151
|
Giridharan SSP, Al‐Ramahi I, Hasegawa J, Safren N, Patnaik S, Gee A, Titus S, Zheng W, Ferrer M, Southall N, Barmada S, Botas J, Marugan J, Weisman LS. PIP4Kγ as a potential target for Huntington's disease. FASEB J 2017. [DOI: 10.1096/fasebj.31.1_supplement.946.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ismael Al‐Ramahi
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX
| | - Junya Hasegawa
- Life Sciences Institute, University of MichiganAnn ArborMI
| | | | - Samarjit Patnaik
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Amanda Gee
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Steve Titus
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Wei Zheng
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Marc Ferrer
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Noel Southall
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Sami Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMI
| | - Juan Botas
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX
| | - Juan Marugan
- Division of Pre‐Clinical Innovation, National Center for Advancing Translational SciencesNIHBethesdaMD
| | - Lois S Weisman
- Cell and Developmental BiologyUniversity of MichiganAnn ArborMI
- Life Sciences Institute, University of MichiganAnn ArborMI
| |
Collapse
|
152
|
Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance. Sci Rep 2017; 7:45120. [PMID: 28345623 PMCID: PMC5366871 DOI: 10.1038/srep45120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/27/2017] [Indexed: 12/26/2022] Open
Abstract
Phagocytosis is a key mechanism of innate immunity, and promotion of phagosome maturation may represent a therapeutic target to enhance antibacterial host response. Phagosome maturation is favored by the timely and coordinated intervention of lipids and may be altered in infections. Here we used apoptotic body-like liposomes (ABL) to selectively deliver bioactive lipids to innate cells, and then tested their function in models of pathogen-inhibited and host-impaired phagosome maturation. Stimulation of macrophages with ABLs carrying phosphatidic acid (PA), phosphatidylinositol 3-phosphate (PI3P) or PI5P increased intracellular killing of BCG, by inducing phagosome acidification and ROS generation. Moreover, ABLs carrying PA or PI5P enhanced ROS-mediated intracellular killing of Pseudomonas aeruginosa, in macrophages expressing a pharmacologically-inhibited or a naturally-mutated cystic fibrosis transmembrane conductance regulator. Finally, we show that bronchoalveolar lavage cells from patients with drug-resistant pulmonary infections increased significantly their capacity to kill in vivo acquired bacterial pathogens when ex vivo stimulated with PA- or PI5P-loaded ABLs. Altogether, these results provide the proof of concept of the efficacy of bioactive lipids delivered by ABL to enhance phagosome maturation dependent antimicrobial response, as an additional host-directed strategy aimed at the control of chronic, recurrent or drug-resistant infections.
Collapse
|
153
|
De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int J Mol Sci 2017; 18:ijms18030634. [PMID: 28294977 PMCID: PMC5372647 DOI: 10.3390/ijms18030634] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).
Collapse
Affiliation(s)
- Johan-Owen De Craene
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Dimitri L Bertazzi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Séverine Bär
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| |
Collapse
|
154
|
Hasegawa J, Strunk BS, Weisman LS. PI5P and PI(3,5)P 2: Minor, but Essential Phosphoinositides. Cell Struct Funct 2017; 42:49-60. [PMID: 28302928 DOI: 10.1247/csf.17003] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In most eukaryotes, phosphoinositides (PIs) have crucial roles in multiple cellular functions. Although the cellular levels of phosphatidylinositol 5-phosphate (PI5P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) are extremely low relative to some other PIs, emerging evidence demonstrates that both lipids are crucial for the endocytic pathway, intracellular signaling, and adaptation to stress. Mutations that causes defects in the biosynthesis of PI5P and PI(3,5)P2 are linked to human diseases including neurodegenerative disorders. Here, we review recent findings on cellular roles of PI5P and PI(3,5)P2, as well as the pathophysiological importance of these lipids.Key words: Phosphoinositides, Membrane trafficking, Endocytosis, Vacuoles/Lysosomes, Fab1/PIKfyve.
Collapse
|
155
|
Fluorescence-Based Assays to Analyse Phosphatidylinositol 5-Phosphate in Autophagy. Methods Enzymol 2017. [PMID: 28253963 DOI: 10.1016/bs.mie.2016.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Autophagosome formation is stimulated by VPS34-dependent PI(3)P formation and by alternative VPS34-independent pathways. We recently described that PI(5)P regulates autophagosome biogenesis and rescues autophagy in VPS34-inactivated cells, suggesting that PI(5)P contributes to canonical autophagy. Our analysis revealed a hitherto unknown functional interplay between PIKfyve and PIPK type II in controlling PI(5)P levels in the context of autophagy. Among phosphoinositides, visualization of PI(5)P in intact cells has remained difficult. While PI(5)P has been implicated in signaling pathways, chromatin organization, bacterial invasion, and cytoskeletal remodeling, our study is the first report showing PI(5)P localization on autophagosomes and early autophagosomal structures when autophagy is induced by nutrient deprivation (amino acids or glucose starvation). We provided a detailed analysis of PI(5)P distribution by the use of super-resolution structured illuminated microscopy. Here, we present a set of tools for detection of PI(5)P during autophagy by confocal microscopy, live-cell imaging, and super-resolution microscopy.
Collapse
|
156
|
Kellner R, De la Concepcion JC, Maqbool A, Kamoun S, Dagdas YF. ATG8 Expansion: A Driver of Selective Autophagy Diversification? TRENDS IN PLANT SCIENCE 2017; 22:204-214. [PMID: 28038982 DOI: 10.1016/j.tplants.2016.11.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 05/18/2023]
Abstract
Selective autophagy is a conserved homeostatic pathway that involves engulfment of specific cargo molecules into specialized organelles called autophagosomes. The ubiquitin-like protein ATG8 is a central player of the autophagy network that decorates autophagosomes and binds to numerous cargo receptors. Although highly conserved across eukaryotes, ATG8 diversified from a single protein in algae to multiple isoforms in higher plants. We present a phylogenetic overview of 376 ATG8 proteins across the green plant lineage that revealed family-specific ATG8 clades. Because these clades differ in fixed amino acid polymorphisms, they provide a mechanistic framework to test whether distinct ATG8 clades are functionally specialized. We propose that ATG8 expansion may have contributed to the diversification of selective autophagy pathways in plants.
Collapse
Affiliation(s)
- Ronny Kellner
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Juan Carlos De la Concepcion
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK
| | - Abbas Maqbool
- John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Yasin F Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; The Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
157
|
Cheng X, Ma X, Ding X, Li L, Jiang X, Shen Z, Chen S, Liu W, Gong W, Sun Q. Pacer Mediates the Function of Class III PI3K and HOPS Complexes in Autophagosome Maturation by Engaging Stx17. Mol Cell 2017; 65:1029-1043.e5. [DOI: 10.1016/j.molcel.2017.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/06/2017] [Accepted: 02/10/2017] [Indexed: 11/25/2022]
|
158
|
Button RW, Vincent JH, Strang CJ, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget 2017; 7:5157-75. [PMID: 26814436 PMCID: PMC4868678 DOI: 10.18632/oncotarget.6986] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
The PI-3 kinase (PI-3K)/mTOR pathway is critical for cell growth and proliferation. Strategies of antagonising this signaling have proven to be detrimental to cell survival. This observation, coupled with the fact many tumours show enhanced growth signaling, has caused dual inhibitors of PI-3K and mTOR to be implicated in cancer treatment, and have thus been studied across various tumour models. Since PI-3K (class-I)/mTOR pathway negatively regulates autophagy, dual inhibitors of PI-3K/mTOR are currently believed to be autophagy activators. However, our present data show that the dual PI-3K/mTOR inhibition (DKI) potently suppresses autophagic flux. We further confirm that inhibition of Vps34/PI3KC3, the class-III PI-3K, causes the blockade to autophagosome-lysosome fusion. Our data suggest that DKI induces cell death independently of apoptosis and necroptosis, whereas autophagy perturbation by DKI may contribute to cell death. Given that autophagy is critical in cellular homeostasis, our study not only clarifies the role of a dual PI-3K/mTOR inhibitor in autophagy, but also suggests that its autophagy inhibition needs to be considered if such an agent is used in cancer chemotherapy.
Collapse
Affiliation(s)
- Robert W Button
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, UK
| | - Joseph H Vincent
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, UK
| | - Conor J Strang
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, UK
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, UK
| |
Collapse
|
159
|
Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood 2017; 129:1768-1778. [PMID: 28104689 DOI: 10.1182/blood-2016-09-736892] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
We identified apilimod as an antiproliferative compound by high-throughput screening of clinical-stage drugs. Apilimod exhibits exquisite specificity for phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) lipid kinase and has selective cytotoxic activity in B-cell non-Hodgkin lymphoma (B-NHL) compared with normal cells. Apilimod displays nanomolar activity in vitro, and in vivo studies demonstrate single-agent efficacy as well as synergy with approved B-NHL drugs. Using biochemical and knockdown approaches, and discovery of a kinase domain mutation conferring resistance, we demonstrate that apilimod-mediated cytotoxicity is driven by PIKfyve inhibition. Furthermore, a critical role for lysosome dysfunction as a major factor contributing to apilimod's cytotoxicity is supported by a genome-wide CRISPR screen. In the screen, TFEB (master transcriptional regulator of lysosomal biogenesis) and endosomal/lysosomal genes CLCN7, OSTM1, and SNX10 were identified as important determinants of apilimod sensitivity. These findings thus suggest that disruption of lysosomal homeostasis with apilimod represents a novel approach to treat B-NHL.
Collapse
|
160
|
Nascimbeni AC, Codogno P, Morel E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J 2017; 284:1267-1278. [PMID: 27973739 DOI: 10.1111/febs.13987] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a key player in membrane dynamics and trafficking regulation. Most PI3P is associated with endosomal membranes and with the autophagosome preassembly machinery, presumably at the endoplasmic reticulum. The enzyme responsible for most PI3P synthesis, VPS34 and proteins such as Beclin1 and ATG14L that regulate PI3P levels are positive modulators of autophagy initiation. It had been assumed that a local PI3P pool was present at autophagosomes and preautophagosomal structures, such as the omegasome and the phagophore. This was recently confirmed by the demonstration that PI3P-binding proteins participate in the complex sequence of signalling that results in autophagosome assembly and activity. Here we summarize the historical discoveries of PI3P lipid kinase involvement in autophagy, and we discuss the proposed role of PI3P during autophagy, notably during the autophagosome biogenesis sequence.
Collapse
Affiliation(s)
- Anna Chiara Nascimbeni
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| |
Collapse
|
161
|
Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener 2016; 11:73. [PMID: 27927216 PMCID: PMC5142374 DOI: 10.1186/s13024-016-0140-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson's disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases.
Collapse
Affiliation(s)
- Dorien A. Roosen
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707 USA
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP UK
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| |
Collapse
|
162
|
Abstract
Phosphoinositide lipids (PIPs) are required for various processes during macroautophagy, such as phagophore formation and autophagosome-lysosome fusion. Hence, quantification of the seven PIP species in autophagosome membranes is an important tool to understand how these lipids govern the transition of autophagosomes into autolysosomes. Here, we describe microscopic and mass spectrometry methods which, although designed to quantify the different PIP species on purified lysosomes, can also be applied to analyze autophagosomal PIPs.
Collapse
|
163
|
Hessvik NP, Øverbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K, Llorente A. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci 2016; 73:4717-4737. [PMID: 27438886 PMCID: PMC11108566 DOI: 10.1007/s00018-016-2309-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023]
Abstract
Exosomes are vesicles released from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane. This study aimed to investigate whether the phosphoinositide kinase PIKfyve affects this process. Our results show that in PC-3 cells inhibition of PIKfyve by apilimod or depletion by siRNA increased the secretion of the exosomal fraction. Moreover, quantitative electron microscopy analysis showed that cells treated with apilimod contained more MVBs per cell and more intraluminal vesicles per MVB. Interestingly, mass spectrometry analysis revealed a considerable enrichment of autophagy-related proteins (NBR1, p62, LC3, WIPI2) in exosomal fractions released by apilimod-treated cells, a result that was confirmed by immunoblotting. When the exosome preparations were investigated by electron microscopy a small population of p62-labelled electron dense structures was observed together with CD63-containing exosomes. The p62-positive structures were found in less dense fractions than exosomes in density gradients. Inside the cells, p62 and CD63 were found in the same MVB-like organelles. Finally, both the degradation of EGF and long-lived proteins were shown to be reduced by apilimod. In conclusion, inhibition of PIKfyve increases secretion of exosomes and induces secretory autophagy, showing that these pathways are closely linked. We suggest this is due to impaired fusion of lysosomes with both MVBs and autophagosomes, and possibly increased fusion of MVBs with autophagosomes, and that the cells respond by secreting the content of these organelles to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Anders Øverbye
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Ida Seim Jakobsen
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway.
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway.
| |
Collapse
|
164
|
Guo X, Qi X. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:552-559. [PMID: 27913212 DOI: 10.1016/j.bbadis.2016.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
Proteasome-dependent turnover of mitochondrial outer membrane (OMM)-associated proteins is one of the mechanisms for maintaining proper mitochondrial quality and function. However, the underlying pathways and their implications in human disease are poorly understood. Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by expanded CAG repeats in the N terminal of the huntingtin gene (mutant Huntingtin, mtHtt). In this study, we show an extensive degradation of the OMM protein MCL1 (Myeloid cell leukemia sequence 1) in both HD mouse striatal cells and HD patient fibroblasts. The decrease in MCL1 level is associated with mitochondrial and cellular damage. Valosin-containing-protein (VCP) is an AAA-ATPase central to protein turnover via the ubiquitin proteasome system (UPS). We found that VCP translocates to mitochondria and promotes MCL1 degradation in HD cell cultures. Either down-regulation of VCP by RNA interference or inhibition of VCP by a dominant negative mutant abolishes MCL1 degradation in HD cell cultures. We further show that UBX-domain containing protein 1 (UBXD1), a known co-factor of VCP assisting in the recognition of substrates for protein degradation, selectively binds to MCL1 and interacts with VCP to mediate MCL1 extraction from the mitochondria. These results indicate that the OMM protein MCL1 is degraded by the VCP-UBXD1 complex and that the process is promoted by the presence of mtHtt. Therefore, our finding provides a new insight into the mechanism of mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
165
|
Viaud J, Chicanne G, Solinhac R, Hnia K, Gaits-Iacovoni F, Payrastre B. Mass Assays to Quantify Bioactive PtdIns3P and PtdIns5P During Autophagic Responses. Methods Enzymol 2016; 587:293-310. [PMID: 28253962 DOI: 10.1016/bs.mie.2016.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autophagy is a cellular process whereby cytoplasmic substrates are targeted for degradation in the lysosome via the membrane structures autophagosomes. This process is initiated by specific phosphoinositides, PtdIns3P and PtdIns5P, which play a key role in autophagy by recruiting effectors such as Atg18/WIPI2. Therefore, quantifying those lipids is important to better understand the assembly of the complex autophagic machinery. Herein, we describe in detail methods to quantify PtdIns3P and PtdIns5P by specific mass assays feasible in most laboratories.
Collapse
Affiliation(s)
- J Viaud
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - G Chicanne
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - R Solinhac
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - K Hnia
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | | | - B Payrastre
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France; CHU (Centre Hospitalier Universitaire) de Toulouse, Laboratoire d'Hématologie, Toulouse, France.
| |
Collapse
|
166
|
Song K, Russo G, Krauss M. Septins As Modulators of Endo-Lysosomal Membrane Traffic. Front Cell Dev Biol 2016; 4:124. [PMID: 27857942 PMCID: PMC5093113 DOI: 10.3389/fcell.2016.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 11/13/2022] Open
Abstract
Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.
Collapse
Affiliation(s)
- Kyungyeun Song
- Leibniz-Institut für Molekulare Pharmakologie Berlin, Germany
| | - Giulia Russo
- Leibniz-Institut für Molekulare Pharmakologie Berlin, Germany
| | - Michael Krauss
- Leibniz-Institut für Molekulare Pharmakologie Berlin, Germany
| |
Collapse
|
167
|
Kim SM, Roy SG, Chen B, Nguyen TM, McMonigle RJ, McCracken AN, Zhang Y, Kofuji S, Hou J, Selwan E, Finicle BT, Nguyen TT, Ravi A, Ramirez MU, Wiher T, Guenther GG, Kono M, Sasaki AT, Weisman LS, Potma EO, Tromberg BJ, Edwards RA, Hanessian S, Edinger AL. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest 2016; 126:4088-4102. [PMID: 27669461 PMCID: PMC5096903 DOI: 10.1172/jci87148] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.
Collapse
Affiliation(s)
- Seong M. Kim
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Saurabh G. Roy
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Bin Chen
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Tiffany M. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Ryan J. McMonigle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Alison N. McCracken
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Yanling Zhang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Satoshi Kofuji
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jue Hou
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | - Elizabeth Selwan
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Brendan T. Finicle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tricia T. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Archna Ravi
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Manuel U. Ramirez
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tim Wiher
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Garret G. Guenther
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Mari Kono
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Atsuo T. Sasaki
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lois S. Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric O. Potma
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | | | - Robert A. Edwards
- Department of Pathology, University of California Irvine School of Medicine, Irvine, California, USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmaceutical Sciences, UCI, Irvine, California, USA
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
168
|
Landajuela A, Hervás JH, Antón Z, Montes LR, Gil D, Valle M, Rodriguez JF, Goñi FM, Alonso A. Lipid Geometry and Bilayer Curvature Modulate LC3/GABARAP-Mediated Model Autophagosomal Elongation. Biophys J 2016; 110:411-422. [PMID: 26789764 DOI: 10.1016/j.bpj.2015.11.3524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022] Open
Abstract
Autophagy, an important catabolic pathway involved in a broad spectrum of human diseases, implies the formation of double-membrane-bound structures called autophagosomes (AP), which engulf material to be degraded in lytic compartments. How APs form, especially how the membrane expands and eventually closes upon itself, is an area of intense research. Ubiquitin-like ATG8 has been related to both membrane expansion and membrane fusion, but the underlying molecular mechanisms are poorly understood. Here, we used two minimal reconstituted systems (enzymatic and chemical conjugation) to compare the ability of human ATG8 homologs (LC3, GABARAP, and GATE-16) to mediate membrane fusion. We found that both enzymatically and chemically lipidated forms of GATE-16 and GABARAP proteins promote extensive membrane tethering and fusion, whereas lipidated LC3 does so to a much lesser extent. Moreover, we characterize the GATE-16/GABARAP-mediated membrane fusion as a phenomenon of full membrane fusion, independently demonstrating vesicle aggregation, intervesicular lipid mixing, and intervesicular mixing of aqueous content, in the absence of vesicular content leakage. Multiple fusion events give rise to large vesicles, as seen by cryo-electron microscopy observations. We also show that both vesicle diameter and selected curvature-inducing lipids (cardiolipin, diacylglycerol, and lyso-phosphatidylcholine) can modulate the fusion process, smaller vesicle diameters and negative intrinsic curvature lipids (cardiolipin, diacylglycerol) facilitating fusion. These results strongly support the hypothesis of a highly bent structural fusion intermediate (stalk) during AP biogenesis and add to the growing body of evidence that identifies lipids as important regulators of autophagy.
Collapse
Affiliation(s)
- Ane Landajuela
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Javier H Hervás
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Zuriñe Antón
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - L Ruth Montes
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - J Francisco Rodriguez
- Departmento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, Spain
| | - Felix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
169
|
Ikonomov OC, Sbrissa D, Delvecchio K, Rillema JA, Shisheva A. Unexpected severe consequences of Pikfyve deletion by aP2- or Aq-promoter-driven Cre expression for glucose homeostasis and mammary gland development. Physiol Rep 2016; 4:4/11/e12812. [PMID: 27273882 PMCID: PMC4908490 DOI: 10.14814/phy2.12812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 01/03/2023] Open
Abstract
Systemic deficiency of PIKfyve, the evolutionarily conserved phosphoinositide kinase synthesizing cellular PtdIns5P and PtdIns(3,5)P2 and implicated in insulin signaling, causes early embryonic death in mice. In contrast, mice with muscle‐specific Pikfyve disruption have normal lifespan but exhibit early‐age whole‐body glucose intolerance and muscle insulin resistance, thus establishing the key role of muscle PIKfyve in glucose homeostasis. Fat and muscle tissues control postprandial glucose clearance through different mechanisms, raising questions as to whether adipose Pikfyve disruption will also trigger whole‐body metabolic abnormalities, and if so, what the mechanism might be. To clarify these issues, here we have characterized two new mouse models with adipose tissue disruption of Pikfyve through Cre recombinase expression driven by adipose‐specific aP2‐ or adiponectin (Aq) promoters. Whereas both mouse lines were ostensibly normal until adulthood, their glucose homeostasis and systemic insulin sensitivity were severely dysregulated. These abnormalities stemmed in part from accelerated fat‐cell lipolysis and elevated serum FFA. Intriguingly, aP2‐Cre‐PIKfyvefl/fl but not Aq‐Cre‐PIKfyvefl/fl females had severely impaired pregnancy‐induced mammary gland differentiation and lactogenesis, consistent with aP2‐Cre‐mediated Pikfyve excision in nonadipogenic tissues underlying this defect. Intriguingly, whereas mammary glands from postpartum control and Aq‐Cre‐PIKfyvefl/fl mice or ex vivo mammary gland explants showed profound upregulation of PIKfyve protein levels subsequent to prolactin receptor activation, such increases were not apparent in aP2‐Cre‐PIKfyvefl/fl females. Collectively, our data identify for the first time that adipose tissue Pikfyve plays a key role in the mechanisms regulating glucose homeostasis and that the PIKfyve pathway is critical in mammary epithelial differentiation during pregnancy and lactogenesis downstream of prolactin receptor signaling.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Khortnal Delvecchio
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - James A Rillema
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
170
|
Dupont N, Nascimbeni AC, Morel E, Codogno P. Molecular Mechanisms of Noncanonical Autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:1-23. [PMID: 28069131 DOI: 10.1016/bs.ircmb.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a lysosomal catabolic process that maintains the homeostasis of eukaryotic cells, tissues, and organisms. Macroautophagy plays important physiological roles during development and aging processes and also contributes to immune responses. The process of macroautophagy is compromised in diseases, such as cancer, neurodegenerative disorders, and diabetes. The autophagosome, the double-membrane-bound organelle that sequesters cytoplasmic material to initiate macroautophagy, is formed by the hierarchical recruitment of about 15 autophagy-related (ATG) proteins and associated proteins, such as DFCP1, AMBRA1, the class III phosphatidyl-inositol 3-kinase VPS34, and p150/VPS15. Evidence suggests that in addition to the canonical pathway, noncanonical pathways that do not require the entire repertoire of ATGs can also result in formation of autophagosomes. Here we will discuss recent discoveries concerning the molecular regulation of these noncanonical forms of macroautophagy and their potential roles in cellular responses to stressful situations.
Collapse
Affiliation(s)
- N Dupont
- Institut Necker-Enfant Malades (INEM), INSERM, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - A C Nascimbeni
- Institut Necker-Enfant Malades (INEM), INSERM, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - E Morel
- Institut Necker-Enfant Malades (INEM), INSERM, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - P Codogno
- Institut Necker-Enfant Malades (INEM), INSERM, Université Paris Descartes-Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
171
|
Tan X, Thapa N, Liao Y, Choi S, Anderson RA. PtdIns(4,5)P2 signaling regulates ATG14 and autophagy. Proc Natl Acad Sci U S A 2016; 113:10896-901. [PMID: 27621469 PMCID: PMC5047215 DOI: 10.1073/pnas.1523145113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a regulated self-digestion pathway with fundamental roles in cell homeostasis and diseases. Autophagy is regulated by coordinated actions of a series of autophagy-related (ATG) proteins. The Barkor/ATG14(L)-VPS34 (a class III phosphatidylinositol 3-kinase) complex and its product phosphatidylinositol 3-phosphate [PtdIns(3)P] play key roles in autophagy initiation. ATG14 contains a C-terminal Barkor/ATG14(L) autophagosome-targeting sequence (BATS) domain that senses the curvature of PtdIns(3)P-containing membrane. The BATS domain also strongly binds PtdIns(4,5)P2, but the functional significance has been unclear. Here we show that ATG14 specifically interacts with type Iγ PIP kinase isoform 5 (PIPKIγi5), an enzyme that generates PtdIns(4,5)P2 in mammalian cells. Autophagosomes have associated PIPKIγi5 and PtdIns(4,5)P2 that are colocalized with late endosomes and the endoplasmic reticulum. PtdIns(4,5)P2 generation at these sites requires PIPKIγi5. Loss of PIPKIγi5 results in a loss of ATG14, UV irradiation resistance-associated gene, and Beclin 1 and a block of autophagy. PtdIns(4,5)P2 binding to the ATG14-BATS domain regulates ATG14 interaction with VPS34 and Beclin 1, and thus plays a key role in ATG14 complex assembly and autophagy initiation. This study identifies an unexpected role for PtdIns(4,5)P2 signaling in the regulation of ATG14 complex and autophagy.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Yihan Liao
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Suyong Choi
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
172
|
Shatz O, Holland P, Elazar Z, Simonsen A. Complex Relations Between Phospholipids, Autophagy, and Neutral Lipids. Trends Biochem Sci 2016; 41:907-923. [PMID: 27595473 DOI: 10.1016/j.tibs.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Research in the past decade has established the importance of autophagy to a large number of physiological processes and pathophysiological conditions. Originally characterized as a pathway responsible for protein turnover and recycling of amino acids in times of starvation, it has been recently recognized as a major regulator of lipid metabolism. Different lipid species play various roles in the regulation of autophagosomal biogenesis, both as membrane constituents and as signaling platforms. Distinct types of autophagy, in turn, facilitate specific steps in metabolic pathways of different lipid classes, best exemplified in recent studies on neutral lipid dynamics. We review the emerging notion of intricate links between phospholipids, autophagy, and neutral lipids.
Collapse
Affiliation(s)
- Oren Shatz
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Petter Holland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Zvulun Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
173
|
Abstract
Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France.
| |
Collapse
|
174
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
175
|
Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death Dis 2016; 7:e2330. [PMID: 27512951 PMCID: PMC5108321 DOI: 10.1038/cddis.2016.236] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/13/2023]
Abstract
Autophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes. Canonical autophagy requires all autophagy proteins (ATGs), whereas noncanonical autophagy is activated by diverse agents in which some of the essential autophagy proteins are dispensable. How noncanonical autophagy is induced and/or inhibited is still largely unclear. In this study, we demonstrated that AMDE-1, a recently identified chemical that can induce canonical autophagy, was able to elicit noncanonical autophagy that is independent of the ULK1 (unc-51-like kinase 1) complex and the Beclin1 complex. AMDE-1-induced noncanonical autophagy could be specifically suppressed by various V-ATPase (vacuolar-type H(+)-ATPase) inhibitors, but not by disturbance of the lysosome function or the intracellular ion redistribution. Similar findings were applicable to a diverse group of stimuli that can induce noncanonical autophagy in a FIP200-independent manner. AMDE-1-induced LC3 lipidation was colocalized with the Golgi complex, and was inhibited by the disturbance of Golgi complex. The integrity of the Golgi complex was also required for multiple other agents to stimulate noncanonical LC3 lipidation. These results suggest that the Golgi complex may serve as a membrane platform for noncanonical autophagy where V-ATPase is a key player. V-ATPase inhibitors could be useful tools for studying noncanonical autophagy.
Collapse
|
176
|
Deretic V. Autophagy in leukocytes and other cells: mechanisms, subsystem organization, selectivity, and links to innate immunity. J Leukoc Biol 2016; 100:969-978. [PMID: 27493243 DOI: 10.1189/jlb.4mr0216-079r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a fundamental biologic process that fulfills general and specialized roles in cytoplasmic homeostasis. The cell-autonomous antimicrobial functions of autophagy have been established in the macrophage. These cells and other leukocytes continue to be the cells of choice in studying autophagy in immunity and inflammation. This review uses several model examples that will be of interest to leukocyte and cell biologists alike. Furthermore, it comprehensively covers the subsystems in autophagy as they apply to all mammalian cells and incorporates the recent progress in our understanding of how these modules come together-a topic that should be of interest to all readers.
Collapse
Affiliation(s)
- Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
177
|
Ktistakis NT, Tooze SA. Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol 2016; 26:624-635. [PMID: 27050762 DOI: 10.1016/j.tcb.2016.03.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Autophagy is a catabolic 'self-eating' pathway that is emerging as a crucial integration point in cell physiology. With its own set of genes, the autophagy pathway communicates with virtually all signalling networks and organelles. Recent advances have been made in understanding the origin of the autophagosomal membrane, novel regulators, and the mechanisms by which specific intracellular membranes become autophagy substrates. New studies on noncanonical autophagy, mediated by subsets of autophagy proteins, and the role of autophagy proteins in non-autophagy pathways are also emerging in many different biological contexts. Our understanding of canonical autophagy, including membrane origin and autophagy proteins, needs to be considered together with emerging noncanonical pathways.
Collapse
Affiliation(s)
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, Francis Crick Institute, London, UK.
| |
Collapse
|
178
|
Lystad AH, Simonsen A. Phosphoinositide-binding proteins in autophagy. FEBS Lett 2016; 590:2454-68. [PMID: 27391591 DOI: 10.1002/1873-3468.12286] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
179
|
Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases α and β are dynamic and independently regulated during starvation-induced stress. Biochem J 2016; 473:2155-63. [PMID: 27208178 DOI: 10.1042/bcj20160380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/16/2016] [Indexed: 01/15/2023]
Abstract
The chicken B-cell line DT40 has two isoforms of phosphatidylinositol 5-phosphate 4-kinase (PI5P4K), α and β, which are likely to exist as a mixture of obligate homo- and hetero-dimers. Previous work has led us to speculate that an important role of the β isoform may be to target the more active PI5P4Kα isoform to the nucleus. In the present study we expand upon that work by genomically tagging the PI5P4Ks with fluorochromes in the presence or absence of stable or acute depletions of PI5P4Kβ. Consistent with our original hypothesis we find that PI5P4Kα is predominantly (possible entirely) cytoplasmic when PI5P4Kβ is stably deleted from cells. In contrast, when PI5P4Kβ is inducibly removed within 1 h PI5P4Kα retains its wild-type distribution of approximately 50:50 between cytoplasm and nucleus even through a number of cell divisions. This leads us to speculate that PI5P4Kα is chromatin-associated. We also find that when cells are in the exponential phase of growth PI5P4Kβ is primarily cytoplasmic but translocates to the nucleus upon growth into the stationary phase or upon serum starvation. Once again this is not accompanied by a change in PI5P4Kα localization and we show, using an in vitro model, that this is possible because the dimerization between the two isoforms is dynamic. Given this shift in PI5P4Kβ upon nutrient deprivation we explore the phenotype of PI5P4K B-null cells exposed to this stress and find that they can sustain a greater degree of nutrient deprivation than their wild-type counterparts possibly as a result of up-regulation of autophagy.
Collapse
|
180
|
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. Bioessays 2016; 38 Suppl 1:S119-35. [DOI: 10.1002/bies.201670913] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ashley A. George
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Sara Hayden
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Gail R. Stanton
- Department of Biochemistry; University of Washington; Seattle WA USA
| | | |
Collapse
|
181
|
Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, Hu X, Gao Q, Yang M, Lawas M, Delling M, Marugan J, Ferrer M, Xu H. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 2016; 7:12109. [PMID: 27357649 PMCID: PMC4931332 DOI: 10.1038/ncomms12109] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 05/24/2016] [Indexed: 01/03/2023] Open
Abstract
Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes ‘host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca2+-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca2+ release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell. Reactive oxygen species (ROS) damage cell components, necessitating their clearance through autophagy. Here, the authors show that ROS can induce autophagy by triggering TRPML1 to release Ca2+ from the lysosomal lumen, in turn activating the autophagy and lysosomal biogenesis regulator TFEB.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Xiping Cheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Lu Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Junsheng Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Maria Lawas
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Markus Delling
- The Department of Cardiology, Children's Hospital Boston, Enders 1350, 320 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
182
|
Jang DJ, Lee JA. The roles of phosphoinositides in mammalian autophagy. Arch Pharm Res 2016; 39:1129-36. [PMID: 27350551 DOI: 10.1007/s12272-016-0777-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionarily conserved cellular process for lysosomal degradation, which is involved in various physiological processes within cells. Its dysfunction is associated with many human diseases, such as cancer, liver diseases, heart diseases, and infectious diseases, including neurodegenerative diseases. Autophagy involves the formation of a double-membrane bound autophagosome and the degradation of cytosolic components via its fusion and maturation with the lysosome. One of the most important steps in the process of autophagy is membrane biogenesis during autophagosome formation/maturation from different membrane sources within cells. However, there is limited knowledge regarding: (1) how the core autophagy machinery is recruited to the initial site to initiate the formation of the isolation membrane and (2) how the autophagosome matures into the functional autolysosome. Lipid supply for nucleation/elongation of the autophagosome has been proposed as one possible mechanism. Accumulating evidence suggests the important role of phosphoinositides as phospholipids, which represent key membrane-localized signals in the regulation of fundamental cellular processes, in autophagosome formation and maturation. This review focuses on how phosphoinositides influence autophagy induction or autophagosome biogenesis/maturation, because the way they are altered by autophagy might contribute to the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Deok-Jin Jang
- Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju, Republic of Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea.
| |
Collapse
|
183
|
Kawabata T, Yoshimori T. Beyond starvation: An update on the autophagic machinery and its functions. J Mol Cell Cardiol 2016; 95:2-10. [DOI: 10.1016/j.yjmcc.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/21/2015] [Accepted: 12/06/2015] [Indexed: 12/25/2022]
|
184
|
Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc Natl Acad Sci U S A 2016; 113:E3260-9. [PMID: 27226300 DOI: 10.1073/pnas.1522811113] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Q fever bacterium Coxiella burnetii replicates inside host cells within a large Coxiella-containing vacuole (CCV) whose biogenesis relies on the Dot/Icm-dependent secretion of bacterial effectors. Several membrane trafficking pathways contribute membranes, proteins, and lipids for CCV biogenesis. These include the endocytic and autophagy pathways, which are characterized by phosphatidylinositol 3-phosphate [PI(3)P]-positive membranes. Here we show that the C. burnetii secreted effector Coxiella vacuolar protein B (CvpB) binds PI(3)P and phosphatidylserine (PS) on CCVs and early endosomal compartments and perturbs the activity of the phosphatidylinositol 5-kinase PIKfyve to manipulate PI(3)P metabolism. CvpB association to early endosome triggers vacuolation and clustering, leading to the channeling of large PI(3)P-positive membranes to CCVs for vacuole expansion. At CCVs, CvpB binding to early endosome- and autophagy-derived PI(3)P and the concomitant inhibition of PIKfyve favor the association of the autophagosomal machinery to CCVs for optimal homotypic fusion of the Coxiella-containing compartments. The importance of manipulating PI(3)P metabolism is highlighted by mutations in cvpB resulting in a multivacuolar phenotype, rescuable by gene complementation, indicative of a defect in CCV biogenesis. Using the insect model Galleria mellonella, we demonstrate the in vivo relevance of defective CCV biogenesis by highlighting an attenuated virulence phenotype associated with cvpB mutations.
Collapse
|
185
|
Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Commun Integr Biol 2016; 9:e1174798. [PMID: 27489580 PMCID: PMC4951175 DOI: 10.1080/19420889.2016.1174798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments.
Collapse
|
186
|
A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 2016; 18:404-17. [PMID: 26950892 PMCID: PMC4871318 DOI: 10.1038/ncb3324] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
To mediate the degradation of bio-macromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca2+ channel TRPML1 cause lysosome storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca2+-dependent centripetal movement of lysosomes towards the perinuclear region, where autophagosomes accumulate, upon autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca2+ sensor that associates physically with the minus-end directed dynactin-dynein motor, while PI(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PI(3,5)P2-TRPML1-ALG-2-dynein signaling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Collectively, Ca2+ release from lysosomes provides an on-demand mechanism regulating lysosome motility, positioning, and tubulation.
Collapse
|
187
|
Velázquez AP, Tatsuta T, Ghillebert R, Drescher I, Graef M. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J Cell Biol 2016; 212:621-31. [PMID: 26953354 PMCID: PMC4792078 DOI: 10.1083/jcb.201508102] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Biochemical, cytological, and lipidomic approaches show that lipid droplets are dispensable as membrane sources for autophagy, but are required for ER homeostasis by buffering fatty acid synthesis and ER stress and maintaining phospholipid composition to allow autophagy regulation and autophagosome biogenesis. Lipid droplets (LDs) are conserved organelles for intracellular neutral lipid storage. Recent studies suggest that LDs function as direct lipid sources for autophagy, a central catabolic process in homeostasis and stress response. Here, we demonstrate that LDs are dispensable as a membrane source for autophagy, but fulfill critical functions for endoplasmic reticulum (ER) homeostasis linked to autophagy regulation. In the absence of LDs, yeast cells display alterations in their phospholipid composition and fail to buffer de novo fatty acid (FA) synthesis causing chronic stress and morphologic changes in the ER. These defects compromise regulation of autophagy, including formation of multiple aberrant Atg8 puncta and drastically impaired autophagosome biogenesis, leading to severe defects in nutrient stress survival. Importantly, metabolically corrected phospholipid composition and improved FA resistance of LD-deficient cells cure autophagy and cell survival. Together, our findings provide novel insight into the complex interrelation between LD-mediated lipid homeostasis and the regulation of autophagy potentially relevant for neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
| | - Takashi Tatsuta
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Ruben Ghillebert
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ingmar Drescher
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Martin Graef
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
188
|
Marat AL, Haucke V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J 2016; 35:561-79. [PMID: 26888746 DOI: 10.15252/embj.201593564] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network.
Collapse
Affiliation(s)
- Andrea L Marat
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
189
|
Kimura T, Mandell M, Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family. J Cell Sci 2016; 129:881-91. [PMID: 26906420 DOI: 10.1242/jcs.163758] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective autophagy entails cooperation between target recognition and assembly of the autophagic apparatus. Target recognition is conducted by receptors that often recognize tags, such as ubiquitin and galectins, although examples of selective autophagy independent of these tags are emerging. It is less known how receptors cooperate with the upstream autophagic regulators, beyond the well-characterized association of receptors with Atg8 or its homologs, such as LC3B (encoded by MAP1LC3B), on autophagic membranes. The molecular details of the emerging role in autophagy of the family of proteins called TRIMs shed light on the coordination between cargo recognition and the assembly and activation of the principal autophagy regulators. In their autophagy roles, TRIMs act both as receptors and as platforms ('receptor regulators') for the assembly of the core autophagy regulators, such as ULK1 and Beclin 1 in their activated state. As autophagic receptors, TRIMs can directly recognize endogenous or exogenous targets, obviating a need for intermediary autophagic tags, such as ubiquitin and galectins. The receptor and regulatory features embodied within the same entity allow TRIMs to govern cargo degradation in a highly exact process termed 'precision autophagy'.
Collapse
Affiliation(s)
- Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michael Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
190
|
Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. Mammalian Autophagy: How Does It Work? Annu Rev Biochem 2016; 85:685-713. [PMID: 26865532 DOI: 10.1146/annurev-biochem-060815-014556] [Citation(s) in RCA: 518] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.
Collapse
Affiliation(s)
- Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Ghita Ghislat
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Avraham Ashkenazi
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
191
|
Venkatareddy M, Verma R, Kalinowski A, Patel SR, Shisheva A, Garg P. Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells. J Am Soc Nephrol 2016; 27:2702-19. [PMID: 26825532 DOI: 10.1681/asn.2015050555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34-deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux.
Collapse
Affiliation(s)
- Madhusudan Venkatareddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Rakesh Verma
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Anne Kalinowski
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Sanjeevkumar R Patel
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Puneet Garg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
192
|
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of Synaptojanin 1 regulate autophagy in cone photoreceptors. ACTA ACUST UNITED AC 2016; 1:117-133. [PMID: 27123470 DOI: 10.1002/icl3.1044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated Synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1-deficient zebrafish mutant, nrca14 . We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate due to a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrca14 cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5' phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrca14 cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.
Collapse
Affiliation(s)
- Ashley A George
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Sara Hayden
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Gail R Stanton
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|
193
|
Sumita K, Lo YH, Takeuchi K, Senda M, Kofuji S, Ikeda Y, Terakawa J, Sasaki M, Yoshino H, Majd N, Zheng Y, Kahoud ER, Yokota T, Emerling BM, Asara JM, Ishida T, Locasale JW, Daikoku T, Anastasiou D, Senda T, Sasaki AT. The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Mol Cell 2016; 61:187-98. [PMID: 26774281 DOI: 10.1016/j.molcel.2015.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/21/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022]
Abstract
While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kβ, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kβ preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kβ is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kβ is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kβ. The critical role of the GTP-sensing activity of PI5P4Kβ in cancer signifies this lipid kinase as a cancer therapeutic target.
Collapse
Affiliation(s)
- Kazutaka Sumita
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yu-Hua Lo
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Koh Takeuchi
- Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jumpei Terakawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nazanin Majd
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yuxiang Zheng
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Emily Rose Kahoud
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Takehiro Yokota
- Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Brooke M Emerling
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John M Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tetsuo Ishida
- Department of Chemistry, Biology & Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Takiko Daikoku
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Ibaraki 305-0801, Japan.
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Cancer Biology and Department of Neurosurgery, University of Cincinnati College of Medicine, Brain Tumor Center at University of Cincinnati Neuroscience Institute, Cincinnati, OH 45267, USA.
| |
Collapse
|
194
|
Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, Jungbluth H, Sahin M. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 2015; 139:317-37. [PMID: 26715604 DOI: 10.1093/brain/awv371] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Afshin Saffari
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany 3 Department of Haematology and Oncology, Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenny Lu
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Byrne
- 4 Department of Paediatric Neurology, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Georg F Hoffmann
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Heinz Jungbluth
- 4 Department of Paediatric Neurology, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK 5 Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK 6 Department of Basic and Clinical Neuroscience, IoPPN, King's College London, London, UK
| | - Mustafa Sahin
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
195
|
Giudici ML, Clarke JH, Irvine RF. Phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ), a lipid signalling enigma. Adv Biol Regul 2015; 61:47-50. [PMID: 26710750 DOI: 10.1016/j.jbior.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 11/26/2022]
Abstract
The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are an important family of enzymes, whose physiological roles are being teased out by a variety of means. Phosphatidylinositol-5-phosphate 4-kinase γ (PI5P4Kγ) is especially intriguing as its in vitro activity is very low. Here we review what is known about this enzyme and discuss some recent advances towards an understanding of its physiology. Additionally, the effects of the ATP-competitive inhibitor I-OMe Tyrphostin AG-538 on all three mammalian PI5P4Ks was explored, including two PI5P4Kγ mutants with altered ATP- or PI5P-binding sites. The results suggest a strategy for targeting non-ATP binding sites on inositol lipid kinases.
Collapse
Affiliation(s)
| | - Jonathan H Clarke
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
196
|
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72:4721-57. [PMID: 26390974 PMCID: PMC4648967 DOI: 10.1007/s00018-015-2034-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.
Collapse
Affiliation(s)
- Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany.
| |
Collapse
|
197
|
Viaud J, Payrastre B. [Phosphoinositides: the lipids coordinating cell dynamics]. Med Sci (Paris) 2015; 31:996-1005. [PMID: 26576607 DOI: 10.1051/medsci/20153111014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Within the glycerophospholipid family, phosphoinositides, which are minor components of eukaryotic cell membranes, play a critical role as spatiotemporal organizers of cell dynamics. By specifically interacting with proteins, they coordinate the formation and the organization of multiprotein complexes involved in cell signaling, intracellular trafficking and cytoskeleton rearrangement. The highly precise spatiotemporal dynamics of phosphoinositides-regulated mechanisms is ensured by kinases and phosphatases that specifically produce, hydrolyze and control the interconversion of these lipids. The direct implication of these enzymes in human pathologies such as genetic diseases, cancer or infectious pathologies, and the recent arrival of inhibitors targeting some phosphoinositide kinases in clinic, illustrate the mandatory functions of these fascinating lipids.
Collapse
Affiliation(s)
- Julien Viaud
- Inserm UMR 1048, institut des maladies métaboliques et cardiovasculaires (I2MC), université Toulouse III Paul-Sabatier, 1, avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 04, France
| | - Bernard Payrastre
- Inserm UMR 1048, institut des maladies métaboliques et cardiovasculaires (I2MC), université Toulouse III Paul-Sabatier, 1, avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 04, France - Centre hospitalier universitaire de Toulouse, laboratoire d'hématologie, 31059 Toulouse Cedex 03, France
| |
Collapse
|
198
|
Tan X, Thapa N, Choi S, Anderson RA. Emerging roles of PtdIns(4,5)P2--beyond the plasma membrane. J Cell Sci 2015; 128:4047-56. [PMID: 26574506 PMCID: PMC4712784 DOI: 10.1242/jcs.175208] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphoinositides are a collection of lipid messengers that regulate most subcellular processes. Amongst the seven phosphoinositide species, the roles for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at the plasma membrane, such as in endocytosis, exocytosis, actin polymerization and focal adhesion assembly, have been extensively studied. Recent studies have argued for the existence of PtdIns(4,5)P2 at multiple intracellular compartments, including the nucleus, endosomes, lysosomes, autolysosomes, autophagic precursor membranes, ER, mitochondria and the Golgi complex. Although the generation, regulation and functions of PtdIns(4,5)P2 are less well-defined in most other intracellular compartments, accumulating evidence demonstrates crucial roles for PtdIns(4,5)P2 in endolysosomal trafficking, endosomal recycling, as well as autophagosomal pathways, which are the focus of this Commentary. We summarize and discuss how phosphatidylinositol phosphate kinases, PtdIns(4,5)P2 and PtdIns(4,5)P2-effectors regulate these intracellular protein and membrane trafficking events.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
199
|
Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb JM, Terrisse AD, Séverin S, Gratacap MP, Gaits-Iacovoni F, Payrastre B. Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie 2015; 125:250-8. [PMID: 26391221 DOI: 10.1016/j.biochi.2015.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/02/2015] [Indexed: 01/21/2023]
Abstract
By interacting specifically with proteins, phosphoinositides organize the spatiotemporal formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking and cytoskeleton dynamics. A set of specific kinases and phosphatases ensures the production, degradation and inter-conversion of phosphoinositides to achieve a high level of precision in the regulation of cellular dynamics coordinated by these lipids. The direct involvement of these enzymes in cancer, genetic or infectious diseases, and the recent arrival of inhibitors targeting specific phosphoinositide kinases in clinic, emphasize the importance of these lipids and their metabolism in the biomedical field.
Collapse
Affiliation(s)
- Julien Viaud
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France.
| | - Rana Mansour
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Adrien Antkowiak
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Abdulrahman Mujalli
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Colin Valet
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Jean-Marie Xuereb
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Anne-Dominique Terrisse
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Sonia Séverin
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Marie-Pierre Gratacap
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Frédérique Gaits-Iacovoni
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France
| | - Bernard Payrastre
- INSERM UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 04, France; Centre Hospitalier Universitaire de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
200
|
Rubinsztein DC, Bento CF, Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 2015; 212:979-90. [PMID: 26101267 PMCID: PMC4493419 DOI: 10.1084/jem.20150956] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 OSP, England, UK
| | - Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 OSP, England, UK
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 Department of Molecular Genetics and Microbiology and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|