151
|
Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep 2014; 15:142-54. [PMID: 24469331 PMCID: PMC3989860 DOI: 10.1002/embr.201338166] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022] Open
Abstract
The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.
Collapse
Affiliation(s)
- Judith J Smit
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| |
Collapse
|
152
|
Winklhofer KF. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 2014; 24:332-41. [PMID: 24485851 DOI: 10.1016/j.tcb.2014.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
Abstract
Parkin is an E3 ubiquitin ligase associated with autosomal-recessive Parkinsonism. Moreover, parkin inactivation has been found in sporadic Parkinson's disease (PD), suggesting a wider pathogenic impact than initially predicted. Beyond its role in PD, parkin has also been implicated in innate immune responses. Since its discovery, mounting evidence indicates that parkin can mediate degradative as well as nondegradative ubiquitination. Here we review recent insights into the structure of parkin, the mechanism of its E3 ligase activity, and its functional versatility in an attempt to merge controversial aspects into a more comprehensive picture of this multifaceted E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Physiological Chemistry, Ruhr University Bochum, Bochum, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
153
|
Klein P, Müller-Rischart AK, Motori E, Schönbauer C, Schnorrer F, Winklhofer KF, Klein R. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J 2014; 33:341-55. [PMID: 24473149 PMCID: PMC3983680 DOI: 10.1002/embj.201284290] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN₂B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN₂B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.
Collapse
Affiliation(s)
- Pontus Klein
- Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
154
|
Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 2013; 15:46-61. [PMID: 24375677 DOI: 10.1002/embr.201337983] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
155
|
Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:451-60. [PMID: 24275087 DOI: 10.1016/j.bbabio.2013.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 11/17/2022]
Abstract
Mitochondria are double-membraned highly dynamic organelles; the shape, location and function of which are determined by a constant balance between opposing fusion and fission events. A fine modulation of mitochondrial structure is crucial for their correct functionality and for many physiological cell processes, the status of these organelles, being thus a key aspect in a cell's fate. Indeed, the homeostasis of mitochondria needs to be highly regulated for the above mentioned reasons, and since a) they are the major source of energy; b) they participate in various signaling pathways; albeit at the same time c) they are also the major source of reactive oxygen species (ROS, the main damaging detrimental players for all cell components). Elaborate mechanisms of mitochondrial quality control have evolved for maintaining a functional mitochondrial network and avoiding cell damage. The first mechanism is the removal of damaged mitochondrial proteins within the organelle via chaperones and protease; the second is the cytosolic ubiquitin-proteasome system (UPS), able to eliminate proteins embedded in the outer mitochondrial membrane; the third is the removal of the entire mitochondria through mitophagy, in the case of extensive organelle damage and dysfunction. In this review, we provide an overview of these mitochondria stability and quality control mechanisms, highlighting mitophagy, and emphasizing the central role of mitochondrial dynamics in this context. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Cecconi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
156
|
Piquereau J, Godin R, Deschênes S, Bessi VL, Mofarrahi M, Hussain SN, Burelle Y. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 2013; 9:1837-51. [PMID: 24121678 DOI: 10.4161/auto.26502] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial quality control plays a vital role in the maintenance of optimal mitochondrial function. However, its roles and regulation remain ill-defined in cardiac pathophysiology. Here, we tested the hypothesis that PARK2/Parkin, an E3-ligase recently described as being involved in the regulation of cardiac mitophagy, is important for (1) the maintenance of normal cardiac mitochondrial function; and (2) adequate recovery from sepsis, a condition known to induce reversible mitochondrial injury through poorly understood mechanisms. Investigations of mitochondrial and cardiac function were thus performed in wild-type and Park2-deficient mice at baseline and at 2 different times following administration of a sublethal dose of E. coli lipopolysaccharide (LPS). LPS injection induced cardiac and mitochondrial dysfunctions that were followed by complete recovery in wild-type mice. Recovery was associated with morphological and biochemical evidence of mitophagy, suggesting that this process is implicated in cardiac recovery from sepsis. Under baseline conditions, multiple cardiac mitochondrial dysfunctions were observed in Park2-deficient mice. These mild dysfunctions did not result in a visibly distinct cardiac phenotype. Importantly, Park2-deficient mice exhibited impaired recovery of cardiac contractility and constant degradation of mitochondrial metabolic functions. Interestingly, autophagic clearance of damaged mitochondria was still possible in the absence of PARK2 likely through compensatory mechanisms implicating PARK2-independent mitophagy and upregulation of macroautophagy. Together, these results thus provide evidence that in vivo, mitochondrial autophagy is activated during sepsis, and that compensation for a lack of PARK2 is only partial and/or that PARK2 exerts additional protective roles in mitochondria.
Collapse
Affiliation(s)
- Jérôme Piquereau
- Faculty of Pharmacy; Université de Montréal; Montréal, QC Canada
| | | | | | | | | | | | | |
Collapse
|
157
|
Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, Bekker-Jensen S, Mailand N, Choudhary C, Komander D, Gyrd-Hansen M. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell 2013; 50:818-830. [PMID: 23806334 DOI: 10.1016/j.molcel.2013.06.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023]
Abstract
Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in innate immune signaling. So far, only few Met1-Ub substrates have been described, and the regulatory mechanisms have remained elusive. We recently identified that the ovarian tumor (OTU) family deubiquitinase OTULIN specifically disassembles Met1-Ub. Here, we report that OTULIN is critical for limiting Met1-Ub accumulation after nucleotide-oligomerization domain-containing protein 2 (NOD2) stimulation, and that OTULIN depletion augments signaling downstream of NOD2. Affinity purification of Met1-Ub followed by quantitative proteomics uncovered RIPK2 as the predominant NOD2-regulated substrate. Accordingly, Met1-Ub on RIPK2 was largely inhibited by overexpressing OTULIN and was increased by OTULIN depletion. Intriguingly, OTULIN-depleted cells spontaneously accumulated Met1-Ub on LUBAC components, and NOD2 or TNFR1 stimulation led to extensive Met1-Ub accumulation on receptor complex components. We propose that OTULIN restricts Met1-Ub formation after immune receptor stimulation to prevent unwarranted proinflammatory signaling.
Collapse
Affiliation(s)
- Berthe Katrine Fiil
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rune Busk Damgaard
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sebastian Alexander Wagner
- Department of Proteomics Novo, Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kirstin Keusekotten
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Melanie Fritsch
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics Novo, Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mads Gyrd-Hansen
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
158
|
Lim GGY, Chew KCM, Ng XH, Henry-Basil A, Sim RWX, Tan JMM, Chai C, Lim KL. Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination. PLoS One 2013; 8:e73235. [PMID: 24023840 PMCID: PMC3759450 DOI: 10.1371/journal.pone.0073235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome) may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively) by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired.
Collapse
Affiliation(s)
- Grace G. Y. Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Katherine C. M. Chew
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Xiao-Hui Ng
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Adeline Henry-Basil
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Roy W. X. Sim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Jeanne M. M. Tan
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Chou Chai
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
- * E-mail:
| |
Collapse
|
159
|
Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI. Parkin-dependent degradation of the F-box protein Fbw7β promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol Cell Biol 2013; 33:3627-43. [PMID: 23858059 PMCID: PMC3753862 DOI: 10.1128/mcb.00535-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons resulting in motor dysfunction. While most PD is sporadic in nature, a significant subset can be linked to either dominant or recessive germ line mutations. PARK2, encoding the ubiquitin ligase parkin, is the most frequently mutated gene in hereditary Parkinson's disease. Here, we present evidence for a neuronal ubiquitin ligase cascade involving parkin and the multisubunit ubiquitin ligase SCF(Fbw7β). Specifically, parkin targets the SCF substrate adapter Fbw7β for proteasomal degradation. Furthermore, we show that the physiological role of parkin-mediated regulation of Fbw7β levels is the stabilization of the mitochondrial prosurvival factor Mcl-1, an SCF(Fbw7β) target in neurons. We show that neurons depleted of parkin become acutely sensitive to oxidative stress due to an inability to maintain adequate levels of Mcl-1. Therefore, loss of parkin function through biallelic mutation of PARK2 may lead to death of dopaminergic neurons through unregulated SCF(Fbw7β)-mediated ubiquitylation-dependent proteolysis of Mcl-1.
Collapse
Affiliation(s)
- Susanna Ekholm-Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew S. Goldberg
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Michael G. Schlossmacher
- Division of Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven I. Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
160
|
Tokunaga F. Linear ubiquitination-mediated NF-κB regulation and its related disorders. J Biochem 2013; 154:313-23. [PMID: 23969028 DOI: 10.1093/jb/mvt079] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination is a post-translational modification involved in the regulation of a broad variety of cellular functions, such as protein degradation and signal transduction, including nuclear factor-κB (NF-κB) signalling. NF-κB is crucial for inflammatory and immune responses, and aberrant NF-κB signalling is implicated in multiple disorders. We found that linear ubiquitin chain assembly complex (LUBAC), composed of HOIL-1L, HOIP and SHARPIN, generates a novel type of Met1 (M1)-linked linear polyubiquitin chain and specifically regulates the canonical NF-κB pathway. Moreover, specific deubiquitinases, such as CYLD, A20 (TNFAIP3) and OTULIN/gumby, inhibit LUBAC-induced NF-κB activation by different molecular mechanisms, and several M1-linked ubiquitin-specific binding domains have been structurally defined. LUBAC and these linear ubiquitination-regulating factors contribute to immune and inflammatory processes and apoptosis. Functional impairments of these factors are correlated with multiple disorders, including autoinflammation, immunodeficiencies, dermatitis, B-cell lymphomas and Parkinson's disease. This review summarizes the molecular basis and the pathophysiological implications of the linear ubiquitination-mediated NF-κB activation pathway regulation by LUBAC.
Collapse
Affiliation(s)
- Fuminori Tokunaga
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8912, Japan
| |
Collapse
|
161
|
Dupuis L. Mitochondrial quality control in neurodegenerative diseases. Biochimie 2013; 100:177-83. [PMID: 23958438 DOI: 10.1016/j.biochi.2013.07.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Abstract
Mutations causing genetic forms of Parkinson's disease or hereditary neuropathies have been recently shown to affect key molecular players involved in the recycling of defective mitochondria, most notably PARKIN, PINK1, Mitofusin 2 or dynein heavy chain. Interestingly, the same pathways are also indirectly targeted by multiple other mutations involved in familial forms of amyotrophic lateral sclerosis, Huntington's disease or Alzheimer's disease. These recent genetic results strongly reinforce the notion that defective mitochondrial physiology might cause neurodegeneration. Mitochondrial dysfunction has however been observed in virtually every neurodegenerative disease and appears not restricted to the most vulnerable neuronal populations affected by a given disease. Thus, the mechanisms linking defective mitochondrial quality control to death of selective neuronal populations remain to be identified. This review provides an update on the most recent literature on mitochondrial quality control and its impairment during neurodegenerative diseases.
Collapse
Affiliation(s)
- Luc Dupuis
- INSERM, U1118, Strasbourg F-67085, France; Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France.
| |
Collapse
|
162
|
Kubo SI, Hatano T, Takanashi M, Hattori N. Can parkin be a target for future treatment of Parkinson's disease? Expert Opin Ther Targets 2013; 17:1133-44. [PMID: 23930597 DOI: 10.1517/14728222.2013.827173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting an increasing number of people worldwide with the ageing society. Although the etiology of PD remains largely unknown, it is now clear that genetic factors contribute to the pathogenesis of the disease. Recently, several causative genes have been identified in mendelian forms of PD. Growing evidence indicates that their gene products play important roles in oxidative stress response, mitochondrial function, and the ubiquitin-proteasome system, which are also implicated in idiopathic PD, suggesting that these gene products share a common pathway to nigral degeneration in both familial and idiopathic PD. However, treatment options are currently limited. AREAS COVERED Recently, a possible role of parkin, a gene product of PARK2-liked PD, in neuroprotection has been suggested. To this regard, several investigations have focused on the possible contribution of parkin in neurotoxic insults. In this article, the role of parkin in the pathogenesis of PD and the potential of parkin as a therapeutic target in PD will be discussed. EXPERT OPINION There is an urgent need to develop novel therapeutic options to better manage patients with PD. The data discussed in this article provide rationale for parkin as a therapeutic target.
Collapse
Affiliation(s)
- Shin-Ichiro Kubo
- Juntendo University School of Medicine, Department of Neurology , 2-1-1 Hongo, Bunkyo, Tokyo 113-8421 , Japan +81 3 5684 0476 ; +81 3 3813 7440 ;
| | | | | | | |
Collapse
|
163
|
Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 2013; 32:2099-112. [PMID: 23727886 PMCID: PMC3730226 DOI: 10.1038/emboj.2013.125] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/07/2013] [Indexed: 12/04/2022] Open
Abstract
Mutations in the protein Parkin are associated with Parkinson's disease (PD), the second most common neurodegenerative disease in men. Parkin is an E3 ubiquitin (Ub) ligase of the structurally uncharacterized RING-in-between-RING(IBR)-RING (RBR) family, which, in an HECT-like fashion, forms a catalytic thioester intermediate with Ub. We here report the crystal structure of human Parkin spanning the Unique Parkin domain (UPD, also annotated as RING0) and RBR domains, revealing a tightly packed structure with unanticipated domain interfaces. The UPD adopts a novel elongated Zn-binding fold, while RING2 resembles an IBR domain. Two key interactions keep Parkin in an autoinhibited conformation. A linker that connects the IBR with the RING2 over a 50-Å distance blocks the conserved E2∼Ub binding site of RING1. RING2 forms a hydrophobic interface with the UPD, burying the catalytic Cys431, which is part of a conserved catalytic triad. Opening of intra-domain interfaces activates Parkin, and enables Ub-based suicide probes to modify Cys431. The structure further reveals a putative phospho-peptide docking site in the UPD, and explains many PD-causing mutations. The complete structural view of a RING-IBR-RING (RBR) ubiquitin ligase domain reveals an unexpected catalytic triad and explains the effects of various Parkin mutations underlying Parkinson's disease.
Collapse
|
164
|
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res 2013; 23:886-97. [PMID: 23670163 DOI: 10.1038/cr.2013.66] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 01/08/2023] Open
Abstract
Pink1, a mitochondrial kinase, and Parkin, an E3 ubiquitin ligase, function in mitochondrial maintenance. Pink1 accumulates on depolarized mitochondria, where it recruits Parkin to mainly induce K63-linked chain ubiquitination of outer membrane proteins and eventually mitophagy. Parkin belongs to the RBR E3 ligase family. Recently, it has been proposed that the RBR domain transfers ubiquitin to targets via a cysteine∼ubiquitin enzyme intermediate, in a manner similar to HECT domain E3 ligases. However, direct evidence for a ubiquitin transfer mechanism and its importance for Parkin's in vivo function is still missing. Here, we report that Parkin E3 activity relies on cysteine-mediated ubiquitin transfer during mitophagy. Mutating the putative catalytic cysteine to serine (Parkin C431S) traps ubiquitin, and surprisingly, also abrogates Parkin mitochondrial translocation, indicating that E3 activity is essential for Parkin translocation. We found that Parkin can bind to K63-linked ubiquitin chains, and that targeting K63-mimicking ubiquitin chains to mitochondria restores Parkin C431S localization. We propose that Parkin translocation is achieved through a novel catalytic activity coupled mechanism.
Collapse
|
165
|
Affiliation(s)
- Evgenij Fiškin
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | | |
Collapse
|
166
|
Zhang L, Karsten P, Hamm S, Pogson JH, Müller-Rischart AK, Exner N, Haass C, Whitworth AJ, Winklhofer KF, Schulz JB, Voigt A. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum Mol Genet 2013; 22:2829-41. [PMID: 23525905 DOI: 10.1093/hmg/ddt132] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PTEN-induced kinase 1 (PINK1) is a serine/threonine kinase that is localized to mitochondria. It protects cells from oxidative stress by suppressing mitochondrial cytochrome c release, thereby preventing cell death. Mutations in Pink1 cause early-onset Parkinson's disease (PD). Consistently, mitochondrial function is impaired in Pink1-linked PD patients and model systems. Previously, in vitro analysis implied that the protective effects of PINK1 depend on phosphorylation of the downstream factor, TNF receptor-associated protein 1 (TRAP1). Furthermore, TRAP1 has been shown to mitigate α-Synuclein-induced toxicity, linking α-Synuclein directly to mitochondrial dysfunction. These data suggest that TRAP1 seems to mediate protective effects on mitochondrial function in pathways that are affected in PD. Here we investigated the potential of TRAP1 to rescue dysfunction induced by either PINK1 or Parkin deficiency in vivo and in vitro. We show that overexpression of human TRAP1 is able to mitigate Pink1 but not parkin loss-of-function phenotypes in Drosophila. In addition, detrimental effects observed after RNAi-mediated silencing of complex I subunits were rescued by TRAP1 in Drosophila. Moreover, TRAP1 was able to rescue mitochondrial fragmentation and dysfunction upon siRNA-induced silencing of Pink1 but not parkin in human neuronal SH-SY5Y cells. Thus, our data suggest a functional role of TRAP1 in maintaining mitochondrial integrity downstream of PINK1 and complex I deficits but parallel to or upstream of Parkin.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, University Medical Center, RWTH Aachen, Aachen D-52074, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|