151
|
Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation. Cell 2016; 167:803-815.e21. [PMID: 27720452 DOI: 10.1016/j.cell.2016.09.015] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.
Collapse
|
152
|
O'Connor PBF, Andreev DE, Baranov PV. Comparative survey of the relative impact of mRNA features on local ribosome profiling read density. Nat Commun 2016; 7:12915. [PMID: 27698342 PMCID: PMC5059445 DOI: 10.1038/ncomms12915] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates, is characterized by the presence of infrequent high peaks in ribosome footprint density and by long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and outperforms other normalization techniques in the presence of heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence features that affect ribosome footprint densities globally. We show that a few parameters extracted with RUST are sufficient for predicting experimental densities with high accuracy. Importantly the application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation in sequence determinants of ribosome footprint frequencies, questioning the reliability of Ribo-seq as an accurate representation of local ribosome densities without prior quality control. This emphasizes our incomplete understanding of how protocol parameters affect ribosome footprint densities. Ribosome profiling data can suffer from uneven coverage which hampers estimation of elongation rates. Connor et al. present an enhanced data smoothing method for Ribo-seq data and highlight significant variability in sequence determinants of ribosome density in publicly available data sets.
Collapse
Affiliation(s)
| | - Dmitry E Andreev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
153
|
Yu X, Willmann MR, Anderson SJ, Gregory BD. Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis. THE PLANT CELL 2016; 28:2385-2397. [PMID: 27758893 PMCID: PMC5134982 DOI: 10.1105/tpc.16.00456] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/02/2016] [Accepted: 10/07/2016] [Indexed: 05/19/2023]
Abstract
RNA turnover is necessary for controlling proper mRNA levels posttranscriptionally. In general, RNA degradation is via exoribonucleases that degrade RNA either from the 5' end to the 3' end, such as XRN4, or in the opposite direction by the multisubunit exosome complex. Here, we use genome-wide mapping of uncapped and cleaved transcripts to reveal the global landscape of cotranslational mRNA decay in the Arabidopsis thaliana transcriptome. We found that this process leaves a clear three nucleotide periodicity in open reading frames. This pattern of cotranslational degradation is especially evident near the ends of open reading frames, where we observe accumulation of cleavage events focused 16 to 17 nucleotides upstream of the stop codon because of ribosomal pausing during translation termination. Following treatment of Arabidopsis plants with the translation inhibitor cycloheximide, cleavage events accumulate 13 to 14 nucleotides upstream of the start codon where initiating ribosomes have been stalled with these sequences in their P site. Further analysis in xrn4 mutant plants indicates that cotranslational RNA decay is XRN4 dependent. Additionally, studies in plants lacking CAP BINDING PROTEIN80/ABA HYPERSENSITIVE1, the largest subunit of the nuclear mRNA cap binding complex, reveal a role for this protein in cotranslational decay. In total, our results demonstrate the global prevalence and features of cotranslational RNA decay in a plant transcriptome.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew R Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Stephen J Anderson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
154
|
Funikov SY, Ryazansky SS, Kanapin AA, Logacheva MD, Penin AA, Snezhkina AV, Shilova VY, Garbuz DG, Evgen'ev MB, Zatsepina OG. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster. Open Biol 2016; 6:160224. [PMID: 27805906 PMCID: PMC5090062 DOI: 10.1098/rsob.160224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR.
Collapse
Affiliation(s)
- S Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - S S Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russian Federation
| | | | - M D Logacheva
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - A A Penin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - A V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - V Yu Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| |
Collapse
|
155
|
Gerashchenko MV, Gladyshev VN. Ribonuclease selection for ribosome profiling. Nucleic Acids Res 2016; 45:e6. [PMID: 27638886 PMCID: PMC5314788 DOI: 10.1093/nar/gkw822] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/14/2016] [Accepted: 09/06/2016] [Indexed: 11/14/2022] Open
Abstract
Ribosome profiling has emerged as a powerful method to assess global gene translation, but methodological and analytical challenges often lead to inconsistencies across labs and model organisms. A critical issue in ribosome profiling is nuclease treatment of ribosome-mRNA complexes, as it is important to ensure both stability of ribosomal particles and complete conversion of polysomes to monosomes. We performed comparative ribosome profiling in yeast and mice with various ribonucleases including I, A, S7 and T1, characterized their cutting preferences, trinucleotide periodicity patterns and coverage similarities across coding sequences, and showed that they yield comparable estimations of gene expression when ribosome integrity is not compromised. However, ribosome coverage patterns of individual transcripts had little in common between the ribonucleases. We further examined their potency at converting polysomes to monosomes across other commonly used model organisms, including bacteria, nematodes and fruit flies. In some cases, ribonuclease treatment completely degraded ribosome populations. Ribonuclease T1 was the only enzyme that preserved ribosomal integrity while thoroughly converting polysomes to monosomes in all examined species. This study provides a guide for ribonuclease selection in ribosome profiling experiments across most common model systems.
Collapse
Affiliation(s)
- Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
156
|
Hakim V, Cohen LD, Zuchman R, Ziv T, Ziv NE. The effects of proteasomal inhibition on synaptic proteostasis. EMBO J 2016; 35:2238-2262. [PMID: 27613546 PMCID: PMC5069550 DOI: 10.15252/embj.201593594] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Synaptic function crucially depends on uninterrupted synthesis and degradation of synaptic proteins. While much has been learned on synaptic protein synthesis, little is known on the routes by which synaptic proteins are degraded. Here we systematically studied how inhibition of the ubiquitin-proteasome system (UPS) affects the degradation rates of thousands of neuronal and synaptic proteins. We identified a group of proteins, including several proteins related to glutamate receptor trafficking, whose degradation rates were significantly slowed by UPS inhibition. Unexpectedly, however, degradation rates of most synaptic proteins were not significantly affected. Interestingly, many of the differential effects of UPS inhibition were readily explained by a quantitative framework that considered known metabolic turnover rates for the same proteins. In contrast to the limited effects on protein degradation, UPS inhibition profoundly and preferentially suppressed the synthesis of a large number of synaptic proteins. Our findings point to the importance of the UPS in the degradation of certain synaptic proteins, yet indicate that under basal conditions most synaptic proteins might be degraded through alternative pathways.
Collapse
Affiliation(s)
- Vicky Hakim
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel.,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laurie D Cohen
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel.,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rina Zuchman
- Smoler Proteomics Center, Faculty of Biology, Technion, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Faculty of Biology, Technion, Haifa, Israel
| | - Noam E Ziv
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel .,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
157
|
Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. ACTA ACUST UNITED AC 2016; 219:2673-86. [PMID: 27335449 DOI: 10.1242/jeb.141176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023]
Abstract
Acute heat stress perturbs cellular function on a variety of levels, leading to protein dysfunction and aggregation, oxidative stress and loss of metabolic homeostasis. If these challenges are not overcome quickly, the stressed organism can die. To better understand the earliest tissue-level responses to heat stress, we examined the proteomic response of gill from Geukensia demissa, an extremely eurythermal mussel from the temperate intertidal zone of eastern North America. We exposed 15°C-acclimated individuals to an acute near-lethal heat stress (45°C) for 1 h, and collected gill samples from 0 to 24 h of recovery. The changes in protein expression we found reveal a coordinated physiological response to acute heat stress: proteins associated with apoptotic processes were increased in abundance during the stress itself (i.e. at 0 h of recovery), while protein chaperones and foldases increased in abundance soon after (3 h). The greatest number of proteins changed abundance at 6 h; these included oxidative stress proteins and enzymes of energy metabolism. Proteins associated with the cytoskeleton and extracellular matrix also changed in abundance starting at 6 h, providing evidence of cell proliferation, migration and tissue remodeling. By 12 h, the response to acute heat stress was diminishing, with fewer stress and structural proteins changing in abundance. Finally, the proteins with altered abundances identified at 24 h suggest a return to the pre-stress anabolic state.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | | | - Kelly M Cox
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Kelly R Karch
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
158
|
Abstract
Ribosome profiling has emerged as a technique for measuring translation comprehensively and quantitatively by deep sequencing of ribosome-protected mRNA fragments. By identifying the precise positions of ribosomes, footprinting experiments have unveiled key insights into the composition and regulation of the expressed proteome, including delineating potentially functional micropeptides, revealing pervasive translation on cytosolic RNAs, and identifying differences in elongation rates driven by codon usage or other factors. This Primer looks at important experimental and analytical concerns for executing ribosome profiling experiments and surveys recent examples where the approach was developed to explore protein biogenesis and homeostasis.
Collapse
|
159
|
Faure G, Ogurtsov AY, Shabalina SA, Koonin EV. Role of mRNA structure in the control of protein folding. Nucleic Acids Res 2016; 44:10898-10911. [PMID: 27466388 PMCID: PMC5159526 DOI: 10.1093/nar/gkw671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Specific structures in mRNA modulate translation rate and thus can affect protein folding. Using the protein structures from two eukaryotes and three prokaryotes, we explore the connections between the protein compactness, inferred from solvent accessibility, and mRNA structure, inferred from mRNA folding energy (ΔG). In both prokaryotes and eukaryotes, the ΔG value of the most stable 30 nucleotide segment of the mRNA (ΔGmin) strongly, positively correlates with protein solvent accessibility. Thus, mRNAs containing exceptionally stable secondary structure elements typically encode compact proteins. The correlations between ΔG and protein compactness are much more pronounced in predicted ordered parts of proteins compared to the predicted disordered parts, indicative of an important role of mRNA secondary structure elements in the control of protein folding. Additionally, ΔG correlates with the mRNA length and the evolutionary rate of synonymous positions. The correlations are partially independent and were used to construct multiple regression models which explain about half of the variance of protein solvent accessibility. These findings suggest a model in which the mRNA structure, particularly exceptionally stable RNA structural elements, act as gauges of protein co-translational folding by reducing ribosome speed when the nascent peptide needs time to form and optimize the core structure.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
160
|
Wang X, Hou J, Quedenau C, Chen W. Pervasive isoform-specific translational regulation via alternative transcription start sites in mammals. Mol Syst Biol 2016; 12:875. [PMID: 27430939 PMCID: PMC4965872 DOI: 10.15252/msb.20166941] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/02/2022] Open
Abstract
Transcription initiated at alternative sites can produce mRNA isoforms with different 5'UTRs, which are potentially subjected to differential translational regulation. However, the prevalence of such isoform-specific translational control across mammalian genomes is currently unknown. By combining polysome profiling with high-throughput mRNA 5' end sequencing, we directly measured the translational status of mRNA isoforms with distinct start sites. Among 9,951 genes expressed in mouse fibroblasts, we identified 4,153 showed significant initiation at multiple sites, of which 745 genes exhibited significant isoform-divergent translation. Systematic analyses of the isoform-specific translation revealed that isoforms with longer 5'UTRs tended to translate less efficiently. Further investigation of cis-elements within 5'UTRs not only provided novel insights into the regulation by known sequence features, but also led to the discovery of novel regulatory sequence motifs. Quantitative models integrating all these features explained over half of the variance in the observed isoform-divergent translation. Overall, our study demonstrated the extensive translational regulation by usage of alternative transcription start sites and offered comprehensive understanding of translational regulation by diverse sequence features embedded in 5'UTRs.
Collapse
Affiliation(s)
- Xi Wang
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Jingyi Hou
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Claudia Quedenau
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
161
|
Steffen KK, Dillin A. A Ribosomal Perspective on Proteostasis and Aging. Cell Metab 2016; 23:1004-1012. [PMID: 27304502 DOI: 10.1016/j.cmet.2016.05.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
As the first and most direct process influencing the proteostasis capacity of a cell, regulation of translation influences lifespan across taxa. Here we highlight some of the newly discovered means by which translational regulation affects cellular proteostasis, with a focus on mechanisms that may ultimately impinge upon the aging process.
Collapse
Affiliation(s)
- Kristan K Steffen
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
162
|
Leach MD, Farrer RA, Tan K, Miao Z, Walker LA, Cuomo CA, Wheeler RT, Brown AJP, Wong KH, Cowen LE. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nat Commun 2016; 7:11704. [PMID: 27226156 PMCID: PMC4894976 DOI: 10.1038/ncomms11704] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Fever is a universal response to infection, and opportunistic pathogens such as Candida albicans have evolved complex circuitry to sense and respond to heat. Here we harness RNA-seq and ChIP-seq to discover that the heat shock transcription factor, Hsf1, binds distinct motifs in nucleosome-depleted promoter regions to regulate heat shock genes and genes involved in virulence in C. albicans. Consequently, heat shock increases C. albicans host cell adhesion, damage and virulence. Hsf1 activation depends upon the molecular chaperone Hsp90 under basal and heat shock conditions, but the effects are opposite and in part controlled at the level of Hsf1 expression and DNA binding. Finally, we demonstrate that Hsp90 regulates global transcription programs by modulating nucleosome levels at promoters of stress-responsive genes. Thus, we describe a mechanism by which C. albicans responds to temperature via Hsf1 and Hsp90 to orchestrate gene expression and chromatin architecture, thereby enabling thermal adaptation and virulence.
Collapse
Affiliation(s)
- Michelle D. Leach
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Rhys A. Farrer
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Louise A. Walker
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine 04469, USA
| | - Christina A. Cuomo
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine 04469, USA
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
163
|
Ribosome-associated protein quality control. Nat Struct Mol Biol 2016; 23:7-15. [PMID: 26733220 DOI: 10.1038/nsmb.3147] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.
Collapse
|
164
|
Ishimura R, Nagy G, Dotu I, Chuang JH, Ackerman SL. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. eLife 2016; 5. [PMID: 27085088 PMCID: PMC4917338 DOI: 10.7554/elife.14295] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNAArgUCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress. DOI:http://dx.doi.org/10.7554/eLife.14295.001 Information stored in DNA is used to make proteins in a two-step process. First, the DNA is copied to make molecules of messenger ribonucleic acid (or messenger RNA for short). Next, machines called ribosomes use the messenger RNAs as templates to assemble chains of amino acids – the building blocks of proteins – in a process called translation. Another type of RNA molecule called transfer RNA carries each amino acid to the ribosomes. If a specific transfer RNA is not available for translation at the right time, the ribosome might stall as it moves along the messenger RNA. At this point, the ribosome needs to be restarted or it will fall off the mRNA without finishing the protein. In 2014, a group of researchers reported that certain types of brain cells are very sensitive to ribosome stalling, and tend to die if translation does not continue. A protein called GTPBP2 was shown to play an important role in restarting stalled ribosomes in these cells. Here, Ishimura, Nagy et al. – including some of the researchers from the earlier work – investigated the molecular pathways that ribosome stalling triggers in brain cells using mutant mice that lacked the GTPBP2 protein. The experiments show that ribosome stalling activates an enzyme known as GCN2, which was already known to sense other types of malfunctions in cellular processes. Ishimura, Nagy et al. also show that GCN2 triggers stress responses in the cells by activating a communication system called the ATF4 pathway. This pathway protects the cells from damage, and its absence results in more rapid cell deterioration and death. The next challenges are to understand the exact mechanism by which GCN2 senses stalled ribosomes, and to find out how ribosome stalling causes the death of brain cells. DOI:http://dx.doi.org/10.7554/eLife.14295.002
Collapse
Affiliation(s)
- Ryuta Ishimura
- Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
| | - Gabor Nagy
- Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
| | - Ivan Dotu
- Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, United States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States.,Department of Cell and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States.,Section of Neurobiology, University of California, La Jolla, United States
| |
Collapse
|
165
|
Walters RW, Parker R. Coupling of Ribostasis and Proteostasis: Hsp70 Proteins in mRNA Metabolism. Trends Biochem Sci 2016; 40:552-559. [PMID: 26410596 DOI: 10.1016/j.tibs.2015.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023]
Abstract
A key aspect of the control of gene expression is the differential rates of mRNA translation and degradation, including alterations due to extracellular inputs. Surprisingly, multiple examples now argue that Hsp70 protein chaperones and their associated Hsp40 partners modulate both mRNA degradation and translation. Hsp70 proteins affect mRNA metabolism by various mechanisms including regulating nascent polypeptide chain folding, activating signal transduction pathways, promoting clearance of stress granules, and controlling mRNA degradation in an mRNA-specific manner. Taken together, these observations highlight the general principle that mRNA metabolism is coupled to the proteostatic state of the cell, often as assessed by the presence of unfolded or misfolded proteins.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
166
|
Xiao Z, Zou Q, Liu Y, Yang X. Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 2016; 7:11194. [PMID: 27041671 PMCID: PMC4822032 DOI: 10.1038/ncomms11194] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations.
Collapse
Affiliation(s)
- Zhengtao Xiao
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Zou
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing 100084, China
| | - Yu Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
167
|
Finnen RL, Banfield BW. Alphaherpesvirus Subversion of Stress-Induced Translational Arrest. Viruses 2016; 8:81. [PMID: 26999187 PMCID: PMC4810271 DOI: 10.3390/v8030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In this article, we provide an overview of translational arrest in eukaryotic cells in response to stress and the tactics used specifically by alphaherpesviruses to overcome translational arrest. One consequence of translational arrest is the formation of cytoplasmic compartments called stress granules (SGs). Many viruses target SGs for disruption and/or modification, including the alphaherpesvirus herpes simplex virus type 2 (HSV-2). Recently, it was discovered that HSV-2 disrupts SG formation early after infection via virion host shutoff protein (vhs), an endoribonuclease that is packaged within the HSV-2 virion. We review this discovery and discuss the insights it has provided into SG biology as well as its potential significance in HSV-2 infection. A model for vhs-mediated disruption of SG formation is presented.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Bruce W Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
168
|
Bartholomäus A, Fedyunin I, Feist P, Sin C, Zhang G, Valleriani A, Ignatova Z. Bacteria differently regulate mRNA abundance to specifically respond to various stresses. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0069. [PMID: 26857681 DOI: 10.1098/rsta.2015.0069] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up- and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs.
Collapse
Affiliation(s)
- Alexander Bartholomäus
- Department of Biochemsitry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany Institute for Biochemsitry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
| | - Ivan Fedyunin
- Department of Biochemsitry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany
| | - Peter Feist
- Department of Biochemsitry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany
| | - Celine Sin
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Gong Zhang
- Department of Biochemsitry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany
| | - Angelo Valleriani
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Zoya Ignatova
- Department of Biochemsitry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany Institute for Biochemsitry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
| |
Collapse
|
169
|
Lian X, Guo J, Gu W, Cui Y, Zhong J, Jin J, He QY, Wang T, Zhang G. Genome-Wide and Experimental Resolution of Relative Translation Elongation Speed at Individual Gene Level in Human Cells. PLoS Genet 2016; 12:e1005901. [PMID: 26926465 PMCID: PMC4771717 DOI: 10.1371/journal.pgen.1005901] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
In the process of translation, ribosomes first assemble on mRNAs (translation initiation) and then translate along the mRNA (elongation) to synthesize proteins. Elongation pausing is deemed highly relevant to co-translational folding of nascent peptides and the functionality of protein products, which positioned the evaluation of elongation speed as one of the central questions in the field of translational control. By integrating three types of RNA-seq methods, we experimentally and computationally resolved elongation speed, with our proposed elongation velocity index (EVI), a relative measure at individual gene level and under physiological condition in human cells. We successfully distinguished slow-translating genes from the background translatome. We demonstrated that low-EVI genes encoded more stable proteins. We further identified cell-specific slow-translating codons, which might serve as a causal factor of elongation deceleration. As an example for the biological relevance, we showed that the relatively slow-translating genes tended to be associated with the maintenance of malignant phenotypes per pathway analyses. In conclusion, EVI opens a new view to understand why human cells tend to avoid simultaneously speeding up translation initiation and decelerating elongation, and the possible cancer relevance of translating low-EVI genes to gain better protein quality. In protein synthesis, ribosome assembles to mRNA to initiate translation, followed by the process of elongation to read the codons along the mRNA molecule for polypeptide chain production. It is known that slowing down the elongation speed at certain regions of mRNA is critical for the correct folding of numerous proteins—the so-called “pause-to-fold”. However, it has been an open question to evaluate elongation speed under cellular physiological conditions in genome-wide scale. Here, we used three types of next-generation sequencing approaches to experimentally and computationally address this question. With a new relative measure of elongation velocity index (EVI), we successfully distinguished slow-translating genes. Their protein products are more stable than the background genes. We found that different cell types tended to have distinct slow-translating codons, which might be relevant to the cell/tissue specific tRNA composition. Such elongation deceleration is potentially disease-relevant: cancer cells tend to slow down numerous cancer-favorable genes, and vice versa. Furthermore, we justified that translation initiation and elongation are evolutionarily synergistic as no gene with both high initiation efficiency and low elongation speed was observed: that would cause a traffic jam of ribosomes that should be maximally avoided per evolution.
Collapse
Affiliation(s)
- Xinlei Lian
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jiahui Guo
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Wei Gu
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Yizhi Cui
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jiayong Zhong
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jingjie Jin
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- * E-mail: (GZ); (TW); (QYH)
| | - Tong Wang
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- * E-mail: (GZ); (TW); (QYH)
| | - Gong Zhang
- Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- * E-mail: (GZ); (TW); (QYH)
| |
Collapse
|
170
|
Irigoyen N, Firth AE, Jones JD, Chung BYW, Siddell SG, Brierley I. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. PLoS Pathog 2016; 12:e1005473. [PMID: 26919232 PMCID: PMC4769073 DOI: 10.1371/journal.ppat.1005473] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.
Collapse
Affiliation(s)
- Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joshua D Jones
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Stuart G Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
171
|
Pausing on Polyribosomes: Make Way for Elongation in Translational Control. Cell 2016; 163:292-300. [PMID: 26451481 DOI: 10.1016/j.cell.2015.09.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/21/2022]
Abstract
Among the three phases of mRNA translation-initiation, elongation, and termination-initiation has traditionally been considered to be rate limiting and thus the focus of regulation. Emerging evidence, however, demonstrates that control of ribosome translocation (polypeptide elongation) can also be regulatory and indeed exerts a profound influence on development, neurologic disease, and cell stress. The correspondence of mRNA codon usage and the relative abundance of their cognate tRNAs is equally important for mediating the rate of polypeptide elongation. Here, we discuss recent results showing that ribosome pausing is a widely used mechanism for controlling translation and, as a result, biological transitions in health and disease.
Collapse
|
172
|
Olexiouk V, Menschaert G. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:49-64. [PMID: 27686805 DOI: 10.1007/978-3-319-42316-6_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of small proteins and peptides has consistently proven to be challenging. However, technological advances as well as multi-omics endeavors facilitate the identification of novel small coding sequences, leading to new insights. Specifically, the application of next generation sequencing technologies (NGS), providing accurate and sample specific transcriptome / translatome information, into the proteomics field led to more comprehensive results and new discoveries. This book chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known as ribosome profiling, an RNA-Seq based technique sequencing the +/- 30 bp long fragments captured by translating ribosomes. We emphasize the identification of micropeptides and neo-antigens, two distinct classes of small translation products, triggering our current understanding of biology. RNA-Seq is capable of capturing sample specific genomic variations, enabling focused neo-antigen identification. RIBO-Seq can identify translation events in small open reading frames which are considered to be non-coding, leading to the discovery of micropeptides. The identification of small translation products requires the integration of multi-omics data, stressing the importance of proteogenomics in this novel research area.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium.
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium
| |
Collapse
|
173
|
Miozzo F, Sabéran-Djoneidi D, Mezger V. HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes. J Mol Biol 2015; 427:3793-816. [DOI: 10.1016/j.jmb.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
174
|
Lei L, Shi J, Chen J, Zhang M, Sun S, Xie S, Li X, Zeng B, Peng L, Hauck A, Zhao H, Song W, Fan Z, Lai J. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1206-18. [PMID: 26568274 DOI: 10.1111/tpj.13073] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 05/19/2023]
Abstract
Plants can respond to environmental changes with various mechanisms occurred at transcriptional and translational levels. Thus far, there have been relatively extensive understandings of stress responses of plants on transcriptional level, while little information is known about that on translational level. To uncover the landscape of translation in plants in response to drought stress, we performed the recently developed ribosome profiling assay with maize seedlings growing under normal and drought conditions. Comparative analysis of the ribosome profiling data and the RNA-seq data showed that the fold changes of gene expression at transcriptional level were moderately correlated with that of translational level globally (R(2) = 0.69). However, less than half of the responsive genes were shared by transcription and translation under drought condition, suggesting that drought stress can introduce transcriptional and translational responses independently. We found that the translational efficiencies of 931 genes were changed significantly in response to drought stress. Further analysis revealed that the translational efficiencies of genes were highly influenced by their sequence features including GC content, length of coding sequences and normalized minimal free energy. In addition, we detected potential translation of 3063 upstream open reading frames (uORFs) on 2558 genes and these uORFs may affect the translational efficiency of downstream main open reading frames (ORFs). Our study indicates that plant can respond to drought stress with highly dynamic translational mechanism, that acting synergistically with that of transcription.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Junpeng Shi
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Silong Sun
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Shaojun Xie
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaojie Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Biao Zeng
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lizeng Peng
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Andrew Hauck
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
175
|
Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res 2015; 44:838-51. [PMID: 26531823 PMCID: PMC4737145 DOI: 10.1093/nar/gkv1168] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023] Open
Abstract
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.
Collapse
Affiliation(s)
- Harold Pimentel
- Department of Computer Science, University of California, Berkeley, CA 94720, USA
| | - Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sherry L Gee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | - Lior Pachter
- Department of Mathematics, University of California, Berkeley, CA 94720, USA Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
176
|
Sun L, Lamont SJ, Cooksey AM, McCarthy F, Tudor CO, Vijay-Shanker K, DeRita RM, Rothschild M, Ashwell C, Persia ME, Schmidt CJ. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 2015; 20:939-50. [PMID: 26238561 PMCID: PMC4595433 DOI: 10.1007/s12192-015-0621-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
Heat stress triggers an evolutionarily conserved set of responses in cells. The transcriptome responds to hyperthermia by altering expression of genes to adapt the cell or organism to survive the heat challenge. RNA-seq technology allows rapid identification of environmentally responsive genes on a large scale. In this study, we have used RNA-seq to identify heat stress responsive genes in the chicken male white leghorn hepatocellular (LMH) cell line. The transcripts of 812 genes were responsive to heat stress (p < 0.01) with 235 genes upregulated and 577 downregulated following 2.5 h of heat stress. Among the upregulated were genes whose products function as chaperones, along with genes affecting collagen synthesis and deposition, transcription factors, chromatin remodelers, and genes modulating the WNT and TGF-beta pathways. Predominant among the downregulated genes were ones that affect DNA replication and repair along with chromosomal segregation. Many of the genes identified in this study have not been previously implicated in the heat stress response. These data extend our understanding of the transcriptome response to heat stress with many of the identified biological processes and pathways likely to function in adapting cells and organisms to hyperthermic stress. Furthermore, this study should provide important insight to future efforts attempting to improve species abilities to withstand heat stress through genome-wide association studies and breeding.
Collapse
Affiliation(s)
- Liang Sun
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Fiona McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Catalina O Tudor
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Rachael M DeRita
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Max Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Chris Ashwell
- Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael E Persia
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
177
|
Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MCN, Diedrich JK, Aslanian A, Ma J, Moresco JJ, Moore L, Hunter T, Saghatelian A, Gage FH. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 2015; 163:583-93. [PMID: 26496605 DOI: 10.1016/j.cell.2015.09.025] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/07/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.
Collapse
Affiliation(s)
- Ahmet M Denli
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bilal E Kerman
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Monique Pena
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christopher Benner
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria C N Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- Mass Spectrometry Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiao Ma
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - James J Moresco
- Mass Spectrometry Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lynne Moore
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Cancer Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind (KIBM), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
178
|
Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 2015; 16:651-64. [PMID: 26465719 DOI: 10.1038/nrm4069] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.
Collapse
|
179
|
Zhang Y, Mandava CS, Cao W, Li X, Zhang D, Li N, Zhang Y, Zhang X, Qin Y, Mi K, Lei J, Sanyal S, Gao N. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat Struct Mol Biol 2015; 22:906-13. [PMID: 26458047 DOI: 10.1038/nsmb.3103] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
Abstract
Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.
Collapse
Affiliation(s)
- Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Wei Cao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaojing Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dejiu Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoxiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Qin
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kaixia Mi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
180
|
Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev 2015; 23:75-89. [PMID: 25555680 DOI: 10.1016/j.arr.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here, we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control.
Collapse
|
181
|
Tsvetkov P, Mendillo ML, Zhao J, Carette JE, Merrill PH, Cikes D, Varadarajan M, van Diemen FR, Penninger JM, Goldberg AL, Brummelkamp TR, Santagata S, Lindquist S. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLife 2015; 4. [PMID: 26327695 PMCID: PMC4551903 DOI: 10.7554/elife.08467] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Marc L Mendillo
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jinghui Zhao
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Parker H Merrill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Ferdy R van Diemen
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
182
|
Lauria F, Tebaldi T, Lunelli L, Struffi P, Gatto P, Pugliese A, Brigotti M, Montanaro L, Ciribilli Y, Inga A, Quattrone A, Sanguinetti G, Viero G. RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Nucleic Acids Res 2015; 43:e153. [PMID: 26240374 PMCID: PMC4678843 DOI: 10.1093/nar/gkv781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/14/2023] Open
Abstract
Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.
Collapse
Affiliation(s)
- Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata, 56/C-38123 Povo (TN), Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Via Sommarive, 18-38123 Povo (TN), Italy
| | - Paolo Struffi
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Pamela Gatto
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Andrea Pugliese
- Mathematics Department, University of Trento, Via Sommarive, 14-38123 Povo (TN), Italy
| | - Maurizio Brigotti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo, 14-40126 Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo, 14-40126 Bologna, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, Midlothian EH8 9AB, UK
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata, 56/C-38123 Povo (TN), Italy
| |
Collapse
|
183
|
Finka A, Sood V, Quadroni M, Rios PDL, Goloubinoff P. Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs. Cell Stress Chaperones 2015; 20:605-20. [PMID: 25847399 PMCID: PMC4463922 DOI: 10.1007/s12192-015-0583-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere "fold change" ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vishal Sood
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Manfredo Quadroni
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
184
|
Basbouss-Serhal I, Soubigou-Taconnat L, Bailly C, Leymarie J. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. PLANT PHYSIOLOGY 2015; 168:1049-65. [PMID: 26019300 PMCID: PMC4741348 DOI: 10.1104/pp.15.00510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25 °C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5' untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process.
Collapse
Affiliation(s)
- Isabelle Basbouss-Serhal
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Ludivine Soubigou-Taconnat
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Christophe Bailly
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Juliette Leymarie
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| |
Collapse
|
185
|
Aeschimann F, Xiong J, Arnold A, Dieterich C, Großhans H. Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling. Methods 2015; 85:75-89. [PMID: 26102273 DOI: 10.1016/j.ymeth.2015.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023] Open
Abstract
Gene expression profiling provides a tool to analyze the internal states of cells or organisms, and their responses to perturbations. While global measurements of mRNA levels have thus been widely used for many years, it is only through the recent development of the ribosome profiling technique that an analogous examination of global mRNA translation programs has become possible. Ribosome profiling reveals which RNAs are being translated to what extent and where the translated open reading frames are located. In addition, different modes of translation regulation can be distinguished and characterized. Here, we present an optimized, step-by-step protocol for ribosome profiling. Although established in Caenorhabditis elegans, our protocol and optimization approaches should be equally usable for other model organisms or cell culture with little adaptation. Next to providing a protocol, we compare two different methods for isolation of single ribosomes and two different library preparations, and describe strategies to optimize the RNase digest and to reduce ribosomal RNA contamination in the libraries. Moreover, we discuss bioinformatic strategies to evaluate the quality of the data and explain how the data can be analyzed for different applications. In sum, this article seeks to facilitate the understanding, execution, and optimization of ribosome profiling experiments.
Collapse
Affiliation(s)
- Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jieyi Xiong
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany
| | - Andreas Arnold
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Christoph Dieterich
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany.
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
186
|
Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2015; 2:29. [PMID: 26097841 PMCID: PMC4456865 DOI: 10.3389/fmolb.2015.00029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3% of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold, and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
187
|
Borirak O, Rolfe MD, de Koning LJ, Hoefsloot HCJ, Bekker M, Dekker HL, Roseboom W, Green J, de Koster CG, Hellingwerf KJ. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1269-79. [PMID: 26049081 DOI: 10.1016/j.bbapap.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.
Collapse
Affiliation(s)
- Orawan Borirak
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Matthew D Rolfe
- Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Martijn Bekker
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Jeffrey Green
- Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands.
| |
Collapse
|
188
|
Andreev DE, O'Connor PBF, Zhdanov AV, Dmitriev RI, Shatsky IN, Papkovsky DB, Baranov PV. Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol 2015; 16:90. [PMID: 25943107 PMCID: PMC4419486 DOI: 10.1186/s13059-015-0651-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Background Oxygen and glucose metabolism play pivotal roles in many (patho)physiological conditions. In particular, oxygen and glucose deprivation (OGD) during ischemia and stroke results in extensive tissue injury and cell death. Results Using time-resolved ribosome profiling, we assess gene expression levels in a neural cell line, PC12, during the first hour of OGD. The most substantial alterations are seen to occur within the first 20 minutes of OGD. While transcription of only 100 genes is significantly altered during one hour of OGD, the translation response affects approximately 3,000 genes. This response involves reprogramming of initiation and elongation rates, as well as the stringency of start codon recognition. Genes involved in oxidative phosphorylation are most affected. Detailed analysis of ribosome profiles reveals salient alterations of ribosome densities on individual mRNAs. The mRNA-specific alterations include increased translation of upstream open reading frames, site-specific ribosome pauses, and production of alternative protein isoforms with amino-terminal extensions. Detailed analysis of ribosomal profiles also reveals six mRNAs with translated ORFs occurring downstream of annotated coding regions and two examples of dual coding mRNAs, where two protein products are translated from the same long segment of mRNA, but in two different frames. Conclusions These findings uncover novel regulatory mechanisms of translational response to OGD in mammalian cells that are different from the classical pathways such as hypoxia inducible factor (HIF) signaling, while also revealing sophisticated organization of protein coding information in certain genes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0651-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitry E Andreev
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Patrick B F O'Connor
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland. .,Institute of Biomedical Chemistry, Pogodinskaya street, Moscow, 119121, Russia.
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
189
|
Bahrami-Samani E, Vo DT, de Araujo PR, Vogel C, Smith AD, Penalva LOF, Uren PJ. Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:291-310. [PMID: 25515586 PMCID: PMC4397117 DOI: 10.1002/wrna.1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Dat T. Vo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
190
|
Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I, Bustamante C. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 2015; 348:457-60. [PMID: 25908824 DOI: 10.1126/science.1261909] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023]
Abstract
Protein synthesis rates can affect gene expression and the folding and activity of the translation product. Interactions between the nascent polypeptide and the ribosome exit tunnel represent one mode of regulating synthesis rates. The SecM protein arrests its own translation, and release of arrest at the translocon has been proposed to occur by mechanical force. Using optical tweezers, we demonstrate that arrest of SecM-stalled ribosomes can indeed be rescued by force alone and that the force needed to release stalling can be generated in vivo by a nascent chain folding near the ribosome tunnel exit. We formulate a kinetic model describing how a protein can regulate its own synthesis by the force generated during folding, tuning ribosome activity to structure acquisition by a nascent polypeptide.
Collapse
Affiliation(s)
- Daniel H Goldman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christian M Kaiser
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Anthony Milin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maurizio Righini
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA. Department of Physics, University of California, Berkeley, CA 94720, USA. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
191
|
Merret R, Nagarajan VK, Carpentier MC, Park S, Favory JJ, Descombin J, Picart C, Charng YY, Green PJ, Deragon JM, Bousquet-Antonelli C. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Res 2015; 43:4121-32. [PMID: 25845591 PMCID: PMC4417158 DOI: 10.1093/nar/gkv234] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022] Open
Abstract
The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5′-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5′-ribosome pausing leading to the XRN4-mediated 5′-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of ‘non-aberrant’ mRNAs.
Collapse
Affiliation(s)
- Rémy Merret
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Vinay K Nagarajan
- University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Sunhee Park
- University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Jean-Jacques Favory
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Julie Descombin
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Claire Picart
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road Section 2, Taipei, Taiwan 11529, ROC
| | - Pamela J Green
- University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Jean-Marc Deragon
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
192
|
An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 2015; 159:1200-1211. [PMID: 25416955 DOI: 10.1016/j.cell.2014.10.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
Ribosomes elongate at a nonuniform rate during translation. Theoretical models and experiments disagree on the in vivo determinants of elongation rate and the mechanism by which elongation rate affects protein levels. To resolve this conflict, we measured transcriptome-wide ribosome occupancy under multiple conditions and used it to formulate a whole-cell model of translation in E. coli. Our model predicts that elongation rates at most codons during nutrient-rich growth are not limited by the intracellular concentrations of aminoacyl-tRNAs. However, elongation pausing during starvation for single amino acids is highly sensitive to the kinetics of tRNA aminoacylation. We further show that translation abortion upon pausing accounts for the observed ribosome occupancy along mRNAs during starvation. Abortion reduces global protein synthesis, but it enhances the translation of a subset of mRNAs. These results suggest a regulatory role for aminoacylation and abortion during stress, and our study provides an experimentally constrained framework for modeling translation.
Collapse
|
193
|
Assenza S, De Los Rios P, Barducci A. Quantifying the role of chaperones in protein translocation by computational modeling. Front Mol Biosci 2015; 2:8. [PMID: 25988176 PMCID: PMC4428437 DOI: 10.3389/fmolb.2015.00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/28/2015] [Indexed: 01/26/2023] Open
Abstract
The molecular chaperone Hsp70 plays a central role in the import of cytoplasmic proteins into organelles, driving their translocation by binding them from the organellar interior. Starting from the experimentally-determined structure of the E. coli Hsp70, we computed, by means of molecular simulations, the effective free-energy profile for substrate translocation upon chaperone binding. We then used the resulting free energy to quantitatively characterize the kinetics of the import process, whose comparison with unassisted translocation highlights the essential role played by Hsp70 in importing cytoplasmic proteins.
Collapse
Affiliation(s)
- Salvatore Assenza
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Alessandro Barducci
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
194
|
Abstract
Loss of protein homeostasis (proteostasis) is a common feature of aging and disease that is characterized by the appearance of nonnative protein aggregates in various tissues. Protein aggregation is routinely suppressed by the proteostasis network (PN), a collection of macromolecular machines that operate in diverse ways to maintain proteome integrity across subcellular compartments and between tissues to ensure a healthy life span. Here, we review the composition, function, and organizational properties of the PN in the context of individual cells and entire organisms and discuss the mechanisms by which disruption of the PN, and related stress response pathways, contributes to the initiation and progression of disease. We explore emerging evidence that disease susceptibility arises from early changes in the composition and activity of the PN and propose that a more complete understanding of the temporal and spatial properties of the PN will enhance our ability to develop effective treatments for protein conformational diseases.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208;
| | | |
Collapse
|
195
|
Kraynik SM, Gabanic A, Anthony SR, Kelley M, Paulding WR, Roessler A, McGuinness M, Tranter M. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:688-96. [PMID: 25727182 DOI: 10.1016/j.bbagrm.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation.
Collapse
Affiliation(s)
- Stephen M Kraynik
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Andrew Gabanic
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sarah R Anthony
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Melissa Kelley
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | | | - Anne Roessler
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael McGuinness
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
196
|
Zhang X, Rosen BD, Tang H, Krishnakumar V, Town CD. Polyribosomal RNA-Seq reveals the decreased complexity and diversity of the Arabidopsis translatome. PLoS One 2015; 10:e0117699. [PMID: 25706651 PMCID: PMC4338112 DOI: 10.1371/journal.pone.0117699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023] Open
Abstract
Recent RNA-seq studies reveal that the transcriptomes in animals and plants are more complex than previously thought, leading to the inclusion of many more splice isoforms in annotated genomes. However, it is possible that a significant proportion of the transcripts are spurious isoforms that do not contribute to functional proteins. One of the current hypotheses is that commonly used mRNA extraction methods isolate both pre-mature (nuclear) mRNA and mature (cytoplasmic) mRNA, and these incompletely spliced pre-mature mRNAs may contribute to a large proportion of these spurious transcripts. To investigate this, we compared a traditional RNA-seq dataset (total RNA-seq) and a ribosome-bound RNA-seq dataset (polyribosomal RNA-seq) from Arabidopsis thaliana. An integrative framework that combined de novo assembly and genome-guided assembly was applied to reconstruct transcriptomes for the two datasets. Up to 44.8% of the de novo assembled transcripts in total RNA-seq sample were of low abundance, whereas only 0.09% in polyribosomal RNA-seq de novo assembly were of low abundance. The final round of assembly using PASA (Program to Assemble Spliced Alignments) resulted in more transcript assemblies in the total RNA-seq than those in polyribosomal sample. Comparison of alternative splicing (AS) patterns between total and polyribosomal RNA-seq showed a significant difference (G-test, p-value<0.01) in intron retention events: 46.4% of AS events in the total sample were intron retention, whereas only 23.5% showed evidence of intron retention in the polyribosomal sample. It is likely that a large proportion of retained introns in total RNA-seq result from incompletely spliced pre-mature mRNA. Overall, this study demonstrated that polyribosomal RNA-seq technology decreased the complexity and diversity of the coding transcriptome by eliminating pre-mature mRNAs, especially those of low abundance.
Collapse
Affiliation(s)
- Xingtan Zhang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Benjamin D. Rosen
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Vivek Krishnakumar
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Christopher D. Town
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
197
|
Wang F, Canadeo LA, Huibregtse JM. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 2015; 114:127-33. [PMID: 25701549 DOI: 10.1016/j.biochi.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
198
|
Tenge VR, Zuehlke AD, Shrestha N, Johnson JL. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome. EUKARYOTIC CELL 2015; 14:55-63. [PMID: 25380751 PMCID: PMC4279014 DOI: 10.1128/ec.00170-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/05/2014] [Indexed: 01/02/2023]
Abstract
The abundant molecular chaperone Hsp90 is essential for the folding and stabilization of hundreds of distinct client proteins. Hsp90 is assisted by multiple cochaperones that modulate Hsp90's ATPase activity and/or promote client interaction, but the in vivo functions of many of these cochaperones are largely unknown. We found that Cpr6, Cpr7, and Cns1 interact with the intact ribosome and that Saccharomyces cerevisiae lacking CPR7 or containing mutations in CNS1 exhibited sensitivity to the translation inhibitor hygromycin. Cpr6 contains a peptidyl-prolyl isomerase (PPIase) domain and a tetratricopeptide repeat (TPR) domain flanked by charged regions. Truncation or alteration of basic residues near the carboxy terminus of Cpr6 disrupted ribosome interaction. Cns1 contains an amino-terminal TPR domain and a poorly characterized carboxy-terminal domain. The isolated carboxy-terminal domain was able to interact with the ribosome. Although loss of CPR6 does not cause noticeable growth defects, overexpression of CPR6 results in enhanced growth defects in cells expressing the temperature-sensitive cns1-G90D mutation (the G-to-D change at position 90 encoded by cns1). Cpr6 mutants that exhibit reduced ribosome interaction failed to cause growth defects, indicating that ribosome interaction is required for in vivo functions of Cpr6. Together, these results represent a novel link between the Hsp90 molecular-chaperone machine and protein synthesis.
Collapse
Affiliation(s)
- Victoria R Tenge
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Abbey D Zuehlke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Neelima Shrestha
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
199
|
Tuller T, Zur H. Multiple roles of the coding sequence 5' end in gene expression regulation. Nucleic Acids Res 2014; 43:13-28. [PMID: 25505165 PMCID: PMC4288200 DOI: 10.1093/nar/gku1313] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The codon composition of the coding sequence's (ORF) 5′ end first few dozen codons is known to be distinct to that of the rest of the ORF. Various explanations for the unusual codon distribution in this region have been proposed in recent years, and include, among others, novel regulatory mechanisms of translation initiation and elongation. However, due to the fact that many overlapping regulatory signals are suggested to be associated with this relatively short region, its research is challenging. Here, we review the currently known signals that appear in this region, the theories related to the way they regulate translation and affect the organismal fitness, and the debates they provoke.
Collapse
Affiliation(s)
- Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel Aviv, Israel The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Zur
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
200
|
MicroRNA-mediated transformation by the Kaposi's sarcoma-associated herpesvirus Kaposin locus. J Virol 2014; 89:2333-41. [PMID: 25505059 DOI: 10.1128/jvi.03317-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a set of ∼20 viral microRNAs (miRNAs). miR-K10a stands out among these miRNAs because its entire stem-loop precursor overlaps the coding sequence for the Kaposin (Kap) A/C proteins. The ectopic expression of KapA has been reported to lead to transformation of rodent fibroblasts. However, these experiments inadvertently also introduced miR-K10a, which raises the question whether the transforming activity of the locus could in fact be due to miR-K10a expression. To answer this question, we have uncoupled miR-K10a and KapA expression. Our experiments revealed that miR-K10a alone transformed cells with an efficiency similar to that when it was coexpressed with KapA. Maintenance of the transformed phenotype was conditional upon continued miR-K10a but not KapA protein expression, consistent with its dependence on miRNA-mediated changes in gene expression. Importantly, miR-K10a taps into an evolutionarily conserved network of miR-142-3p targets, several of which are expressed in 3T3 cells and are also known inhibitors of cellular transformation. In summary, our studies of miR-K10a serve as an example of an unsuspected function of an mRNA whose precursor is embedded within a coding transcript. In addition, our identification of conserved miR-K10a targets that limit transformation will point the way to a better understanding of the role of this miRNA in KSHV-associated tumors. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus. The viral Kaposin locus has known oncogenic potential, which has previously been attributed to the encoded KapA protein. Here we show that the virally encoded miR-K10a miRNA, whose precursor overlaps the KapA-coding region, may account for the oncogenic properties of this locus. Our data suggest that miR-K10a mimics the cellular miRNA miR-142-3p and thereby represses several known inhibitors of oncogenic transformation. Our work demonstrates that functional properties attributed to a coding region may in fact be carried out by an embedded noncoding element and sheds light on the functions of viral miR-K10a.
Collapse
|