151
|
Moruno Algara M, Kuczyńska‐Wiśnik D, Dębski J, Stojowska‐Swędrzyńska K, Sominka H, Bukrejewska M, Laskowska E. Trehalose protects
Escherichia coli
against carbon stress manifested by protein acetylation and aggregation. Mol Microbiol 2019; 112:866-880. [DOI: 10.1111/mmi.14322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
Affiliation(s)
- María Moruno Algara
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Dorota Kuczyńska‐Wiśnik
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory IBB PAS ul. Pawińskiego 5A02‐106Warsaw Poland
| | - Karolina Stojowska‐Swędrzyńska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Hanna Sominka
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Małgorzata Bukrejewska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Ewa Laskowska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| |
Collapse
|
152
|
Wang Y, Wang F, Bao X, Fu L. Systematic analysis of lysine acetylome reveals potential functions of lysine acetylation in Shewanella baltica, the specific spoilage organism of aquatic products. J Proteomics 2019; 205:103419. [PMID: 31212084 DOI: 10.1016/j.jprot.2019.103419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023]
Abstract
Protein lysine acetylation is a major post-translational modification and plays a critical regulatory role in almost every aspect in both eukaryotes and prokaryotes, yet there have been no data on Shewanella baltica, which is one of the specific spoilage organism (SSO) of aquatic products. Here, we performed the first global acetylproteome analysis of S. baltica. 2929 lysine acetylation sites were identified in 1103 proteins, accounting for 26.1% of the total proteins which participate in a wide variety of biological processes, especially in the constituent of ribosome, the biosynthesis of aminoacyl-tRNA, the amino acids and fatty acid metabolism. Besides, 14 conserved acetylation motifs were detected in S. baltica. Notably, various directly or indirectly spoilage-related proteins were prevalently acetylated, including enzymes involved in the unsaturated fatty acids biosynthesis closely related to the cold adaptability, cold shock proteins, pivotal enzymes involved in the putrescine biosynthesis, and a LuxR-type protein in quorum sensing system. The acetylome analysis in Shewanella can supplement the database and provide new insight into uncovering the spoilage mechanisms of S. baltica. The provided dataset illuminates the potential role of reversible acetylation in S. baltica, and serves as an important resource for exploring the physiological role of lysine acetylation in prokaryotes. SIGNIFICANCE: The psychrotrophic nature and the ability of S. baltica to make good use of "habitat" nutrients explain its importance in spoilage of seafood stored at low temperatures. However, the underlying mechanism of spoilage potential from the perspective of protein post-translational modification was rarely studied. This work identifies the first comprehensive survey of a lysine acetylome in S. baltica and uncovers the involvement of lysine acetylation in the diverse biological processes, especially in the closely spoilage-related pathways. This study provides a resource for functional analysis of acetylated proteins and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in Shewanella spp.
Collapse
Affiliation(s)
- Yangbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feifei Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xingyue Bao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
153
|
Stojkova P, Spidlova P, Stulik J. Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence. Front Cell Infect Microbiol 2019; 9:159. [PMID: 31134164 PMCID: PMC6523023 DOI: 10.3389/fcimb.2019.00159] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
Nucleoid-associated proteins belong to a group of small but abundant proteins in bacterial cells. These transcription regulators are responsible for many important cellular processes and also are involved in pathogenesis of bacteria. The best-known nucleoid-associated proteins, such as HU, FIS, H-NS, and IHF, are often discussed. The most important findings in research concerning HU protein are described in this mini review. Its roles in DNA compaction, shape modulation, and negative supercoiling induction have been studied intensively. HU protein regulates bacteria survival, growth, SOS response, virulence genes expression, cell division, and many other cell processes. Elucidating the mechanism of HU protein action has been the subject of many research projects. This mini review provides a comprehensive overview of the HU protein.
Collapse
Affiliation(s)
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
154
|
Venkat S, Chen H, McGuire P, Stahman A, Gan Q, Fan C. Characterizing lysine acetylation of Escherichia coli type II citrate synthase. FEBS J 2019; 286:2799-2808. [PMID: 30974512 DOI: 10.1111/febs.14845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The citrate synthase (CS) catalyzes the first reaction of the tricarboxylic acid cycle, playing an important role in central metabolism. The acetylation of lysine residues in the Escherichia coli Type II CS has been identified at multiple sites by proteomic studies, but their effects remain unknown. In this study, we applied the genetic code expansion strategy to generate 10 site-specifically acetylated CS variants which have been identified in nature. Enzyme assays and kinetic analyses showed that lysine acetylation could decrease the overall CS enzyme activity, largely due to the acetylation of K295 which impaired the binding of acetyl-coenzyme A. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to explore the acetylation and deacetylation processes of the CS, which indicated that the CS could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase.
Collapse
Affiliation(s)
- Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
155
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
156
|
Yoshida A, Yoshida M, Kuzuyama T, Nishiyama M, Kosono S. Protein acetylation on 2-isopropylmalate synthase from Thermus thermophilus HB27. Extremophiles 2019; 23:377-388. [PMID: 30919057 DOI: 10.1007/s00792-019-01090-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
Protein lysine Nε-acetylation is one of the important factors regulating cellular metabolism. We performed a proteomic analysis to identify acetylated proteins in the extremely thermophilic bacterium, Thermus thermophilus HB27. A total of 335 unique acetylated lysine residues, including many metabolic enzymes and ribosomal proteins, were identified in 208 proteins. Enzymes involved in amino acid metabolism were the most abundant among acetylated metabolic proteins. 2-Isopropylmalate synthase (IPMS), which catalyzes the first step in leucine biosynthesis, was acetylated at four lysine residues. Acetylation-mimicking mutations at Lys332 markedly decreased IPMS activity in vitro, suggesting that Lys332, which is located in subdomain II, plays a regulatory role in IPMS activity. We also investigated the acetylation-deacetylation mechanism of IPMS and revealed that it was acetylated non-enzymatically by acetyl-CoA and deacetylated enzymatically by TT_C0104. The present results suggest that leucine biosynthesis is regulated by post-translational protein modifications, in addition to feedback inhibition/repression, and that metabolic enzymes are regulated by protein acetylation in T. thermophilus.
Collapse
Affiliation(s)
- Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
157
|
Nouri H, Monnier AF, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman A, Képès F, Wegrzyn G, Szalewska-Palasz A, Norris V, Skarstad K, Janniere L. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res 2019; 25:641-653. [PMID: 30256918 PMCID: PMC6289782 DOI: 10.1093/dnares/dsy031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected. This uncovered 11 CCM genes important for replication and showed that some of these genes have an effect in one, two or three media. Additional results presented here and elsewhere (Jannière, L., Canceill, D., Suski, C., et al. (2007), PLoS One, 2, e447.) showed that, in the LB medium, the CCM genes important for DNA elongation (gapA and ackA) are genetically linked to the lagging strand polymerase DnaE while those important for initiation (pgk and pykA) are genetically linked to the replication enzymes DnaC (helicase), DnaG (primase) and DnaE. Our work thus shows that the coupling between growth and replication involves multiple, medium-dependent links between CCM and replication. They also suggest that changes in CCM may affect initiation by altering the functional recruitment of DnaC, DnaG and DnaE at the chromosomal origin, and may affect elongation by altering the activity of DnaE at the replication fork. The underlying mechanism is discussed.
Collapse
Affiliation(s)
- Hamid Nouri
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| | | | | | | | | | - François Képès
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Vic Norris
- Laboratoire MERCI, AMMIS, Faculté des Sciences, Mont-Saint-Aignan, France
| | - Kirsten Skarstad
- Department of Cell Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurent Janniere
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| |
Collapse
|
158
|
Chen H, Venkat S, Hudson D, Wang T, Gan Q, Fan C. Site-Specifically Studying Lysine Acetylation of Aminoacyl-tRNA Synthetases. ACS Chem Biol 2019; 14:288-295. [PMID: 30642164 DOI: 10.1021/acschembio.8b01013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge their cognate tRNAs with corresponding amino acids, playing key roles in ribosomal protein synthesis. A series of proteomic studies have demonstrated that AARSs have levels of lysine acetylation much higher than those of other proteins in Escherichia coli. To study AARS acetylation, 25 site-specifically acetylated variants of four AARSs were generated by the genetic code expansion strategy. Kinetic analyses were performed to biochemically characterize the impact of site-specific acetylation on AARS functions, including amino acid activation, tRNA aminoacylation, and editing activities. The results showed that impacts of acetylation were different between class I and class II AARSs and also varied among the same class of AARSs. The results also showed that acetylation of threonyl-tRNA synthetase (ThrRS) could affect its editing function. Both in vivo and in vitro studies were further performed to explore the acetylation and deacetylation processes of ThrRS. Although nonenzymatic acetylation and CobB-dependent deacetylation were concluded, the results also indicated the existence of additional modifying enzymes or mechanisms for ThrRS acetylation and deacetylation.
Collapse
|
159
|
YfmK is an N ε-lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis. Proc Natl Acad Sci U S A 2019; 116:3752-3757. [PMID: 30808761 DOI: 10.1073/pnas.1815511116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nε-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo. Here, we investigate whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we show that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. We screened deletions of the ∼50 putative GNAT domain-encoding genes in B. subtilis for their effects on DNA compaction, and identified five candidates that may encode acetyltransferases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate Hbsu, and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.
Collapse
|
160
|
Fisher-Wellman KH, Draper JA, Davidson MT, Williams AS, Narowski TM, Slentz DH, Ilkayeva OR, Stevens RD, Wagner GR, Najjar R, Hirschey MD, Thompson JW, Olson DP, Kelly DP, Koves TR, Grimsrud PA, Muoio DM. Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics. Cell Rep 2019; 26:1557-1572.e8. [PMID: 30726738 PMCID: PMC6478502 DOI: 10.1016/j.celrep.2019.01.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Acyl CoA metabolites derived from the catabolism of carbon fuels can react with lysine residues of mitochondrial proteins, giving rise to a large family of post-translational modifications (PTMs). Mass spectrometry-based detection of thousands of acyl-PTMs scattered throughout the proteome has established a strong link between mitochondrial hyperacylation and cardiometabolic diseases; however, the functional consequences of these modifications remain uncertain. Here, we use a comprehensive respiratory diagnostics platform to evaluate three disparate models of mitochondrial hyperacylation in the mouse heart caused by genetic deletion of malonyl CoA decarboxylase (MCD), SIRT5 demalonylase and desuccinylase, or SIRT3 deacetylase. In each case, elevated acylation is accompanied by marginal respiratory phenotypes. Of the >60 mitochondrial energy fluxes evaluated, the only outcome consistently observed across models is a ∼15% decrease in ATP synthase activity. In sum, the findings suggest that the vast majority of mitochondrial acyl PTMs occur as stochastic events that minimally affect mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - James A Draper
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Michael T Davidson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Ashley S Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Tara M Narowski
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Robert D Stevens
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Gregory R Wagner
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Rami Najjar
- Cell Signaling Technologies, Danvers, MA 01923, USA
| | - Mathew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA
| | - David P Olson
- Department of Pediatrics, Division of Pediatric Endocrinology, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel P Kelly
- Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA.
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
161
|
Sharma S, Kumari P, Vashist A, Kumar C, Nandi M, Tyagi JS. Cognate sensor kinase-independent activation of Mycobacterium tuberculosis response regulator DevR (DosR) by acetyl phosphate: implications in anti-mycobacterial drug design. Mol Microbiol 2019; 111:1182-1194. [PMID: 30589958 DOI: 10.1111/mmi.14196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
The DevRS/DosT two-component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under 'non-inducing' aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase-phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate-grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild-type DevS and phosphorylation-defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous-like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate-dependent phosphorylation can occur in the absence of DevR's cognate kinases. Based on our findings, we conclude that anti-mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Priyanka Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and other Mycobacterial Diseases, Tajganj, Agra, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Chanchal Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Haryana, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
162
|
Breuer M, Earnest TM, Merryman C, Wise KS, Sun L, Lynott MR, Hutchison CA, Smith HO, Lapek JD, Gonzalez DJ, de Crécy-Lagard V, Haas D, Hanson AD, Labhsetwar P, Glass JI, Luthey-Schulten Z. Essential metabolism for a minimal cell. eLife 2019; 8:36842. [PMID: 30657448 PMCID: PMC6609329 DOI: 10.7554/elife.36842] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/17/2019] [Indexed: 11/29/2022] Open
Abstract
JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, Mycoplasma mycoides capri, we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.59. The genes in the reconstruction have a high in vivo essentiality or quasi-essentiality of 92% (68% essential), compared to 79% in silico essentiality. This coherent model of the minimal metabolism in JCVI-syn3A at the same time also points toward specific open questions regarding the minimal genome of JCVI-syn3A, which still contains many genes of generic or completely unclear function. In particular, the model, its comparison to in vivo essentiality and proteomics data yield specific hypotheses on gene functions and metabolic capabilities; and provide suggestions for several further gene removals. In this way, the model and its accompanying data guide future investigations of the minimal cell. Finally, the identification of 30 essential genes with unclear function will motivate the search for new biological mechanisms beyond metabolism. One way that researchers can test whether they understand a biological system is to see if they can accurately recreate it as a computer model. The more they learn about living things, the more the researchers can improve their models and the closer the models become to simulating the original. In this approach, it is best to start by trying to model a simple system. Biologists have previously succeeded in creating ‘minimal bacterial cells’. These synthetic cells contain fewer genes than almost all other living things and they are believed to be among the simplest possible forms of life that can grow on their own. The minimal cells can produce all the chemicals that they need to survive – in other words, they have a metabolism. Accurately recreating one of these cells in a computer is a key first step towards simulating a complete living system. Breuer et al. have developed a computer model to simulate the network of the biochemical reactions going on inside a minimal cell with just 493 genes. By altering the parameters of their model and comparing the results to experimental data, Breuer et al. explored the accuracy of their model. Overall, the model reproduces experimental results, but it is not yet perfect. The differences between the model and the experiments suggest new questions and tests that could advance our understanding of biology. In particular, Breuer et al. identified 30 genes that are essential for life in these cells but that currently have no known purpose. Continuing to develop and expand models like these to reproduce more complex living systems provides a tool to test current knowledge of biology. These models may become so advanced that they could predict how living things will respond to changing situations. This would allow scientists to test ideas sooner and make much faster progress in understanding life on Earth. Ultimately, these models could one day help to accelerate medical and industrial processes to save lives and enhance productivity.
Collapse
Affiliation(s)
- Marian Breuer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tyler M Earnest
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | | | - Kim S Wise
- J Craig Venter Institute, La Jolla, United States
| | - Lijie Sun
- J Craig Venter Institute, La Jolla, United States
| | | | | | | | - John D Lapek
- Department of Pharmacology and School of Pharmacy, University of California at San Diego, La Jolla, United States
| | - David J Gonzalez
- Department of Pharmacology and School of Pharmacy, University of California at San Diego, La Jolla, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Drago Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, United States
| | - Piyush Labhsetwar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John I Glass
- J Craig Venter Institute, La Jolla, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
163
|
De Mets F, Van Melderen L, Gottesman S. Regulation of acetate metabolism and coordination with the TCA cycle via a processed small RNA. Proc Natl Acad Sci U S A 2019; 116:1043-1052. [PMID: 30591570 PMCID: PMC6338826 DOI: 10.1073/pnas.1815288116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacterial regulatory small RNAs act as crucial regulators in central carbon metabolism by modulating translation initiation and degradation of target mRNAs in metabolic pathways. Here, we demonstrate that a noncoding small RNA, SdhX, is produced by RNase E-dependent processing from the 3'UTR of the sdhCDAB-sucABCD operon, encoding enzymes of the tricarboxylic acid (TCA) cycle. In Escherichia coli, SdhX negatively regulates ackA, which encodes an enzyme critical for degradation of the signaling molecule acetyl phosphate, while the downstream pta gene, encoding the enzyme critical for acetyl phosphate synthesis, is not significantly affected. This discoordinate regulation of pta and ackA increases the accumulation of acetyl phosphate when SdhX is expressed. Mutations in sdhX that abolish regulation of ackA lead to more acetate in the medium (more overflow metabolism), as well as a strong growth defect in the presence of acetate as sole carbon source, when the AckA-Pta pathway runs in reverse. SdhX overproduction confers resistance to hydroxyurea, via regulation of ackA SdhX abundance is tightly coupled to the transcription signals of TCA cycle genes but escapes all known posttranscriptional regulation. Therefore, SdhX expression directly correlates with transcriptional input to the TCA cycle, providing an effective mechanism for the cell to link the TCA cycle with acetate metabolism pathways.
Collapse
Affiliation(s)
- François De Mets
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-5430
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-5430
| |
Collapse
|
164
|
Fedotcheva NI, Kondrashova MN, Litvinova EG, Zakharchenko MV, Khunderyakova NV, Beloborodova NV. Modulation of the Activity of Succinate Dehydrogenase by Acetylation with Chemicals, Drugs, and Microbial Metabolites. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350918050081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
165
|
Chen G, Cao M, Yu J, Guo X, Shi S. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC. J Theor Biol 2019; 461:92-101. [DOI: 10.1016/j.jtbi.2018.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
|
166
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
167
|
Wang S, Li J, Sun X, Zhang YH, Huang T, Cai Y. Computational Method for Identifying Malonylation Sites by Using Random Forest Algorithm. Comb Chem High Throughput Screen 2018; 23:304-312. [PMID: 30588879 DOI: 10.2174/1386207322666181227144318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/03/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND As a newly uncovered post-translational modification on the ε-amino group of lysine residue, protein malonylation was found to be involved in metabolic pathways and certain diseases. Apart from experimental approaches, several computational methods based on machine learning algorithms were recently proposed to predict malonylation sites. However, previous methods failed to address imbalanced data sizes between positive and negative samples. OBJECTIVE In this study, we identified the significant features of malonylation sites in a novel computational method which applied machine learning algorithms and balanced data sizes by applying synthetic minority over-sampling technique. METHOD Four types of features, namely, amino acid (AA) composition, position-specific scoring matrix (PSSM), AA factor, and disorder were used to encode residues in protein segments. Then, a two-step feature selection procedure including maximum relevance minimum redundancy and incremental feature selection, together with random forest algorithm, was performed on the constructed hybrid feature vector. RESULTS An optimal classifier was built from the optimal feature subset, which featured an F1-measure of 0.356. Feature analysis was performed on several selected important features. CONCLUSION Results showed that certain types of PSSM and disorder features may be closely associated with malonylation of lysine residues. Our study contributes to the development of computational approaches for predicting malonyllysine and provides insights into molecular mechanism of malonylation.
Collapse
Affiliation(s)
- ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - JiaRui Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xijun Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
168
|
Extracellular Acidic pH Inhibits Acetate Consumption by Decreasing Gene Transcription of the Tricarboxylic Acid Cycle and the Glyoxylate Shunt. J Bacteriol 2018; 201:JB.00410-18. [PMID: 30348831 DOI: 10.1128/jb.00410-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli produces acetate during aerobic growth on various carbon sources. After consuming the carbon substrate, E. coli can further grow on the acetate. This phenomenon is known as the acetate switch, where cells transition from producing acetate to consuming it. In this study, we investigated how pH governs the acetate switch. When E. coli was grown on a glucose-supplemented medium initially buffered to pH 7, the cells produced and then consumed the acetate. However, when the initial pH was dropped to 6, the cells still produced acetate but were only able to consume it when little (<10 mM) acetate was produced. When significant acetate was produced in acidic medium, which occurs when the growth medium contains magnesium, amino acids, and sugar, the cells were unable to consume the acetate. To determine the mechanism, we characterized a set of metabolic mutants and found that those defective in the tricarboxylic acid (TCA) cycle or glyoxylate shunt exhibited reduced rates of acetate consumption. We further found that the expression of the genes in these pathways was reduced during growth in acidic medium. The expression of the genes involved in the AckA-Pta pathway, which provides the principal route for both acetate production and consumption, was also inhibited in acidic medium but only after glucose was depleted, which correlates with the acetate consumption phase. On the basis of these results, we conclude that growth in acidic environments inhibits the expression of the acetate catabolism genes, which in turn prevents acetate consumption.IMPORTANCE Many microorganisms produce fermentation products during aerobic growth on sugars. One of the best-known examples is the production of acetate by Escherichia coli during aerobic growth on sugars. In E. coli, acetate production is reversible: once the cells consume the available sugar, they can consume the acetate previously produced during aerobic fermentation. We found that pH affects the reversibility of acetate production. When the cells produce significant acetate during growth in acidic environments, they are unable to consume it. Unconsumed acetate may accumulate in the cell and inhibit the expression of pathways required for acetate catabolism. These findings demonstrate how acetate alters cell metabolism; they also may be useful for the design of aerobic fermentation processes.
Collapse
|
169
|
Hu LI, Filippova EV, Dang J, Pshenychnyi S, Ruan J, Kiryukhina O, Anderson WF, Kuhn ML, Wolfe AJ. The spermidine acetyltransferase SpeG regulates transcription of the small RNA rprA. PLoS One 2018; 13:e0207563. [PMID: 30562360 PMCID: PMC6298664 DOI: 10.1371/journal.pone.0207563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Spermidine N-acetyltransferase (SpeG) acetylates and thus neutralizes toxic polyamines. Studies indicate that SpeG plays an important role in virulence and pathogenicity of many bacteria, which have evolved SpeG-dependent strategies to control polyamine concentrations and survive in their hosts. In Escherichia coli, the two-component response regulator RcsB is reported to be subject to Nε-acetylation on several lysine residues, resulting in reduced DNA binding affinity and reduced transcription of the small RNA rprA; however, the physiological acetylation mechanism responsible for this behavior has not been fully determined. Here, we performed an acetyltransferase screen and found that SpeG inhibits rprA promoter activity in an acetylation-independent manner. Surface plasmon resonance analysis revealed that SpeG can physically interact with the DNA-binding carboxyl domain of RcsB. We hypothesize that SpeG interacts with the DNA-binding domain of RcsB and that this interaction might be responsible for SpeG-dependent inhibition of RcsB-dependent rprA transcription. This work provides a model for SpeG as a modulator of E. coli transcription through its ability to interact with the transcription factor RcsB. This is the first study to provide evidence that an enzyme involved in polyamine metabolism can influence the function of the global regulator RcsB, which integrates information concerning envelope stresses and central metabolic status to regulate diverse behaviors.
Collapse
Affiliation(s)
- Linda I. Hu
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, IL, United States of America
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL, United States of America
| | - Joseph Dang
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States of America
| | - Sergii Pshenychnyi
- Recombinant Protein Production Core at Chemistry of Life Processes Institute, Northwestern University, Chicago, IL, United States of America
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL, United States of America
| | - Olga Kiryukhina
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL, United States of America
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL, United States of America
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States of America
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, IL, United States of America
- * E-mail:
| |
Collapse
|
170
|
Role of Acetyltransferase PG1842 in Gingipain Biogenesis in Porphyromonas gingivalis. J Bacteriol 2018; 200:JB.00385-18. [PMID: 30249709 DOI: 10.1128/jb.00385-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/20/2018] [Indexed: 02/02/2023] Open
Abstract
Porphyromonas gingivalis, the major etiologic agent in adult periodontitis, produces large amounts of proteases that are important for its survival and pathogenesis. The activation/maturation of gingipains, the major proteases, in P. gingivalis involves a complex network of processes which are not yet fully understood. VimA, a putative acetyltransferase and virulence-modulating protein in P. gingivalis, is known to be involved in gingipain biogenesis. P. gingivalis FLL92, a vimA-defective isogenic mutant (vimA::ermF-ermAM) showed late-onset gingipain activity at stationary phase, indicating the likelihood of a complementary functional VimA homolog in that growth phase. This study aimed to identify a functional homolog(s) that may activate the gingipains in the absence of VimA at stationary phase. A bioinformatics analysis showed five putative GCN5-related N-acetyltransferases (GNAT) encoded in the P. gingivalis genome that are structurally related to VimA. Allelic exchange mutagenesis was used to make deletion mutants for these acetyltransferases in the P. gingivalis vimA-defective mutant FLL102 (ΔvimA::ermF) genetic background. One of the mutants, designated P. gingivalis FLL126 (ΔvimA-ΔPG1842), did not show any late-onset gingipain activity at stationary phase compared to that of the parent strain P. gingivalis FLL102. A Western blot analysis of stationary-phase extracellular fractions with antigingipain antibodies showed immunoreactive bands that were similar in size to those for the progingipain species present only in the ΔvimA-ΔPG1842 isogenic mutant. Both recombinant VimA and PG1842 proteins acetylated Y230, K247, and K248 residues in the pro-RgpB substrate. Collectively, these findings indicate that PG1842 may play a significant role in the activation/maturation of gingipains in P. gingivalis IMPORTANCE Gingipain proteases are key virulence factors secreted by Porphyromonas gingivalis that cause periodontal tissue damage and the degradation of the host immune system proteins. Gingipains are translated as an inactive zymogen to restrict intracellular proteolytic activity before secretion. Posttranslational processing converts the inactive proenzyme to a catalytically active protease. Gingipain biogenesis, including its secretion and activation, is a complex process which is still not fully understood. One recent study identified acetylated lysine residues in the three gingipains RgpA, RgpB, and Kgp, thus indicating a role for acetylation in gingipain biogenesis. Here, we show that the acetyltransferases VimA and PG1842 can acetylate the pro-RgpB gingipain species. These findings further indicate that acetylation is a potential mechanism in the gingipain activation/maturation pathway in P. gingivalis.
Collapse
|
171
|
Chang JW, Montgomery JE, Lee G, Moellering RE. Chemoproteomic Profiling of Phosphoaspartate Modifications in Prokaryotes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jae Won Chang
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| | - Jeffrey E. Montgomery
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| | - Gihoon Lee
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| | - Raymond E. Moellering
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| |
Collapse
|
172
|
In-depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Sci Rep 2018; 8:17246. [PMID: 30467398 PMCID: PMC6250715 DOI: 10.1038/s41598-018-35589-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
Bacillus subtilis is a sporulating Gram-positive bacterium widely used in basic research and biotechnology. Despite being one of the best-characterized bacterial model organism, recent proteomics studies identified only about 50% of its theoretical protein count. Here we combined several hundred MS measurements to obtain a comprehensive map of the proteome, phosphoproteome and acetylome of B. subtilis grown at 37 °C in minimal medium. We covered 75% of the theoretical proteome (3,159 proteins), detected 1,085 phosphorylation and 4,893 lysine acetylation sites and performed a systematic bioinformatic characterization of the obtained data. A subset of analyzed MS files allowed us to reconstruct a network of Hanks-type protein kinases, Ser/Thr/Tyr phosphatases and their substrates. We applied genomic phylostratigraphy to gauge the evolutionary age of B. subtilis protein classes and revealed that protein modifications were present on the oldest bacterial proteins. Finally, we performed a proteogenomic analysis by mapping all MS spectra onto a six-frame translation of B. subtilis genome and found evidence for 19 novel ORFs. We provide the most extensive overview of the proteome and post-translational modifications for B. subtilis to date, with insights into functional annotation and evolutionary aspects of the B. subtilis genome.
Collapse
|
173
|
Chang JW, Montgomery JE, Lee G, Moellering RE. Chemoproteomic Profiling of Phosphoaspartate Modifications in Prokaryotes. Angew Chem Int Ed Engl 2018; 57:15712-15716. [PMID: 30231186 DOI: 10.1002/anie.201809059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Phosphorylation at aspartic acid residues represents an abundant and critical post-translational modification (PTM) in prokaryotes. In contrast to most characterized PTMs, such as phosphorylation at serine or threonine, the phosphoaspartate moiety is intrinsically labile, and therefore incompatible with common proteomic profiling methods. Herein, we report a nucleophilic, desthiobiotin-containing hydroxylamine (DBHA) chemical probe that covalently labels modified aspartic acid residues in native proteomes. DBHA treatment coupled with LC-MS/MS analysis enabled detection of known phosphoaspartate modifications, as well as novel aspartic acid sites in the E. coli proteome. Coupled with isotopic labelling, DBHA-dependent proteomic profiling also permitted global quantification of changes in endogenous protein modification status, as demonstrated with the detection of increased E. coli OmpR phosphorylation, but not abundance, in response to changes in osmolarity.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Jeffrey E Montgomery
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Gihoon Lee
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
174
|
Modulation of CrbS-Dependent Activation of the Acetate Switch in Vibrio cholerae. J Bacteriol 2018; 200:JB.00380-18. [PMID: 30224439 DOI: 10.1128/jb.00380-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Vibrio cholerae controls the pathogenicity of interactions with arthropod hosts via the activity of the CrbS/R two-component system. This signaling pathway regulates the consumption of acetate, which in turn alters the relative virulence of interactions with arthropods, including Drosophila melanogaster CrbS is a histidine kinase that links a transporter-like domain to its signaling apparatus via putative STAC and PAS domains. CrbS and its cognate response regulator are required for the expression of acetyl coenzyme A (acetyl-CoA) synthetase (product of acs), which converts acetate to acetyl-CoA. We demonstrate that the STAC domain of CrbS is required for signaling in culture; without it, acs transcription is reduced in LB medium, and V. cholerae cannot grow on acetate minimal media. However, the strain remains virulent toward Drosophila and expresses acs similarly to the wild type during infection. This suggests that there is a unique signal or environmental variable that modulates CrbS in the gastrointestinal tract of Drosophila Second, we present evidence in support of CrbR, the response regulator that interacts with CrbS, binding directly to the acs promoter, and we identify a region of the promoter that CrbR may target. We further demonstrate that nutrient signals, together with the cAMP receptor protein (CRP)-cAMP system, control acs transcription, but regulation may occur indirectly, as CRP-cAMP activates the expression of the crbS and crbR genes. Finally, we define the role of the Pta-AckA system in V. cholerae and identify redundancy built into acetate excretion pathways in this pathogen.IMPORTANCE CrbS is a member of a unique family of sensor histidine kinases, as its structure suggests that it may link signaling to the transport of a molecule. However, mechanisms through which CrbS senses and communicates information about the outside world are unknown. In the Vibrionaceae, orthologs of CrbS regulate acetate metabolism, which can, in turn, affect interactions with host organisms. Here, we situate CrbS within a larger regulatory framework, demonstrating that crbS is regulated by nutrient-sensing systems. Furthermore, CrbS domains may play various roles in signaling during infection and growth in culture, suggesting a unique mechanism of host recognition. Finally, we define the roles of additional pathways in acetate flux, as a foundation for further studies of this metabolic nexus point.
Collapse
|
175
|
Suzuki S, Kondo N, Yoshida M, Nishiyama M, Kosono S. Dynamic changes in lysine acetylation and succinylation of the elongation factor Tu in Bacillus subtilis. MICROBIOLOGY-SGM 2018; 165:65-77. [PMID: 30394869 DOI: 10.1099/mic.0.000737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nε-lysine acetylation and succinylation are ubiquitous post-translational modifications in eukaryotes and bacteria. In the present study, we showed a dynamic change in acetylation and succinylation of TufA, the translation elongation factor Tu, from Bacillus subtilis. Increased acetylation of TufA was observed during the exponential growth phase in LB and minimal glucose conditions, and its acetylation level decreased upon entering the stationary phase, while its succinylation increased during the late stationary phase. TufA was also succinylated during vegetative growth under minimal citrate or succinate conditions. Mutational analysis showed that triple succinylation mimic mutations at Lys306, Lys308 and Lys316 in domain-3 of TufA had a negative effect on B. subtilis growth, whereas the non-acylation mimic mutations at these three lysine residues did not. Consistent with the growth phenotypes, the triple succinylation mimic mutant showed 67 % decreased translation activity in vitro, suggesting a possibility that succinylation at the lysine residues in domain-3 decreases the translation activity. TufA, including Lys308, was non-enzymatically succinylated by physiological concentrations of succinyl-CoA. Lys42 in the G-domain was identified as the most frequently modified acetylation site, though its acetylation was likely dispensable for TufA translation activity and growth. Determination of the intracellular levels of acetylating substrates and TufA acetylation revealed that acetyl phosphate was responsible for acetylation at several lysine sites of TufA, but not for Lys42 acetylation. It was speculated that acetyl-CoA was likely responsible for Lys42 acetylation, though AcuA acetyltransferase was not involved. Zn2+-dependent AcuC and NAD+-dependent SrtN deacetylases were responsible for deacetylation of TufA, including Lys42. These findings suggest the potential regulatory roles of acetylation and succinylation in controlling TufA function and translation in response to nutrient environments in B. subtilis.
Collapse
Affiliation(s)
- Shota Suzuki
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoko Kondo
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Minoru Yoshida
- 2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,3Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,4RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Makoto Nishiyama
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,4RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
176
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
177
|
Shi T, Burton S, Wang Y, Xu S, Zhang W, Yu L. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:17-23. [PMID: 30497706 DOI: 10.1016/j.pestbp.2018.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
The cyano-substituted neonicotinoid insecticide, thiacloprid, is nowadays widely used in agriculture for controlling insect pests. However, it also simultaneously has adverse effects on the health of important pollinators, such as honey bees. Previous studies have reported that sublethal doses of neonicotinoids impaired immunocompetence, learning and memory performance, and homing behaviour in honey bees. In the present study, using LC-MS-based combined with GC-MS-based metabolomic approaches, we profiled the metabolic changes that occur in the head of honey bee after subchronic exposure to 2 mg/L thiacloprid over 3 days. The estimated total dose of thiacloprid fed to each bee was 0.12 μg. The results showed that there were 115 metabolites significantly affected in thiacloprid-treated bees compared to control. The metabolites with high level of abundance enriched to wide range pathways associated with oxidative stress and detoxification suggest that the honey bees have activated their detoxification system to resistant toxicity of thiacloprid. While, the reduction of serotonin suggest thiacloprid may hinder the brain activity implicated in learning and behaviour development. Our study expand the understanding of the molecular basis of the complex interactions between neonicotinoids and honey bees.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Sawyer Burton
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yufei Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shengyun Xu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
178
|
Christensen DG, Meyer JG, Baumgartner JT, D'Souza AK, Nelson WC, Payne SH, Kuhn ML, Schilling B, Wolfe AJ. Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. mBio 2018; 9:e01905-18. [PMID: 30352934 PMCID: PMC6199490 DOI: 10.1128/mbio.01905-18] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either nonenzymatically or enzymatically. The nonenzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donor to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified in Escherichia coli Here, we demonstrate the existence of 4 additional E. coli KATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the posttranslational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific nonenzymatic and enzymatic protein acetylation mechanisms present in bacteria.IMPORTANCENε-Lysine acetylation is one of the most abundant and important posttranslational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed an E. coli strain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate nonenzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellum-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial posttranslational modification.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jackson T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | | | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel H Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | | | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
179
|
A Putative Acetylation System in Vibrio cholerae Modulates Virulence in Arthropod Hosts. Appl Environ Microbiol 2018; 84:AEM.01113-18. [PMID: 30143508 DOI: 10.1128/aem.01113-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster, a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the ΔcobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae, arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts.IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila, most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.
Collapse
|
180
|
Bollong MJ, Lee G, Coukos JS, Yun H, Zambaldo C, Chang JW, Chin EN, Ahmad I, Chatterjee AK, Lairson LL, Schultz PG, Moellering RE. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 2018; 562:600-604. [PMID: 30323285 PMCID: PMC6444936 DOI: 10.1038/s41586-018-0622-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/21/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Gihoon Lee
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - John S Coukos
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Hwayoung Yun
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.,College of Pharmacy, Pusan National University, Busan, South Korea
| | - Claudio Zambaldo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jae Won Chang
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Insha Ahmad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. .,California Institute for Biomedical Research (Calibr), La Jolla, CA, USA.
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. .,California Institute for Biomedical Research (Calibr), La Jolla, CA, USA.
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
181
|
Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proc Natl Acad Sci U S A 2018; 115:11096-11101. [PMID: 30301795 DOI: 10.1073/pnas.1811971115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the complex interactions of protein posttranslational modifications (PTMs) represents a major challenge in metabolic engineering, synthetic biology, and the biomedical sciences. Here, we present a workflow that integrates multiplex automated genome editing (MAGE), genome-scale metabolic modeling, and atomistic molecular dynamics to study the effects of PTMs on metabolic enzymes and microbial fitness. This workflow incorporates complementary approaches across scientific disciplines; provides molecular insight into how PTMs influence cellular fitness during nutrient shifts; and demonstrates how mechanistic details of PTMs can be explored at different biological scales. As a proof of concept, we present a global analysis of PTMs on enzymes in the metabolic network of Escherichia coli Based on our workflow results, we conduct a more detailed, mechanistic analysis of the PTMs in three proteins: enolase, serine hydroxymethyltransferase, and transaldolase. Application of this workflow identified the roles of specific PTMs in observed experimental phenomena and demonstrated how individual PTMs regulate enzymes, pathways, and, ultimately, cell phenotypes.
Collapse
|
182
|
Post-translational modification of nucleoid-associated proteins: an extra layer of functional modulation in bacteria? Biochem Soc Trans 2018; 46:1381-1392. [PMID: 30287510 DOI: 10.1042/bst20180488] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Post-translational modification (PTM) of histones has been investigated in eukaryotes for years, revealing its widespread occurrence and functional importance. Many PTMs affect chromatin folding and gene activity. Only recently the occurrence of such modifications has been recognized in bacteria. However, it is unclear whether PTM of the bacterial counterparts of eukaryotic histones, nucleoid-associated proteins (NAPs), bears a comparable significance. Here, we scrutinize proteome mass spectrometry data for PTMs of the four most abundantly present NAPs in Escherichia coli (H-NS, HU, IHF and FIS). This approach allowed us to identify a total of 101 unique PTMs in the 11 independent proteomic studies covered in this review. Combined with structural and genetic information on these proteins, we describe potential effects of these modifications (perturbed DNA-binding, structural integrity or interaction with other proteins) on their function.
Collapse
|
183
|
Umehara T, Kosono S, Söll D, Tamura K. Lysine Acetylation Regulates Alanyl-tRNA Synthetase Activity in Escherichia coli. Genes (Basel) 2018; 9:genes9100473. [PMID: 30274179 PMCID: PMC6209979 DOI: 10.3390/genes9100473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/09/2018] [Accepted: 09/21/2018] [Indexed: 11/19/2022] Open
Abstract
Protein lysine acetylation is a widely conserved posttranslational modification in all three domains of life. Lysine acetylation frequently occurs in aminoacyl-tRNA synthetases (aaRSs) from many organisms. In this study, we determined the impact of the naturally occurring acetylation at lysine-73 (K73) in Escherichia coli class II alanyl-tRNA synthetase (AlaRS) on its alanylation activity. We prepared an AlaRS K73Ac variant in which Nε-acetyl-l-lysine was incorporated at position 73 using an expanded genetic code system in E. coli. The AlaRS K73Ac variant showed low activity compared to the AlaRS wild type (WT). Nicotinamide treatment or CobB-deletion in an E. coli led to elevated acetylation levels of AlaRS K73Ac and strongly reduced alanylation activities. We assumed that alanylation by AlaRS is affected by K73 acetylation, and the modification is sensitive to CobB deacetylase in vivo. We also showed that E. coli expresses two CobB isoforms (CobB-L and CobB-S) in vivo. CobB-S displayed the deacetylase activity of the AlaRS K73Ac variant in vitro. Our results imply a potential regulatory role for lysine acetylation in controlling the activity of aaRSs and protein synthesis.
Collapse
Affiliation(s)
- Takuya Umehara
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan.
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan.
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan.
- Center for Sustainable Resource Science, RIKEN, Saitama 351-0198, Japan.
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan.
| |
Collapse
|
184
|
Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PLoS One 2018; 13:e0204687. [PMID: 30265683 PMCID: PMC6161898 DOI: 10.1371/journal.pone.0204687] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Protein lysine acetylation is a post-translational modification that alters the charge, conformation, and stability of proteins. A number of genome-wide characterizations of lysine-acetylated proteins, or acetylomes, in bacteria have demonstrated that lysine acetylation occurs on proteins with a wide diversity of functions, including central metabolism, transcription, chemotaxis, and cell size regulation. Bacillus subtilis is a model organism for studies of sporulation, motility, cell signaling, and multicellular development (or biofilm formation). In this work, we investigated the role of global protein lysine acetylation in multicellular development in B. subtilis. We analyzed the B. subtilis acetylome under biofilm-inducing conditions and identified acetylated proteins involved in multicellularity, specifically, swarming and biofilm formation. We constructed various single and double mutants of genes known to encode enzymes involved in global protein lysine acetylation in B. subtilis. Some of those mutants showed a defect in swarming motility while others demonstrated altered biofilm phenotypes. Lastly, we picked two acetylated proteins known to be important for biofilm formation, YmcA (also known as RicA), a regulatory protein critical for biofilm induction, and GtaB, an UTP-glucose-1-phosphate uridylyltransferase that synthesizes a nucleotide sugar precursor for biosynthesis of exopolysaccharide, a key biofilm matrix component. We performed site-directed mutagenesis on the acetylated lysine codons in ymcA and gtaB, respectively, and assayed cells bearing those point mutants for biofilm formation. The mutant alleles of ymcA(K64R), gtaB(K89R), and gtaB(K191R) all demonstrated a severe biofilm defect. These results indicate the importance of acetylated lysine residues in both YmcA and GtaB. In summary, we propose that protein lysine acetylation plays a global regulatory role in B. subtilis multicellularity.
Collapse
|
185
|
James AM, Smith CL, Smith AC, Robinson AJ, Hoogewijs K, Murphy MP. The Causes and Consequences of Nonenzymatic Protein Acylation. Trends Biochem Sci 2018; 43:921-932. [PMID: 30131192 DOI: 10.1016/j.tibs.2018.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
Thousands of protein acyl modification sites have now been identified in vivo. However, at most sites the acylation stoichiometry is low, making functional enzyme-driven regulation in the majority of cases unlikely. As unmediated acylation can occur on the surface of proteins when acyl-CoA thioesters react with nucleophilic cysteine and lysine residues, slower nonenzymatic processes likely underlie most protein acylation. Here, we review how nonenzymatic acylation of nucleophilic lysine and cysteine residues occurs; the factors that enhance acylation at particular sites; and the strategies that have evolved to limit protein acylation. We conclude that protein acylation is an unavoidable consequence of the central role of reactive thioesters in metabolism. Finally, we propose a hypothesis for why low-stoichiometry protein acylation is selected against by evolution and how it might contribute to degenerative processes such as aging.
Collapse
Affiliation(s)
- Andrew M James
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Cassandra L Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anthony C Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Kurt Hoogewijs
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
186
|
Fernández-Coll L, Cashel M. Contributions of SpoT Hydrolase, SpoT Synthetase, and RelA Synthetase to Carbon Source Diauxic Growth Transitions in Escherichia coli. Front Microbiol 2018; 9:1802. [PMID: 30123210 PMCID: PMC6085430 DOI: 10.3389/fmicb.2018.01802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
During the diauxic shift, Escherichia coli exhausts glucose and adjusts its expression pattern to grow on a secondary carbon source. Transcriptional profiling studies of glucose–lactose diauxic transitions reveal a key role for ppGpp. The amount of ppGpp depends on RelA synthetase and the balance between a strong SpoT hydrolase and its weak synthetase. In this study, mutants are used to search for synthetase or hydrolase specific regulation. Diauxic shifts experiments were performed with strains containing SpoT hydrolase and either RelA or SpoT synthetase as the sole source of ppGpp. Here, the length of the diauxic lag times is determined by the presence of ppGpp, showing contributions of both ppGpp synthetases (RelA and SpoT) as well as its hydrolase (SpoT). A balanced ppGpp response is key for a proper adaptation during diauxic shift. The effects of one or the other ppGpp synthetase on diauxic shifts are abolished by addition of amino acids or succinate, although by different mechanisms. While amino acids control the RelA response, succinate blocks the uptake of the excreted acetate via SatP. Acetate is converted to Acetyl-CoA through the ackA-pta pathway, producing Ac-P as intermediate. Evidence of control of the ackA-pta operon as well as a correlation between ppGpp and Ac-P is shown. Finally, acetylation of proteins is shown to occur during a diauxic glucose–lactose shift.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
187
|
Wei W, Zhang Y, Gao R, Li J, Xu Y, Wang S, Ji Q, Feng Y. Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in Mycobacterium smegmatis. Mol Microbiol 2018; 109:642-662. [PMID: 29995988 DOI: 10.1111/mmi.14066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/24/2022]
Abstract
Biotin (vitamin B7), a sulfur-containing fatty acid derivative, is a nutritional virulence factor in certain mycobacterial species. Tight regulation of biotin biosynthesis is important because production of biotin is an energetically expensive process requiring 15-20 equivalents of ATP. The Escherichia coli bifunctional BirA is a prototypical biotin regulatory system. In contrast, mycobacterial BirA is an unusual biotin protein ligase without DNA-binding domain. Recently, we established a novel two-protein paradigm of BioQ-BirA. However, structural and molecular mechanism for BioQ is poorly understood. Here, we report crystal structure of the M. smegmatis BioQ at 1.9 Å resolution. Structure-guided functional mapping defined a seven residues-requiring motif for DNA-binding activity. Western blot and MALDI-TOF MS allowed us to unexpectedly discover that the K47 acetylation activates crosstalking of BioQ to its cognate DNA. More intriguingly, excess of biotin augments the acetylation status of BioQ in M. smegmatis. It seems likely that BioQ acetylation proceeds via a non-enzymatic mechanism. Mutation of this acetylation site K47 in BioQ significantly impairs its regulatory role in vivo. This explains in part (if not all) why BioQ has no detectable requirement of the presumable bio-5'-AMP effecter, which is a well-known ligand for the paradigm E. coli BirA regulator system. Unlike the scenario seen with E. coli carrying a single biotinylated protein, AccB, genome-wide search and Streptavidin blot revealed that no less than seven proteins require the rare post-translational modification, biotinylation in M. smegmatis, validating its physiological demand for biotin at relatively high level. Taken together, our finding defines a novel biotin regulatory machinery by BioQ, posing a possibility that development of new antibiotics targets biotin, the limited nutritional virulence factor in certain pathogenic mycobacterial species.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yifei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rongsui Gao
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yongchang Xu
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Shihua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, School of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
188
|
Li Y, Krishnan K, Duncan MJ. Post-translational regulation of a Porphyromonas gingivalis regulator. J Oral Microbiol 2018; 10:1487743. [PMID: 29988788 PMCID: PMC6032018 DOI: 10.1080/20002297.2018.1487743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/29/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Bacteria use two-component signal transduction systems (among others) to perceive and respond to environmental changes. Within the genus Porphyromonas, we observed degeneration of these systems, as exemplified by the loss of RprX, the sensor kinase partner of the RprY. Objective: The purpose of this study was to investigate modulation of RprY function by acetylation. Design: The transcriptional activity of the rprY-pat genes were measured by RT-PCR and 5ʹ-RACE. The acetylation of RprY were detected by western blotting. Electromobility shift and in vitro ChIP assays were used to measure the DNA binding activity of RprY. The expression of RprY target genes was measured by qRT-PCR. Effects of acetylation on phosphorylation of RprY were measured by Phos-tag gels. Results: The rprY gene is cotranscribed with pat. RprY is acetylated in vivo, and autoacetylated in vitro in a reaction that is enhanced by Pat; the CobB sirtuin deacetylates RprY. Acetylation reduced the DNA binding of RprY. Induced oxidative stress decreased production of RprY in vivo, increased its acetylation and increased expression of nqrA. Conclusions: We propose that to compensate for the loss of RprX, P. gingivalis has evolved a novel mechanism to inactivate RprY through acetylation.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Karthik Krishnan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,Office of Dean of Research and Graduate Studies, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Margaret J Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
189
|
Kremer M, Kuhlmann N, Lechner M, Baldus L, Lammers M. Comment on 'YcgC represents a new protein deacetylase family in prokaryotes'. eLife 2018; 7:37798. [PMID: 29939131 PMCID: PMC6023612 DOI: 10.7554/elife.37798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Lysine acetylation is a post-translational modification that is conserved from bacteria to humans. It is catalysed by the activities of lysine acetyltransferases, which use acetyl-CoA as the acetyl-donor molecule, and lysine deacetylases, which remove the acetyl moiety. Recently, it was reported that YcgC represents a new prokaryotic deacetylase family with no apparent homologies to existing deacetylases (Tu et al., 2015). Here we report the results of experiments which demonstrate that YcgC is not a deacetylase.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nora Kuhlmann
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius Lechner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Linda Baldus
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Lammers
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
190
|
Venkat S, Chen H, Stahman A, Hudson D, McGuire P, Gan Q, Fan C. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. J Mol Biol 2018; 430:1901-1911. [PMID: 29733852 PMCID: PMC5988991 DOI: 10.1016/j.jmb.2018.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hao Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Denver Hudson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
191
|
Olesen SV, Rajabi N, Svensson B, Olsen CA, Madsen AS. An NAD +-Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium Lactobacillus acidophilus NCFM. Biochemistry 2018; 57:3903-3915. [PMID: 29863862 DOI: 10.1021/acs.biochem.8b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sirtuins, a group of NAD+-dependent deacylases, have emerged as the key connection between NAD+ metabolism and aging. This class of enzymes hydrolyzes a range of ε- N-acyllysine PTMs, and determining the repertoire of catalyzed deacylation reactions is of high importance to fully elucidate the roles of a given sirtuin. Here we have identified and produced two potential sirtuins from the probiotic bacterium Lactobacillus acidophilus NCFM. Screening more than 80 different substrates, covering 26 acyl groups on five peptide scaffolds, demonstrated that one of the investigated proteins, Sir2La, is a bona fide NAD+-dependent sirtuin, catalyzing hydrolysis of acetyl-, propionyl-, and butyryllysine. Further substantiating the identity of Sir2La as a sirtuin, known sirtuin inhibitors, nicotinamide and suramin, as well as a thioacetyllysine compound inhibit the deacylase activity in a concentration-dependent manner. On the basis of steady-state kinetics, Sir2La showed a slight preference for propionyllysine (Kpro) over acetyllysine (Kac). For nonfluorogenic peptide substrates, the preference is driven by a remarkably low KM (280 nM vs 700 nM, for Kpro and Kac, respectively), whereas kcat was similar (21 × 10-3 s-1). Moreover, while NAD+ is a prerequisite for Sir2La-mediated deacylation, Sir2La has a very high KM for NAD+ compared to the expected levels of the dinucleotide in L. acidophilus. Sir2La is the first sirtuin from Lactobacillales and of the Gram-positive bacterial subclass of sirtuins to be functionally characterized. The ability to hydrolyze propionyl- and butyryllysine emphasizes the relevance of further exploring the role of other short-chain acyl moieties as PTMs.
Collapse
Affiliation(s)
- Sita V Olesen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
192
|
Xu JY, Xu Y, Xu Z, Zhai LH, Ye Y, Zhao Y, Chu X, Tan M, Ye BC. Protein Acylation is a General Regulatory Mechanism in Biosynthetic Pathway of Acyl-CoA-Derived Natural Products. Cell Chem Biol 2018; 25:984-995.e6. [PMID: 29887264 DOI: 10.1016/j.chembiol.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/25/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022]
Abstract
Coenzyme A (CoA) esters of short fatty acids (acyl-CoAs) function as key precursors for the biosynthesis of various natural products and the dominant donors for lysine acylation. Herein, we investigated the functional interplay between beneficial and adverse effects of acyl-CoA supplements on the production of acyl-CoA-derived natural products in microorganisms by using erythromycin-biosynthesized Saccharopolyspora erythraea as a model: accumulation of propionyl-CoA benefited erythromycin biosynthesis, but lysine propionylation inhibited the activities of important enzymes involved in biosynthetic pathways of erythromycin. The results showed that the overexpression of NAD+-dependent deacylase could circumvent the inhibitory effects of high acyl-CoA concentrations. In addition, we demonstrated the similar lysine acylation mechanism in other acyl-CoA-derived natural product biosynthesis, such as malonyl-CoA-derived alkaloid and butyryl-CoA-derived bioalcohol. These observations systematically uncovered the important role of protein acylation on interaction between the accumulation of high concentrations of acyl-CoAs and the efficiency of their use in metabolic pathways.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ya Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yingming Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
193
|
Abstract
Posttranslational modification (PTM) of proteins has emerged as a major regulatory mechanism in all three domains of life. One emerging PTM is Nε-lysine acetylation-the acetylation of the epsilon amino group of lysine residues. Nε-lysine acetylation is known to regulate multiple cellular processes. In eukaryotes, it regulates chromatin structure, transcription, metabolism, signal transduction, and the cytoskeleton. Recently, multiple groups have detected Nε-lysine acetylation in diverse bacterial phyla, but no work on protein acetylation in Borrelia burgdorferi has been reported. Here, we describe a step-by-step protocol to identify Nε-lysine acetylated proteins in B. burgdorferi.
Collapse
|
194
|
Vasileva D, Suzuki-Minakuchi C, Kosono S, Yoshida M, Okada K, Nojiri H. Proteome and acylome analyses of the functional interaction network between the carbazole-degradative plasmid pCAR1 and host Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:299-309. [PMID: 29573367 DOI: 10.1111/1758-2229.12639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Understanding the interplay between a plasmid and its host system is a bottleneck towards prediction of the fate of plasmid-harbouring strains in the natural environments. Here, we studied the impact of the conjugative plasmid pCAR1, involved in carbazole degradation, on the proteome of Pseudomonas putida KT2440 using SILAC method. Furthermore, we investigated two acyl lysine modifications (acetylation and succinylation) that respond to the metabolic status of the cell and are implicated in regulation of various cellular processes. The total proteome analysis revealed that the abundance of key proteins involved in metabolism, signal transduction and motility was affected by pCAR1 carriage. In total, we identified 1359 unique acetylation sites on 637 proteins and 567 unique succinylation sites on 259 proteins. Changes in the acylation status of proteins involved in metabolism and translation by pCAR1 carriage were detected. Remarkably, acylation was identified on proteins involved in important plasmid functions, including partitioning and carbazole degradation, and on nucleoid-associated proteins that play a key role in the functional interaction with the chromosome. This study provides a novel insight on the functional consequences of plasmid carriage and improves our understanding of the plasmid-host cross-talk.
Collapse
Affiliation(s)
- Delyana Vasileva
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | | | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
195
|
Guebel DV, Torres NV. Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of Escherichia coli: Assessment by an Optimized Factorial Microarray Analysis. Front Microbiol 2018; 9:941. [PMID: 29875739 PMCID: PMC5974110 DOI: 10.3389/fmicb.2018.00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Background: While in eukaryotes acetylation/deacetylation regulation exerts multiple pleiotropic effects, in Escherichia coli it seems to be more limited and less known. Hence, we aimed to progress in the characterization of this regulation by dealing with three convergent aspects: the effector enzymes involved, the master regulator CRP, and the dependence on glucose availability. Methods: The transcriptional response of E. coli BW25113 was analyzed across 14 relevant scenarios. These conditions arise when the wild type and four isogenic mutants (defective in deacetylase CobB, defective in N(ε)-lysine acetyl transferase PatZ, Q- and R-type mutants of protein CRP) are studied under three levels of glucose availability (glucose-limited chemostat and glucose-excess or glucose-exhausted in batch culture). The Q-type emulates a permanent stage of CRPacetylated, whereas the R-type emulates a permanent stage of CRPdeacetylated. The data were analyzed by an optimized factorial microarray method (Q-GDEMAR). Results: (a) By analyzing one mutant against the other, we were able to unravel the true genes that participate in the interaction between ΔcobB/ΔpatZ mutations and glucose availability; (b) Increasing stages of glucose limitation appear to be associated with the up-regulation of specific sets of target genes rather than with the loss of genes present when glucose is in excess; (c) Both CRPdeacetylated and CRPacetylated produce extensive changes in specific subsets of genes, but their number and identity depend on the glucose availability; (d) In other sub-sets of genes, the transcriptional effect of CRP seems to be independent of its acetylation or deacetylation; (e) Some specific ontology functions can be associated with each of the different sets of genes detected herein. Conclusions: CRP cannot be thought of only as an effector of catabolite repression, because it acts along all the glucose conditions tested (excess, limited, and exhausted), exerting both positive and negative effects through different sets of genes. Acetylation of CRP does not seem to be a binary form of regulation, as there is not a univocal relationship between its activation/inhibitory effect and its acetylation/deacetylation stage. All the combinatorial possibilities are observed. During the exponential growth phase, CRP also exerts a very significant transcriptional effect, mainly on flagellar assembly and chemotaxis (FDR = 7.2 × 10−44).
Collapse
Affiliation(s)
| | - Néstor V Torres
- Systems Biology and Mathematical Modelling Group, Department of Biochemistry, Microbiology, Cellular Biology and Genetics, Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, University of La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
196
|
Gaviard C, Broutin I, Cosette P, Dé E, Jouenne T, Hardouin J. Lysine Succinylation and Acetylation in Pseudomonas aeruginosa. J Proteome Res 2018; 17:2449-2459. [DOI: 10.1021/acs.jproteome.8b00210] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Charlotte Gaviard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Isabelle Broutin
- LCRB, UMR 8015, CNRS, University Paris Descartes, Sorbonne Paris City, 75270 Paris Cedex 06, France
| | - Pascal Cosette
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
197
|
Zhou Q, Gomez Hernandez ME, Fernandez-Lima F, Tse-Dinh YC. Biochemical Basis of E. coli Topoisomerase I Relaxation Activity Reduction by Nonenzymatic Lysine Acetylation. Int J Mol Sci 2018; 19:ijms19051439. [PMID: 29751635 PMCID: PMC5983628 DOI: 10.3390/ijms19051439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023] Open
Abstract
The relaxation activity of E. coli topoisomerase I is required for regulation of global and local DNA supercoiling. The in vivo topoisomerase I enzyme activity is sensitive to lysine acetylation⁻deacetylation and can affect DNA supercoiling and growth as a result. Nonenzymatic lysine acetylation by acetyl phosphate has been shown to reduce the relaxation activity of E. coli topoisomerase I. In this work, the biochemical consequence of topoisomerase I modification by acetyl phosphate with enzymatic assays was studied. Results showed that noncovalent binding to DNA and DNA cleavage by the enzyme were reduced as a result of the acetylation, with greater effect on DNA cleavage. Four lysine acetylation sites were identified using bottom-up proteomics: Lys13, Lys45, Lys346, and Lys488. The Lys13 residue modified by acetyl phosphate has not been reported previously as a lysine acetylation site for E. coli topoisomerase I. We discuss the potential biochemical consequence of lysine acetylation at this strictly conserved lysine and other lysine residues on the enzyme based on available genetic and structural information.
Collapse
Affiliation(s)
- Qingxuan Zhou
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Mario E Gomez Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
198
|
Türkowsky D, Esken J, Goris T, Schubert T, Diekert G, Jehmlich N, von Bergen M. A Retentive Memory of Tetrachloroethene Respiration in Sulfurospirillum halorespirans - involved Proteins and a possible link to Acetylation of a Two-Component Regulatory System. J Proteomics 2018; 181:36-46. [PMID: 29617628 DOI: 10.1016/j.jprot.2018.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Organohalide respiration (OHR), comprising the reductive dehalogenation of halogenated organic compounds, is subject to a unique memory effect and long-term transcriptional downregulation of the involved genes in Sulfurospirillum multivorans. Gene expression ceases slowly over approximately 100 generations in the absence of tetrachloroethene (PCE). However, the molecular mechanisms of this regulation process are not understood. We show here that Sulfurospirillum halorespirans undergoes the same type of regulation when cultivated without chlorinated ethenes for a long period of time. In addition, we compared the proteomes of S. halorespirans cells cultivated in the presence of PCE with those of cells long- and short-term cultivated with nitrate as the sole electron acceptor. Important OHR-related proteins previously unidentified in S. multivorans include a histidine kinase, a putative quinol dehydrogenase membrane protein, and a PCE-induced porin. Since for some regulatory proteins a posttranslational regulation of activity by lysine acetylations is known, we also analyzed the acetylome of S. halorespirans, revealing that 32% of the proteome was acetylated in at least one condition. The data indicate that the response regulator and the histidine kinase of a two-component system most probably involved in induction of PCE respiration are highly acetylated during short-term cultivation with nitrate in the absence of PCE. SIGNIFICANCE The so far unique long-term downregulation of organohalide respiration is now identified in a second species suggesting a broader distribution of this regulatory phenomenon. An improved protein extraction method allowed the identification of proteins most probably involved in transcriptional regulation of OHR in Sulfurospirillum spp. Our data indicate that acetylations of regulatory proteins are involved in this extreme, sustained standby-mode of metabolic enzymes in the absence of a substrate. This first published acetylome of Epsilonproteobacteria might help to study other ecologically or medically important species of this clade.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jens Esken
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Torsten Schubert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße, 34, Germany.
| |
Collapse
|
199
|
Xu JY, Xu Z, Liu X, Tan M, Ye BC. Protein Acetylation and Butyrylation Regulate the Phenotype and Metabolic Shifts of the Endospore-forming Clostridium acetobutylicum. Mol Cell Proteomics 2018. [PMID: 29523768 DOI: 10.1074/mcp.ra117.000372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clostridium acetobutylicum is a strict anaerobic, endospore-forming bacterium, which is used for the production of the high energy biofuel butanol in metabolic engineering. The life cycle of C. acetobutylicum can be divided into two phases, with acetic and butyric acids being produced in the exponential phase (acidogenesis) and butanol formed in the stationary phase (solventogenesis). During the transitional phase from acidogenesis to solventogenesis and latter stationary phase, concentration peaks of the metabolic intermediates butyryl phosphate and acetyl phosphate are observed. As an acyl group donor, acyl-phosphate chemically acylates protein substrates. However, the regulatory mechanism of lysine acetylation and butyrylation involved in the phenotype and solventogenesis of C. acetobutylicum remains unknown. In our study, we conducted quantitative analysis of protein acetylome and butyrylome to explore the dynamic change of lysine acetylation and butyrylation in the exponential phase, transitional phase, and stationary phase of C. acetobutylicum Total 458 lysine acetylation sites and 1078 lysine butyrylation sites were identified in 254 and 373 substrates, respectively. Bioinformatics analysis uncovered the similarities and differences between the two acylation modifications in C. acetobutylicum Mutation analysis of butyrate kinase and the central transcriptional factor Spo0A was performed to characterize the unique role of lysine butyrylation in the metabolic pathway and sporulation process of C. acetobutylicum Moreover, quantitative proteomic assays were performed to reveal the relationship between protein features (e.g. gene expression level and lysine acylation level) and metabolites in the three growth stages. This study expanded our knowledge of lysine acetylation and butyrylation in Clostridia and constituted a resource for functional studies on lysine acylation in bacteria.
Collapse
Affiliation(s)
- Jun-Yu Xu
- From the ‡Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.,§State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.,¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xu
- From the ‡Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.,¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - XinXin Liu
- ¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minjia Tan
- §State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Bang-Ce Ye
- From the ‡Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; .,¶Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
200
|
Carrico C, Meyer JG, He W, Gibson BW, Verdin E. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metab 2018; 27. [PMID: 29514063 PMCID: PMC5863732 DOI: 10.1016/j.cmet.2018.01.016] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modification of lysine residues via reversible acylation occurs on proteins from diverse pathways, functions, and organisms. While nuclear protein acylation reflects the competing activities of enzymatic acyltransferases and deacylases, mitochondrial acylation appears to be driven mostly via a non-enzymatic mechanism. Three protein deacylases, SIRT3, SIRT4, and SIRT5, reside in the mitochondria and remove these modifications from targeted proteins in an NAD+-dependent manner. Recent proteomic surveys of mitochondrial protein acylation have identified the sites of protein acetylation, succinylation, glutarylation, and malonylation and their regulation by SIRT3 and SIRT5. Here, we review recent advances in this rapidly moving field, their biological significance, and their implications for mitochondrial function, metabolic regulation, and disease pathogenesis.
Collapse
Affiliation(s)
- Chris Carrico
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Wenjuan He
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brad W Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|