151
|
Mitochondrial Dynamics and Liver Cancer. Cancers (Basel) 2021; 13:cancers13112571. [PMID: 34073868 PMCID: PMC8197222 DOI: 10.3390/cancers13112571] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is a leading cause of cancer-related death worldwide. Major risk factors in liver cancer development include chronic hepatitis B or C virus, autoimmune hepatitis, diabetes mellitus, alcohol abuse, and several metabolic diseases, among others. Standard therapy shows low efficacy, and there is an urgent need for novel therapies. Recent data permit to propose that proteins that control mitochondrial morphology through changes in mitochondrial fusion or mitochondrial fission, confer susceptibility or resistance to the development of liver cancer in mouse models. Here, we review the data that suggest mitochondrial dynamics to be involved in the development of liver tumors. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer. Due to its rising incidence and limited therapeutic options, HCC has become a leading cause of cancer-related death worldwide, accounting for 85% of all deaths due to primary liver cancers. Standard therapy for advanced-stage HCC is based on anti-angiogenic drugs such as sorafenib and, more recently, lenvatinib and regorafenib as a second line of treatment. The identification of novel therapeutic strategies is urgently required. Mitochondrial dynamics describes a group of processes that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial morphology and distribution, and connectivity mediated by tethering and fusion/fission events. In recent years, mitochondrial dynamic processes have emerged as key processes in the maintenance of liver mitochondrial homeostasis. In addition, some data are accumulating on the role played by mitochondrial dynamics during cancer development, and specifically on how such dynamics act directly on tumor cells or indirectly on cells responsible for tumor aggression and defense. Here, we review the data that suggest mitochondrial dynamics to be involved in the development of liver tumors.
Collapse
|
152
|
Kim YM, Krantz S, Jambusaria A, Toth PT, Moon HG, Gunarathna I, Park GY, Rehman J. Mitofusin-2 stabilizes adherens junctions and suppresses endothelial inflammation via modulation of β-catenin signaling. Nat Commun 2021; 12:2736. [PMID: 33980844 PMCID: PMC8115264 DOI: 10.1038/s41467-021-23047-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Endothelial barrier integrity is ensured by the stability of the adherens junction (AJ) complexes comprised of vascular endothelial (VE)-cadherin as well as accessory proteins such as β-catenin and p120-catenin. Disruption of the endothelial barrier due to disassembly of AJs results in tissue edema and the influx of inflammatory cells. Using three-dimensional structured illumination microscopy, we observe that the mitochondrial protein Mitofusin-2 (Mfn2) co-localizes at the plasma membrane with VE-cadherin and β-catenin in endothelial cells during homeostasis. Upon inflammatory stimulation, Mfn2 is sulfenylated, the Mfn2/β-catenin complex disassociates from the AJs and Mfn2 accumulates in the nucleus where Mfn2 negatively regulates the transcriptional activity of β-catenin. Endothelial-specific deletion of Mfn2 results in inflammatory activation, indicating an anti-inflammatory role of Mfn2 in vivo. Our results suggest that Mfn2 acts in a non-canonical manner to suppress the inflammatory response by stabilizing cell-cell adherens junctions and by binding to the transcriptional activator β-catenin.
Collapse
Affiliation(s)
- Young-Mee Kim
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| | - Sarah Krantz
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ankit Jambusaria
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Isuru Gunarathna
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
153
|
Cabré N, Luciano-Mateo F, Chapski DJ, Baiges-Gaya G, Fernández-Arroyo S, Hernández-Aguilera A, Castañé H, Rodríguez-Tomàs E, París M, Sabench F, Del Castillo D, Del Bas JM, Tomé M, Bodineau C, Sola-García A, López-Miranda J, Martín-Montalvo A, Durán RV, Vondriska TM, Rosa-Garrido M, Camps J, Menéndez JA, Joven J. Glutaminolysis-induced mTORC1 activation drives non-alcoholic steatohepatitis progression. J Hepatol 2021:S0168-8278(21)00302-0. [PMID: 33961941 DOI: 10.1016/j.jhep.2021.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A holistic insight on the relationship between obesity and metabolic dysfunction-associated fatty liver disease is an unmet clinical need. Omics investigations can be used to investigate the multifaceted role of altered mitochondrial pathways to promote nonalcoholic steatohepatitis, a major risk factor for liver disease-associated death. There are no specific treatments but remission via surgery might offer an opportunity to examine the signaling processes that govern the complex spectrum of chronic liver diseases observed in extreme obesity. We aim to assess the emerging relationship between metabolism, methylation and liver disease. METHODS We tailed the flow of information, before and after steatohepatitis remission, from biochemical, histological, and multi-omics analyses in liver biopsies from patients with extreme obesity and successful bariatric surgery. Functional studies were performed in HepG2 cells and primary hepatocytes. RESULTS The reversal of hepatic mitochondrial dysfunction and the control of oxidative stress and inflammatory responses revealed the regulatory role of mitogen-activated protein kinases. The reversible metabolic rearrangements leading to steatohepatitis increased the glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for the adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy. The signaling activity of α-ketoglutarate and the associated metabolites also affected methylation-related epigenomic remodeling enzymes. Integrative analysis of hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. CONCLUSION We provide evidence supporting the multifaceted potential of the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation as a conceivable source of the inefficient adaptive responses leading to steatohepatitis. LAY SUMMARY Steatohepatitis is a frequent and threatening complication of extreme obesity without specific treatment. Omics technologies can be used to identify therapeutic targets. We highlight increased glutaminolysis-induced α-ketoglutarate production as a potential source of signals promoting and exacerbating steatohepatitis.
Collapse
Affiliation(s)
- Noemí Cabré
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Douglas J Chapski
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, US
| | - Gerard Baiges-Gaya
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Marta París
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Fàtima Sabench
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Daniel Del Castillo
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Josep M Del Bas
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas - Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Clément Bodineau
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas - Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain; Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, 2 Rue Robert Escarpit, Pessac 33607, France
| | - Alejandro Sola-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas - Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital. University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas - Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas - Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain; Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, 2 Rue Robert Escarpit, Pessac 33607, France
| | - Thomas M Vondriska
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, US
| | - Manuel Rosa-Garrido
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, US
| | - Jordi Camps
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Javier A Menéndez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology, Girona , Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus, Spain; Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
154
|
Strasser B, Pesta D, Rittweger J, Burtscher J, Burtscher M. Nutrition for Older Athletes: Focus on Sex-Differences. Nutrients 2021; 13:nu13051409. [PMID: 33922108 PMCID: PMC8143537 DOI: 10.3390/nu13051409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise and a healthy diet are major determinants of a healthy lifespan. Although aging is associated with declining endurance performance and muscle function, these components can favorably be modified by regular physical activity and especially by exercise training at all ages in both sexes. In addition, age-related changes in body composition and metabolism, which affect even highly trained masters athletes, can in part be compensated for by higher exercise metabolic efficiency in active individuals. Accordingly, masters athletes are often considered as a role model for healthy aging and their physical capacities are an impressive example of what is possible in aging individuals. In the present review, we first discuss physiological changes, performance and trainability of older athletes with a focus on sex differences. Second, we describe the most important hormonal alterations occurring during aging pertaining regulation of appetite, glucose homeostasis and energy expenditure and the modulatory role of exercise training. The third part highlights nutritional aspects that may support health and physical performance for older athletes. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low bone and muscle mass and a higher demand for specific nutrients (e.g., vitamin D and probiotics) that may reduce the infection burden in masters athletes. Fourth, we present important research findings on the association between exercise, nutrition and the microbiota, which represents a rapidly developing field in sports nutrition.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)1-798-40-98
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764 Neuherberg, Germany
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
155
|
Sergi D, Luscombe-Marsh N, Heilbronn LK, Birch-Machin M, Naumovski N, Lionetti L, Proud CG, Abeywardena MY, O'Callaghan N. The Inhibition of Metabolic Inflammation by EPA Is Associated with Enhanced Mitochondrial Fusion and Insulin Signaling in Human Primary Myotubes. J Nutr 2021; 151:810-819. [PMID: 33561210 DOI: 10.1093/jn/nxaa430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sustained fuel excess triggers low-grade inflammation that can drive mitochondrial dysfunction, a pivotal defect in the pathogenesis of insulin resistance in skeletal muscle. OBJECTIVES This study aimed to investigate whether inflammation in skeletal muscle can be prevented by EPA, and if this is associated with an improvement in mitochondrial fusion, membrane potential, and insulin signaling. METHODS Human primary myotubes were treated for 24 h with palmitic acid (PA, 500 μM) under hyperglycemic conditions (13 mM glucose), which represents nutrient overload, and in the presence or absence of EPA (100 μM). After the treatments, the expression of peroxisome proliferator-activated receptor γ coactivator 1-α (PPARGC1A) and IL6 was assessed by q-PCR. Western blot was used to measure the abundance of the inhibitor of NF-κB (IKBA), mitofusin-2 (MFN2), mitochondrial electron transport chain complex proteins, and insulin-dependent AKT (Ser473) and AKT substrate 160 (AS 160; Thr642) phosphorylation. Mitochondrial dynamics and membrane potential were evaluated using immunocytochemistry and the JC-1 (tetraethylbenzimidazolylcarbocyanine iodide) dye, respectively. Data were analyzed using 1-factor ANOVA followed by Tukey post hoc test. RESULTS Nutrient excess activated the proinflammatory NFκB signaling marked by a decrease in IKBA (40%; P < 0.05) and the upregulation of IL6 mRNA (12-fold; P < 0.001). It also promoted mitochondrial fragmentation (53%; P < 0.001). All these effects were counteracted by EPA. Furthermore, nutrient overload-induced drop in mitochondrial membrane potential (6%; P < 0.05) was prevented by EPA. Finally, EPA inhibited fuel surplus-induced impairment in insulin-mediated phosphorylation of AKT (235%; P < 0.01) and AS160 (49%; P < 0.05). CONCLUSIONS EPA inhibited NFκB signaling, which was associated with an attenuation of the deleterious effects of PA and hyperglycemia on both mitochondrial health and insulin signaling in human primary myotubes. Thus, EPA might preserve skeletal muscle metabolic health during sustained fuel excess but this requires confirmation in human clinical trials.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Natalie Luscombe-Marsh
- Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Metabolism, Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Lilla' Lionetti
- Department of Chemistry and Biology "A. Zambelli," University of Salerno, Fisciano, Italy
| | - Christopher G Proud
- Nutrition, Diabetes & Metabolism, Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Mahinda Y Abeywardena
- Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Nathan O'Callaghan
- Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| |
Collapse
|
156
|
Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nat Commun 2021; 12:2103. [PMID: 33833234 PMCID: PMC8032734 DOI: 10.1038/s41467-021-22062-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial diseases impair oxidative phosphorylation and ATP production, while effective treatment is still lacking. Defective complex III is associated with a highly variable clinical spectrum. We show that pyocyanin, a bacterial redox cycler, can replace the redox functions of complex III, acting as an electron shunt. Sub-μM pyocyanin was harmless, restored respiration and increased ATP production in fibroblasts from five patients harboring pathogenic mutations in TTC19, BCS1L or LYRM7, involved in assembly/stabilization of complex III. Pyocyanin normalized the mitochondrial membrane potential, and mildly increased ROS production and biogenesis. These in vitro effects were confirmed in both DrosophilaTTC19KO and in Danio rerioTTC19KD, as administration of low concentrations of pyocyanin significantly ameliorated movement proficiency. Importantly, daily administration of pyocyanin for two months was not toxic in control mice. Our results point to utilization of redox cyclers for therapy of complex III disorders.
Collapse
|
157
|
Abstract
Cerebral ischemia-reperfusion (I/R) is a kind of neurovascular disease that causes serious cerebral damage. MicroRNAs (miRNAs) have been widely reported to participate in multiple diseases, including cerebral I/R injury. However, the exact mechanisms of miR-7-5p in cerebral I/R injury was not fully elucidated. In this study, we explored the biological role and regulatory mechanism of miR-7-5p in cerebral I/R injury. We established an in vivo model of cerebral I/R by middle cerebral artery occlusion and an in vitro cellular model of cerebral I/R injury through treating neurons (SH-SY5Y cells) with oxygen-glucose deprivation (OGD). In addition, miR-7-5p expression was confirmed to be upregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Moreover, miR-7-5p inhibition overtly suppressed cerebral injury, cerebral inflammation, and SH-SY5Y cells apoptosis. Sirtuin 1 (sirt1) is previously reported to alleviate I/R, and in this study, it was identified to be a target of miR-7-5p based on luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction revealed sirt1 expression was downregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Besides, miR-7-5p negatively regulated sirt1. Finally, rescue assays delineated sirt1 overexpression recovered the miR-7-5p upregulation-induced promotion on cerebral I/R injury. In conclusion, miR-7-5p enhanced cerebral I/R injury by degrading sirt1, providing a new paradigm to investigate cerebral I/R injury.
Collapse
|
158
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
159
|
Maseroli E, Comeglio P, Corno C, Cellai I, Filippi S, Mello T, Galli A, Rapizzi E, Presenti L, Truglia MC, Lotti F, Facchiano E, Beltrame B, Lucchese M, Saad F, Rastrelli G, Maggi M, Vignozzi L. Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J Endocrinol Invest 2021; 44:819-842. [PMID: 32772323 PMCID: PMC7946690 DOI: 10.1007/s40618-020-01381-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In both preclinical and clinical settings, testosterone treatment (TTh) of hypogonadism has shown beneficial effects on insulin sensitivity and visceral and liver fat accumulation. This prospective, observational study was aimed at assessing the change in markers of fat and liver functioning in obese men scheduled for bariatric surgery. METHODS Hypogonadal patients with consistent symptoms (n = 15) undergoing 27.63 ± 3.64 weeks of TTh were compared to untreated eugonadal (n = 17) or asymptomatic hypogonadal (n = 46) men. A cross-sectional analysis among the different groups was also performed, especially for data derived from liver and fat biopsies. Preadipocytes isolated from adipose tissue biopsies were used to evaluate insulin sensitivity, adipogenic potential and mitochondrial function. NAFLD was evaluated by triglyceride assay and by calculating NAFLD activity score in liver biopsies. RESULTS In TTh-hypogonadal men, histopathological NAFLD activity and steatosis scores, as well as liver triglyceride content were lower than in untreated-hypogonadal men and comparable to eugonadal ones. TTh was also associated with a favorable hepatic expression of lipid handling-related genes. In visceral adipose tissue and preadipocytes, TTh was associated with an increased expression of lipid catabolism and mitochondrial bio-functionality markers. Preadipocytes from TTh men also exhibited a healthier morpho-functional phenotype of mitochondria and higher insulin-sensitivity compared to untreated-hypogonadal ones. CONCLUSIONS The present data suggest that TTh in severely obese, hypogonadal individuals induces metabolically healthier preadipocytes, improving insulin sensitivity, mitochondrial functioning and lipid handling. A potentially protective role for testosterone on the progression of NAFLD, improving hepatic steatosis and reducing intrahepatic triglyceride content, was also envisaged. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02248467, September 25th 2014.
Collapse
Affiliation(s)
- E Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - P Comeglio
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - C Corno
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - I Cellai
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - T Mello
- Gastroenterology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - A Galli
- Gastroenterology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - E Rapizzi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - L Presenti
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - M C Truglia
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - F Lotti
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - E Facchiano
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - B Beltrame
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - M Lucchese
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - F Saad
- Medical Affairs, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - G Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - M Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - L Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
160
|
Lin Z, Lin X, Chen J, Huang G, Chen T, Zheng L. Mitofusin-2 is a novel anti-angiogenic factor in pancreatic cancer. J Gastrointest Oncol 2021; 12:484-495. [PMID: 34012642 DOI: 10.21037/jgo-21-176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Aberrant expression of mitofusin-2 (MFN2) has been found to be associated with vascular endothelial growth factor A (VEGFA)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs). This study aimed to investigate the expression of MFN2 in pancreatic cancer (PC) and the role of MFN2 in vascular endothelial cell growth and angiogenesis. Methods Protein and mRNA expression of MFN2 and VEGFA were measured. The CCK-8 assay, tube formation assay, flow cytometry, and transmission electron microscopy were used to examine the effects of MFN2 overexpression on HUVEC growth, angiogenesis, and apoptosis. Western blot and immunocytochemical staining were conducted to measure alterations in cell cycle and apoptosis regulators and vascular endothelial growth factor receptor 2 (VEGFR2), angiopoietin-1 gene (ANGPT1), and tissue inhibitor of metalloproteinase 1 (TIMP1) expression in HUVECs. Results The results showed that MFN2 levels were significantly decreased in tumor tissues. Contrasting results were observed for VEGFA mRNA levels. MFN2 overexpression inhibited cell growth while promoting the formation of apoptotic bodies in HUVECs. Additionally, MFN2 overexpression enhanced the protein expression of p21 and p27 while attenuating the expression of proliferating cell nuclear antigen, VEGFA, VEGFR2, ANGPT1, and TIPM1 in HUVECs. Conclusions In conclusion, MFN2 expression negatively correlates with VEGFA expression in PC and inhibits endothelial cell growth and angiogenesis.
Collapse
Affiliation(s)
- Zhichuan Lin
- Department of Hepatobiliary Surgery, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou, China
| | - Xiaoyi Lin
- Department of Hepatobiliary Surgery, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou, China
| | - Jinhong Chen
- Department of Hepatobiliary Surgery, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou, China
| | - Guoqiang Huang
- Department of Hepatobiliary Surgery, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou, China
| | - Tangen Chen
- Department of Hepatobiliary Surgery, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou, China
| | - Liling Zheng
- Pediatric Intensive Care Unit, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou, China
| |
Collapse
|
161
|
Shah M, Chacko LA, Joseph JP, Ananthanarayanan V. Mitochondrial dynamics, positioning and function mediated by cytoskeletal interactions. Cell Mol Life Sci 2021; 78:3969-3986. [PMID: 33576841 PMCID: PMC11071877 DOI: 10.1007/s00018-021-03762-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/27/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
The ability of a mitochondrion to undergo fission and fusion, and to be transported and localized within a cell are central not just to proper functioning of mitochondria, but also to that of the cell. The cytoskeletal filaments, namely microtubules, F-actin and intermediate filaments, have emerged as prime movers in these dynamic mitochondrial shape and position transitions. In this review, we explore the complex relationship between the cytoskeleton and the mitochondrion, by delving into: (i) how the cytoskeleton helps shape mitochondria via fission and fusion events, (ii) how the cytoskeleton facilitates the translocation and anchoring of mitochondria with the activity of motor proteins, and (iii) how these changes in form and position of mitochondria translate into functioning of the cell.
Collapse
Affiliation(s)
- Mitali Shah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Leeba Ann Chacko
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Joel P Joseph
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Vaishnavi Ananthanarayanan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
162
|
Hsiao YT, Shimizu I, Wakasugi T, Yoshida Y, Ikegami R, Hayashi Y, Suda M, Katsuumi G, Nakao M, Ozawa T, Izumi D, Kashimura T, Ozaki K, Soga T, Minamino T. Cardiac mitofusin-1 is reduced in non-responding patients with idiopathic dilated cardiomyopathy. Sci Rep 2021; 11:6722. [PMID: 33762690 PMCID: PMC7990924 DOI: 10.1038/s41598-021-86209-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Prognosis of severe heart failure remains poor. Urgent new therapies are required. Some heart failure patients do not respond to established multidisciplinary treatment and are classified as “non-responders”. The outcome is especially poor for non-responders, and underlying mechanisms are largely unknown. Mitofusin-1 (Mfn1), a mitochondrial fusion protein, is significantly reduced in non-responding patients. This study aimed to elucidate the role of Mfn1 in the failing heart. Twenty-two idiopathic dilated cardiomyopathy (IDCM) patients who underwent endomyocardial biopsy of intraventricular septum were included. Of the 22 patients, 8 were non-responders (left ventricular (LV) ejection fraction (LVEF) of < 10% improvement at late phase follow-up). Electron microscopy (EM), quantitative PCR, and immunofluorescence studies were performed to explore the biological processes and molecules involved in failure to respond. Studies in cardiac specific Mfn1 knockout mice (c-Mfn1 KO), and in vitro studies with neonatal rat ventricular myocytes (NRVMs) were also conducted. A significant reduction in mitochondrial size in cardiomyocytes, and Mfn1, was observed in non-responders. A LV pressure overload with thoracic aortic constriction (TAC) c-Mfn1 KO mouse model was generated. Systolic function was reduced in c-Mfn1 KO mice, while mitochondria alteration in TAC c-Mfn1 KO mice increased. In vitro studies in NRVMs indicated negative regulation of Mfn1 by the β-AR/cAMP/PKA/miR-140-5p pathway resulting in significant reduction in mitochondrial respiration of NRVMs. The level of miR140-5p was increased in cardiac tissues of non-responders. Mfn1 is a biomarker of heart failure in non-responders. Therapies targeting mitochondrial dynamics and homeostasis are next generation therapy for non-responding heart failure patients.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| | - Takayuki Wakasugi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Masaaki Nakao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Takuya Ozawa
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Daisuke Izumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Takeshi Kashimura
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan. .,Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
163
|
Frankowski H, Yeboah F, Berry BJ, Kinoshita C, Lee M, Evitts K, Davis J, Kinoshita Y, Morrison RS, Young JE. Knock-Down of HDAC2 in Human Induced Pluripotent Stem Cell Derived Neurons Improves Neuronal Mitochondrial Dynamics, Neuronal Maturation and Reduces Amyloid Beta Peptides. Int J Mol Sci 2021; 22:ijms22052526. [PMID: 33802405 PMCID: PMC7959288 DOI: 10.3390/ijms22052526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase 2 (HDAC2) is a major HDAC protein in the adult brain and has been shown to regulate many neuronal genes. The aberrant expression of HDAC2 and subsequent dysregulation of neuronal gene expression is implicated in neurodegeneration and brain aging. Human induced pluripotent stem cell-derived neurons (hiPSC-Ns) are widely used models for studying neurodegenerative disease mechanisms, but the role of HDAC2 in hiPSC-N differentiation and maturation has not been explored. In this study, we show that levels of HDAC2 progressively decrease as hiPSCs are differentiated towards neurons. This suppression of HDAC2 inversely corresponds to an increase in neuron-specific isoforms of Endophilin-B1, a multifunctional protein involved in mitochondrial dynamics. Expression of neuron-specific isoforms of Endophilin-B1 is accompanied by concomitant expression of a neuron-specific alternative splicing factor, SRRM4. Manipulation of HDAC2 and Endophilin-B1 using lentiviral approaches shows that the knock-down of HDAC2 or the overexpression of a neuron-specific Endophilin-B1 isoform promotes mitochondrial elongation and protects against cytotoxic stress in hiPSC-Ns, while HDAC2 knock-down specifically influences genes regulating mitochondrial dynamics and synaptogenesis. Furthermore, HDAC2 knock-down promotes enhanced mitochondrial respiration and reduces levels of neurotoxic amyloid beta peptides. Collectively, our study demonstrates a role for HDAC2 in hiPSC-neuronal differentiation, highlights neuron-specific isoforms of Endophilin-B1 as a marker of differentiating hiPSC-Ns and demonstrates that HDAC2 regulates key neuronal and mitochondrial pathways in hiPSC-Ns.
Collapse
Affiliation(s)
- Harald Frankowski
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Fred Yeboah
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Bonnie J. Berry
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michelle Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kira Evitts
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Joshua Davis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yoshito Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Richard S. Morrison
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA;
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
164
|
Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 2021; 10:497. [PMID: 33669111 PMCID: PMC7996512 DOI: 10.3390/cells10030497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line chemotherapies for patients with unresectable pancreatic cancer (PC) are 5-fluorouracil (5-FU) and gemcitabine therapy. However, due to chemoresistance the prognosis of patients with PC has not been significantly improved. Mitochondria are essential organelles in eukaryotes that evolved from aerobic bacteria. In recent years, many studies have shown that mitochondria play important roles in tumorigenesis and may act as chemotherapeutic targets in PC. In addition, according to recent studies, mitochondria may play important roles in the chemoresistance of PC by affecting apoptosis, metabolism, mtDNA metabolism, and mitochondrial dynamics. Interfering with some of these factors in mitochondria may improve the sensitivity of PC cells to chemotherapeutic agents, such as gemcitabine, making mitochondria promising targets for overcoming chemoresistance in PC.
Collapse
Affiliation(s)
- Yibo Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Francesca Ricciardiello
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Hua Huang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jianchun Xiao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Fangyu Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Guangyu Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Lei You
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
165
|
Benefit of a single simulated hypobaric hypoxia in healthy mice performance and analysis of mitochondria-related gene changes. Sci Rep 2021; 11:4494. [PMID: 33627689 PMCID: PMC7904831 DOI: 10.1038/s41598-020-80425-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Simulated hypobaric hypoxia (SHH) training has been used to enhance running performance. However, no studies have evaluated the effects of a single SHH exposure on healthy mice performance and analyzed the changes of mitochondria-related genes in the central nervous system. The current study used a mouse decompression chamber to simulate mild hypobaric hypoxia at the high altitude of 5000 m or severe hypobaric hypoxia at 8000 m for 16 h (SHH5000 & SHH8000, respectively). Then, the mouse behavioral tests were recorded by a modified Noldus video tracking. Third, the effects of SHH on 8 mitochondria-related genes of Drp1, Mfn1, Mfn2, Opa1, TFAM, SGK1, UCP2 and UCP4, were assessed in cerebellum, hippocampus and gastrocnemius muscles. The results have shown that a single mild or severe HH improves healthy mice performance. In cerebellum, 6 of all 8 detected genes (except Mfn2 and UCP4) did not change after SHH. In hippocampus, all detected genes did not change after SHH. In muscles, 7 of all 8 detected genes (except Opa1) did not change after SHH. The present study has indicated the benefit of a single SHH in healthy mice performance, which would due to the stabilized mitochondria against a mild stress state.
Collapse
|
166
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
167
|
Yu Q, Dai H, Jiang Y, Zha Y, Zhang J. Sevoflurane alleviates oxygen-glucose deprivation/reoxygenation-induced injury in HT22 cells through regulation of the PI3K/AKT/GSK3β signaling pathway. Exp Ther Med 2021; 21:376. [PMID: 33732349 PMCID: PMC7903476 DOI: 10.3892/etm.2021.9807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sevoflurane (Sev), a volatile anesthetic, has been reported to exhibit beneficial effects on different ischemia/reperfusion (I/R)-injured organs. However, the neuroprotective effect of Sev on cerebral I/R injury is poorly understood. In the present study, the effects of Sev on HT22 cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury are investigated. The present study demonstrated that OGD/R suppressed the cell viability and increased lactate dehydrogenase (LDH) release from the cells, and these effects were attenuated by Sev treatment. The results also demonstrated that Sev alleviated OGD/R-induced cell apoptosis via flow cytometry and caspase-3 activity determination. Biochemical analysis results revealed that Sev significantly protected against OGD/R-induced oxidative stress by reducing ROS generation and improving antioxidant defense markers. Western blot analysis demonstrated that Sev reactivated the PI3K/AKT/glycogen synthase kinase-3β (GSK3β) signaling pathway, which was inhibited by OGD/R. In addition, wortmannin, a selective PI3K inhibitor was used to investigate the underlying pathways. Notably, the neuroprotective effect of Sev on apoptosis and reactive oxygen species production was found to be suppressed by wortmannin. Collectively, these results demonstrated that Sev may protect neuronal cells against OGD/R-induced injury through the activation of the PI3K/AKT/GSK3β signaling pathway. The findings from the present study provide a novel insight into understanding the neuroprotective effect of Sev on cerebral I/R injury.
Collapse
Affiliation(s)
- Qiong Yu
- Department of Anesthesia, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haofei Dai
- Department of Nursing, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Yinan Jiang
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Yifeng Zha
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Jie Zhang
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| |
Collapse
|
168
|
Di Nottia M, Verrigni D, Torraco A, Rizza T, Bertini E, Carrozzo R. Mitochondrial Dynamics: Molecular Mechanisms, Related Primary Mitochondrial Disorders and Therapeutic Approaches. Genes (Basel) 2021; 12:247. [PMID: 33578638 PMCID: PMC7916359 DOI: 10.3390/genes12020247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria do not exist as individual entities in the cell-conversely, they constitute an interconnected community governed by the constant and opposite process of fission and fusion. The mitochondrial fission leads to the formation of smaller mitochondria, promoting the biogenesis of new organelles. On the other hand, following the fusion process, mitochondria appear as longer and interconnected tubules, which enhance the communication with other organelles. Both fission and fusion are carried out by a small number of highly conserved guanosine triphosphatase proteins and their interactors. Disruption of this equilibrium has been associated with several pathological conditions, ranging from cancer to neurodegeneration, and mutations in genes involved in mitochondrial fission and fusion have been reported to be the cause of a subset of neurogenetic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Rosalba Carrozzo
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (M.D.N.); (D.V.); (A.T.); (T.R.); (E.B.)
| |
Collapse
|
169
|
Kretzschmar T, Wu JMF, Schulze PC. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Int J Mol Sci 2021; 22:1498. [PMID: 33540894 PMCID: PMC7867320 DOI: 10.3390/ijms22031498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure remains the most common cause of death in the industrialized world. In spite of new therapeutic interventions that are constantly being developed, it is still not possible to completely protect against heart failure development and progression. This shows how much more research is necessary to understand the underlying mechanisms of this process. In this review, we give a detailed overview of the contribution of impaired mitochondrial dynamics and energy homeostasis during heart failure progression. In particular, we focus on the regulation of fatty acid metabolism and the effects of fatty acid accumulation on mitochondrial structural and functional homeostasis.
Collapse
Affiliation(s)
| | | | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Thüringen, Germany; (T.K.); (J.M.F.W.)
| |
Collapse
|
170
|
Choi SH, Agatisa-Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, Tsimikas S, Miller YI. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:e82-e96. [PMID: 33356389 PMCID: PMC8105271 DOI: 10.1161/atvbaha.120.315485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Ayelet Gonen
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Alisa Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Jungsu Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Elena Alekseeva
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Sotirios Tsimikas
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Yury I. Miller
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
171
|
Bachmann M, Rossa A, Antoniazzi G, Biasutto L, Carrer A, Campagnaro M, Leanza L, Gonczi M, Csernoch L, Paradisi C, Mattarei A, Zoratti M, Szabo I. Synthesis and cellular effects of a mitochondria-targeted inhibitor of the two-pore potassium channel TASK-3. Pharmacol Res 2021; 164:105326. [PMID: 33338625 DOI: 10.1016/j.phrs.2020.105326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.
Collapse
Affiliation(s)
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Monika Gonczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Mario Zoratti
- CNR Institute of Neuroscience, Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
172
|
De Mario A, Gherardi G, Rizzuto R, Mammucari C. Skeletal muscle mitochondria in health and disease. Cell Calcium 2021; 94:102357. [PMID: 33550207 DOI: 10.1016/j.ceca.2021.102357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Mitochondrial activity warrants energy supply to oxidative myofibres to sustain endurance workload. The maintenance of mitochondrial homeostasis is ensured by the control of fission and fusion processes and by the mitophagic removal of aberrant organelles. Many diseases are due to or characterized by dysfunctional mitochondria, and altered mitochondrial dynamics or turnover trigger myopathy per se. In this review, we will tackle the role of mitochondrial dynamics, turnover and metabolism in skeletal muscle, both in health and disease.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
173
|
Yu H, Sun C, Gong Q, Feng D. Mitochondria-Associated Endoplasmic Reticulum Membranes in Breast Cancer. Front Cell Dev Biol 2021; 9:629669. [PMID: 33634130 PMCID: PMC7902067 DOI: 10.3389/fcell.2021.629669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Mitochondria-associated ER membranes (MAMs) represent a crucial intracellular signaling hub, that regulates various cellular events including Ca2+ homeostasis, lipid metabolism, mitochondrial function, and cellular survival and death. All of these MAM-mediated cellular events contribute to carcinogenesis. Indeed, altered functions of MAMs in several types of cancers have been documented, in particular for breast cancer. Over the past years, altered expression of many MAM-resident proteins have been reported in breast cancer. These MAM-resident proteins play an important role in regulation of breast cancer initiation and progression. In the current review, we discuss our current knowledge about the functions of MAMs, and address the underlying mechanisms through which MAM-resident proteins regulate breast cancer. A fuller understanding of the pathways through which MAMs regulate breast cancer, and identification of breast cancer-specific MAM-resident proteins may help to develop novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Hongjiao Yu
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chaonan Sun
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
174
|
Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, Wolvetang E, Parton RG, Brown AD, Kastan MB, Coman D, Lavin MF. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience 2021; 24:101972. [PMID: 33437944 PMCID: PMC7788243 DOI: 10.1016/j.isci.2020.101972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca2+ release and transfer between ER and mitochondria was reduced dramatically when compared with control cells. The impact of this on mitochondrial function was evident from an increase in oxygen consumption rates and a defect in mitophagy in ATM-deficient cells. Our findings reveal that ER-mitochondrial connectivity through IP3R1-GRP75-VDAC1, to maintain Ca2+ homeostasis, as well as an abnormality in mitochondrial fusion defective in response to nutrient stress, can account for at least part of the mitochondrial dysfunction observed in A-T cells.
Collapse
Affiliation(s)
- Abrey J. Yeo
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Kok L. Chong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Magtouf Gatei
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Dongxiu Zou
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | | | - Sarah Withey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane, Australia
| | | | | | - David Coman
- Queensland Children's Hospital, Brisbane, Australia
| | - Martin F. Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| |
Collapse
|
175
|
Zhao H, Lin J, Sieck G, Haddad GG. Neuroprotective Role of Akt in Hypoxia Adaptation in Andeans. Front Neurosci 2021; 14:607711. [PMID: 33519361 PMCID: PMC7843528 DOI: 10.3389/fnins.2020.607711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic mountain sickness (CMS) is a disease that potentially threatens a large segment of high-altitude populations during extended living at altitudes above 2,500 m. Patients with CMS suffer from severe hypoxemia, excessive erythrocytosis and neurologic deficits. The cellular mechanisms underlying CMS neuropathology remain unknown. We previously showed that iPSC-derived CMS neurons have altered mitochondrial dynamics and increased susceptibility to hypoxia-induced cell death. Genome analysis from the same population identified many ER stress-related genes that play an important role in hypoxia adaptation or lack thereof. In the current study, we showed that iPSC-derived CMS neurons have increased expression of ER stress markers Grp78 and XBP1s under normoxia and hyperphosphorylation of PERK under hypoxia, alleviating ER stress does not rescue the hypoxia-induced CMS neuronal cell death. Akt is a cytosolic regulator of ER stress with PERK as a direct target of Akt. CMS neurons exhibited lack of Akt activation and lack of increased Parkin expression as compared to non-CMS neurons under hypoxia. By enhancing Akt activation and Parkin overexpression, hypoxia-induced CMS neuronal cell death was reduced. Taken together, we propose that increased Akt activation protects non-CMS from hypoxia-induced cell death. In contrast, impaired adaptive mechanisms including failure to activate Akt and increase Parkin expression render CMS neurons more susceptible to hypoxia-induced cell death.
Collapse
Affiliation(s)
- Helen Zhao
- Department of Pediatrics (Respiratory Medicine), University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Gary Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gabriel G. Haddad
- Department of Pediatrics (Respiratory Medicine), University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- The Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
176
|
Li J, Xu MX, Dai Z, Xu T. Mitofusion 2 Overexpression Decreased Proliferation of Human Embryonic Lung Fibroblasts in Acute Respiratory Distress Syndrome through Inhibiting RAS-RAF-1-ERK1/2 Pathway. Curr Med Sci 2021; 40:1092-1098. [PMID: 33428137 DOI: 10.1007/s11596-020-2305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most fatal diseases worldwide. Pulmonary fibrosis occurs early in ARDS, and its severity plays a crucial role in ARDS mortality rate. Some studies suggested that fibroproliferation is an essential mechanism in ARDS. Mitofusion2 (Mfn2) overexpression plays a role in inhibiting cell proliferation. However, the role and potential mechanism of Mfn2 on the proliferation of fibroblasts is still unknown. In this study, we aimed at exploring the effect of Mfn2 on the human embryonic lung fibroblasts (HELF) and discussed its related mechanism. The HELF were treated with the Mfn2 overexpressing lentivirus (adv-Mfn2). The cell cycle was detected by flow cytometry. MTT, PCR and Western blotting were used to investigate the effect of Mfn2 on the proliferation of the HELF, collagen expression, the RAS-RAF-1-ERK1/2 pathway and the expression of cycle-related proteins (p21, p27, Rb, Raf-1, p-Raf-1, Erk1/2 and p-Erk1/2). The co-immunoprecipitation assay was used to explore the interaction between Mfn2 and Ras. The results showed that the overexpression of Mfn2 inhibited the proliferation of the HELF and induced the cell cycle arrest at the G0/G1 phase. Meanwhile, Mfn2 also inhibited the expression of collagen I, p-Erk and p-Raf-1. In addition, an interaction between Mfn2 and Ras existed in the HELF. This study suggests that the overexpression of Mfn2 can decrease the proliferation of HELF in ARDS, which was associated with the inhibition of the RAS-RAF-1-ERK1/2 pathway. The results may offer a potential therapeutic intervention for patients with ARDS.
Collapse
Affiliation(s)
- Juan Li
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mei-Xia Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Dai
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
177
|
Hamilton S, Veress R, Belevych A, Terentyev D. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Arch 2021; 473:377-387. [PMID: 33404893 PMCID: PMC7940310 DOI: 10.1007/s00424-020-02505-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Sudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world. Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+ homeostasis which substantially increases arrhythmic risk. This brief review will focus on functional changes in elements of Ca2+ handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
178
|
Klemm RW. Getting in Touch Is an Important Step: Control of Metabolism at Organelle Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:2515256421993708. [PMID: 37366381 PMCID: PMC10243586 DOI: 10.1177/2515256421993708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/28/2023]
Abstract
Metabolic pathways are often spread over several organelles and need to be functionally integrated by controlled organelle communication. Physical organelle contact-sites have emerged as critical hubs in the regulation of cellular metabolism, but the molecular understanding of mechanisms that mediate formation or regulation of organelle interfaces was until recently relatively limited. Mitochondria are central organelles in anabolic and catabolic pathways and therefore interact with a number of other cellular compartments including the endoplasmic reticulum (ER) and lipid droplets (LDs). An interesting set of recent work has shed new light on the molecular basis forming these contact sites. This brief overview describes the discovery of unanticipated functions of contact sites between the ER, mitochondria and LDs in de novo synthesis of storage lipids of brown and white adipocytes. Interestingly, the factors involved in mediating the interaction between these organelles are subject to unexpected modes of regulation through newly uncovered Phospho-FFAT motifs. These results suggest dynamic regulation of contact sites between organelles and indicate that spatial organization of organelles within the cell contributes to the control of metabolism.
Collapse
Affiliation(s)
- Robin W. Klemm
- Department of Physiology,
Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
179
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
180
|
Chatterjee S, Chakrabarty Y, Banerjee S, Ghosh S, Bhattacharyya SN. Mitochondria control mTORC1 activity-linked compartmentalization of eIF4E to regulate extracellular export of microRNAs. J Cell Sci 2020; 133:jcs250241. [PMID: 33262313 DOI: 10.1242/jcs.250241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
Defective intracellular trafficking and export of microRNAs (miRNAs) have been observed in growth-retarded mammalian cells having impaired mitochondrial potential and dynamics. Here, we found that uncoupling protein 2 (Ucp2)-mediated depolarization of mitochondrial membrane also results in progressive sequestration of miRNAs within polysomes and lowers their release via extracellular vesicles. Interestingly, the impaired miRNA-trafficking process in growth-retarded human cells could be reversed in the presence of Genipin, an inhibitor of Ucp2. Mitochondrial detethering of endoplasmic reticulum (ER), observed in cells with depolarized mitochondria, was found to be responsible for defective compartmentalization of translation initiation factor eIF4E to polysomes attached to ER. This caused a retarded translation process accompanied by enhanced retention of miRNAs and target mRNAs within ER-attached polysomes to restrict extracellular export of miRNAs. Reduced compartment-specific activity of the mammalian target of rapamycin complex 1 (mTORC1), the master regulator of protein synthesis, in cells with defective mitochondria or detethered ER, caused reduced phosphorylation of eIF4E-BP1 and prevented eIF4E targeting to ER-attached polysomes and miRNA export. These data suggest how mitochondrial membrane potential and dynamics, by affecting mTORC1 activity and compartmentalization, determine the subcellular localization and export of miRNAs.
Collapse
Affiliation(s)
- Susanta Chatterjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Yogaditya Chakrabarty
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Saikat Banerjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Souvik Ghosh
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
181
|
Garcia BM, Machado TS, Carvalho KF, Nolasco P, Nociti RP, Del Collado M, Capo Bianco MJD, Grejo MP, Augusto Neto JD, Sugiyama FHC, Tostes K, Pandey AK, Gonçalves LM, Perecin F, Meirelles FV, Ferraz JBS, Vanzela EC, Boschero AC, Guimarães FEG, Abdulkader F, Laurindo FRM, Kowaltowski AJ, Chiaratti MR. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Mol Hum Reprod 2020; 26:938-952. [PMID: 33118034 DOI: 10.1093/molehr/gaaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.
Collapse
Affiliation(s)
- Bruna M Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Thiago S Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Karen F Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Patrícia Nolasco
- Translational Cardiovascular Biology Unit, Instituto do Coração, Universidade de São Paulo, São Paulo 05403-904, Brazil
| | - Ricardo P Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Maria J D Capo Bianco
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Mateus P Grejo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - José Djaci Augusto Neto
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Fabrícia H C Sugiyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Katiane Tostes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Anand K Pandey
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Departament of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Luciana M Gonçalves
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Felipe Perecin
- Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Flávio V Meirelles
- Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - José Bento S Ferraz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Antônio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Francisco E G Guimarães
- Departamento de Física e Ciências dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, Brazil
| | - Fernando Abdulkader
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Francisco R M Laurindo
- Translational Cardiovascular Biology Unit, Instituto do Coração, Universidade de São Paulo, São Paulo 05403-904, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
182
|
Gil-Hernández A, Silva-Palacios A. Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases. Ageing Res Rev 2020; 64:101193. [PMID: 33069818 DOI: 10.1016/j.arr.2020.101193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Although the elixir of youth remains in the darkness, medical and scientific advances have succeeded in increasing human longevity; however, the predisposition to disease and its high economic cost are raising. Different strategies (e.g., antioxidants) and signaling pathways (e.g., Nrf2) have been identified to help regulate disease progression, nevertheless, there are still missing links that we need to understand. Contact sites called mitochondria-associated membranes (MAM) allow bi-directional communication between organelles as part of the essential functions in the cell to maintain its homeostasis. Different groups have deeply studied the role of MAM in aging; however, it's necessary to analyze their involvement in the progression of age-related diseases. In this review, we highlight the role of contact sites in these conditions, as well as the morphological and functional changes of mitochondria and ER in aging. We emphasize the intimate relationship between both organelles as a reflection of the biological processes that take place in the cell to try to regulate the deterioration characteristic of the aging process; proposing MAM as a potential target to help limit the disease progression with age.
Collapse
|
183
|
Alsayyah C, Ozturk O, Cavellini L, Belgareh-Touzé N, Cohen MM. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148302. [PMID: 32861697 DOI: 10.1016/j.bbabio.2020.148302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Oznur Ozturk
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Laetitia Cavellini
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Naïma Belgareh-Touzé
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|
184
|
Gouriou Y, Alam MR, Harhous Z, Crola Da Silva C, Baetz DB, Badawi S, Lefai E, Rieusset J, Durand A, Harisseh R, Gharib A, Ovize M, Bidaux G. ANT2-Mediated ATP Import into Mitochondria Protects against Hypoxia Lethal Injury. Cells 2020; 9:cells9122542. [PMID: 33255741 PMCID: PMC7760820 DOI: 10.3390/cells9122542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Following a prolonged exposure to hypoxia–reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia–reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia–reoxygenation challenge.
Collapse
Affiliation(s)
- Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Correspondence: (Y.G.); (G.B.)
| | - Muhammad Rizwan Alam
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zeina Harhous
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Gilbert and Rose-Marie Chagoury, School of Medicine, Lebanese American University, Byblos 4M8F+8X, Lebanon
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Delphine Baetz Baetz
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Sally Badawi
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Etienne Lefai
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Jennifer Rieusset
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Annie Durand
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Rania Harisseh
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Abdallah Gharib
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Correspondence: (Y.G.); (G.B.)
| |
Collapse
|
185
|
Zhang H, Zhao Y, Yao Q, Ye Z, Mañas A, Xiang J. Ubl4A is critical for mitochondrial fusion process under nutrient deprivation stress. PLoS One 2020; 15:e0242700. [PMID: 33211772 PMCID: PMC7676689 DOI: 10.1371/journal.pone.0242700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial fusion and fission are dynamic processes regulated by the cellular microenvironment. Under nutrient starvation conditions, mitochondrial fusion is strengthened for energy conservation. We have previously shown that newborns of Ubl4A-deficient mice were more sensitive to starvation stress with a higher rate of mortality than their wild-type littermates. Ubl4A binds with the actin-related protein Arp2/3 complex to synergize the actin branching process. Here, we showed that deficiency in Ubl4A resulted in mitochondrial fragmentation and apoptosis. A defect in the fusion process was the main cause of the mitochondrial fragmentation and resulted from a shortage of primed Arp2/3 complex pool around the mitochondria in the Ubl4A-deficient cells compared to the wild-type cells. As a result, the mitochondrial fusion process was not undertaken quickly enough to sustain starvation stress-induced cell death. Consequently, fragmented mitochondria lost their membrane integrity and ROS was accumulated to trigger caspase 9-dependent apoptosis before autophagic rescue. Furthermore, the wild-type Ubl4A, but not the Arp2/3-binding deficient mutant, could rescue the starvation-induced mitochondrial fragmentation phenotype. These results suggest that Ubl4A promotes the mitochondrial fusion process via Arp2/3 complex during the initial response to nutrient deprivation for cell survival.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Yu Zhao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Qi Yao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Zijing Ye
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Adriana Mañas
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
186
|
Cutillo G, Simon DK, Eleuteri S. VPS35 and the mitochondria: Connecting the dots in Parkinson's disease pathophysiology. Neurobiol Dis 2020; 145:105056. [DOI: 10.1016/j.nbd.2020.105056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
|
187
|
Burtscher J, Cappellano G, Omori A, Koshiba T, Millet GP. Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. iScience 2020; 23:101631. [PMID: 33015593 PMCID: PMC7524535 DOI: 10.1016/j.isci.2020.101631] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The pathophysiology, immune reaction, and differential vulnerability of different population groups and viral host immune system evasion strategies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not yet well understood. Here, we reviewed the multitude of known strategies of coronaviruses and other viruses to usurp mitochondria-associated mechanisms involved in the host innate immune response and put them in context with the current knowledge on SARS-CoV-2. We argue that maintenance of mitochondrial integrity is essential for adequate innate immune system responses and to blunt mitochondrial modulation by SARS-CoV-2. Mitochondrial health thus may determine differential vulnerabilities to SARS-CoV-2 infection rendering markers of mitochondrial functions promising potential biomarkers for SARS-CoV-2 infection risk and severity of outcome. Current knowledge gaps on our understanding of mitochondrial involvement in SARS-CoV-2 infection, lifestyle, and pharmacological strategies to improve mitochondrial integrity and potential reciprocal interactions with chronic and age-related diseases, e.g., Parkinson disease, are pointed out.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Akiko Omori
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, 814-0180 Fukuoka, Japan
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
188
|
Murata D, Arai K, Iijima M, Sesaki H. Mitochondrial division, fusion and degradation. J Biochem 2020; 167:233-241. [PMID: 31800050 DOI: 10.1093/jb/mvz106] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrion is an essential organelle for a wide range of cellular processes, including energy production, metabolism, signal transduction and cell death. To execute these functions, mitochondria regulate their size, number, morphology and distribution in cells via mitochondrial division and fusion. In addition, mitochondrial division and fusion control the autophagic degradation of dysfunctional mitochondria to maintain a healthy population. Defects in these dynamic membrane processes are linked to many human diseases that include metabolic syndrome, myopathy and neurodegenerative disorders. In the last several years, our fundamental understanding of mitochondrial fusion, division and degradation has been significantly advanced by high resolution structural analyses, protein-lipid biochemistry, super resolution microscopy and in vivo analyses using animal models. Here, we summarize and discuss this exciting recent progress in the mechanism and function of mitochondrial division and fusion.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Kenta Arai
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
189
|
Cheng QQ, Wan YW, Yang WM, Tian MH, Wang YC, He HY, Zhang WD, Liu X. Gastrodin protects H9c2 cardiomyocytes against oxidative injury by ameliorating imbalanced mitochondrial dynamics and mitochondrial dysfunction. Acta Pharmacol Sin 2020; 41:1314-1327. [PMID: 32203078 PMCID: PMC7608121 DOI: 10.1038/s41401-020-0382-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Gastrodin (GAS) is the main bioactive component of Tianma, a traditional Chinese medicine widely used to treat neurological disorders as well as cardio- and cerebrovascular diseases. In the present study, the protective effects of GAS on H9c2 cells against ischemia-reperfusion (IR)-like injury were found to be related to decreasing of oxidative stress. Furthermore, GAS could protect H9c2 cells against oxidative injury induced by H2O2. Pretreatment of GAS at 20, 50, and 100 μM for 4 h significantly ameliorated the decrease in cell viability and increase in apoptosis of H9c2 cells treated with 400 μM H2O2 for 3 h. Furthermore, we showed that H2O2 treatment induced fragmentation of mitochondria and significant reduction in networks, footprint, and tubular length of mitochondria; H2O2 treatment strongly inhibited mitochondrial respiration; H2O2 treatment induced a decrease in the expression of mitochondrial fusion factors Mfn2 and Opa1, and increase in the expression of mitochondrial fission factor Fis1. All these alterations in H2O2-treated H9c2 cells could be ameliorated by GAS pretreatment. Moreover, we revealed that GAS pretreatment enhanced the nuclear translocation of Nrf2 under H2O2 treatment. Knockdown of Nrf2 expression abolished the protective effects of GAS on H2O2-treated H9c2 cells. Our results suggest that GAS may protect H9c2 cardiomycytes against oxidative injury via increasing the nuclear translocation of Nrf2, regulating mitochondrial dynamics, and maintaining the structure and functions of mitochondria.
Collapse
Affiliation(s)
- Qiao-Qiao Cheng
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Wei Wan
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Meng-Hua Tian
- Zhaotong Institute of Tianma, Zhaotong, 657000, China
| | - Yu-Chuan Wang
- Zhaotong Institute of Tianma, Zhaotong, 657000, China
| | - Hai-Yan He
- Zhaotong Institute of Tianma, Zhaotong, 657000, China
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
190
|
Rahman J, Singh P, Merle NS, Niyonzima N, Kemper C. Complement's favourite organelle-Mitochondria? Br J Pharmacol 2020; 178:2771-2785. [PMID: 32840864 PMCID: PMC8359399 DOI: 10.1111/bph.15238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The complement system, well known for its central role in innate immunity, is currently emerging as an unexpected, cell‐autonomous, orchestrator of normal cell physiology. Specifically, an intracellularly active complement system—the complosome—controls key pathways of normal cell metabolism during immune cell homeostasis and effector function. So far, we know little about the exact structure and localization of intracellular complement components within and among cells. A common scheme, however, is that they operate in crosstalk with other intracellular immune sensors, such as inflammasomes, and that they impact on the activity of key subcellular compartments. Among cell compartments, mitochondria appear to have built a particularly early and strong relationship with the complosome and extracellularly active complement—not surprising in view of the strong impact of the complosome on metabolism. In this review, we will hence summarize the current knowledge about the close complosome–mitochondria relationship and also discuss key questions surrounding this novel research area.
Collapse
Affiliation(s)
- Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
191
|
Joaquim M, Escobar-Henriques M. Role of Mitofusins and Mitophagy in Life or Death Decisions. Front Cell Dev Biol 2020; 8:572182. [PMID: 33072754 PMCID: PMC7539839 DOI: 10.3389/fcell.2020.572182] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria entail an incredible dynamism in their morphology, impacting death signaling and selective elimination of the damaged organelles. In turn, by recycling the superfluous or malfunctioning mitochondria, mostly prevalent during aging, mitophagy contributes to maintain a healthy mitochondrial network. Mitofusins locate at the outer mitochondrial membrane and control the plastic behavior of mitochondria, by mediating fusion events. Besides deciding on mitochondrial interconnectivity, mitofusin 2 regulates physical contacts between mitochondria and the endoplasmic reticulum, but also serves as a decisive docking platform for mitophagy and apoptosis effectors. Thus, mitofusins integrate multiple bidirectional inputs from and into mitochondria and ensure proper energetic and metabolic cellular performance. Here, we review the role of mitofusins and mitophagy at the cross-road between life and apoptotic death decisions. Furthermore, we highlight the impact of this interplay on disease, focusing on how mitofusin 2 and mitophagy affect non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Mariana Joaquim
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
192
|
Maharaj A, Williams J, Bradshaw T, Güran T, Braslavsky D, Casas J, Chan LF, Metherell LA, Prasad R. Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. J Steroid Biochem Mol Biol 2020; 202:105730. [PMID: 32682944 PMCID: PMC7482430 DOI: 10.1016/j.jsbmb.2020.105730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023]
Abstract
Deficiency in Sphingosine-1-phosphate lyase (S1P lyase) is associated with a multi-systemic disorder incorporating primary adrenal insufficiency (PAI), steroid resistant nephrotic syndrome and neurological dysfunction. Accumulation of sphingolipid intermediates, as seen with loss of function mutations in SGPL1, has been implicated in mitochondrial dysregulation, including alterations in mitochondrial membrane potentials and initiation of mitochondrial apoptosis. For the first time, we investigate the impact of S1P lyase deficiency on mitochondrial morphology and function using patient-derived human dermal fibroblasts and CRISPR engineered SGPL1-knockout HeLa cells. Reduced cortisol output in response to progesterone stimulation was observed in two patient dermal fibroblast cell lines. Mass spectrometric analysis of patient dermal fibroblasts revealed significantly elevated levels of sphingosine-1-phosphate, sphingosine, ceramide species and sphingomyelin when compared to control. Total mitochondrial volume was reduced in both S1P lyase deficient patient and HeLa cell lines. Mitochondrial dynamics and parameters of oxidative phosphorylation were altered when compared to matched controls, though differentially across the cell lines. Mitochondrial dysfunction may represent a major event in the pathogenesis of this disease, associated with severity of phenotype.
Collapse
Affiliation(s)
- A Maharaj
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - J Williams
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - T Bradshaw
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - T Güran
- Marmara University, School of Medicine, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - D Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergadá" (CEDIE) - CONICET - FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - J Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, IQAC-CSIC, Jordi Girona 18-26, Barcelona, Spain
| | - L F Chan
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - L A Metherell
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - R Prasad
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
193
|
The Antiaging Effect of Active Fractions and Ent-11α-Hydroxy-15-Oxo-Kaur-16-En-19-Oic Acid Isolated from Adenostemma lavenia (L.) O. Kuntze at the Cellular Level. Antioxidants (Basel) 2020; 9:antiox9080719. [PMID: 32784463 PMCID: PMC7464069 DOI: 10.3390/antiox9080719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The extract of Adenostemma lavenia (L.) O. Kuntze leaves has anti-inflammatory activities and is used as a folk medicine to treat patients with hepatitis and pneumonia in China and Taiwan. The diterpenoid ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11αOH-KA) is the major ingredient in the extract and has wide-spectrum biological activities, such as antitumor and antimelanogenic activities, as well as anti-inflammatory activity. However, the physical and biological properties of this compound as an antioxidant or antiaging agent have not been reported yet. Methods: In addition to in vitro assays, we monitored antioxidative and antiaging signals in Schizosaccharomyces pombe (yeast) and mouse melanoma B16F10 cells. Results: A. lavenia water and chloroform fractions showed antioxidant properties in vitro. The A. lavenia extracts and 11αOH-KA conferred resistance to H2O2 to S. pombe and B16F10 cells and extended the yeast lifespan in a concentration-dependent manner. These materials maintained the yeast mitochondrial activity, even in a high-glucose medium, and induced an antioxidant gene program, the transcriptional factor pap1+ and its downstream ctt1+. Accordingly, 11αOH-KA activated the antioxidative transcription factor NF-E2-related factor 2, NRF2, the mammalian ortholog of pap1+, in B16F10 cells, which was accompanied by enhanced hemeoxygenase expression levels. These results suggest that 11αOH-KA and A. lavenia extracts may protect yeast and mammalian cells from oxidative stress and aging. Finally, we hope that these materials could be helpful in treating COVID-19 patients, because A. lavenia extracts and NRF2 activators have been reported to alleviate the symptoms of pneumonia in model animals.
Collapse
|
194
|
Cerqueira FM, von Stockum S, Giacomello M, Goliand I, Kakimoto P, Marchesan E, De Stefani D, Kowaltowski AJ, Ziviani E, Shirihai OS. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biol 2020; 37:101676. [PMID: 32956978 PMCID: PMC7509235 DOI: 10.1016/j.redox.2020.101676] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
UCH-L1 is a deubiquitinating enzyme (DUB), highly abundant in neurons, with a sub-cellular localization dependent on its farnesylation state. Despite UCH-L1′s association with familial Parkinson's Disease (PD), the effects on mitochondrial bioenergetics and quality control remain unexplored. Here we investigated the role of UCHL-1 in mitochondrial dynamics and bioenergetics. We demonstrate that knock-down (KD) of UCH-L1 in different cell lines reduces the levels of the mitochondrial fusion protein Mitofusin-2, but not Mitofusin-1, resulting in mitochondrial enlargement and disruption of the tubular network. This was associated with lower tethering between mitochondria and the endoplasmic reticulum, consequently altering mitochondrial calcium uptake. Respiratory function was also altered, as UCH-L1 KD cells displayed higher proton leak and maximum respiratory capacity. Conversely, overexpression of UCH-L1 increased Mfn2 levels, an effect dramatically enhanced by the mutation of the farnesylation site (C220S), which drives UCH-L1 binding to membranes. These data indicate that the soluble cytosolic form of UCH-L1 regulates Mitofusin-2 levels and mitochondrial function. These effects are biologically conserved, since knock-down of the corresponding UCH-L1 ortholog in D. melanogaster reduces levels of the mitofusin ortholog Marf and also increases mitochondrial respiratory capacity. We thus show that Mfn-2 levels are directly affected by UCH-L1, demonstrating that the mitochondrial roles of DUBs go beyond controlling mitophagy rates.
Collapse
Affiliation(s)
- Fernanda M Cerqueira
- Obesity Research Center, Molecular Medicine, Boston University School of Medicine, Boston, MA, 02111, USA; National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, 8410501, Israel; Department of Biology, University of Padua, Padua, 35121, Italy
| | | | - Marta Giacomello
- Department of Biology, University of Padua, Padua, 35121, Italy; Department of Biomedical Sciences, University of Padua, 35121, Italy
| | - Inna Goliand
- National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, 8410501, Israel
| | - Pamela Kakimoto
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Elena Marchesan
- Department of Biology, University of Padua, Padua, 35121, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35121, Italy
| | - Alicia J Kowaltowski
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Elena Ziviani
- Department of Biology, University of Padua, Padua, 35121, Italy
| | - Orian S Shirihai
- Obesity Research Center, Molecular Medicine, Boston University School of Medicine, Boston, MA, 02111, USA; UCLA Section of Endocrinology, Department of Medicine, David Geffen School of Medicine, UCLA, CA, 9095-7073, USA.
| |
Collapse
|
195
|
Mitochondrial biogenesis: a potential therapeutic target for osteoarthritis. Osteoarthritis Cartilage 2020; 28:1003-1006. [PMID: 32417558 DOI: 10.1016/j.joca.2020.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
Abstract
Mitochondrial dysfunction of human articular chondrocytes is considered a hallmark of cartilage degradation and OA pathogenesis. Due to the huge number of cellular processes in which mitochondria is implicated, even in the closed context of cellular respiration, the term mitochondrial function can refer to a variety of features which include fusion and fission, turnover (biogenesis and mitophagy), and plasticity. Mitochondrial biogenesis and mainly mitochondrial fusion and reduced mitophagy, contribute to the metabolic disorder and inflammation that occurs during OA. Reduced MFN2 and increased PARKIN expression represent potential therapeutic targets for the treatment of joint cartilage degradation during the OA process.
Collapse
|
196
|
Tolosa-Díaz A, Almendro-Vedia VG, Natale P, López-Montero I. The GDP-Bound State of Mitochondrial Mfn1 Induces Membrane Adhesion of Apposing Lipid Vesicles through a Cooperative Binding Mechanism. Biomolecules 2020; 10:biom10071085. [PMID: 32708307 PMCID: PMC7407159 DOI: 10.3390/biom10071085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are double-membrane organelles that continuously undergo fission and fusion. Outer mitochondrial membrane fusion is mediated by the membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), carrying a GTP hydrolyzing domain (GTPase) and two coiled-coil repeats. The detailed mechanism on how the GTP hydrolysis allows Mfns to approach adjacent membranes into proximity and promote their fusion is currently under debate. Using model membranes built up as giant unilamellar vesicles (GUVs), we show here that Mfn1 promotes membrane adhesion of apposing lipid vesicles. The adhesion forces were sustained by the GDP-bound state of Mfn1 after GTP hydrolysis. In contrast, the incubation with the GDP:AlF4−, which mimics the GTP transition state, did not induce membrane adhesion. Due to the flexible nature of lipid membranes, the adhesion strength depended on the surface concentration of Mfn1 through a cooperative binding mechanism. We discuss a possible scenario for the outer mitochondrial membrane fusion based on the modulated action of Mfn1.
Collapse
Affiliation(s)
- Andrés Tolosa-Díaz
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Víctor G. Almendro-Vedia
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Paolo Natale
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
- Correspondence: (P.N.); (I.L.-M.)
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
- Correspondence: (P.N.); (I.L.-M.)
| |
Collapse
|
197
|
Spurlock B, Tullet JMA, Hartman J, Mitra K. Interplay of mitochondrial fission-fusion with cell cycle regulation: Possible impacts on stem cell and organismal aging. Exp Gerontol 2020; 135:110919. [PMID: 32220593 PMCID: PMC7808294 DOI: 10.1016/j.exger.2020.110919] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Declining mitochondrial function and homeostasis is a hallmark of aging. It is appreciated that the role of mitochondria is much more complex than generating reactive oxygen species to cause aging-related tissue damage. More recent literature describes that the ability of mitochondria to undergo fission or fusion events with each other impacts aging processes. A dynamic balance of mitochondrial fission and fusion events is required to sustain critical cellular functions including cell cycle. Specifically, cell cycle regulators modulate molecular activities of the mitochondrial fission (and fusion) machinery towards regulating cell cycle progression. In this review, we discus literature leading to our understanding on how shifts in the dynamic balance of mitochondrial fission and fusion can modulate progression through, exit from, and re-entry to the cell cycle or in undergoing senescence. Importantly, core regulators of mitochondrial fission or fusion are emerging as crucial stem cell regulators. We discuss the implication of such regulation in stem cells in the context of aging, given that aberrations in adult stem cells promote aging. We also propose a few hypotheses that may provide direction for further understanding about the roles of mitochondrial fission-fusion dynamics in aging biology.
Collapse
Affiliation(s)
- B. Spurlock
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - JMA Tullet
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - J.L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - K. Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA,Corresponding author. (K. Mitra)
| |
Collapse
|
198
|
Burtscher M. A breath of fresh air for mitochondria in exercise physiology. Acta Physiol (Oxf) 2020; 229:e13490. [PMID: 32365411 DOI: 10.1111/apha.13490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023]
|
199
|
Yuan CH, Ma YL, Shih PC, Chen CT, Cheng SY, Pan CY, Jean YH, Chu YM, Lin SC, Lai YC, Kuo HM. The antimicrobial peptide tilapia piscidin 3 induces mitochondria-modulated intrinsic apoptosis of osteosarcoma cells. Biochem Pharmacol 2020; 178:114064. [PMID: 32492449 DOI: 10.1016/j.bcp.2020.114064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Osteosarcoma (OS) is the most common solid tumor of the bone that most often affects adolescents. The introduction of chemotherapy for the treatment of OS has largely improved the survival rates of patients with localized tumors. However, the 5-year survival rate of OS patients with relapsed or metastatic disease is only 10 to 20%. In this study, the antimicrobial peptide tilapia piscidin 3 (TP3), isolated from Nile tilapia (Oreochromis niloticus), was treated to OS MG63 cells. Our findings showed that TP3 concentration as low as 1 μM induced significant inhibition of cell viability and increased DNA fragmentation, as determined by the MTT and TUNEL assays, respectively. The protein expression levels of cleaved caspases 3/9 were increased. An in situ live-cell time-lapse video and cell tomographic microscopy images showed cellular blebbing, shrinkage, nuclear fragmentation, and chromatin condensation, with the formation of beaded apoptopodia. Moreover, there were significant increase in the production of TP3-induced mitochondrial and cellular reactive oxygen species (ROS), as well as down-regulated mitochondrial oxygen consumption and extracellular acidification rates. Additionally, TP3 enhanced mitochondrial fission, whereas fusion was attenuated. Furthermore, after administration of the mitochondria targeted antioxidant mitoTempo, TP3-induced ROS oxidant levels and alterations in cleaved caspases 3/9 expression were rescued. TP3 promoted mitochondria-modulated intrinsic apoptosis through the induction of ROS production, activation of caspases 3/9, and the down-regulation of mitochondrial oxygen consumption and extracellular acidification rates, suggesting that TP3 has potential as an innovative alternative for OS treatment.
Collapse
Affiliation(s)
- Chien-Han Yuan
- Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yi-Ling Ma
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Po-Chang Shih
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; UCL School of Pharmacy, University College London, Bloomsbury, London WC1N 1AX, UK.
| | - Chao-Ting Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Shu-Yu Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81101, Taiwan.
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Ping-Tung Christian Hospital, Pingtung 90059, Taiwan.
| | - Yih-Min Chu
- Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Ping-Tung Christian Hospital, Pingtung 90059, Taiwan.
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
200
|
Copper mediates mitochondrial biogenesis in retinal pigment epithelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165843. [PMID: 32454166 DOI: 10.1016/j.bbadis.2020.165843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid-RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells.
Collapse
|