151
|
Galindo-Moreno M, Giráldez S, Sáez C, Japón MÁ, Tortolero M, Romero F. Both p62/SQSTM1-HDAC6-dependent autophagy and the aggresome pathway mediate CDK1 degradation in human breast cancer. Sci Rep 2017; 7:10078. [PMID: 28855742 PMCID: PMC5577189 DOI: 10.1038/s41598-017-10506-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) is the central mammalian regulator of cell proliferation and a promising therapeutic target for breast cancer. In fact, CDK1 inhibition downregulates survival and induces apoptosis. Due to its essential role, CDK1 expression and activity are strictly controlled at various levels. We previously described that CDK1 stability is also regulated and that SCF(βTrCP) ubiquitinates CDK1, which is degraded via the lysosomal pathway. In addition, in breast tumors from patients, we found a negative correlation between CDK1 accumulation and βTrCP levels, and a positive correlation with the degree of tumor malignancy. This prompted us to study the molecular mechanism involved in CDK1 clearance. In this report, we determine that both chemotherapeutic agents and proteolytic stress induce CDK1 degradation in human breast cancer MCF7 cells through p62/HDAC6-mediated selective autophagy. On the one hand, CDK1 binds to p62/SQSTM1-LC3 and, on the other hand, it interacts with HDAC6. Both complexes are dependent on the presence of an intact βTrCP-binding motif on CDK1. Furthermore, we also show that CDK1 is recruited to aggresomes in response to proteasome inhibition for an extended period. We propose CDK1 clearance as a potential predictive biomarker of antitumor treatment efficacy.
Collapse
Affiliation(s)
- María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, E-41012, Spain
| | - Servando Giráldez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, E-41012, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, E-41013, Spain.,Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, E-41013, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, E-41013, Spain.,Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, E-41013, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, E-41012, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, E-41012, Spain.
| |
Collapse
|
152
|
Yan S, Liu L, Ren F, Gao Q, Xu S, Hou B, Wang Y, Jiang X, Che Y. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1. Cell Death Dis 2017; 8:e2988. [PMID: 28796254 PMCID: PMC5596573 DOI: 10.1038/cddis.2017.387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability.
Collapse
Affiliation(s)
- Siyuan Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yange Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongsheng Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
153
|
Wang L, Yin W, Shi C. E3 ubiquitin ligase, RNF139, inhibits the progression of tongue cancer. BMC Cancer 2017; 17:452. [PMID: 28662643 PMCID: PMC5493000 DOI: 10.1186/s12885-017-3438-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Background Tongue cancer is still one of the leading causes of mortality around the world. Recently, the ubiquitin system has been established as a critical modulator of tumors. In order to find the oral cancer related E3 ubiquitin ligases, we screened the human E3 ubiquitin ligase library and found that RING finger protein 139 (RNF139) regulated the biological behavior of tongue cancer cells. Methods MTT assay was used to analyze the cell viability changes of tongue cancer SCC9 and SCC25 cells caused by RNF139. The invasion ability of SCC9 and SCC25 cells with or without the knockdown of RNF139 was evaluated through transwell assay. The immunoblotting was recruited to determine the expression level of RNF139 in human tongue cancer tissues and para-carcinoma tissues. The effect of RNF139 on tumorigenicity of tongue cancer cells was analyzed by xenograft model on immunodeficient Balb/c nude mice. Results Overexpression of RNF139 inhibits the viability of tongue cancer cells since day 2. The colony formation ability of SCC9 and SCC25 cells was also decreased with the overexpression of RNF139. Knockdown of RNF139 significantly promoted the invasion ability of SCC9 and SCC25 cells. Furthermore, knockdown of RNF139 also induced the activation of AKT signaling pathway. While human tongue cancer tissues had low expression of RNF139. In nude mice, knockdown of RNF139 promoted the tumorigenicity of the SCC25 cells. Conclusions Our data establish a role for RNF139 in regulating the progression of tongue cancer.
Collapse
Affiliation(s)
- Lina Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu road, Wuhan, 430079, China.,Department of Endodontics, College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu road, Wuhan, 430079, China.
| | - Chun Shi
- Department of Endodontics, College of Stomatology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
154
|
Lam HC, Baglini CV, Lope AL, Parkhitko AA, Liu HJ, Alesi N, Malinowska IA, Ebrahimi-Fakhari D, Saffari A, Yu JJ, Pereira A, Khabibullin D, Ogorek B, Nijmeh J, Kavanagh T, Handen A, Chan SY, Asara JM, Oldham WM, Diaz-Meco MT, Moscat J, Sahin M, Priolo C, Henske EP. p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Res 2017; 77:3255-3267. [PMID: 28512249 PMCID: PMC5485875 DOI: 10.1158/0008-5472.can-16-2458] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/20/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
Abstract
p62/sequestosome-1 (SQSTM1) is a multifunctional adaptor protein and autophagic substrate that accumulates in cells with hyperactive mTORC1, such as kidney cells with mutations in the tumor suppressor genes tuberous sclerosis complex (TSC)1 or TSC2. Here we report that p62 is a critical mediator of TSC2-driven tumorigenesis, as Tsc2+/- and Tsc2f/f Ksp-CreERT2+ mice crossed to p62-/- mice were protected from renal tumor development. Metabolic profiling revealed that depletion of p62 in Tsc2-null cells decreased intracellular glutamine, glutamate, and glutathione (GSH). p62 positively regulated the glutamine transporter Slc1a5 and increased glutamine uptake in Tsc2-null cells. We also observed p62-dependent changes in Gcl, Gsr, Nqo1, and Srxn1, which were decreased by p62 attenuation and implicated in GSH production and utilization. p62 attenuation altered mitochondrial morphology, reduced mitochondrial membrane polarization and maximal respiration, and increased mitochondrial reactive oxygen species and mitophagy marker PINK1. These mitochondrial phenotypes were rescued by addition of exogenous GSH and overexpression of Sod2, which suppressed indices of mitochondrial damage and promoted growth of Tsc2-null cells. Finally, p62 depletion sensitized Tsc2-null cells to both oxidative stress and direct inhibition of GSH biosynthesis by buthionine sulfoximine. Our findings show how p62 helps maintain intracellular pools of GSH needed to limit mitochondrial dysfunction in tumor cells with elevated mTORC1, highlighting p62 and redox homeostasis as nodal vulnerabilities for therapeutic targeting in these tumors. Cancer Res; 77(12); 3255-67. ©2017 AACR.
Collapse
Affiliation(s)
- Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christian V Baglini
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alicia Llorente Lope
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicola Alesi
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Izabela A Malinowska
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Afshin Saffari
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jane J Yu
- Pulmonary Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ana Pereira
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Barbara Ogorek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Taylor Kavanagh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Adam Handen
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - William M Oldham
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
155
|
Wang N, Tan HY, Li S, Feng Y. Atg9b Deficiency Suppresses Autophagy and Potentiates Endoplasmic Reticulum Stress-Associated Hepatocyte Apoptosis in Hepatocarcinogenesis. Theranostics 2017; 7:2325-2338. [PMID: 28740555 PMCID: PMC5505064 DOI: 10.7150/thno.18225] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the mechanism underlying autophagy deficiency during hepatic carcinogenesis. For this purpose, we used choline-deficient, amino acid-defined (CDAA) hepatocarcinogenesis model in mice. miRNA microarrays combined with computational target predictions and GO analysis were used to identify molecular processes involved in carcinogenesis. PCR profiler array was employed to detect the dysregulated autophagy-related genes during carcinogenesis. We observed induction of hepatic tumours with increased inflammation, DNA damage, and cell death. These cellular processes were particularly detected upon oncogenic transformation of hepatocytes in which ER stress was excessively induced. Microarray combined with GO analysis showed that transformation of hepatocytes resulted in dysregulated events associated with cytoplasmic vesicle formation, which, in turn, was related to ER stress-induced autophagy. Defects of autophagy were observed in livers harbouring tumours and suffered a loss of expression of autophagy-related protein 9b (Atg9b). Hepatocytes lacking Atg9b were vulnerable to cell death induced by ER stress stimulus mainly caused by accumulation of ubiquitinated proteins. Loss of Atg9b also blocked recruitment of p62-associated ubiquitinated protein for autophagosome-lysosome degradation as Atg9b-driven phagophores may facilitate docking of both LC3 and p62 to initiate autophagy-associated degradation. miR-3091-3p from tumour-derived exosomes, which were internalised by hepatocytes, could suppress Atg9b expression. Observations from this study advance our knowledge about the regulation of autophagy during hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | | | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, PR of China
| |
Collapse
|
156
|
Lee NS, Kim S, Jung YW, Kim H. Eukaryotic DNA damage responses: Homologous recombination factors and ubiquitin modification. Mutat Res 2017; 809:88-98. [PMID: 28552167 DOI: 10.1016/j.mrfmmm.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 12/20/2022]
Abstract
To prevent genomic instability disorders, cells have developed a DNA damage response. The response involves various proteins that sense damaged DNA, transduce damage signals, and effect DNA repair. In addition, ubiquitin modifications modulate the signaling pathway depending on cellular context. Among various types of DNA damage, double-stranded breaks are highly toxic to genomic integrity. Homologous recombination (HR) repair is an essential mechanism that fixes DNA damage because of its high level of accuracy. Although factors in the repair pathway are well established, pinpointing the exact mechanisms of repair and devising therapeutic applications requires more studies. Moreover, essential functions of ubiquitin modification in the DNA damage signaling pathway have emerged. In this review, to explore the eukaryotic DNA damage response, we will mention the functions of main factors in the HR repair pathway and ubiquitin modification.
Collapse
Affiliation(s)
- Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soomi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
157
|
Dumas JF, Brisson L, Chevalier S, Mahéo K, Fromont G, Moussata D, Besson P, Roger S. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Semin Cancer Biol 2017; 43:90-110. [DOI: 10.1016/j.semcancer.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
|
158
|
OV6 + cancer stem cells drive esophageal squamous cell carcinoma progression through ATG7-dependent β-catenin stabilization. Cancer Lett 2017; 391:100-113. [DOI: 10.1016/j.canlet.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
|
159
|
Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, Lu X, Wang Y, Zhou J, Li X, Zhang L, Wang L, Zhao Y, Zhu WG. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy 2017; 13:579-591. [PMID: 28103122 PMCID: PMC5361600 DOI: 10.1080/15548627.2016.1272742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
ATG3 (autophagy-related 3) is an E2-like enzyme essential for autophagy; however, it is unknown whether it has an autophagy-independent function. Here, we report that ATG3 is a relatively stable protein in unstressed cells, but it is degraded in response to DNA-damaging agents such as etoposide or cisplatin. With mass spectrometry and a mutagenesis assay, phosphorylation of tyrosine 203 of ATG3 was identified to be a critical modification for its degradation, which was further confirmed by manipulating ATG3Y203E (phosphorylation mimic) or ATG3Y203F (phosphorylation-incompetent) in Atg3 knockout MEFs. In addition, by using a generated phospho-specific antibody we showed that phosphorylation of Y203 significantly increased upon etoposide treatment. With a specific inhibitor or siRNA, PTK2 (protein tyrosine kinase 2) was confirmed to catalyze the phosphorylation of ATG3 at Y203. Furthermore, a newly identified function of ATG3 was recognized to be associated with the promotion of DNA damage-induced mitotic catastrophe, in which ATG3 interferes with the function of BAG3, a crucial protein in the mitotic process, by binding. Finally, PTK2 inhibition-induced sustained levels of ATG3 were able to sensitize cancer cells to DNA-damaging agents. Our findings strengthen the notion that targeting PTK2 in combination with DNA-damaging agents is a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Ke Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wan Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chaohua Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaopeng Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyi Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- School of Medicine, Shenzhen University, Shenzhen, China
- Peking-Tsinghua University Center for Life Science, Peking University, Beijing, China
| |
Collapse
|
160
|
Tang HM, Talbot CC, Fung MC, Tang HL. Molecular signature of anastasis for reversal of apoptosis. F1000Res 2017; 6:43. [PMID: 28299189 DOI: 10.12688/f1000research.10568.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis in vitro and in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis - the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
161
|
Abstract
Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis
in vitro and
in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis – the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
162
|
Hewitt G, Korolchuk VI. Repair, Reuse, Recycle: The Expanding Role of Autophagy in Genome Maintenance. Trends Cell Biol 2016; 27:340-351. [PMID: 28011061 DOI: 10.1016/j.tcb.2016.11.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
(Macro)Autophagy is a catabolic pathway that delivers excess, aggregated, or damaged proteins and organelles to lysosomes for degradation. Autophagy is activated in response to numerous cellular stressors such as increased levels of reactive oxygen species (ROS) and low levels of cellular nutrients as well as DNA damage. Although autophagy occurs in the cytoplasm, its inhibition leads to accumulation of DNA damage and genomic instability. In the past few years, our understanding of the interplay between autophagy and genomic stability has greatly increased. In this review we summarize these recent advances in understanding the molecular mechanisms linking autophagy to DNA repair.
Collapse
Affiliation(s)
- Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
163
|
Eliopoulos AG, Havaki S, Gorgoulis VG. DNA Damage Response and Autophagy: A Meaningful Partnership. Front Genet 2016; 7:204. [PMID: 27917193 PMCID: PMC5116470 DOI: 10.3389/fgene.2016.00204] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy and the DNA damage response (DDR) are biological processes essential for cellular and organismal homeostasis. Herein, we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, Medical School, University of CreteHeraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology HellasHeraklion, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of AthensAthens, Greece; Faculty Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University of ManchesterManchester, UK; Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
164
|
Zhao H, Zhang M, Zhou F, Cao W, Bi L, Xie Y, Yang Q, Wang S. Cinnamaldehyde ameliorates LPS-induced cardiac dysfunction via TLR4-NOX4 pathway: The regulation of autophagy and ROS production. J Mol Cell Cardiol 2016; 101:11-24. [PMID: 27838370 DOI: 10.1016/j.yjmcc.2016.10.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde (CA), a major bioactive compound extracted from the essential oil of Cortex Cinnamomi, exhibits anti-inflammatory activity on endotoxemia. Accumulating evidence indicates reactive oxygen species (ROS) and autophagy play a vital role in the cardiac dysfunction during endotoxemia. The aim of this study was to unveil the mechanism of CA on ROS production and autophagy during endotoxemia. Male Sprague-Dawley rats were stimulated by LPS (20mg/kg i.v.) with or without treatment of CA. Cardiac function and histopathological staining were preformed 4h after LPS stimulation. The levels of TNF-α, IL-1β and IL-6 were detected by ELISA. The expression of p-JNK, p-ERK, p-p38, TLR4, NOX4, NOX2, ATG5 and LC3 proteins were determined by Western blot. The results showed that CA inhibited cardiac dysfunction, inflammatory infiltration and the levels of TNF-α, IL-1β and IL-6 in LPS stimulated rats by blocking the TLR4, NOX4, MAPK and autophagy signalings. In order to obtain further confirmation of the mechanism of CA on endotoxemia in vitro, a limited time-course study was firstly performed by Western blot. TLR4, NOX4 and LC3 were significantly increased after 4h LPS stimulation. CA reversed the intracellular ROS production and MAPK signaling activation induced by LPS. Electron microscopy, mRFP-GFP-LC3 transfection and western blot results revealed autophagic flux were attenuated after CA treatment. The siRNA and molecular docking results suggest that CA can suppress both TLR4 and NOX4 during endotoxemia. Our data revealed that CA ameliorated LPS-induced cardiac dysfunction by inhibiting ROS production and autophagy through TLR4-NOX4 pathway.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Meng Zhang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Fuxing Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, The First Affiliated Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Linlin Bi
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Yanhua Xie
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Qian Yang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China.
| | - Siwang Wang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China.
| |
Collapse
|
165
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
166
|
Wang Y, Zhu WG, Zhao Y. Autophagy regulates DNA repair by modulating histone ubiquitination. Mol Cell Oncol 2016; 3:e1214772. [PMID: 27857976 DOI: 10.1080/23723556.2016.1214772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome. Here, we report that the autophagy receptor and substrate p62/SQSTM1 inhibits DNA double-strand break -induced histone and chromatin ubiquitination, which has a critical role in attracting key repair factors to the break sites.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Center for Life Sciences, Peking-Tsinghua University, Beijing, China; School of Medicine, Shenzhen University, Shenzhen, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| |
Collapse
|