151
|
Tatomer DC, Wilusz JE. Attenuation of Eukaryotic Protein-Coding Gene Expression via Premature Transcription Termination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:83-93. [PMID: 32086332 DOI: 10.1101/sqb.2019.84.039644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A complex network of RNA transcripts is generated from eukaryotic genomes, many of which are processed in unexpected ways. Here, we highlight how premature transcription termination events at protein-coding gene loci can simultaneously lead to the generation of short RNAs and attenuate production of full-length mRNA transcripts. We recently showed that the Integrator (Int) complex can be selectively recruited to protein-coding gene loci, including Drosophila metallothionein A (MtnA), where the IntS11 RNA endonuclease cleaves nascent transcripts near their 5' ends. Such premature termination events catalyzed by Integrator can repress the expression of some full-length mRNAs by more than 100-fold. Transcription at small nuclear RNA (snRNA) loci is likewise terminated by Integrator cleavage, but protein-coding and snRNA gene loci have notably distinct dependencies on Integrator subunits. Additional mechanisms that attenuate eukaryotic gene outputs via premature termination have been discovered, including by the cleavage and polyadenylation machinery in a manner controlled by U1 snRNP. These mechanisms appear to function broadly across the transcriptome. This suggests that synthesis of full-length transcripts is not always the default option and that premature termination events can lead to a variety of transcripts, some of which may have important and unexpected biological functions.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
152
|
Yu L, Kim J, Jiang L, Feng B, Ying Y, Ji KY, Tang Q, Chen W, Mai T, Dou W, Zhou J, Xiang LY, He YF, Yang D, Li Q, Fu X, Xu Y. MTR4 drives liver tumorigenesis by promoting cancer metabolic switch through alternative splicing. Nat Commun 2020; 11:708. [PMID: 32024842 PMCID: PMC7002374 DOI: 10.1038/s41467-020-14437-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/09/2020] [Indexed: 01/10/2023] Open
Abstract
The metabolic switch from oxidative phosphorylation to glycolysis is required for tumorigenesis in order to provide cancer cells with energy and substrates of biosynthesis. Therefore, it is important to elucidate mechanisms controlling the cancer metabolic switch. MTR4 is a RNA helicase associated with a nuclear exosome that plays key roles in RNA processing and surveillance. We demonstrate that MTR4 is frequently overexpressed in hepatocellular carcinoma (HCC) and is an independent diagnostic marker predicting the poor prognosis of HCC patients. MTR4 drives cancer metabolism by ensuring correct alternative splicing of pre-mRNAs of critical glycolytic genes such as GLUT1 and PKM2. c-Myc binds to the promoter of the MTR4 gene and is important for MTR4 expression in HCC cells, indicating that MTR4 is a mediator of the functions of c-Myc in cancer metabolism. These findings reveal important roles of MTR4 in the cancer metabolic switch and present MTR4 as a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Lili Yu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China.
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jinchul Kim
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA
| | - Lei Jiang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bingbing Feng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yue Ying
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kai-Yuan Ji
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Qingshuang Tang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wancheng Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Taoyi Mai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Wenlong Dou
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianlong Zhou
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Le-Yang Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yang-Fan He
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China.
- Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| | - Yang Xu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China.
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| |
Collapse
|
153
|
Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 2020; 21:123-136. [PMID: 32020081 DOI: 10.1038/s41580-019-0209-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mammalian genome is transcribed, generating long non-coding RNAs (lncRNAs) that can undergo post-transcriptional surveillance whereby only a subset of the non-coding transcripts is allowed to attain sufficient stability to persist in the cellular milieu and control various cellular functions. Paralleling protein turnover by the proteasome complex, lncRNAs are also likely to exist in a dynamic equilibrium that is maintained through constant monitoring by the RNA surveillance machinery. In this Review, we describe the RNA surveillance factors and discuss the vital role of lncRNA surveillance in orchestrating various biological processes, including the protection of genome integrity, maintenance of pluripotency of embryonic stem cells, antibody-gene diversification, coordination of immune cell activation and regulation of heterochromatin formation. We also discuss examples of human diseases and developmental defects associated with the failure of RNA surveillance mechanisms, further highlighting the importance of lncRNA surveillance in maintaining cell and organism functions and health.
Collapse
|
154
|
Ardeljan D, Steranka JP, Liu C, Li Z, Taylor MS, Payer LM, Gorbounov M, Sarnecki JS, Deshpande V, Hruban RH, Boeke JD, Fenyö D, Wu PH, Smogorzewska A, Holland AJ, Burns KH. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 2020; 27:168-178. [PMID: 32042151 PMCID: PMC7080318 DOI: 10.1038/s41594-020-0372-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
LINE-1 retrotransposon overexpression is a hallmark of human cancers. We identified a colorectal cancer wherein a fast-growing tumor subclone downregulated LINE-1, prompting us to examine how LINE-1 expression affects cell growth. We find that nontransformed cells undergo a TP53-dependent growth arrest and activate interferon signaling in response to LINE-1. TP53 inhibition allows LINE-1+ cells to grow, and genome-wide-knockout screens show that these cells require replication-coupled DNA-repair pathways, replication-stress signaling and replication-fork restart factors. Our findings demonstrate that LINE-1 expression creates specific molecular vulnerabilities and reveal a retrotransposition-replication conflict that may be an important determinant of cancer growth.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunhong Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail Gorbounov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob S Sarnecki
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York City, NY, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
155
|
Yu Y, Andreu-Agullo C, Liu BF, Barboza L, Toth M, Lai EC. Regulation of embryonic and adult neurogenesis by Ars2. Development 2020; 147:147/2/dev180018. [PMID: 31969356 DOI: 10.1242/dev.180018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
Neural development is controlled at multiple levels to orchestrate appropriate choices of cell fate and differentiation. Although more attention has been paid to the roles of neural-restricted factors, broadly expressed factors can have compelling impacts on tissue-specific development. Here, we describe in vivo conditional knockout analyses of murine Ars2, which has mostly been studied as a general RNA-processing factor in yeast and cultured cells. Ars2 protein expression is regulated during neural lineage progression, and is required for embryonic neural stem cell (NSC) proliferation. In addition, Ars2 null NSCs can still transition into post-mitotic neurons, but fail to undergo terminal differentiation. Similarly, adult-specific deletion of Ars2 compromises hippocampal neurogenesis and results in specific behavioral defects. To broaden evidence for Ars2 as a chromatin regulator in neural development, we generated Ars2 ChIP-seq data. Notably, Ars2 preferentially occupies DNA enhancers in NSCs, where it colocalizes broadly with NSC regulator SOX2. Ars2 association with chromatin is markedly reduced following NSC differentiation. Altogether, Ars2 is an essential neural regulator that interacts dynamically with DNA and controls neural lineage development.
Collapse
Affiliation(s)
- Yang Yu
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Celia Andreu-Agullo
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Bing Fang Liu
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Luendreo Barboza
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
156
|
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, Zhao S, Shen B, Gao Y, Han D, He C. N 6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 2020; 367:580-586. [PMID: 31949099 DOI: 10.1126/science.aay6018] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
N 6-methyladenosine (m6A) regulates stability and translation of messenger RNA (mRNA) in various biological processes. In this work, we show that knockout of the m6A writer Mettl3 or the nuclear reader Ythdc1 in mouse embryonic stem cells increases chromatin accessibility and activates transcription in an m6A-dependent manner. We found that METTL3 deposits m6A modifications on chromosome-associated regulatory RNAs (carRNAs), including promoter-associated RNAs, enhancer RNAs, and repeat RNAs. YTHDC1 facilitates the decay of a subset of these m6A-modified RNAs, especially elements of the long interspersed element-1 family, through the nuclear exosome targeting-mediated nuclear degradation. Reducing m6A methylation by METTL3 depletion or site-specific m6A demethylation of selected carRNAs elevates the levels of carRNAs and promotes open chromatin state and downstream transcription. Collectively, our results reveal that m6A on carRNAs can globally tune chromatin state and transcription.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Dou
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Chuanyuan Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Chang Liu
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084. China
| | - Siqi Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China. .,College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.,China National Center for Bioinformation, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. .,Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
157
|
Abstract
We describe procedures to clone, express, and reconstitute an active human nuclear RNA exosome. Individual recombinant subunits are expressed from E. coli and successfully reconstituted into the nuclear complex, which contains the noncatalytic nine-subunit exosome core, the endoribonuclease and exoribonuclease DIS3, the distributive exoribonuclease EXOSC10, the cofactors C1D and MPP6, and the RNA helicase MTR4.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
158
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
159
|
Lloret-Llinares M, Jensen TH. Global Identification of Human Exosome Substrates Using RNA Interference and RNA Sequencing. Methods Mol Biol 2020; 2062:127-145. [PMID: 31768975 DOI: 10.1007/978-1-4939-9822-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome is involved in RNA processing and quality control. In humans, it consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by one or two additional components. Moreover, several protein cofactors interact with the exosome to enable and specify its recruitment to a wide range of substrates. A common strategy to identify these substrates has been to deplete an exosome subunit or a cofactor and subsequently interrogate which transcripts become stabilized. Here, we describe an experimental pipeline including siRNA-mediated depletion of the RNA exosome or its cofactors in HeLa cells, confirmation of the knockdown efficiencies, and the manual or high-throughput identification of exosome targets.
Collapse
Affiliation(s)
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
160
|
Weick EM, Zinder JC, Lima CD. Strategies for Generating RNA Exosome Complexes from Recombinant Expression Hosts. Methods Mol Biol 2020; 2062:417-425. [PMID: 31768988 PMCID: PMC8565498 DOI: 10.1007/978-1-4939-9822-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The eukaryotic RNA exosome is a conserved and ubiquitous multiprotein complex that possesses multiple RNase activities and is involved in a diverse array of RNA degradation and processing events. While much of our current understanding of RNA exosome function has been elucidated using genetics and cell biology based studies of protein functions, in particular in S. cerevisiae, many important contributions in the field have been enabled through use of in vitro reconstituted complexes. Here, we present an overview of our approach to purify exosome components from recombinant sources and reconstitute them into functional complexes. Three chapters following this overview provide detailed protocols for reconstituting exosome complexes from S. cerevisiae, S. pombe, and H. sapiens. We additionally provide insight on some of the drawbacks of these methods and highlight several important discoveries that have been achieved using reconstituted complexes.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
161
|
Winczura K, Domanski M, LaCava J. Affinity Proteomic Analysis of the Human Exosome and Its Cofactor Complexes. Methods Mol Biol 2020; 2062:291-325. [PMID: 31768983 DOI: 10.1007/978-1-4939-9822-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, the RNA exosome consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by additional components. Several cofactor complexes also interact with the exosome-these enable the recruitment of, and specify the activity upon, diverse substrates. Affinity capture coupled with mass spectrometry has proven to be an effective means to identify the compositions of RNA exosomes and their cofactor complexes: here, we describe a general experimental strategy for proteomic characterization of macromolecular complexes, applied to the exosome and an affiliated adapter protein, ZC3H18.
Collapse
Affiliation(s)
- Kinga Winczura
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, AV, The Netherlands.
| |
Collapse
|
162
|
Zigáčková D, Rájecká V, Vaňáčová Š. Purification of Endogenous Tagged TRAMP4/5 and Exosome Complexes from Yeast and In Vitro Polyadenylation-Exosome Activation Assays. Methods Mol Biol 2020; 2062:237-253. [PMID: 31768980 DOI: 10.1007/978-1-4939-9822-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome processes a wide variety of RNA and mediates RNA maturation, quality control and decay. In marked contrast to its high processivity in vivo, the purified exosome exhibits only weak activity on RNA substrates in vitro. Its activity is regulated by several auxiliary proteins, and protein complexes. In budding yeast, the activity of exosome is enhanced by the polyadenylation complex referred to as TRAMP. TRAMP oligoadenylates precursors and aberrant forms of RNAs to promote their trimming or complete degradation by exosomes. This chapter provides protocols for the purification of TRAMP and exosome complexes from yeast and the in vitro evaluation of exosome activation by the TRAMP complex. The protocols can be used for different purposes, such as the assessment of the role of individual subunits, protein domains or particular mutations in TRAMP-exosome RNA processing in vitro.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
163
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
164
|
Short-lived long noncoding RNAs as surrogate indicators for chemical stress in HepG2 cells and their degradation by nuclear RNases. Sci Rep 2019; 9:20299. [PMID: 31889167 PMCID: PMC6937343 DOI: 10.1038/s41598-019-56869-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length that have been shown to play important roles in various biological processes. The mechanisms underlying the induction of lncRNA expression by chemical exposure remain to be determined. We identified a novel class of short-lived lncRNAs with half-lives (t1/2) ≤4 hours in human HeLa Tet-off cells, which have been suggested to express many lncRNAs with regulatory functions. As they may affect various human biological processes, short-lived lncRNAs may be useful indicators of the degree of stress on chemical exposure. In the present study, we identified four short-lived lncRNAs, designated as OIP5-AS1, FLJ46906, LINC01137, and GABPB1-AS1, which showed significantly upregulated expression following exposure to hydrogen peroxide (oxidative stress), mercury II chloride (heavy metal stress), and etoposide (DNA damage stress) in human HepG2 cells. These lncRNAs may be useful indicators of chemical stress responses. The levels of these lncRNAs in the cells were increased because of chemical stress-induced prolongation of their decay. These lncRNAs were degraded by nuclear RNases, which are components of the exosome and XRN2, and chemical exposure inhibited the RNase activities within the cells.
Collapse
|
165
|
Cardiello JF, Sanchez GJ, Allen MA, Dowell RD. Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription 2019; 11:3-18. [PMID: 31856658 DOI: 10.1080/21541264.2019.1704128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nascent transcription assays, such as global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq), have uncovered a myriad of unstable RNAs being actively produced from numerous sites genome-wide. These transcripts provide a more complete and immediate picture of the impact of regulatory events. Transcription factors recruit RNA polymerase II, effectively initiating the process of transcription; repressors inhibit polymerase recruitment. Efficiency of recruitment is dictated by sequence elements in and around the RNA polymerase loading zone. A combination of sequence elements and RNA binding proteins subsequently influence the ultimate stability of the resulting transcript. Some of these transcripts are capable of providing feedback on the process, influencing subsequent transcription. By monitoring RNA polymerase activity, nascent assays provide insights into every step of the regulated process of transcription.
Collapse
Affiliation(s)
| | - Gilson J Sanchez
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
166
|
Silla T, Karadoulama E, Mąkosa D, Lubas M, Jensen TH. The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts. Cell Rep 2019; 23:2199-2210. [PMID: 29768216 PMCID: PMC5972229 DOI: 10.1016/j.celrep.2018.04.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci, containing polyadenylated (pA+) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA+ RNA foci with “pA-tail exosome targeting (PAXT) connection” components MTR4, ZFC3H1, and PABPN1 but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA+ RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export factor AlyREF. Our results establish ZFC3H1 as a central nuclear pA+ RNA retention factor, counteracting nuclear export activity. Abolished RNA exosome function leads to pA+ RNA accumulation in nuclear foci pA+ RNA foci are enriched with various transcripts and exosome adaptor proteins The exosome adaptor protein ZFC3H1 is required for pA+ RNA foci formation ZFC3H1 functionally counteracts the mRNA export factor AlyREF
Collapse
Affiliation(s)
- Toomas Silla
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark; The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, 2200 Copenhagen, Denmark
| | - Dawid Mąkosa
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Michal Lubas
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark.
| |
Collapse
|
167
|
Abstract
The numerous quality control pathways that target defective ribonucleic acids (RNAs) for degradation play key roles in shaping mammalian transcriptomes and preventing disease. These pathways monitor most steps in the biogenesis of both noncoding RNAs (ncRNAs) and protein-coding messenger RNAs (mRNAs), degrading ncRNAs that fail to form functional complexes with one or more proteins and eliminating mRNAs that encode abnormal, potentially toxic proteins. Mutations in components of diverse RNA surveillance pathways manifest as disease. Some mutations are characterized by increased interferon production, suggesting that a major role of these pathways is to prevent aberrant cellular RNAs from being recognized as "non-self." Other mutations are common in cancer, or result in developmental defects, revealing the importance of RNA surveillance to cell and organismal function.
Collapse
Affiliation(s)
- Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
168
|
Garland W, Jensen TH. Nuclear sorting of RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1572. [PMID: 31713323 DOI: 10.1002/wrna.1572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
169
|
Wu Y, Liu W, Chen J, Liu S, Wang M, Yang L, Chen C, Qi M, Xu Y, Qiao Z, Yan R, Kou X, Zhao Y, Shen B, Yin J, Wang H, Gao Y, Gao S. Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Rep 2019; 29:2461-2472.e6. [DOI: 10.1016/j.celrep.2019.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/17/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023] Open
|
170
|
Soheilypour M, Mofrad MRK. Quality control of mRNAs at the entry of the nuclear pore: Cooperation in a complex molecular system. Nucleus 2019; 9:202-211. [PMID: 29431587 PMCID: PMC5973141 DOI: 10.1080/19491034.2018.1439304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite extensive research on how mRNAs are quality controlled prior to export into the cytoplasm, the exact underlying mechanisms are still under debate. Specifically, it is unclear how quality control proteins at the entry of the nuclear pore complex (NPC) distinguish normal and aberrant mRNAs. While some of the involved components are suggested to act as switches and recruit different factors to normal versus aberrant mRNAs, some experimental and computational evidence suggests that the combined effect of the regulated stochastic interactions between the involved components could potentially achieve an efficient quality control of mRNAs. In this review, we present a state-of-the-art portrait of the mRNA quality control research and discuss the current hypotheses proposed for dynamics of the cooperation between the involved components and how it leads to their shared goal: mRNA quality control prior to export into the cytoplasm.
Collapse
Affiliation(s)
- Mohammad Soheilypour
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| | - Mohammad R K Mofrad
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| |
Collapse
|
171
|
Tatomer DC, Elrod ND, Liang D, Xiao MS, Jiang JZ, Jonathan M, Huang KL, Wagner EJ, Cherry S, Wilusz JE. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev 2019; 33:1525-1538. [PMID: 31530651 PMCID: PMC6824465 DOI: 10.1101/gad.330167.119] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
In this study, Tatomer et al. systematically identify regulators of inducible gene expression; they performed high-throughput RNAi screening of the Drosophila Metallothionein A (MtnA) promoter, which showed that the Integrator complex attenuates MtnA transcription during copper stress. Their findings suggest that attenuation via Integrator cleavage limits production of many full-length mRNAs, allowing precise control of transcription outputs. Cellular homeostasis requires transcriptional outputs to be coordinated, and many events post-transcription initiation can dictate the levels and functions of mature transcripts. To systematically identify regulators of inducible gene expression, we performed high-throughput RNAi screening of the Drosophila Metallothionein A (MtnA) promoter. This revealed that the Integrator complex, which has a well-established role in 3′ end processing of small nuclear RNAs (snRNAs), attenuates MtnA transcription during copper stress. Integrator complex subunit 11 (IntS11) endonucleolytically cleaves MtnA transcripts, resulting in premature transcription termination and degradation of the nascent RNAs by the RNA exosome, a complex also identified in the screen. Using RNA-seq, we then identified >400 additional Drosophila protein-coding genes whose expression increases upon Integrator depletion. We focused on a subset of these genes and confirmed that Integrator is bound to their 5′ ends and negatively regulates their transcription via IntS11 endonuclease activity. Many noncatalytic Integrator subunits, which are largely dispensable for snRNA processing, also have regulatory roles at these protein-coding genes, possibly by controlling Integrator recruitment or RNA polymerase II dynamics. Altogether, our results suggest that attenuation via Integrator cleavage limits production of many full-length mRNAs, allowing precise control of transcription outputs.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Mei-Sheng Xiao
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jeffrey Z Jiang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Michael Jonathan
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
172
|
Gable DL, Gaysinskaya V, Atik CC, Talbot CC, Kang B, Stanley SE, Pugh EW, Amat-Codina N, Schenk KM, Arcasoy MO, Brayton C, Florea L, Armanios M. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev 2019; 33:1381-1396. [PMID: 31488579 PMCID: PMC6771387 DOI: 10.1101/gad.326785.119] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
In this study, Gable et al. follow a family with early onset pulmonary fibrosis and report the discovery of a new genetic cause of pulmonary fibrosis. They use multidimensional analysis methods, involving molecular studies, mouse model, and transcriptome-wide studies to show that heterozygous loss-of-function of the exosomal targeting protein ZCCHC8 to identify a novel cause of telomerase insufficiency in human disease. Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3′ end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8−/− mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8−/− brain transcriptome was highly dysregulated, showing accumulation and 3′ end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3′ end maturation mechanism that vertebrate TR shares with replication-dependent histones.
Collapse
Affiliation(s)
- Dustin L Gable
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Christine C Atik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Byunghak Kang
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Susan E Stanley
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Elizabeth W Pugh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Nuria Amat-Codina
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Kara M Schenk
- Osler Medical Housestaff Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Murat O Arcasoy
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Cory Brayton
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Liliana Florea
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
173
|
Deng T, Huang Y, Weng K, Lin S, Li Y, Shi G, Chen Y, Huang J, Liu D, Ma W, Songyang Z. TOE1 acts as a 3' exonuclease for telomerase RNA and regulates telomere maintenance. Nucleic Acids Res 2019; 47:391-405. [PMID: 30371886 PMCID: PMC6326811 DOI: 10.1093/nar/gky1019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022] Open
Abstract
In human cells, telomeres are elongated by the telomerase complex that contains the reverse transcriptase hTERT and RNA template TERC/hTR. Poly(A)-specific ribonuclease (PARN) is known to trim hTR precursors by removing poly(A) tails. However, the precise mechanism of hTR 3′ maturation remains largely unknown. Target of Egr1 (TOE1) is an Asp-Glu-Asp-Asp (DEDD) domain containing deadenylase that is mutated in the human disease Pontocerebella Hypoplasia Type 7 (PCH7) and implicated in snRNA and hTR processing. We have previously found TOE1 to localize specifically in Cajal bodies, where telomerase RNP complex assembly takes place. In this study, we showed that TOE1 could interact with hTR and the telomerase complex. TOE1-deficient cells accumulated hTR precursors, including oligoadenylated and 3′-extended forms, which was accompanied by impaired telomerase activity and shortened telomeres. Telomerase activity in TOE1-deficient cells could be rescued by wild-type TOE1 but not the catalytically inactive mutant. Our results suggest that hTR 3′ end processing likely involves multiple exonucleases that work in parallel and/or sequentially, where TOE1 may function non-redundantly as a 3′-to-5′ exonuclease in conjunction with PARN. Our study highlights a mechanistic link between TOE1 mutation, improper hTR processing and telomere dysfunction in diseases such as PCH7.
Collapse
Affiliation(s)
- Tingting Deng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Kai Weng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Song Lin
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujing Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Guang Shi
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yali Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjiu Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wenbin Ma
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhou Songyang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
174
|
Lange H, Ndecky SYA, Gomez-Diaz C, Pflieger D, Butel N, Zumsteg J, Kuhn L, Piermaria C, Chicher J, Christie M, Karaaslan ES, Lang PLM, Weigel D, Vaucheret H, Hammann P, Gagliardi D. RST1 and RIPR connect the cytosolic RNA exosome to the Ski complex in Arabidopsis. Nat Commun 2019; 10:3871. [PMID: 31455787 PMCID: PMC6711988 DOI: 10.1038/s41467-019-11807-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023] Open
Abstract
The RNA exosome is a key 3’−5’ exoribonuclease with an evolutionarily conserved structure and function. Its cytosolic functions require the co-factors SKI7 and the Ski complex. Here we demonstrate by co-purification experiments that the ARM-repeat protein RESURRECTION1 (RST1) and RST1 INTERACTING PROTEIN (RIPR) connect the cytosolic Arabidopsis RNA exosome to the Ski complex. rst1 and ripr mutants accumulate RNA quality control siRNAs (rqc-siRNAs) produced by the post-transcriptional gene silencing (PTGS) machinery when mRNA degradation is compromised. The small RNA populations observed in rst1 and ripr mutants are also detected in mutants lacking the RRP45B/CER7 core exosome subunit. Thus, molecular and genetic evidence supports a physical and functional link between RST1, RIPR and the RNA exosome. Our data reveal the existence of additional cytosolic exosome co-factors besides the known Ski subunits. RST1 is not restricted to plants, as homologues with a similar domain architecture but unknown function exist in animals, including humans. Cytosolic RNA degradation by the RNA exosome requires the Ski complex. Here the authors show that the proteins RST1 and RIPR assist the RNA exosome and the Ski complex in RNA degradation, thereby preventing the production of secondary siRNAs from endogenous mRNAs.
Collapse
Affiliation(s)
- Heike Lange
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Simon Y A Ndecky
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Carlos Gomez-Diaz
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Butel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Julie Zumsteg
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Christina Piermaria
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Michael Christie
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ezgi S Karaaslan
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
175
|
Lingaraju M, Johnsen D, Schlundt A, Langer LM, Basquin J, Sattler M, Heick Jensen T, Falk S, Conti E. The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs. Nat Commun 2019; 10:3393. [PMID: 31358741 PMCID: PMC6662825 DOI: 10.1038/s41467-019-11339-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
The nuclear exosome and its essential co-factor, the RNA helicase MTR4, play crucial roles in several RNA degradation pathways. Besides unwinding RNA substrates for exosome-mediated degradation, MTR4 associates with RNA-binding proteins that function as adaptors in different RNA processing and decay pathways. Here, we identify and characterize the interactions of human MTR4 with a ribosome processing adaptor, NVL, and with ZCCHC8, an adaptor involved in the decay of small nuclear RNAs. We show that the unstructured regions of NVL and ZCCHC8 contain short linear motifs that bind the MTR4 arch domain in a mutually exclusive manner. These short sequences diverged from the arch-interacting motif (AIM) of yeast rRNA processing factors. Our results suggest that nuclear exosome adaptors have evolved canonical and non-canonical AIM sequences to target human MTR4 and demonstrate the versatility and specificity with which the MTR4 arch domain can recruit a repertoire of different RNA-binding proteins.
Collapse
Affiliation(s)
- Mahesh Lingaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Dennis Johnsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, 8000, Aarhus C, Denmark
| | - Andreas Schlundt
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technical University of Munich (TUM), 85747, Garching, Germany.,Institute of Structural Biology, Helmholtz-Zentrum München, 85764, Neuherberg, Germany.,Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ) at Johann Wolfgang Goethe-University, Frankfurt am Main, 60438, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Michael Sattler
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technical University of Munich (TUM), 85747, Garching, Germany.,Institute of Structural Biology, Helmholtz-Zentrum München, 85764, Neuherberg, Germany
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, 8000, Aarhus C, Denmark
| | - Sebastian Falk
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. .,Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
176
|
Belair C, Sim S, Kim KY, Tanaka Y, Park IH, Wolin SL. The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. J Cell Biol 2019; 218:2564-2582. [PMID: 31308215 PMCID: PMC6683745 DOI: 10.1083/jcb.201811148] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
This work shows that the exosome modulates the levels of LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression. The exosome restrains stem cell differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. A defining feature of embryonic stem cells (ESCs) is the ability to differentiate into all three germ layers. Pluripotency is maintained in part by a unique transcription network that maintains expression of pluripotency-specific transcription factors and represses developmental genes. While the mechanisms that establish this transcription network are well studied, little is known of the posttranscriptional surveillance pathways that degrade differentiation-related RNAs. We report that the surveillance pathway mediated by the RNA exosome nuclease complex represses ESC differentiation. Depletion of the exosome expedites differentiation of human ESCs into all three germ layers. LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression are all bound by the exosome and increase in level upon exosome depletion. The exosome restrains differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. Our studies establish the exosome as a regulator of human ESC differentiation and reveal the importance of RNA decay in maintaining pluripotency.
Collapse
Affiliation(s)
- Cedric Belair
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Soyeong Sim
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | | | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT .,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
177
|
Telekawa C, Boisvert FM, Bachand F. Proteomic profiling and functional characterization of post-translational modifications of the fission yeast RNA exosome. Nucleic Acids Res 2019; 46:11169-11183. [PMID: 30321377 PMCID: PMC6265454 DOI: 10.1093/nar/gky915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
The RNA exosome is a conserved multi-subunit complex essential for processing and degradation of several types of RNAs. Although many of the functions of the RNA exosome are well established, whether the activity of this complex is regulated remains unclear. Here we performed a proteomic analysis of the RNA exosome complex purified from Schizosaccharomyces pombe and identified 39 post-translational modifications (PTMs), including phosphorylation, methylation, and acetylation sites. Interestingly, most of the modifications were identified in Dis3, a catalytic subunit of the RNA exosome, as well as in the exosome-associated RNA helicase, Mtr4. Functional analysis of selected PTM sites using modification-deficient and -mimetic versions of exosome subunits revealed substitutions that affected cell growth and exosome functions. Notably, our results suggest that site-specific phosphorylation in the catalytic center of Dis3 and in the helical bundle domain of Mtr4 control their activity. Our findings support a view in which post-translational modifications fine-tune exosome activity and add a layer of regulation to RNA degradation.
Collapse
Affiliation(s)
- Caroline Telekawa
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
178
|
Fan J, Kuai B, Wang K, Wang L, Wang Y, Wu X, Chi B, Li G, Cheng H. mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res 2019; 46:8404-8416. [PMID: 30032211 PMCID: PMC6144872 DOI: 10.1093/nar/gky650] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
A significant fraction of mRNAs are degraded by the nuclear exosome in normal cells. Here, we studied where and when these exosome target mRNAs are sorted away from properly exported ones in the cells. We show that upon exosome inactivation, polyA RNAs are apparently accumulated in nuclear foci that are distinct from nuclear speckles (NSs), and provide several lines of evidence supporting that these polyA RNAs mainly correspond to accumulating exosome target mRNAs. These results suggest that exosomal mRNA degradation mostly occurs outside of NSs. In support of this possibility, targeting exosome target mRNAs to NSs stabilizes them by preventing exosomal degradation. Furthermore, inhibiting mRNA release from NSs does not attenuate exosomal degradation in normal cells, and results in polyA RNA accumulation both inside and outside of NSs in exosome inactivated cells, suggesting that passage through NSs is not required for sorting mRNAs for degradation or export. Indeed, exosome target mRNAs that normally do not enter NSs are exported upon exosome inactivation. Together, our data suggest that exosome target mRNAs are mainly degraded in the nucleoplasm before entering NSs and rapid removal of these mRNAs is important for preventing their nuclear export.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
179
|
Bugai A, Quaresma AJC, Friedel CC, Lenasi T, Düster R, Sibley CR, Fujinaga K, Kukanja P, Hennig T, Blasius M, Geyer M, Ule J, Dölken L, Barborič M. P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress. Mol Cell 2019; 74:254-267.e10. [PMID: 30824372 PMCID: PMC6482433 DOI: 10.1016/j.molcel.2019.01.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.
Collapse
Affiliation(s)
- Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Alexandre J C Quaresma
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Christopher R Sibley
- Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK; MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Koh Fujinaga
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Petra Kukanja
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Thomas Hennig
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Melanie Blasius
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Jernej Ule
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
180
|
Mueller H, Lopez A, Tropberger P, Wildum S, Schmaler J, Pedersen L, Han X, Wang Y, Ottosen S, Yang S, Young JAT, Javanbakht H. PAPD5/7 Are Host Factors That Are Required for Hepatitis B Virus RNA Stabilization. Hepatology 2019; 69:1398-1411. [PMID: 30365161 DOI: 10.1002/hep.30329] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
RG7834 is a potent, orally bioavailable small-molecule inhibitor of hepatitis B virus (HBV) gene expression that belongs to the dihydroquinolizinone (DHQ) chemical class and uniquely blocks production of both viral DNA and antigens. In this study, we used DHQ compounds as tools in a compound-based adaptation version of the yeast three-hybrid screen to identify the cognate cellular protein targets, the non-canonical poly(A) RNA polymerase associated domain containing proteins 5 and 7 (PAPD5 and PAPD7). Interaction with RG7834 was mapped to the catalytic domains of the two cellular enzymes. The role of PAPD5 and PAPD7 in HBV replication was confirmed by oligonucleotide-mediated knockdown studies that phenocopied the result seen with RG7834-treated HBV-infected hepatocytes. The greatest effect on HBV gene expression was seen when PAPD5 and PAPD7 mRNAs were simultaneously knocked down, suggesting that the two cellular proteins play a redundant role in maintaining HBV mRNA levels. In addition, as seen previously with RG7834 treatment, PAPD5 and PAPD7 knockdown led to destabilization and degradation of HBV mRNA without impacting production of viral RNA transcripts. Conclusion: We identify PAPD5 and PAPD7 as cellular host factors required for HBV RNA stabilization and as therapeutic targets for the HBV cure.
Collapse
Affiliation(s)
- Henrik Mueller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anaïs Lopez
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Philipp Tropberger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Wildum
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Josephine Schmaler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lykke Pedersen
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, Copenhagen, Denmark
| | - Xingchun Han
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Yongguang Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Søren Ottosen
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, Copenhagen, Denmark
| | - Song Yang
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - John A T Young
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Hassan Javanbakht
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
181
|
Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 2019; 173:1663-1677.e21. [PMID: 29906447 DOI: 10.1016/j.cell.2018.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
The ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.45 Å by cryoelectron microscopy (cryo-EM). The structure reveals an RNA-engaged helicase atop the non-catalytic core, with RNA captured within the central channel and DIS3 exoribonuclease active site. MPP6 tethers MTR4 to the exosome through contacts to the RecA domains of MTR4. EXOSC10 remains bound to the core, but its catalytic module and cofactor C1D are displaced by RNA-engaged MTR4. Competition for the exosome core may ensure that RNA is committed to degradation by DIS3 when engaged by MTR4.
Collapse
|
182
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
183
|
Wang J, Chen J, Wu G, Zhang H, Du X, Chen S, Zhang L, Wang K, Fan J, Gao S, Wu X, Zhang S, Kuai B, Zhao P, Chi B, Wang L, Li G, Wong CCL, Zhou Y, Li J, Yun C, Cheng H. NRDE2 negatively regulates exosome functions by inhibiting MTR4 recruitment and exosome interaction. Genes Dev 2019; 33:536-549. [PMID: 30842217 PMCID: PMC6499326 DOI: 10.1101/gad.322602.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022]
Abstract
The exosome functions in the degradation of diverse RNA species, yet how it is negatively regulated remains largely unknown. Here, we show that NRDE2 forms a 1:1 complex with MTR4, a nuclear exosome cofactor critical for exosome recruitment, via a conserved MTR4-interacting domain (MID). Unexpectedly, NRDE2 mainly localizes in nuclear speckles, where it inhibits MTR4 recruitment and RNA degradation, and thereby ensures efficient mRNA nuclear export. Structural and biochemical data revealed that NRDE2 interacts with MTR4's key residues, locks MTR4 in a closed conformation, and inhibits MTR4 interaction with the exosome as well as proteins important for MTR4 recruitment, such as the cap-binding complex (CBC) and ZFC3H1. Functionally, MID deletion results in the loss of self-renewal of mouse embryonic stem cells. Together, our data pinpoint NRDE2 as a nuclear exosome negative regulator that ensures mRNA stability and nuclear export.
Collapse
Affiliation(s)
- Jianshu Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiyun Chen
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guifen Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongling Zhang
- Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xian Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing 100191, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shouxiang Zhang
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Zhao
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Caihong Yun
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
184
|
Jiao AL, Perales R, Umbreit NT, Haswell JR, Piper ME, Adams BD, Pellman D, Kennedy S, Slack FJ. Human nuclear RNAi-defective 2 (NRDE2) is an essential RNA splicing factor. RNA (NEW YORK, N.Y.) 2019; 25:352-363. [PMID: 30538148 PMCID: PMC6380277 DOI: 10.1261/rna.069773.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 05/05/2023]
Abstract
The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in Caenorhabditis elegans (C. elegans). The function of the human NRDE2 gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, NRDE2-depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of CEP131 pre-mRNA, and depleting NRDE2 dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human NRDE2 in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of NRDE2, and highlights the direct regulation of CEP131 splicing as one of multiple mechanisms through which such phenotypes might be explained.
Collapse
Affiliation(s)
- Alan L Jiao
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Roberto Perales
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Neil T Umbreit
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey R Haswell
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115, USA
| | - Mary E Piper
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian D Adams
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David Pellman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Scott Kennedy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
185
|
Ruiz JC, Hunter OV, Conrad NK. Kaposi's sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog 2019; 15:e1007596. [PMID: 30785952 PMCID: PMC6398867 DOI: 10.1371/journal.ppat.1007596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5ʹ RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment. Eukaryotic cells contain numerous nuclear RNA quality control (QC) systems that ensure transcriptome fidelity by detecting and degrading aberrant RNAs. Some viral RNAs are also predicted to be degraded by these RNA QC systems, so viruses have evolved mechanisms that counter host RNA QC pathways. Previous studies showed that the Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses the ORF57 protein to protect its RNAs from nuclear decay. However, neither the specific host pathways that degrade KSHV RNAs nor the mechanisms describing ORF57 protection of viral RNAs were known. Our data suggest that ORF57 protects viral RNAs from two different nuclear RNA QC pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) and an ARS2-mediated RNA decay pathway. Mechanistically, we show that ORF57 binds directly to viral RNAs and prevents the recruitment of hMTR4, a cellular factor whose function is to recruit the exosome, the complex responsible for RNA decay, to the transcript. We conclude that by preventing hMTR4 recruitment, ORF57 protects viral RNAs from degradation resulting in robust expression of viral genes.
Collapse
Affiliation(s)
- Julio C. Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
- * E-mail:
| |
Collapse
|
186
|
Vautrin A, Manchon L, Garcel A, Campos N, Lapasset L, Laaref AM, Bruno R, Gislard M, Dubois E, Scherrer D, Ehrlich JH, Tazi J. Both anti-inflammatory and antiviral properties of novel drug candidate ABX464 are mediated by modulation of RNA splicing. Sci Rep 2019; 9:792. [PMID: 30692590 PMCID: PMC6349857 DOI: 10.1038/s41598-018-37813-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
ABX464 is a first-in-class, clinical-stage, small molecule for oral administration that has shown strong anti-inflammatory effects in the DSS-model for inflammatory bowel disease (IBD) and also prevents replication of the HIV virus. ABX464 which binds to cap binding complex (CBC) has demonstrated safety and efficacy in a phase 2a proof-of-concept clinical trial in patients with Ulcerative colitis. Previously, with limited technologies, it was not possible to quantify the effect of ABX464 on viral and cellular RNA biogenesis. Here, using RNA CaptureSeq and deep sequencing, we report that ABX464 enhances the splicing of HIV RNA in infected PBMCs from six healthy individuals and also the expression and splicing of a single long noncoding RNA to generate the anti-inflammatory miR-124 both ex vivo and in HIV patients. While ABX464 has no effect on pre-mRNA splicing of cellular genes, depletion of CBC complex by RNAi leads to accumulation of intron retention transcripts. These results imply that ABX464 did not inhibit the function of CBC in splicing but rather strengthens it under pathological condition like inflammation and HIV infection. The specific dual ability of ABX464 to generate both anti-inflammatory miR-124 and spliced viral RNA may have applicability for the treatment of both inflammatory diseases and HIV infection.
Collapse
Affiliation(s)
- Audrey Vautrin
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, Montpellier, France
| | | | - Aude Garcel
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, Montpellier, France
| | - Noëlie Campos
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, Montpellier, France
| | - Laure Lapasset
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, Montpellier, France
| | | | - Roman Bruno
- ACOBIOM, 1682 Rue de la Valsière, 34184, Montpellier Cedex 4, Montpellier, France
| | - Marie Gislard
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Didier Scherrer
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, Montpellier, France
| | - J Hartmut Ehrlich
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, Montpellier, France
| | - Jamal Tazi
- IGMM, CNRS, Univ. Montpellier, Montpellier, France.
| |
Collapse
|
187
|
Schmid M, Jensen TH. The Nuclear RNA Exosome and Its Cofactors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:113-132. [PMID: 31811632 DOI: 10.1007/978-3-030-31434-7_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The RNA exosome is a highly conserved ribonuclease endowed with 3'-5' exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3'-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms-the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
188
|
The H/ACA complex disrupts triplex in hTR precursor to permit processing by RRP6 and PARN. Nat Commun 2018; 9:5430. [PMID: 30575725 PMCID: PMC6303318 DOI: 10.1038/s41467-018-07822-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Human telomerase RNA (hTR) is transcribed as a precursor that is then posttranscriptionally modified and processed. A fraction of the transcripts is oligoadenylated by TRAMP and either processed into the mature hTR or degraded by the exosome. Here, we characterize the processing of 3′ extended forms of varying length by PARN and RRP6. We show that tertiary RNA interactions unique to the longer transcripts favor RNA degradation, whereas H/ACA RNP assembly stimulates productive processing. Interestingly, the H/ACA complex actively promotes processing in addition to protecting the mature 3′ end. Processing occurs in two steps with longer forms first being trimmed by RRP6 and shorter forms then being processed by PARN. These results reveal how RNA structure and RNP assembly affect the kinetics of processing and degradation and ultimately determine the amount of functional telomerase produced in cells. Telomerase RNA (hTR) is transcribed as a 3′-extended precursor. Here the authors examine the processing of hTR precursors of various lengths and show that processing occurs in distinct steps involving different nucleases PARN and RRP6.
Collapse
|
189
|
Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH. The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res 2018; 46:11502-11513. [PMID: 30212902 PMCID: PMC6265456 DOI: 10.1093/nar/gky817] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Gene expression programs change during cellular transitions. It is well established that a network of transcription factors and chromatin modifiers regulate RNA levels during embryonic stem cell (ESC) differentiation, but the full impact of post-transcriptional processes remains elusive. While cytoplasmic RNA turnover mechanisms have been implicated in differentiation, the contribution of nuclear RNA decay has not been investigated. Here, we differentiate mouse ESCs, depleted for the ribonucleolytic RNA exosome, into embryoid bodies to determine to which degree RNA abundance in the two states can be attributed to changes in transcription versus RNA decay by the exosome. As a general observation, we find that exosome depletion mainly leads to the stabilization of RNAs from lowly transcribed loci, including several protein-coding genes. Depletion of the nuclear exosome cofactor RBM7 leads to similar effects. In particular, transcripts that are differentially expressed between states tend to be more exosome sensitive in the state where expression is low. We conclude that the RNA exosome contributes to down-regulation of transcripts with disparate expression, often in conjunction with transcriptional down-regulation.
Collapse
Affiliation(s)
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Luke A Wojenski
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Geno J Villafano
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
| | - Leighton Core
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | |
Collapse
|
190
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
191
|
Tudek A, Lloret-Llinares M, Jensen TH. The multitasking polyA tail: nuclear RNA maturation, degradation and export. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0169. [PMID: 30397105 DOI: 10.1098/rstb.2018.0169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
A polyA (pA) tail is an essential modification added to the 3' ends of a wide range of RNAs at different stages of their metabolism. Here, we describe the main sources of polyadenylation and outline their underlying biochemical interactions within the nuclei of budding yeast Saccharomyces cerevisiae, human cells and, when relevant, the fission yeast Schizosaccharomyces pombe Polyadenylation mediated by the S. cerevisiae Trf4/5 enzymes, and their human homologues PAPD5/7, typically leads to the 3'-end trimming or complete decay of non-coding RNAs. By contrast, the primary function of canonical pA polymerases (PAPs) is to produce stable and nuclear export-competent mRNAs. However, this dichotomy is becoming increasingly blurred, at least in S. pombe and human cells, where polyadenylation mediated by canonical PAPs may also result in transcript decay.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
192
|
de Almeida C, Scheer H, Gobert A, Fileccia V, Martinelli F, Zuber H, Gagliardi D. RNA uridylation and decay in plants. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0163. [PMID: 30397100 DOI: 10.1098/rstb.2018.0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/13/2022] Open
Abstract
RNA uridylation consists of the untemplated addition of uridines at the 3' extremity of an RNA molecule. RNA uridylation is catalysed by terminal uridylyltransferases (TUTases), which form a subgroup of the terminal nucleotidyltransferase family, to which poly(A) polymerases also belong. The key role of RNA uridylation is to regulate RNA degradation in a variety of eukaryotes, including fission yeast, plants and animals. In plants, RNA uridylation has been mostly studied in two model species, the green algae Chlamydomonas reinhardtii and the flowering plant Arabidopsis thaliana Plant TUTases target a variety of RNA substrates, differing in size and function. These RNA substrates include microRNAs (miRNAs), small interfering silencing RNAs (siRNAs), ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) and mRNA fragments generated during post-transcriptional gene silencing. Viral RNAs can also get uridylated during plant infection. We describe here the evolutionary history of plant TUTases and we summarize the diverse molecular functions of uridylation during RNA degradation processes in plants. We also outline key points of future research.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Caroline de Almeida
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Veronica Fileccia
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| |
Collapse
|
193
|
Wang K, Wang L, Wang J, Chen S, Shi M, Cheng H. Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 2018; 217:3912-3929. [PMID: 30194269 PMCID: PMC6219727 DOI: 10.1083/jcb.201801184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Nuclear speckles (NSs) store splicing factors. Wang et al. show that many naturally intronless mRNAs associate with NSs and that speckle association enhances their export by facilitating TREX recruitment, suggesting that trafficking to NSs could be an important quality control step in intronless mRNA export. Nuclear speckles (NSs) serve as splicing factor storage sites. In this study, we unexpectedly found that many endogenous intronless mRNAs, which do not undergo splicing, associate with NSs. These associations do not require transcription, polyadenylation, or the polyA tail. Rather, exonic splicing enhancers present in intronless mRNAs and their binding partners, SR proteins, promote intronless mRNA localization to NSs. Significantly, speckle targeting of mRNAs promotes the recruitment of the TREX export complex and their TREX-dependent nuclear export. Furthermore, TREX, which accumulates in NSs, is required for releasing intronless mRNAs from NSs, whereas NXF1, which is mainly detected at nuclear pores, is not. Upon NXF1 depletion, the TREX protein UAP56 loses speckle concentration but coaccumulates with intronless mRNAs and polyA RNAs in the nucleoplasm, and these RNAs are trapped in NSs upon UAP56 codepletion. We propose that the export-competent messenger RNP assembly mainly occurs in NSs for intronless mRNAs and that entering NSs serves as a quality control step in mRNA export.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
194
|
The splicing factor SRSF3 is functionally connected to the nuclear RNA exosome for intronless mRNA decay. Sci Rep 2018; 8:12901. [PMID: 30150655 PMCID: PMC6110769 DOI: 10.1038/s41598-018-31078-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA exosome fulfills important functions in the processing and degradation of numerous RNAs species. However, the mechanisms of recruitment to its various nuclear substrates are poorly understood. Using Epstein-Barr virus mRNAs as a model, we have discovered a novel function for the splicing factor SRSF3 in the quality control of nuclear mRNAs. We have found that viral mRNAs generated from intronless genes are particularly unstable due to their degradation by the nuclear RNA exosome. This effect is counteracted by the viral RNA-binding protein EB2 which stabilizes these mRNAs in the nucleus and stimulates both their export to the cytoplasm and their translation. In the absence of EB2, SRSF3 participates in the destabilization of these viral RNAs by interacting with both the RNA exosome and its adaptor complex NEXT. Taken together, our results provide direct evidence for a connection between the splicing machinery and mRNA decay mediated by the RNA exosome. Our results suggest that SRSF3 aids the nuclear RNA exosome and the NEXT complex in the recognition and degradation of certain mRNAs.
Collapse
|
195
|
Richard P, Ogami K, Chen Y, Feng S, Moresco JJ, Yates JR, Manley JL. NRDE-2, the human homolog of fission yeast Nrl1, prevents DNA damage accumulation in human cells. RNA Biol 2018; 15:868-876. [PMID: 29902117 DOI: 10.1080/15476286.2018.1467180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RNA helicase Mtr4 is a versatile protein that is a crucial component of several distinct RNA surveillance complexes. Here we describe a novel complex that contains Mtr4, but has a role distinct from any of those previously described. We found that Mtr4 association with the human homolog of fission yeast Nrl1, NRDE-2, defines a novel function for Mtr4 in the DNA damage response pathway. We provide biochemical evidence that Mtr4 and NRDE-2 are part of the same complex and show that both proteins play a role in the DNA damage response by maintaining low DNA double-strand break levels. Importantly, the DNA damage response function of the Mtr4/NRDE-2 complex does not depend on the formation of R loops. We show however that NRDE-2 and Mtr4 can affect R-loop signals at a subset of distinct genes, possibly regulating their expression. Our work not only expands the wide range of Mtr4 functions, but also elucidates an important role of the less characterized human NRDE-2 protein.
Collapse
Affiliation(s)
- Patricia Richard
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Koichi Ogami
- a Department of Biological Sciences , Columbia University , New York , NY , USA.,b Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya , Japan
| | - Yaqiong Chen
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Shuang Feng
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - James J Moresco
- c Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - John R Yates
- c Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - James L Manley
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
196
|
Tuck AC, Natarajan KN, Rice GM, Borawski J, Mohn F, Rankova A, Flemr M, Wenger A, Nutiu R, Teichmann S, Bühler M. Distinctive features of lincRNA gene expression suggest widespread RNA-independent functions. Life Sci Alliance 2018; 1:e201800124. [PMID: 30456373 PMCID: PMC6238598 DOI: 10.26508/lsa.201800124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic genomes produce RNAs lacking protein-coding potential, with enigmatic roles. We integrated three approaches to study large intervening noncoding RNA (lincRNA) gene functions. First, we profiled mouse embryonic stem cells and neural precursor cells at single-cell resolution, revealing lincRNAs expressed in specific cell types, cell subpopulations, or cell cycle stages. Second, we assembled a transcriptome-wide atlas of nuclear lincRNA degradation by identifying targets of the exosome cofactor Mtr4. Third, we developed a reversible depletion system to separate the role of a lincRNA gene from that of its RNA. Our approach distinguished lincRNA loci functioning in trans from those modulating local gene expression. Some genes express stable and/or abundant lincRNAs in single cells, but many prematurely terminate transcription and produce lincRNAs rapidly degraded by the nuclear exosome. This suggests that besides RNA-dependent functions, lincRNA loci act as DNA elements or through transcription. Our integrative approach helps distinguish these mechanisms.
Collapse
Affiliation(s)
- Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kedar Nath Natarajan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Danish Institute of Advanced Study and Functional Genomics and Metabolism Unit, University of Southern Denmark, Denmark
| | - Greggory M Rice
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jason Borawski
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alice Wenger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Razvan Nutiu
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sarah Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
197
|
Gerlach P, Schuller JM, Bonneau F, Basquin J, Reichelt P, Falk S, Conti E. Distinct and evolutionary conserved structural features of the human nuclear exosome complex. eLife 2018; 7:38686. [PMID: 30047866 PMCID: PMC6072439 DOI: 10.7554/elife.38686] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear RNA exosome complex mediates the processing of structured RNAs and the decay of aberrant non-coding RNAs, an important function particularly in human cells. Most mechanistic studies to date have focused on the yeast system. Here, we reconstituted and studied the properties of a recombinant 14-subunit human nuclear exosome complex. In biochemical assays, the human exosome embeds a longer RNA channel than its yeast counterpart. The 3.8 Å resolution cryo-EM structure of the core complex bound to a single-stranded RNA reveals that the RNA channel path is formed by two distinct features of the hDIS3 exoribonuclease: an open conformation and a domain organization more similar to bacterial RNase II than to yeast Rrp44. The cryo-EM structure of the holo-complex shows how obligate nuclear cofactors position the hMTR4 helicase at the entrance of the core complex, suggesting a striking structural conservation from lower to higher eukaryotes.
Collapse
Affiliation(s)
- Piotr Gerlach
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Peter Reichelt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Sebastian Falk
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| |
Collapse
|
198
|
Menezes MR, Balzeau J, Hagan JP. 3' RNA Uridylation in Epitranscriptomics, Gene Regulation, and Disease. Front Mol Biosci 2018; 5:61. [PMID: 30057901 PMCID: PMC6053540 DOI: 10.3389/fmolb.2018.00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence implicates a wide range of post-transcriptional RNA modifications that play crucial roles in fundamental biological processes including regulating gene expression. Collectively, they are known as epitranscriptomics. Recent studies implicate 3' RNA uridylation, the non-templated addition of uridine(s) to the terminal end of RNA, as a key player in epitranscriptomics. In this review, we describe the functional roles and significance of 3' terminal RNA uridylation that has diverse functions in regulating both mRNAs and non-coding RNAs. In mammals, three Terminal Uridylyl Transferases (TUTases) are primarily responsible for 3' RNA uridylation. These enzymes are also referred to as polyU polymerases. TUTase 1 (TUT1) is implicated in U6 snRNA maturation via uridylation. The TUTases TUT4 and/or TUT7 are the predominant mediators of all other cellular uridylation. Terminal uridylation promotes turnover for many polyadenylated mRNAs, replication-dependent histone mRNAs that lack polyA-tails, and aberrant structured noncoding RNAs. In addition, uridylation regulates biogenesis of a subset of microRNAs and generates isomiRs, sequent variant microRNAs that have altered function in specific cases. For example, the RNA binding protein and proto-oncogene LIN28A and TUT4 work together to polyuridylate pre-let-7, thereby blocking biogenesis and function of the tumor suppressor let-7 microRNA family. In contrast, monouridylation of Group II pre-miRNAs creates an optimal 3' overhang that promotes recognition and subsequent cleavage by the Dicer-TRBP complex that then yields the mature microRNA. Also, uridylation may play a role in non-canonical microRNA biogenesis. The overall significance of 3' RNA uridylation is discussed with an emphasis on mammalian development, gene regulation, and disease, including cancer and Perlman syndrome. We also introduce recent changes to the HUGO-approved gene names for multiple terminal nucleotidyl transferases that affects in part TUTase nomenclature (TUT1/TENT1, TENT2/PAPD4/GLD2, TUT4/ZCCHC11/TENT3A, TUT7/ZCCHC6/TENT3B, TENT4A/PAPD7, TENT4B/PAPD5, TENT5A/FAM46A, TENT5B/FAM46B, TENT5C/FAM46C, TENT5D/FAM46D, MTPAP/TENT6/PAPD1).
Collapse
Affiliation(s)
- Miriam R Menezes
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julien Balzeau
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John P Hagan
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
199
|
Imamura K, Takaya A, Ishida YI, Fukuoka Y, Taya T, Nakaki R, Kakeda M, Imamachi N, Sato A, Yamada T, Onoguchi-Mizutani R, Akizuki G, Tanu T, Tao K, Miyao S, Suzuki Y, Nagahama M, Yamamoto T, Jensen TH, Akimitsu N. Diminished nuclear RNA decay upon Salmonella infection upregulates antibacterial noncoding RNAs. EMBO J 2018; 37:embj.201797723. [PMID: 29880601 DOI: 10.15252/embj.201797723] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic mRNA degradation controls gene expression to help eliminate pathogens during infection. However, it has remained unclear whether such regulation also extends to nuclear RNA decay. Here, we show that 145 unstable nuclear RNAs, including enhancer RNAs (eRNAs) and long noncoding RNAs (lncRNAs) such as NEAT1v2, are stabilized upon Salmonella infection in HeLa cells. In uninfected cells, the RNA exosome, aided by the Nuclear EXosome Targeting (NEXT) complex, degrades these labile transcripts. Upon infection, the levels of the exosome/NEXT components, RRP6 and MTR4, dramatically decrease, resulting in transcript stabilization. Depletion of lncRNAs, NEAT1v2, or eRNA07573 in HeLa cells triggers increased susceptibility to Salmonella infection concomitant with the deregulated expression of a distinct class of immunity-related genes, indicating that the accumulation of unstable nuclear RNAs contributes to antibacterial defense. Our results highlight a fundamental role for regulated degradation of nuclear RNA in the response to pathogenic infection.
Collapse
Affiliation(s)
- Katsutoshi Imamura
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | | | | | | | - Miho Kakeda
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Naoto Imamachi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Toshimichi Yamada
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Gen Akizuki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Tao
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tomoko Yamamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
200
|
Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Proc Natl Acad Sci U S A 2018; 115:E5506-E5515. [PMID: 29844170 PMCID: PMC6004480 DOI: 10.1073/pnas.1803530115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aberrant or unwanted transcripts can be degraded by the RNA exosome with the help of the nuclear exosome-targeting (NEXT) complex. NEXT, composed of RNA-binding protein RBM7, scaffold ZCCHC8, and helicase MTR4, is implicated in stress response, neurodegeneration, and viral ribogenesis. Here, we characterize the activities of NEXT that support its role in exosome-mediated decay. NEXT catalyzes 3′→5′ helicase activity and disrupts RNA:RNA and DNA:RNA duplexes more efficiently than MTR4. Optimal activity is observed when substrates include a uridine-rich motif, for interactions with RBM7, and a 3′ poly(A) tail. The ZCCHC8 C-terminal domain binds the helicase core and can stimulate MTR4 helicase/ATPase activities. Our results highlight the interplay among NEXT subunits to ensure effective targeting of substrates. The nuclear exosome-targeting (NEXT) complex functions as an RNA exosome cofactor and is involved in surveillance and turnover of aberrant transcripts and noncoding RNAs. NEXT is a ternary complex composed of the RNA-binding protein RBM7, the scaffold zinc-knuckle protein ZCCHC8, and the helicase MTR4. While RNA interactions with RBM7 are known, it remains unclear how NEXT subunits collaborate to recognize and prepare substrates for degradation. Here, we show that MTR4 helicase activity is enhanced when associated with RBM7 and ZCCHC8. While uridine-rich substrates interact with RBM7 and are preferred, optimal activity is observed when substrates include a polyadenylated 3′ end. We identify a bipartite interaction of ZCCHC8 with MTR4 and uncover a role for the conserved C-terminal domain of ZCCHC8 in stimulating MTR4 helicase and ATPase activities. A crystal structure reveals that the ZCCHC8 C-terminal domain binds the helicase core in a manner that is distinct from that observed for Saccharomyces cerevisiae exosome cofactors Trf4p and Air2p. Our results are consistent with a model whereby effective targeting of substrates by NEXT entails recognition of elements within the substrate and activation of MTR4 helicase activity.
Collapse
|