/fimmu.2023.1145346] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Eukaryotic cells are stimulated by external pressure such as that derived from heat shock, oxidative stress, nutrient deficiencies, or infections, which induce the formation of stress granules (SGs) that facilitates cellular adaptation to environmental pressures. As aggregated products of the translation initiation complex in the cytoplasm, SGs play important roles in cell gene expression and homeostasis. Infection induces SGs formation. Specifically, a pathogen that invades a host cell leverages the host cell translation machinery to complete the pathogen life cycle. In response, the host cell suspends translation, which leads to SGs formation, to resist pathogen invasion. This article reviews the production and function of SGs, the interaction between SGs and pathogens, and the relationship between SGs and pathogen-induced innate immunity to provide directions for further research into anti-infection and anti-inflammatory disease strategies.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yao Wang,
| |
Collapse
|
171
|
Xia L, Guo H, Wu X, Xu Y, Zhao P, Yan B, Zeng Y, He Y, Chen D, Gale RP, Zhang Y, Zhang X. Human circulating small non-coding RNA signature as a non-invasive biomarker in clinical diagnosis of acute myeloid leukaemia. Theranostics 2023; 13:1289-1301. [PMID: 36923527 PMCID: PMC10008735 DOI: 10.7150/thno.80054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; AML is highly heterogeneous and involves abnormalities at multiple omics levels. Small non-coding RNAs (sncRNAs) present in body fluids are important regulatory molecules and considered promising non-invasive clinical diagnostic biomarkers for disease. However, the signature of sncRNA profile alteration in AML patient serum and bone marrow supernatant is still under exploration. Methods: We examined data for blood and bone marrow samples from 80 consecutive, newly-diagnosed patients with AML and 12 healthy controls for high throughput small RNA-sequencing. Differentially expressed sncRNAs were analysed to reveal distinct patterns between AML patients and controls. Machine learning methods were used to evaluate the efficiency of specific sncRNAs in discriminating individuals with AML from controls. The altered expression level of individual sncRNAs was evaluated by RT-PCR, Q-PCR, and northern blot. Correlation analysis was employed to assess sncRNA patterns between serum and bone marrow supernatant. Results: We identified over 20 types of sncRNA categories beyond miRNAs in both serum and bone marrow supernatant, with highly coordinated expression patterns between them. Non-classical sncRNAs, including rsRNA (62.86%), ysRNA (14.97%), and tsRNA (4.22%), dominated among serum sncRNAs and showed sensitive alteration patterns in AML patients. According to machine learning-based algorithms, the tsRNA-based signature robustly discriminated subjects with AML from controls and was more reliable than that comprising miRNAs. Our data also showed that serum tsRNAs to be closely associated with AML prognosis, suggesting the potential application of serum tsRNAs as biomarkers to assist in AML diagnosis. Conclusions: We comprehensively characterized the expression pattern of circulating sncRNAs in blood and bone marrow and their alteration signature between healthy controls and AML patients. This study enriches research of sncRNAs in the regulation of AML, and provides insights into the role of sncRNAs in AML.
Collapse
Affiliation(s)
- Lin Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Bingbing Yan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yundi He
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Dan Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
172
|
Gong W, Zhang S. YB1 participated in regulating mitochondrial activity through RNA replacement. Front Oncol 2023; 13:1145379. [PMID: 37035211 PMCID: PMC10076880 DOI: 10.3389/fonc.2023.1145379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
As a relic of ancient bacterial endosymbionts, mitochondria play a central role in cell metabolism, apoptosis, autophagy, and other processes. However, the function of mitochondria-derived nucleic acids in cellular signal transduction has not been fully elucidated. Here, our work has found that Y-box binding protein 1 (YB1) maintained cellular autophagy at a moderate level to inhibit mitochondrial oxidative phosphorylation. In addition, mitochondrial RNA was leaked into cytosol under starvation, accompanied by YB1 mitochondrial relocation, resulting in YB1-bound RNA replacement. The mRNAs encoded by oxidative phosphorylation (OXPHOS)-associated genes and oncogene HMGA1 (high-mobility group AT-hook 1) were competitively replaced by mitochondria-derived tRNAs. The increase of free OXPHOS mRNAs released from the YB1 complex enhanced mitochondrial activity through facilitating translation, but the stability of HMGA1 mRNA was impaired without the protection of YB1, both contributing to breast cancer cell apoptosis and reactive oxygen species production. Our finding not only provided a new potential target for breast cancer therapy but also shed new light on understanding the global landscape of cellular interactions between RNA-binding proteins and different RNA species.
Collapse
Affiliation(s)
- Weipeng Gong
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Song Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Song Zhang,
| |
Collapse
|
173
|
Hou J, Li Q, Wang J, Lu W. tRFs and tRNA Halves: Novel Cellular Defenders in Multiple Biological Processes. Curr Issues Mol Biol 2022; 44:5949-5962. [PMID: 36547066 PMCID: PMC9777342 DOI: 10.3390/cimb44120405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
tRNA fragments derived from angiogenin or Dicer cleavage are referred to as tRNA-derived fragments (tRFs) and tRNA halves. tRFs and tRNA halves have been identified in both eukaryotes and prokaryotes and are precisely cleaved at specific sites on either precursor or mature tRNA transcripts rather than via random degradation. tRFs and tRNA halves are highly involved in regulating transcription and translation in a canonical or non-canonical manner in response to cellular stress. In this review, we summarize the biogenesis and types of tRFs and tRNA halves, clarify the biological functions and molecular mechanisms of tRNA fragments in both physiological and pathological processes with a particular focus on their cytoprotective roles in defending against oxidation and apoptosis, and highlight their potential application as biomarkers in determining cell fate.
Collapse
Affiliation(s)
- Jiani Hou
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qianqing Li
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.W.); (W.L.); Tel.: +86-0431-84533525; Fax: +861-0431-84533525
| | - Wenfa Lu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.W.); (W.L.); Tel.: +86-0431-84533525; Fax: +861-0431-84533525
| |
Collapse
|
174
|
Zou L, Yang Y, Zhou B, Li W, Liu K, Li G, Miao H, Song X, Yang J, Geng Y, Li M, Bao R, Liu Y. tRF-3013b inhibits gallbladder cancer proliferation by targeting TPRG1L. Cell Mol Biol Lett 2022; 27:99. [PMID: 36401185 PMCID: PMC9673407 DOI: 10.1186/s11658-022-00398-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND tRNA-derived fragments (tRFs) are newly discovered noncoding RNAs and regulate tumor progression via diverse molecular mechanisms. However, the expression and biofunction of tRFs in gallbladder cancer (GBC) have not been reported yet. METHODS The expression of tRFs in GBC was detected by tRF and tiRNA sequencing in GBC tissues and adjacent tissues. The biological function of tRFs was investigated by cell proliferation assay, clonal formation assay, cell cycle assay, and xenotransplantation model in GBC cell lines. The molecular mechanism was discovered and verified by transcriptome sequencing, fluorescence in situ hybridization (FISH), target gene site prediction, and RNA binding protein immunoprecipitation (RIP). RESULTS tRF-3013b was significantly downregulated in GBC compared with para-cancer tissues. Decreased expression of tRF-3013b in GBC patients was correlated with poor overall survival. Dicer regulated the production of tRF-3013b, and its expression was positively correlated with tRF-3013b in GBC tissues. Functional experiments demonstrated that tRF-3013b inhibited GBC cell proliferation and induced cell-cycle arrest. Mechanically, tRF-3013b exerted RNA silencing effect on TPRG1L by binding to AGO3, and then inhibited NF-κB. TPRG1L overexpression could rescue the effects of tRF-3013b on GBC cell proliferation. CONCLUSIONS This study indicated that Dicer-induced tRF-3013b inhibited GBC proliferation by targeting TPRG1L and repressed NF-κB, pointing to tRF-3013b as a novel potential therapeutic target of GBC.
Collapse
Affiliation(s)
- Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Biyu Zhou
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Xiaoling Song
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiahua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| | - Runfa Bao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
175
|
Sultana MF, Abo H, Kawashima H. Human and mouse angiogenins: Emerging insights and potential opportunities. Front Microbiol 2022; 13:1022945. [PMID: 36466652 PMCID: PMC9714274 DOI: 10.3389/fmicb.2022.1022945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/01/2022] [Indexed: 12/27/2023] Open
Abstract
Angiogenin, a well-known angiogenic factor, is crucial to the angiogenesis in gastrointestinal tumors. Human angiogenin has only one gene, whereas the murine angiogenin family has extended to incorporate six genes. Evolutionary studies have suggested functional variations among murine angiogenin paralogs, even though the three-dimensional structures of angiogenin proteins are remarkably similar. In addition to angiogenesis, the ubiquitous pattern of angiogenin expression suggests a variety of functions, such as tumorigenesis, neuroprotective, antimicrobial activity, and innate immunity. Here, we comprehensively reviewed studies on the structures and functions of human and mouse angiogenins. Understanding the structure and function of angiogenins from a broader perspective could facilitate future research related to development of novel therapeutics on its biological processes, especially in gastrointestinal cancers.
Collapse
Affiliation(s)
- Mst. Farzana Sultana
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
176
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
177
|
Xiong Q, Zhang Y, Li J, Zhu Q. Small Non-Coding RNAs in Human Cancer. Genes (Basel) 2022; 13:genes13112072. [PMID: 36360311 PMCID: PMC9690286 DOI: 10.3390/genes13112072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
178
|
Zhang L, Zhang Y, Zhang S, Qiu L, Zhang Y, Zhou Y, Han J, Xie J. Translational Regulation by eIFs and RNA Modifications in Cancer. Genes (Basel) 2022; 13:2050. [PMID: 36360287 PMCID: PMC9690228 DOI: 10.3390/genes13112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/04/2023] Open
Abstract
Translation is a fundamental process in all living organisms that involves the decoding of genetic information in mRNA by ribosomes and translation factors. The dysregulation of mRNA translation is a common feature of tumorigenesis. Protein expression reflects the total outcome of multiple regulatory mechanisms that change the metabolism of mRNA pathways from synthesis to degradation. Accumulated evidence has clarified the role of an increasing amount of mRNA modifications at each phase of the pathway, resulting in translational output. Translation machinery is directly affected by mRNA modifications, influencing translation initiation, elongation, and termination or altering mRNA abundance and subcellular localization. In this review, we focus on the translation initiation factors associated with cancer as well as several important RNA modifications, for which we describe their association with cancer.
Collapse
Affiliation(s)
- Linzhu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| |
Collapse
|
179
|
Zhao J, Zou J, Jiao W, Lin L, Wang J, Lin Z. Construction of N-7 methylguanine-related mRNA prognostic model in uterine corpus endometrial carcinoma based on multi-omics data and immune-related analysis. Sci Rep 2022; 12:18813. [PMID: 36335189 PMCID: PMC9637130 DOI: 10.1038/s41598-022-22879-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
N-7 methylguanine (m7G) is one of the most common RNA base modifications in post-transcriptional regulation, which participates in multiple processes such as transcription, mRNA splicing and translation during the mRNA life cycle. However, its expression and prognostic value in uterine corpus endometrial carcinoma (UCEC) have not been systematically studied. In this paper, the data such as gene expression profiles, clinical data of UCEC patients, somatic mutations and copy number variants (CNVs) are obtained from the cancer genome atlas (TCGA) and UCSC Xena. By analyzing the expression differences of m7G-related mRNA in UCEC and plotting the correlation network maps, a risk score model composed of four m7G-related mRNAs (NSUN2, NUDT3, LARP1 and NCBP3) is constructed using least absolute shrinkage and selection operator (LASSO), univariate and multivariate Cox regression in order to identify prognosis and immune response. The correlation of clinical prognosis is analyzed between the m7G-related mRNA and UCEC via Kaplan-Meier method, receiver operating characteristic (ROC) curve, principal component analysis (PCA), t-SNE, decision curve analysis (DCA) curve and nomogram etc. It is concluded that the high risk is significantly correlated with (P < 0.001) the poorer overall survival (OS) in patients with UCEC. It is one of the independent risk factors affecting the OS. Differentially expressed genes are identified by R software in the high and low risk groups. The functional analysis and pathway enrichment analysis have been performed. Single sample gene set enrichment analysis (ssGSEA), immune checkpoints, m6A-related genes, tumor mutation burden (TMB), stem cell correlation, tumor immune dysfunction and rejection (TIDE) scores and drug sensitivity are also used to study the risk model. In addition, we have obtained 3 genotypes based on consensus clustering, which are significantly related to (P < 0.001) the OS and progression-free survival (PFS). The deconvolution algorithm (CIBERSORT) is applied to calculate the proportion of 22 tumor infiltrating immune cells (TIC) in UCEC patients and the estimation algorithm (ESTIMATE) is applied to work out the number of immune and matrix components. In summary, m7G-related mRNA may become a potential biomarker for UCEC prognosis, which may promote UCEC occurrence and development by regulating cell cycles and immune cell infiltration. It is expected to become a potential therapeutic target of UECE.
Collapse
Affiliation(s)
- Junde Zhao
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Jiani Zou
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenjian Jiao
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lidong Lin
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Jiuling Wang
- grid.452402.50000 0004 1808 3430Office of Medical Insurance Management, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Zhiheng Lin
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| |
Collapse
|
180
|
Yang C, Song J, Park S, Ham J, Park W, Park H, An G, Hong T, Kim HS, Song G, Lim W. Targeting Thymidylate Synthase and tRNA-Derived Non-Coding RNAs Improves Therapeutic Sensitivity in Colorectal Cancer. Antioxidants (Basel) 2022; 11:2158. [PMID: 36358529 PMCID: PMC9686910 DOI: 10.3390/antiox11112158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/01/2023] Open
Abstract
Some colorectal cancer (CRC) patients are resistant to 5-fluorouracil (5-FU), and high expression levels of thymidylate synthase (TS) contribute to this resistance. This study investigated whether quercetin, a representative polyphenol compound, could enhance the effect of 5-FU in CRC cells. Quercetin suppressed TS levels that were increased by 5-FU in CRC cells and promoted the expression of p53. Quercetin also induced intracellular and mitochondrial reactive oxygen species (ROS) production and Ca2+ dysregulation in a 5-FU-independent pathway in CRC cells. Furthermore, quercetin decreased mitochondrial membrane potential in CRC cells and inhibited mitochondrial respiration. Moreover, quercetin regulated the expression of specific tiRNAs, including tiRNAHisGTG, and transfection of a tiRNAHisGTG mimic further enhanced the apoptotic effect of quercetin in CRC cells. An enhanced sensitivity to 5-FU was also confirmed in colitis-associated CRC mice treated with quercetin. The treatment of quercetin decreased survival rates of the CRC mouse model, with reductions in the number of tumors and in the disease activity index. Also, quercetin suppressed TS and PCNA protein expression in the distal colon tissue of CRC mice. These results suggest that quercetin has the potential to be used as an adjuvant with 5-FU for the treatment of CRC.
Collapse
Affiliation(s)
- Changwon Yang
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Korea
| | - Jiyeon Ham
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Wonhyoung Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hahyun Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Garam An
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
181
|
Akiyama Y, Takenaka Y, Kasahara T, Abe T, Tomioka Y, Ivanov P. RTCB Complex Regulates Stress-Induced tRNA Cleavage. Int J Mol Sci 2022; 23:ijms232113100. [PMID: 36361884 PMCID: PMC9655011 DOI: 10.3390/ijms232113100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Correspondence: (Y.A.); (P.I.)
| | - Yoshika Takenaka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Tomoko Kasahara
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (Y.A.); (P.I.)
| |
Collapse
|
182
|
Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022; 50:223-232. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
tRNAs are essential modulators that recognize mRNA codons and bridge amino acids for mRNA translation. The tRNAs are heavily modified, which is essential for forming a complex secondary structure that facilitates codon recognition and mRNA translation. In recent years, studies have identified the regulatory roles of tRNA modifications in mRNA translation networks. Misregulation of tRNA modifications is closely related to the progression of developmental diseases and cancers. In this review, we summarize the tRNA biogenesis process and then discuss the effects and mechanisms of tRNA modifications on tRNA processing and mRNA translation. Finally, we provide a comprehensive overview of tRNA modifications' physiological and pathological functions, focusing on diseases including cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
183
|
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 2022; 54:1626-1642. [PMID: 36266447 PMCID: PMC9636213 DOI: 10.1038/s12276-022-00822-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA-RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.
Collapse
Affiliation(s)
- Ja Young Hahm
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Jongyeun Park
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Eun-Sook Jang
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Sung Wook Chi
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481 Republic of Korea
| |
Collapse
|
184
|
Bourgery M, Ekholm E, Hiltunen A, Heino TJ, Pursiheimo JP, Bendre A, Yatkin E, Laitala T, Määttä J, Säämänen AM. Signature of circulating small non-coding RNAs during early fracture healing in mice. Bone Rep 2022; 17:101627. [PMID: 36304905 PMCID: PMC9593857 DOI: 10.1016/j.bonr.2022.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation. In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28–36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture. Valine isoacceptor tRNA-derived Val-AAC 5′end and Val-CAC 5′end fragments were the major types of 5′end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5′end tiRNAs Lys-TTT 5′ and Lys-CTT 5′ were decreased and His-GTG 5′ was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.
Collapse
Affiliation(s)
- Matthieu Bourgery
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Erika Ekholm
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | | | - Terhi J. Heino
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Juha-Pekka Pursiheimo
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Genomill Health, Turku, Finland
| | - Ameya Bendre
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Turku Center for Disease Modeling (TCDM), Turku, Finland
| | - Anna-Marja Säämänen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Corresponding author at: Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
185
|
Yoshida T, Latt KZ, Rosenberg AZ, Shrivastav S, Heymann J, Halushka MK, Winkler CA, Kopp JB. Transcriptomic Analysis of Human Podocytes In Vitro: Effects of Differentiation and APOL1 Genotype. Kidney Int Rep 2022; 8:164-178. [PMID: 36644347 PMCID: PMC9831945 DOI: 10.1016/j.ekir.2022.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The mechanisms in podocytes that mediate the pathologic effects of the APOL1 high-risk (HR) variants remain incompletely understood, although various molecular and cellular mechanisms have been proposed. We previously established conditionally immortalized human urine-derived podocyte-like epithelial cell (HUPEC) lines to investigate APOL1 HR variant-induced podocytopathy. Methods We conducted comprehensive transcriptomic analysis, including mRNA, microRNA (miRNA), and transfer RNA fragments (tRFs), to characterize the transcriptional profiles in undifferentiated and differentiated HUPEC with APOL1 HR (G1/G2, 2 cell lines) and APOL1 low-risk (LR) (G0/G0, 2 cell lines) genotypes. We reanalyzed single-cell RNA-seq data from urinary podocytes from focal segmental glomerulosclerosis (FSGS) subjects to characterize the effect of APOL1 genotypes on podocyte transcriptomes. Results Differential expression analysis showed that the ribosomal pathway was one of the most enriched pathways, suggesting that altered function of the translation initiation machinery may contribute to APOL1 variant-induced podocyte injury. Expression of genes related to the elongation initiation factor 2 pathway was also enriched in the APOL1 HR urinary podocytes from single-cell RNA-seq, supporting a prior report on the role of this pathway in APOL1-associated cell injury. Expression of microRNA and tRFs were analyzed, and the profile of small RNAs differed by both differentiation status and APOL1 genotype. Conclusion We have profiled the transcriptomic landscape of human podocytes, including mRNA, miRNA, and tRF, to characterize the effects of differentiation and of different APOL1 genotypes. The candidate pathways, miRNAs, and tRFs described here expand understanding of APOL1-associated podocytopathies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA,Correspondence: Teruhiko Yoshida, Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, 3N104, Bethesda, Maryland 20892-1268, USA.
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Cheryl A. Winkler
- Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
186
|
Xu D, Qiao D, Lei Y, Zhang C, Bu Y, Zhang Y. Transfer RNA-derived small RNAs (tsRNAs): Versatile regulators in cancer. Cancer Lett 2022; 546:215842. [PMID: 35964819 DOI: 10.1016/j.canlet.2022.215842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
tRNA-derived small RNAs (tsRNAs) represent a novel class of regulatory small non-coding RNAs (sncRNAs), produced by the specific cleavage of transfer RNAs (tRNAs). In recent years, pilot studies one after the other have uncovered the critical roles of tsRNAs in various fundamental biological processes as well as in the development of human diseases including cancer. Based on the newly updated hallmarks of cancer, we provide a comprehensive review regarding the dysregulation, functional implications and complicated molecular mechanisms of tsRNAs in cancer. In addition, the potential technical challenges and future prospects in the fields of tsRNA research are discussed in this review.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Deqian Qiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
187
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
188
|
You J, Yang G, Wu Y, Lu X, Huang S, Chen Q, Huang C, Chen F, Xu X, Chen L. Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 as novel diagnostic biomarkers for lung adenocarcinoma. Front Oncol 2022; 12:991451. [PMID: 36203461 PMCID: PMC9530285 DOI: 10.3389/fonc.2022.991451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective TRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs) are recognized as novel and potential types of non-coding RNAs (ncRNAs), and several tRF/tiRNA signatures are closely associated with tumor diagnosis. This study aimed to analyze the expression profiles of plasma tRFs/tiRNAs and to clarify their diagnostic value in lung adenocarcinoma (LUAD). Methods The differential expression profiles of plasma tRFs/tiRNAs in patients with four patients with early LUAD, four patients with advanced LUAD, and four healthy controls were analyzed using high-throughput sequencing technology. Then, plasma tRFs/tiRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR), and their diagnostic efficiency was appraised by receiver operating characteristic curve analysis. The correlation of candidate plasma tRFs/tiRNAs with clinicopathological features was also analyzed. Finally, bioinformatics analysis was performed to explore and identify the potential biological pathways induced by tRFs/tiRNAs. Results The sequencing results revealed that tRFs/tiRNAs from plasma samples in patients with LUAD were differently expressed, supporting the necessity of exploring their potential as biomarkers. The validation results of qRT-PCR demonstrated that the expression level of tRF-1:29-Pro-AGG-1-M6 was downregulated in LUAD, while that of tRF-55:76-Tyr-GTA-1-M2 was upregulated, which was consistent with the sequencing data. The areas under the receiver operating characteristic curve of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 were 0.882 and 0.896, respectively, which have significant values in the diagnosis of LUAD. The expressions of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 in LUAD were obviously correlated with various clinicopathological features such as tumor–node–metastasis stage, node stage, and the expression levels of carcinoembryonic antigen. In addition, their expression was significantly altered from before to after tumor resection in LUAD patients. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses further indicated that tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 are widely distributed and apparently enriched in several tumor-related signaling pathways. Conclusions Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 may be promising components in the development of highly sensitive and non-invasive biomarkers for LUAD diagnosis.
Collapse
Affiliation(s)
- Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Guoliu Yang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yi Wu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Xuan Lu
- Department of Clinical Laboratory, Zhangzhou Skin Disease Prevention and Treatment Hospital of Fujian Province, Zhangzhou, China
| | - Shuyu Huang
- Department of Blood Transfusion, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chen Huang
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Xunyu Xu
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| |
Collapse
|
189
|
Ma C, Du J, Ma X. tRNA-derived fragment tRF-1020 ameliorates diabetes-induced retinal microvascular complications. J Cell Mol Med 2022; 26:5257-5266. [PMID: 36128646 PMCID: PMC9575064 DOI: 10.1111/jcmm.17555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Transfer RNA (tRNA)-derived fragments are the non-coding single-stranded RNAs involved in several physiological and pathological processes. Herein, we investigated the role of tRF-1020, a tRNA fragment, in diabetes-induced retinal microvascular complications. The results showed that the levels of tRF-1020 expression were down-regulated in diabetic retinal vessels and retinal endothelial cells following high glucose or H2 O2 stress. Overexpressing tRF-1020 led to decreased endothelial cell viability, proliferation, migration, and tube formation and alleviated retinal vascular dysfunction as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. By contrast, tRF-1020 silencing displayed the opposite effects. tRF-1020 regulated endothelial angiogenic functions and retinal vascular dysfunction by targeting Wnt signalling. Moreover, the levels of tRF-1020 expression were reduced in aqueous humour and vitreous samples of the patients with diabetic retinopathy. Collectively, tRF-1020 is a potential target for the diagnosis and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Cong Ma
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of the Endocrinology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jianling Du
- Department of the Endocrinology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiang Ma
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
190
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
191
|
Chu X, He C, Sang B, Yang C, Yin C, Ji M, Qian A, Tian Y. Transfer RNAs-derived small RNAs and their application potential in multiple diseases. Front Cell Dev Biol 2022; 10:954431. [PMID: 36072340 PMCID: PMC9441921 DOI: 10.3389/fcell.2022.954431] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The role of tRNAs is best known as adapter components of translational machinery. According to the central dogma of molecular biology, DNA is transcribed to RNA and in turn is translated into proteins, in which tRNA outstands by its role of the cellular courier. Recent studies have led to the revision of the canonical function of transfer RNAs (tRNAs), which indicates that tRNAs also serve as a source for short non-coding RNAs called tRNA-derived small RNAs (tsRNAs). tsRNAs play key roles in cellular processes by modulating complicated regulatory networks beyond translation and are widely involved in multiple diseases. Herein, the biogenesis and classification of tsRNAs were firstly clarified. tsRNAs are generated from pre-tRNAs or mature tRNAs and are classified into tRNA-derived fragments (tRFs) and tRNA halves (tiRNA). The tRFs include five types according to the incision loci: tRF-1, tRF-2, tRF-3, tRF-5 and i-tRF which contain 3′ tiRNA and 5′ tiRNA. The functions of tsRNAs and their regulation mechanisms involved in disease processes are systematically summarized as well. The mechanisms can elaborate on the specific regulation of tsRNAs. In conclusion, the current research suggests that tsRNAs are promising targets for modulating pathological processes, such as breast cancer, ischemic stroke, respiratory syncytial virus, osteoporosis and so on, and maintain vital clinical implications in diagnosis and therapeutics of various diseases.
Collapse
Affiliation(s)
- Xiaohua Chu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chenyang He
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Sang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mili Ji
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| |
Collapse
|
192
|
Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022; 27:3204-3213. [PMID: 35505091 PMCID: PMC9630165 DOI: 10.1038/s41380-022-01585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Transfer (t)RNAs are 70-90 nucleotide small RNAs highly regulated by 43 different types of epitranscriptomic modifications and requiring aminoacylation ('charging') for mRNA decoding and protein synthesis. Smaller cleavage products of mature tRNAs, or tRNA fragments, have been linked to a broad variety of noncanonical functions, including translational inhibition and modulation of the immune response. Traditionally, knowledge about tRNA regulation in brain is derived from phenotypic exploration of monogenic neurodevelopmental and neurodegenerative diseases associated with rare mutations in tRNA modification genes. More recent studies point to the previously unrecognized potential of the tRNA regulome to affect memory, synaptic plasticity, and affective states. For example, in mature cortical neurons, cytosine methylation sensitivity of the glycine tRNA family (tRNAGly) is coupled to glycine biosynthesis and codon-specific alterations in ribosomal translation together with robust changes in cognition and depression-related behaviors. In this Review, we will discuss the emerging knowledge of the neuronal tRNA landscape, with a focus on epitranscriptomic tRNA modifications and downstream molecular pathways affected by alterations in tRNA expression, charging levels, and cleavage while mechanistically linking these pathways to neuropsychiatric disease and provide insight into future areas of study for this field.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
193
|
Xu Y, Ruggero D. A tRF nucleator for Nucleolin in cancer metastasis. Mol Cell 2022; 82:2536-2538. [PMID: 35868253 DOI: 10.1016/j.molcel.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Molecular Cell, Liu et al. (2022) report that 5'-tRFCys, a stress-induced transfer RNA-derived RNA fragment (tRF) derived from the 5' halves of cysteine tRNAs, regulates post-transcriptional gene expression, enabling the survival and lung metastasis formation of breast cancers.
Collapse
Affiliation(s)
- Yichen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Davide Ruggero
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
194
|
Liu X, Mei W, Padmanaban V, Alwaseem H, Molina H, Passarelli MC, Tavora B, Tavazoie SF. A pro-metastatic tRNA fragment drives Nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol Cell 2022; 82:2604-2617.e8. [PMID: 35654044 PMCID: PMC9444141 DOI: 10.1016/j.molcel.2022.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023]
Abstract
Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.
Collapse
Affiliation(s)
- Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Veena Padmanaban
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Maria C Passarelli
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Bernardo Tavora
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
195
|
Su Z, Monshaugen I, Klungland A, Ougland R, Dutta A. Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow. Front Mol Biosci 2022; 9:887686. [PMID: 35923465 PMCID: PMC9340255 DOI: 10.3389/fmolb.2022.887686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Bladder cancer (BLCA) is one of the most common cancer types worldwide. The disease is responsible for about 200,000 deaths annually, thus improved diagnostics and therapy is needed. A large body of evidence reveal that small RNAs of less than 40 nucleotides may act as tumor suppressors, oncogenes, and disease biomarkers, with a major focus on microRNAs. However, the role of other families of small RNAs is not yet deciphered. Recent results suggest that small RNAs and their modification status, play a role in BLCA development and are promising biomarkers due to their high abundance in the exomes and body fluids (including urine). Moreover, free modified nucleosides have been detected at elevated levels from the urine of BLCA patients. A genome-wide view of small RNAs, and their modifications, will help pinpoint the molecules that could be used as biomarker or has important biology in BLCA development. Methods: BLCA tumor tissue specimens were obtained from 12 patients undergoing transurethral resection of non-muscle invasive papillary urothelial carcinomas. Genome-wide profiling of small RNAs less than 40 bases long was performed by a modified protocol with TGIRT (thermostable group II reverse transcriptase) to identify novel small RNAs and their modification status. Results: Comprehensive analysis identified not only microRNAs. Intriguingly, 57 ± 15% (mean ± S.D.) of sequencing reads mapped to non-microRNA-small RNAs including tRNA-derived fragments (tRFs), ribosomal RNA-derived fragments (rRFs) and YRNA-derived fragments (YRFs). Misincorporation (mismatch) sites identified potential base modification positions on the small RNAs, especially on tRFs, corresponding to m1A (N1-methyladenosine), m1G (N1-methylguanosine) and m2 2G (N2, N2-dimethylguanosine). We also detected mismatch sites on rRFs corresponding to known modifications on 28 and 18S rRNA. Conclusion: We found abundant non-microRNA-small RNAs in BLCA tumor samples. Small RNAs, especially tRFs and rRFs, contain modifications that can be captured as mismatch by TGIRT sequencing. Both the modifications and the non-microRNA-small RNAs should be explored as a biomarker for BLCA detection or follow-up.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Ida Monshaugen
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Rune Ougland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
196
|
Bayazit MB, Jacovetti C, Cosentino C, Sobel J, Wu K, Brozzi F, Rodriguez-Trejo A, Stoll L, Guay C, Regazzi R. Small RNAs derived from tRNA fragmentation regulate the functional maturation of neonatal β cells. Cell Rep 2022; 40:111069. [PMID: 35830789 DOI: 10.1016/j.celrep.2022.111069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/03/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging class of small non-coding RNAs with distinct cellular functions. Here, we studied the contribution of tRFs to the regulation of postnatal β cell maturation, a critical process that may lead to diabetes susceptibility in adulthood. We identified three tRFs abundant in neonatal rat islets originating from 5' halves (tiRNA-5s) of histidine and glutamate tRNAs. Their inhibition in these islets reduced β cell proliferation and insulin secretion. Mitochondrial respiration was also perturbed, fitting with the mitochondrial enrichment of nuclear-encoded tiRNA-5HisGTG and tiRNA-5GluCTC. Notably, tiRNA-5 inhibition reduced Mpc1, a mitochondrial pyruvate carrier whose knock down largely phenocopied tiRNA-5 inhibition. tiRNA-5HisGTG interactome revealed binding to Musashi-1, which was essential for the mitochondrial enrichment of tiRNA-5HisGTG. Finally, tiRNA-5s were dysregulated in the islets of diabetic and diabetes-prone animals. Altogether, tiRNA-5s represent a class of regulators of β cell maturation, and their deregulation in neonatal islets may lead to diabetes susceptibility in adulthood.
Collapse
Affiliation(s)
- Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Lisa Stoll
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
197
|
Sanadgol N, König L, Drino A, Jovic M, Schaefer M. Experimental paradigms revisited: oxidative stress-induced tRNA fragmentation does not correlate with stress granule formation but is associated with delayed cell death. Nucleic Acids Res 2022; 50:6919-6937. [PMID: 35699207 PMCID: PMC9262602 DOI: 10.1093/nar/gkac495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
tRNA fragmentation is an evolutionarily conserved molecular phenomenon. tRNA-derived small RNAs (tsRNAs) have been associated with many cellular processes, including improved survival during stress conditions. Here, we have revisited accepted experimental paradigms for modeling oxidative stress resulting in tRNA fragmentation. Various cell culture models were exposed to oxidative stressors followed by determining cell viability, the production of specific tsRNAs and stress granule formation. These experiments revealed that exposure to stress parameters commonly used to induce tRNA fragmentation negatively affected cell viability after stress removal. Quantification of specific tsRNA species in cells responding to experimental stress and in cells that were transfected with synthetic tsRNAs indicated that neither physiological nor non-physiological copy numbers of tsRNAs induced the formation of stress granules. Furthermore, the increased presence of tsRNA species in culture medium collected from stressed cells indicated that cells suffering from experimental stress exposure gave rise to stable extracellular tsRNAs. These findings suggest a need to modify current experimental stress paradigms in order to allow separating the function of tRNA fragmentation during the acute stress response from tRNA fragmentation as a consequence of ongoing cell death, which will have major implications for the current perception of the biological function of stress-induced tsRNAs.
Collapse
Affiliation(s)
- Nasim Sanadgol
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Lisa König
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Aleksej Drino
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Michaela Jovic
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Matthias R Schaefer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
198
|
Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J 2022; 41:e110501. [PMID: 35791631 PMCID: PMC9379547 DOI: 10.15252/embj.2021110501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Nölle
- Department of Pathology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Margherita Farina
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Truus Em Abbink
- Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
199
|
Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis. BLOOD SCIENCE 2022; 4:125-132. [DOI: 10.1097/bs9.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
|
200
|
Peng G, Zhu C, Sun Q, Li J, Chen Y, Guo Y, Ji H, Yang F, Dong W. Testicular miRNAs and tsRNAs provide insight into gene regulation during overwintering and reproduction of Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:481-499. [PMID: 35595880 DOI: 10.1007/s10695-022-01078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yingjie Guo
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Fangxia Yang
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| |
Collapse
|