151
|
The multifaceted effects of YTHDC1-mediated nuclear m 6A recognition. Trends Genet 2021; 38:325-332. [PMID: 34920906 DOI: 10.1016/j.tig.2021.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.
Collapse
|
152
|
Cardozo Gizzi AM. A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization. Front Genet 2021; 12:780822. [PMID: 34868269 PMCID: PMC8640135 DOI: 10.3389/fgene.2021.780822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into "territories," epigenetically-defined large domains of chromatin that interact to form "compartments" with common transcriptional status, and insulator-flanked domains called "topologically associating domains" (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled "chromatin tracing." Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of "spatial genomics." As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.
Collapse
Affiliation(s)
- Andres M Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional Severo Amuchastegui (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), CONICET, Córdoba, Argentina
| |
Collapse
|
153
|
Popova LV, Nagarajan P, Lovejoy CM, Sunkel B, Gardner M, Wang M, Freitas M, Stanton B, Parthun M. Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Res 2021; 49:12136-12151. [PMID: 34788845 PMCID: PMC8643632 DOI: 10.1093/nar/gkab1044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
A central component of the epigenome is the pattern of histone post-translational modifications that play a critical role in the formation of specific chromatin states. Following DNA replication, nascent chromatin is a 1:1 mixture of parental and newly synthesized histones and the transfer of modification patterns from parental histones to new histones is a fundamental step in epigenetic inheritance. Here we report that loss of HAT1, which acetylates lysines 5 and 12 of newly synthesized histone H4 during replication-coupled chromatin assembly, results in the loss of accessibility of large domains of heterochromatin, termed HAT1-dependent Accessibility Domains (HADs). HADs are mega base-scale domains that comprise ∼10% of the mouse genome. HAT1 globally represses H3 K9 me3 levels and HADs correspond to the regions of the genome that display HAT1-dependent increases in H3 K9me3 peak density. HADs display a high degree of overlap with a subset of Lamin-Associated Domains (LADs). HAT1 is required to maintain nuclear structure and integrity. These results indicate that HAT1 and the acetylation of newly synthesized histones may be critical regulators of the epigenetic inheritance of heterochromatin and suggest a new mechanism for the epigenetic regulation of nuclear lamina-heterochromatin interactions.
Collapse
Affiliation(s)
- Liudmila V Popova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Callie M Lovejoy
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin D Sunkel
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Miranda L Gardner
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Meng Wang
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Z Stanton
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
154
|
Li J, Gao J, Wang R. Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. Int J Mol Sci 2021; 22:ijms222212271. [PMID: 34830152 PMCID: PMC8621359 DOI: 10.3390/ijms222212271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Phase-separated condensates participate in various biological activities. Liquid-liquid phase separation (LLPS) can be driven by collective interactions between multivalent and intrinsically disordered proteins. The manner in which chromatin-with various morphologies and activities-is organized in a complex and small nucleus still remains to be fully determined. Recent findings support the claim that phase separation is involved in the regulation of chromatin organization and chromosome behavior. Moreover, phase separation also influences key events during mitosis and meiosis. This review elaborately dissects how phase separation regulates chromatin and chromosome organization and controls mitotic and meiotic chromosome behavior.
Collapse
|
155
|
Sebastian R, Aladjem MI, Oberdoerffer P. Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Front Genet 2021; 12:746380. [PMID: 34745220 PMCID: PMC8566435 DOI: 10.3389/fgene.2021.746380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Almost 25 years ago, the phosphorylation of a chromatin component, histone H2AX, was discovered as an integral part of the DNA damage response in eukaryotes. Much has been learned since then about the control of DNA repair in the context of chromatin. Recent technical and computational advances in imaging, biophysics and deep sequencing have led to unprecedented insight into nuclear organization, highlighting the impact of three-dimensional (3D) chromatin structure and nuclear topology on DNA repair. In this review, we will describe how DNA repair processes have adjusted to and in many cases adopted these organizational features to ensure accurate lesion repair. We focus on new findings that highlight the importance of chromatin context, topologically associated domains, phase separation and DNA break mobility for the establishment of repair-conducive nuclear environments. Finally, we address the consequences of aberrant 3D genome maintenance for genome instability and disease.
Collapse
Affiliation(s)
- Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Philipp Oberdoerffer
- Division of Cancer Biology, National Cancer Institute, NIH, Rockville, MD, United States
| |
Collapse
|
156
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
157
|
Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nat Struct Mol Biol 2021; 28:900-908. [PMID: 34711968 DOI: 10.1038/s41594-021-00671-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022]
Abstract
Mitochondria, the only semiautonomous organelles in mammalian cells, possess a circular, double-stranded genome termed mitochondrial DNA (mtDNA). While nuclear genomic DNA compaction, chromatin compartmentalization and transcription are known to be regulated by phase separation, how the mitochondrial nucleoid, a highly compacted spherical suborganelle, is assembled and functions is unknown. Here we assembled mitochondrial nucleoids in vitro and show that mitochondrial transcription factor A (TFAM) undergoes phase separation with mtDNA to drive nucleoid self-assembly. Moreover, nucleoid droplet formation promotes recruitment of the transcription machinery via a special, co-phase separation that concentrates transcription initiation, elongation and termination factors, and retains substrates to facilitate mtDNA transcription. We propose a model of mitochondrial nucleoid self-assembly driven by phase separation, and a pattern of co-phase separation involved in mitochondrial transcriptional regulation, which orchestrates the roles of TFAM in both mitochondrial nucleoid organization and transcription.
Collapse
|
158
|
Merigliano C, Chiolo I. Multi-scale dynamics of heterochromatin repair. Curr Opin Genet Dev 2021; 71:206-215. [PMID: 34717276 DOI: 10.1016/j.gde.2021.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 10/24/2022]
Abstract
Studies across different organisms show that nuclear architecture and dynamics play central roles in different aspects of homologous recombination (HR) repair. Here we review the most recent discoveries in this field, ranging from directed motions mediating relocalization pathways, to global chromatin mobilization, local DNA looping, and changes in repair focus properties associated with clustering and phase separation. We discuss how these dynamics work in different contexts, including molecular mechanisms and regulatory pathways involved. We specifically highlight how they function in pericentromeric heterochromatin, which presents a unique environment for HR repair given the abundance of repeated DNA sequences prone to aberrant recombination, the 'silent' chromatin state, and the phase separation characterizing this domain.
Collapse
Affiliation(s)
- Chiara Merigliano
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA 90089, USA
| | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA 90089, USA.
| |
Collapse
|
159
|
Ulianov SV, Velichko A, Magnitov MD, Luzhin A, Golov AK, Ovsyannikova N, Kireev II, Gavrikov A, Mishin A, Garaev AK, Tyakht AV, Gavrilov A, Kantidze OL, Razin SV. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Res 2021; 49:10524-10541. [PMID: 33836078 PMCID: PMC8501969 DOI: 10.1093/nar/gkab249] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail D Magnitov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arkadiy K Golov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Natalia Ovsyannikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
| | - Alexey S Gavrikov
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S Mishin
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Azat K Garaev
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Omar L Kantidze
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
160
|
Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction. Nat Commun 2021; 12:5888. [PMID: 34620850 PMCID: PMC8497513 DOI: 10.1038/s41467-021-26147-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Organization of the genome into transcriptionally active euchromatin and silenced heterochromatin is essential for eukaryotic cell function. Phase-separation has been implicated in heterochromatin formation, but it is unclear how phase-separated condensates can contribute to stable repression, particularly for heritable epigenetic changes. Polycomb complex PRC1 is key for heterochromatin formation, but the multitude of Polycomb proteins has hindered our understanding of their collective contribution to chromatin repression. Here, we show that PRC1 forms multicomponent condensates through hetero-oligomerization. They preferentially seed at H3K27me3 marks, and subsequently write H2AK119Ub marks. We show that inducing Polycomb phase-separation can cause chromatin compaction, but polycomb condensates are dispensable for maintenance of the compacted state. Our data and simulations are consistent with a model in which the time integral of Polycomb phase-separation is progressively recorded in repressive histone marks, which subsequently drive compaction. These findings link the equilibrium thermodynamics of phase-separation with the fundamentally non-equilibrium concept of epigenetic memory. Phase separation has been suggested as a mechanism for heterochromatin formation through condensation of heterochromatin-associated factors. Here the authors show Polycomb complex PRC1 forms condensates on chromatin. Using optogenetic tools they nucleate local Polycomb condensates to show that this phase separation leads to subsequent histone modifications and chromatin compaction.
Collapse
|
161
|
Yu C, Lang Y, Hou C, Yang E, Ren X, Li T. Distinctive Network Topology of Phase-Separated Proteins in Human Interactome. J Mol Biol 2021; 434:167292. [PMID: 34624295 DOI: 10.1016/j.jmb.2021.167292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism that mediates the formation of biomolecular condensates. Despite the immense interest in LLPS, phase-separated proteins verified by experiments are still limited, and identification of phase-separated proteins at proteome-scale is a challenging task. Multivalent interaction among macromolecules is the driving force of LLPS, which suggests that phase-separated proteins may harbor distinct biological characteristics in protein-protein interactions (PPIs). In this study, we constructed an integrated human PPI network (HPIN) and mapped phase-separated proteins into it. Analysis of the network parameters revealed differences of network topology between phase-separated proteins and others. The results further suggested the efficiency when applying topological similarities in distinguishing components of MLOs. Furthermore, we found that affinity purification mass spectrometry (AP-MS) detects PPIs more effectively than yeast-two hybrid system (Y2H) in phase separation-driven condensates. Our work provides the first global view of the distinct network topology of phase-separated proteins in human interactome, suggesting incorporation of PPI network for LLPS prediction in further studies.
Collapse
Affiliation(s)
- Chunyu Yu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China. https://twitter.com/@CheneyYu7
| | - Yunzhi Lang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China. https://twitter.com/@JosephKang81
| | - Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ence Yang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianwen Ren
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
162
|
Abstract
Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ,
| | - Barbara J Meyer
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ,
| |
Collapse
|
163
|
Abstract
Mammalian genomes have distinct levels of spatial organization and structure that have been hypothesized to play important roles in transcription regulation. Although much has been learned about these architectural features with ensemble techniques, single-cell studies are showing a new universal trend: Genomes are stochastic and dynamic at every level of organization. Stochastic gene expression, on the other hand, has been studied for years. In this review, we probe whether there is a causative link between the two phenomena. We specifically discuss the functionality of chromatin state, topologically associating domains (TADs), and enhancer biology in light of their stochastic nature and their specific roles in stochastic gene expression. We highlight persistent fundamental questions in this area of research.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
164
|
Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 2021; 22:653-670. [PMID: 34341548 DOI: 10.1038/s41580-021-00387-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Gene regulation requires the dynamic coordination of hundreds of regulatory factors at precise genomic and RNA targets. Although many regulatory factors have specific affinity for their nucleic acid targets, molecular diffusion and affinity models alone cannot explain many of the quantitative features of gene regulation in the nucleus. One emerging explanation for these quantitative properties is that DNA, RNA and proteins organize within precise, 3D compartments in the nucleus to concentrate groups of functionally related molecules. Recently, nucleic acids and proteins involved in many important nuclear processes have been shown to engage in cooperative interactions, which lead to the formation of condensates that partition the nucleus. In this Review, we discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours. We describe key mechanisms of nuclear compartment formation, including emerging roles for non-coding RNAs in facilitating their formation, and discuss the functional role of nuclear compartments in transcription regulation, co-transcriptional and post-transcriptional RNA processing, and higher-order chromatin regulation. More generally, we discuss how compartmentalization may explain important quantitative aspects of gene regulation.
Collapse
Affiliation(s)
- Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drew Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
165
|
Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021; 106:103179. [PMID: 34311273 PMCID: PMC7612016 DOI: 10.1016/j.dnarep.2021.103179] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
166
|
Bano D, Salomoni P, Ehninger D, Nicotera P. The histone code in dementia: Transcriptional and chromatin plasticity fades away. Curr Opin Pharmacol 2021; 60:117-122. [PMID: 34411982 PMCID: PMC8519393 DOI: 10.1016/j.coph.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 01/16/2023]
Abstract
With the aging of the population, Alzheimer's disease and other forms of dementia represent major challenges for health care systems globally. To date, the molecular mechanisms underlying the pathophysiology of dementia remain elusive, with a consequent negative impact in developing efficient disease modifiers. New exciting findings suggest that modulation of the histone code may influence transcriptional networks at the root of neuronal plasticity and cognitive performance. Although most of the current conclusions require further mechanistic evidence, it appears that chromatin perturbations actually correlate with Alzheimer's disease onset and progression. Thus, a better understanding of the epigenetic contribution to normal brain function and dementia pathogenesis may help to identify new epigenetic targets for the inhibition of disease trajectories associated with cognitive decline.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
167
|
Kasinsky HE, Gowen BE, Ausió J. Spermiogenic chromatin condensation patterning in several hexapods may involve phase separation dynamics by spinodal decomposition or microemulsion inversion (nucleation). Tissue Cell 2021; 73:101648. [PMID: 34537592 DOI: 10.1016/j.tice.2021.101648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
We have examined published transmission electron microscopy (TEM). photomicrographs of chromatin condensation patterning in developing sperm nuclei from five species of entognathous hexapods within the Classes Protura, Collembola, Diplura and five species of ancestral wingless insects in the Orders Archaeognatha and Zygentoma as well as in fifteen species of the winged insects. Each species reproduces by internal fertilization. Spatially quantitative analysis indicates that spermiogenic chromatin condensation patterning in several of these species may be due to spinodal decomposition (SD) or to microemulsion inversion (chromatin-in-nucleoplasm → nucleoplasm-in-chromatin), also known as nucleation (Nc). These are two different dynamic mechanisms of liquid-liquid phase separation (LLPS). They might either occur independently or co-exist during the chromatin condensation associated with insect spermiogenesis. For example, the chromatin condensation pattern such as that observed in transverse sections of developing sperm nuclei from the wingless insect Anurida maritima (Collembola) is: granules → fibers → lamellae (SD) → nucleation (Nc) → condensed nuclei. Similar transitions are also observed in other more recently evolved species within the Class Insecta. From the limited but comprehensive sample of entognathus and ectognathus hexapods analyzed here, it appears that LLPS of sperm chromatin during spermiogenesis has occurred quite pervasively within the subphylum Hexapoda, including insects.
Collapse
Affiliation(s)
- Harold E Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brent E Gowen
- Department of Biology. University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
168
|
Shi M, You K, Chen T, Hou C, Liang Z, Liu M, Wang J, Wei T, Qin J, Chen Y, Zhang MQ, Li T. Quantifying the phase separation property of chromatin-associated proteins under physiological conditions using an anti-1,6-hexanediol index. Genome Biol 2021; 22:229. [PMID: 34404448 PMCID: PMC8369651 DOI: 10.1186/s13059-021-02456-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Liquid-liquid phase separation (LLPS) is an important organizing principle for biomolecular condensation and chromosome compartmentalization. However, while many proteins have been reported to undergo LLPS, quantitative and global analysis of chromatin LLPS property remains absent. RESULTS Here, by combining chromatin-associated protein pull-down, quantitative proteomics and 1,6-hexanediol (1,6-HD) treatment, we develop Hi-MS and define an anti-1,6-HD index of chromatin-associated proteins (AICAP) to quantify 1,6-HD sensitivity of chromatin-associated proteins under physiological conditions. Compared with known physicochemical properties involved in phase separation, we find that proteins with lower AICAP are associated with higher content of disordered regions, higher hydrophobic residue preference, higher mobility and higher predicted LLPS potential. We also construct BL-Hi-C libraries following 1,6-HD treatment to study the sensitivity of chromatin conformation to 1,6-HD treatment. We find that the active chromatin and high-order structures, as well as the proteins enriched in corresponding regions, are more sensitive to 1,6-HD treatment. CONCLUSIONS Our work provides a global quantitative measurement of LLPS properties of chromatin-associated proteins and higher-order chromatin structure. Hi-MS and AICAP data provide an experimental tool and quantitative resources valuable for future studies of biomolecular condensates.
Collapse
Affiliation(s)
- Minglei Shi
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Taoyu Chen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, School of Medicine, Tsinghua University, Beijing, 100084, China.
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX, 75080-3021, USA.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
169
|
Abstract
Biomolecular condensates are membrane-less compartments that are formed through an assembly of proteins and nucleic acids in the cell. Dysregulation of biological condensates has been implicated in diseases such as neurodegeneration and cancer. Ribonucleic acid (RNA) is known to affect the assembly of proteins in vitro, if and how RNA is involved in regulating biomolecular condensates in cells is not well investigated. Here we examined two nuclear proteins, FUS and HP1α, in which RNA was found to have an opposite contribution for the assembly of these proteins. Reduction of nuclear RNA, by inhibiting the transcription, triggered assembly of FUS that had been distributed in the nucleoplasm, whereas it dispersed spontaneously formed HP1α assembly. Notably, the cell cycle-dependent phosphorylation-mimicking substitutions in HP1α promoted its assembly formation. These transcription inhibitor experiments are versatile to examine diverse roles of nuclear RNA in regulating biomolecular condensates, in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Saho Matsui
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR)
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR)
| |
Collapse
|
170
|
Yang Y, Yang Y, Chan K, Couture JF. Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB J 2021; 35:e21790. [PMID: 34320252 DOI: 10.1096/fj.202100427r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
CXXC Zinc finger protein 1 (CFP1) is a multitasking protein playing essential roles during various developmental processes. Its ability to interact with several proteins contribute to several epigenetic events. Here, we review CFP1's functions and its impact on DNA methylation and the post-translational modification of histone proteins such as lysine acetylation and methylation. We will also discuss the potential role of CFP1 in carcinogenesis and the impact of the mutations identified in patients suffering from various cancers.
Collapse
Affiliation(s)
- Yidai Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yaqing Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kin Chan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
171
|
Qin W, Ugur E, Mulholland CB, Bultmann S, Solovei I, Modic M, Smets M, Wierer M, Forné I, Imhof A, Cardoso MC, Leonhardt H. Phosphorylation of the HP1β hinge region sequesters KAP1 in heterochromatin and promotes the exit from naïve pluripotency. Nucleic Acids Res 2021; 49:7406-7423. [PMID: 34214177 PMCID: PMC8287961 DOI: 10.1093/nar/gkab548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Heterochromatin binding protein HP1β plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1β−/− embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1β is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1β−/− and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1−/− cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.
Collapse
Affiliation(s)
- Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Enes Ugur
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher B Mulholland
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Sebastian Bultmann
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Irina Solovei
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London NW1 1AT, United Kingdom
| | - Martha Smets
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| |
Collapse
|
172
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
173
|
Wang X, Paulo JA, Li X, Zhou H, Yu J, Gygi SP, Moazed D. A composite DNA element that functions as a maintainer required for epigenetic inheritance of heterochromatin. Mol Cell 2021; 81:3979-3991.e4. [PMID: 34375584 DOI: 10.1016/j.molcel.2021.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xue Li
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
174
|
Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 2021; 6:290. [PMID: 34334791 PMCID: PMC8326283 DOI: 10.1038/s41392-021-00678-1] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that liquid-liquid phase separation (LLPS) represents a vital and ubiquitous phenomenon underlying the formation of membraneless organelles in eukaryotic cells (also known as biomolecular condensates or droplets). Recent studies have revealed evidences that indicate that LLPS plays a vital role in human health and diseases. In this review, we describe our current understanding of LLPS and summarize its physiological functions. We further describe the role of LLPS in the development of human diseases. Additionally, we review the recently developed methods for studying LLPS. Although LLPS research is in its infancy-but is fast-growing-it is clear that LLPS plays an essential role in the development of pathophysiological conditions. This highlights the need for an overview of the recent advances in the field to translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
|
175
|
Feric M, Misteli T. Phase separation in genome organization across evolution. Trends Cell Biol 2021; 31:671-685. [PMID: 33771451 PMCID: PMC8286288 DOI: 10.1016/j.tcb.2021.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Phase separation is emerging as a paradigm to explain the self-assembly and organization of membraneless bodies in the cell. Recent advances show that this principle also extends to nucleoprotein complexes, including DNA-based structures. We discuss here recent observations on the role of phase separation in genome organization across the evolutionary spectrum from bacteria to mammals. These findings suggest that molecular interactions amongst DNA-binding proteins evolved to form a variety of biomolecular condensates with distinct material properties that affect genome organization and function. We suggest that phase separation contributes to genome organization across evolution and that the resulting phase behavior of genomes may underlie regulatory mechanisms and disease.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD, USA.
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
176
|
Brown K, Andrianakos H, Ingersoll S, Ren X. Single-molecule imaging of epigenetic complexes in living cells: insights from studies on Polycomb group proteins. Nucleic Acids Res 2021; 49:6621-6637. [PMID: 34009336 PMCID: PMC8266577 DOI: 10.1093/nar/gkab304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
Chromatin-associated factors must locate, bind to, and assemble on specific chromatin regions to execute chromatin-templated functions. These dynamic processes are essential for understanding how chromatin achieves regulation, but direct quantification in living mammalian cells remains challenging. Over the last few years, live-cell single-molecule tracking (SMT) has emerged as a new way to observe trajectories of individual chromatin-associated factors in living mammalian cells, providing new perspectives on chromatin-templated activities. Here, we discuss the relative merits of live-cell SMT techniques currently in use. We provide new insights into how Polycomb group (PcG) proteins, master regulators of development and cell differentiation, decipher genetic and epigenetic information to achieve binding stability and highlight that Polycomb condensates facilitate target-search efficiency. We provide perspectives on liquid-liquid phase separation in organizing Polycomb targets. We suggest that epigenetic complexes integrate genetic and epigenetic information for target binding and localization and achieve target-search efficiency through nuclear organization.
Collapse
Affiliation(s)
- Kyle Brown
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | - Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| |
Collapse
|
177
|
Zannino L, Casali C, Siciliani S, Biggiogera M. The dynamics of the nuclear environment and their impact on gene function. J Biochem 2021; 169:259-264. [PMID: 32745171 DOI: 10.1093/jb/mvaa091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
In the last decades, it has become increasingly clear how the modulation of spatial organization of chromatin over time and through the cell cycle is closely connected to gene function regulation. Different physicochemical stimuli contribute to the realization of specific transcriptional programs and finally to a specific cellular phenotype. In this review, we aim to describe the current knowledge about the dynamics regulating the movements and the interactions of molecules within the nucleus and their impact on gene functions. In particular, taking into account that these forces exert their effect in a nuclear environment characterized by a high concentration of molecules, we will discuss the role of proteins and structures that regulate these movements and transduce physicochemical signals acting on the cell to the nucleus.
Collapse
Affiliation(s)
- Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
178
|
Abstract
Cholesterol is present within the cell nucleus, where it associates with chromatin, but to date, a direct role for cholesterol in nuclear processes has not been identified. We demonstrate that the transcriptional repressor brain acid soluble protein 1 (BASP1) directly interacts with cholesterol within the cell nucleus through a consensus cholesterol interaction motif. BASP1 recruits cholesterol to the promoter region of target genes, where it is required to mediate chromatin remodeling and transcriptional repression. Our work demonstrates that cholesterol plays a direct role in transcriptional regulation. Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1–cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression.
Collapse
|
179
|
Li W, Jiang H. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. J Mol Biol 2021; 434:167151. [PMID: 34271007 DOI: 10.1016/j.jmb.2021.167151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Our understanding of the spatiotemporal regulation of eukaryotic gene expression has recently been greatly stimulated by the findings that many of the regulators of chromatin, transcription, and RNA processing form biomolecular condensates often assembled through liquid-liquid phase separation. Increasing number of reports suggest that these condensates functionally regulate gene expression, largely by concentrating the relevant biomolecules in the liquid-like micro-compartments. However, it remains poorly understood how the physicochemical properties, especially the material properties, of the condensates regulate gene expression activity. In this review, we discuss current data on various nuclear condensates and their biophysical properties with the underlying molecular interactions, and how they may functionally impact gene expression at the level of chromatin organization and activities, transcription, and RNA processing.
Collapse
Affiliation(s)
- Wei Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
180
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
181
|
Ahn JH, Davis ES, Daugird TA, Zhao S, Quiroga IY, Uryu H, Li J, Storey AJ, Tsai YH, Keeley DP, Mackintosh SG, Edmondson RD, Byrum SD, Cai L, Tackett AJ, Zheng D, Legant WR, Phanstiel DH, Wang GG. Phase separation drives aberrant chromatin looping and cancer development. Nature 2021; 595:591-595. [PMID: 34163069 PMCID: PMC8647409 DOI: 10.1038/s41586-021-03662-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2021] [Indexed: 01/05/2023]
Abstract
The development of cancer is intimately associated with genetic abnormalities that target proteins with intrinsically disordered regions (IDRs). In human haematological malignancies, recurrent chromosomal translocation of nucleoporin (NUP98 or NUP214) generates an aberrant chimera that invariably retains the nucleoporin IDR-tandemly dispersed repeats of phenylalanine and glycine residues1,2. However, how unstructured IDRs contribute to oncogenesis remains unclear. Here we show that IDRs contained within NUP98-HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias1,2, are essential for establishing liquid-liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. Notably, LLPS of NUP98-HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad 'super-enhancer'-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein3,4, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. Deeply sequenced Hi-C revealed that phase-separated NUP98-HOXA9 induces CTCF-independent chromatin loops that are enriched at proto-oncogenes. Together, this report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumourous transformation. As LLPS-competent molecules are frequently implicated in diseases1,2,4-7, this mechanism can potentially be generalized to many malignant and pathological settings.
Collapse
Affiliation(s)
- Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy A Daugird
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ivana Yoseli Quiroga
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Daniel P Keeley
- UNC Neuroscience Center and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC, USA
| | - Douglas H Phanstiel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
182
|
Abstract
The genetic information of human cells is stored in the context of chromatin, which is subjected to DNA methylation and various histone modifications. Such a 'language' of chromatin modification constitutes a fundamental means of gene and (epi)genome regulation, underlying a myriad of cellular and developmental processes. In recent years, mounting evidence has demonstrated that miswriting, misreading or mis-erasing of the modification language embedded in chromatin represents a common, sometimes early and pivotal, event across a wide range of human cancers, contributing to oncogenesis through the induction of epigenetic, transcriptomic and phenotypic alterations. It is increasingly clear that cancer-related metabolic perturbations and oncohistone mutations also directly impact chromatin modification, thereby promoting cancerous transformation. Phase separation-based deregulation of chromatin modulators and chromatin structure is also emerging to be an important underpinning of tumorigenesis. Understanding the various molecular pathways that underscore a misregulated chromatin language in cancer, together with discovery and development of more effective drugs to target these chromatin-related vulnerabilities, will enhance treatment of human malignancies.
Collapse
Affiliation(s)
- Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
183
|
Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules 2021; 11:biom11070967. [PMID: 34209228 PMCID: PMC8301932 DOI: 10.3390/biom11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.
Collapse
|
184
|
Fare CM, Villani A, Drake LE, Shorter J. Higher-order organization of biomolecular condensates. Open Biol 2021; 11:210137. [PMID: 34129784 PMCID: PMC8205532 DOI: 10.1098/rsob.210137] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A guiding principle of biology is that biochemical reactions must be organized in space and time. One way this spatio-temporal organization is achieved is through liquid–liquid phase separation (LLPS), which generates biomolecular condensates. These condensates are dynamic and reactive, and often contain a complex mixture of proteins and nucleic acids. In this review, we discuss how underlying physical and chemical processes generate internal condensate architectures. We then outline the diverse condensate architectures that are observed in biological systems. Finally, we discuss how specific condensate organization is critical for specific biological functions.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Biochemistry and Biophysics, and.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - James Shorter
- Department of Biochemistry and Biophysics, and.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
185
|
Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G, Han X, Zhang K, Tao Y, Percharde M, Wang L, Peng Q, Yan P, Zhang H, Bi X, Shao W, Hong Y, Wu Z, Ma R, Wang P, Li W, Zhang J, Chang Z, Hou Y, Zhu B, Ramalho-Santos M, Li P, Xie W, Na J, Sun Y, Shen X. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res 2021; 31:613-630. [PMID: 33514913 PMCID: PMC8169921 DOI: 10.1038/s41422-020-00466-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Organization of the genome into euchromatin and heterochromatin appears to be evolutionarily conserved and relatively stable during lineage differentiation. In an effort to unravel the basic principle underlying genome folding, here we focus on the genome itself and report a fundamental role for L1 (LINE1 or LINE-1) and B1/Alu retrotransposons, the most abundant subclasses of repetitive sequences, in chromatin compartmentalization. We find that homotypic clustering of L1 and B1/Alu demarcates the genome into grossly exclusive domains, and characterizes and predicts Hi-C compartments. Spatial segregation of L1-rich sequences in the nuclear and nucleolar peripheries and B1/Alu-rich sequences in the nuclear interior is conserved in mouse and human cells and occurs dynamically during the cell cycle. In addition, de novo establishment of L1 and B1 nuclear segregation is coincident with the formation of higher-order chromatin structures during early embryogenesis and appears to be critically regulated by L1 and B1 transcripts. Importantly, depletion of L1 transcripts in embryonic stem cells drastically weakens homotypic repeat contacts and compartmental strength, and disrupts the nuclear segregation of L1- or B1-rich chromosomal sequences at genome-wide and individual sites. Mechanistically, nuclear co-localization and liquid droplet formation of L1 repeat DNA and RNA with heterochromatin protein HP1α suggest a phase-separation mechanism by which L1 promotes heterochromatin compartmentalization. Taken together, we propose a genetically encoded model in which L1 and B1/Alu repeats blueprint chromatin macrostructure. Our model explains the robustness of genome folding into a common conserved core, on which dynamic gene regulation is overlaid across cells.
Collapse
Affiliation(s)
- J Yuyang Lu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, China
| | - Tong Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yafei Yin
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ge Zhan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Han
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibing Tao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London, W120NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W120NN, UK
| | - Liang Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qi Peng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pixi Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hui Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianju Bi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wen Shao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yantao Hong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyang Wu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runze Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peizhe Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zai Chang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yingping Hou
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Pilong Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xie
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Na
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China.
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
186
|
Nichols MH, Corces VG. Principles of 3D compartmentalization of the human genome. Cell Rep 2021; 35:109330. [PMID: 34192544 PMCID: PMC8265014 DOI: 10.1016/j.celrep.2021.109330] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin is organized in the nucleus via CTCF loops and compartmental domains. Here, we compare different cell types to identify distinct paradigms of compartmental domain formation in human tissues. We identify and quantify compartmental forces correlated with histone modifications characteristic of transcriptional activity and previously underappreciated roles for distinct compartmental domains correlated with the presence of H3K27me3 and H3K9me3, respectively. We present a computer simulation model capable of predicting compartmental organization based on the biochemical characteristics of independent chromatin features. Using this model, we show that the underlying forces responsible for compartmental domain formation in human cells are conserved and that the diverse compartmentalization patterns seen across cell types are due to differences in chromatin features. We extend these findings to Drosophila to suggest that the same principles are at work beyond humans. These results offer mechanistic insights into the fundamental forces driving the 3D organization of the genome. Using high-resolution Hi-C data and computer simulations, Nichols and Corces show that compartments arise as a consequence of interactions among proteins that correlate with the presence of H3K27ac, H3K27me3, and H3K9me3, suggesting that human cells contain at least three distinct compartments. The same principles apply to other organisms.
Collapse
Affiliation(s)
- Michael H Nichols
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
187
|
Abstract
In eukaryotes, the genome is hierarchically packed inside the nucleus, which facilitates physical contact between cis-regulatory elements (CREs), such as enhancers and promoters. Accumulating evidence highlights the critical role of higher-order chromatin structure in precise regulation of spatiotemporal gene expression under diverse biological contexts including lineage commitment and cell activation by external stimulus. Genomics and imaging-based technologies, such as Hi-C and DNA fluorescence in situ hybridization (FISH), have revealed the key principles of genome folding, while newly developed tools focus on improvement in resolution, throughput and modality at single-cell and population levels, and challenge the knowledge obtained through conventional approaches. In this review, we discuss recent advances in our understanding of principles of higher-order chromosome conformation and technologies to investigate 4D chromatin interactions.
Collapse
Affiliation(s)
- Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Yonsei University, Seoul 03722, Korea
| |
Collapse
|
188
|
Ulianov SV, Razin SV. The two waves in single-cell 3D genomics. Semin Cell Dev Biol 2021; 121:143-152. [PMID: 34030950 DOI: 10.1016/j.semcdb.2021.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
For decades, biochemical methods for the analysis of genome structure and function provided cell-population-averaged data that allowed general principles and tendencies to be disclosed. Microscopy-based studies, which immanently involve single-cell analysis, did not provide sufficient spatial resolution to investigate the particularly small details of 3D genome folding. Nevertheless, these studies demonstrated that mutual positions of chromosome territories within cell nuclei and individual genomic loci within chromosomal territories can vary significantly in individual cells. The development of new technologies in biochemistry and the advent of super-resolution microscopy in the last decade have made possible the full-scale study of 3D genome organization in individual cells. Maps of the 3D genome build based on C-data and super-resolution microscopy are highly consistent and, therefore, biologically relevant. The internal structures of individual chromosomes, loci, and topologically associating domains (TADs) are resolved as well as cell-cycle dynamics. 3D modeling allows one to investigate the physical mechanisms underlying genome folding. Finally, joint profiling of genome topology and epigenetic features will allow 3D genomics to handle complex cell-to-cell heterogeneity. In this review, we summarize the present state of studies into 3D genome organization in individual cells, analyze the technical problems of single-cell studies, and outline perspectives of 3D genomics.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
189
|
Zhang W, Liu W, Jia L, Chen D, Chang I, Lake M, Bentolila LA, Wang CY. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol Cell 2021; 81:2148-2165.e9. [PMID: 33743195 PMCID: PMC8141018 DOI: 10.1016/j.molcel.2021.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.
Collapse
Affiliation(s)
- Wuchang Zhang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Liu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lingfei Jia
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demeng Chen
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Insoon Chang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Lake
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurent A Bentolila
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
190
|
Ma X, Chen T, Peng Z, Wang Z, Liu J, Yang T, Wu L, Liu G, Zhou M, Tong M, Guan Y, Zhang X, Lin Y, Tang X, Li L, Tang Z, Pan T, Zhang H. Histone chaperone CAF-1 promotes HIV-1 latency by leading the formation of phase-separated suppressive nuclear bodies. EMBO J 2021; 40:e106632. [PMID: 33739466 PMCID: PMC8126954 DOI: 10.15252/embj.2020106632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Chen
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhilin Peng
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwen Wang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jun Liu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liyang Wu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Guangyan Liu
- College of Basic Medical SciencesShenyang Medical CollegeShenyangLiaoningChina
| | - Mo Zhou
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Muye Tong
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuanjun Guan
- Core Laboratory Platform for Medical ScienceZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xu Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingtong Lin
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoping Tang
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Linghua Li
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Zhonghui Tang
- Department of BioinformaticsZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ting Pan
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
191
|
Regulation of mammalian 3D genome organization and histone H3K9 dimethylation by H3K9 methyltransferases. Commun Biol 2021; 4:571. [PMID: 33986449 PMCID: PMC8119675 DOI: 10.1038/s42003-021-02089-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/08/2021] [Indexed: 01/15/2023] Open
Abstract
Histone H3 lysine 9 dimethylation (H3K9me2) is a highly conserved silencing epigenetic mark. Chromatin marked with H3K9me2 forms large domains in mammalian cells and overlaps well with lamina-associated domains and the B compartment defined by Hi-C. However, the role of H3K9me2 in 3-dimensional (3D) genome organization remains unclear. Here, we investigated genome-wide H3K9me2 distribution, transcriptome, and 3D genome organization in mouse embryonic stem cells following the inhibition or depletion of H3K9 methyltransferases (MTases): G9a, GLP, SETDB1, SUV39H1, and SUV39H2. We show that H3K9me2 is regulated by all five MTases; however, H3K9me2 and transcription in the A and B compartments are regulated by different MTases. H3K9me2 in the A compartments is primarily regulated by G9a/GLP and SETDB1, while H3K9me2 in the B compartments is regulated by all five MTases. Furthermore, decreased H3K9me2 correlates with changes to more active compartmental state that accompanied transcriptional activation. Thus, H3K9me2 contributes to inactive compartment setting.
Collapse
|
192
|
Latham AP, Zhang B. Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation. J Chem Theory Comput 2021; 17:3134-3144. [PMID: 33826337 PMCID: PMC8119372 DOI: 10.1021/acs.jctc.0c01220] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many proteins have been shown to function via liquid-liquid phase separation. Computational modeling could offer much needed structural details of protein condensates and reveal the set of molecular interactions that dictate their stability. However, the presence of both ordered and disordered domains in these proteins places a high demand on the model accuracy. Here, we present an algorithm to derive a coarse-grained force field, MOFF, which can model both ordered and disordered proteins with consistent accuracy. It combines maximum entropy biasing, least-squares fitting, and basic principles of energy landscape theory to ensure that MOFF recreates experimental radii of gyration while predicting the folded structures for globular proteins with lower energy. The theta temperature determined from MOFF separates ordered and disordered proteins at 300 K and exhibits a strikingly linear relationship with amino acid sequence composition. We further applied MOFF to study the phase behavior of HP1, an essential protein for post-translational modification and spatial organization of chromatin. The force field successfully resolved the structural difference of two HP1 homologues despite their high sequence similarity. We carried out large-scale simulations with hundreds of proteins to determine the critical temperature of phase separation and uncover multivalent interactions that stabilize higher-order assemblies. In all, our work makes significant methodological strides to connect theories of ordered and disordered proteins and provides a powerful tool for studying liquid-liquid phase separation with near-atomistic details.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
193
|
Guo Q, Shi X, Wang X. RNA and liquid-liquid phase separation. Noncoding RNA Res 2021; 6:92-99. [PMID: 33997539 PMCID: PMC8111091 DOI: 10.1016/j.ncrna.2021.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023] Open
Abstract
Liquid-Liquid Phase Separation (LLPS) is a biological phenomenon that refers to the components of similar properties form droplets condensate in cells. These droplets play an important role in maintaining the stability of order in cells. In the studies of phase separation, weak multivalent interactions between proteins have always been the focus of attentions. With the deepening research of phase separation, more and more evidences show that RNA, especially long noncoding RNA (lncRNA), also plays an important regulatory role in the phase separation. We summarized recent researches between phase separation and RNA, and focused on the function of non-coding RNA (ncRNA) in the process of phase separation. In fact, phase separation and RNA have a two-way regulation relationship. Noncoding RNA usually recruits proteins as molecular scaffolds to drive phase separation. On the other hand, phase separation is also involved in RNA transcription, transport, metabolism and other processes.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangmin Shi
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangting Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
194
|
Redding S. Dynamic asymmetry and why chromatin defies simple physical definitions. Curr Opin Cell Biol 2021; 70:116-122. [PMID: 33812325 DOI: 10.1016/j.ceb.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
Recent experiments have demonstrated a nucleus where chromatin is molded into stable, interwoven loops. Yet, many of the proteins, which shape chromatin structure, bind only transiently. In those brief encounters, these dynamic proteins temporarily crosslink chromatin loops. While, on the average, individual crosslinks do not persist, in the aggregate, they are sufficient to create and maintain stable chromatin domains. Owing to the asymmetry in size and speed of molecules involved, this type of organization imparts unique biophysical properties-the slow (chromatin) component can exhibit gel-like behaviors, whereas the fast (protein) component allows domains to respond with liquid-like characteristics.
Collapse
Affiliation(s)
- Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
195
|
Yang J, Cao Y, Ma L. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. Int J Mol Sci 2021; 22:ijms22073300. [PMID: 33804866 PMCID: PMC8037041 DOI: 10.3390/ijms22073300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.
Collapse
|
196
|
Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother 2021; 138:111520. [PMID: 33765580 DOI: 10.1016/j.biopha.2021.111520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
In the physical sciences, solid, liquid, and gas are the most familiar phase states, whose essence is their existence reflecting the different spatial distribution of molecular components. The biological molecules in the living cell also have differences in spatial distribution. The molecules organized in the form of membrane-bound organelles are well recognized. However, the biomolecules organized in membraneless compartments called biomolecular condensates remain elusive. The liquid-liquid phase separation (LLPS), as a new emerging scientific breakthrough, describes the biomolecules assembled in special distribution and appeared as membraneless condensates in the form of a new "phase" compared with the surrounding liquid milieu. LLPS provides an important theoretical basis for explaining the composition of biological molecules and related biological reactions. Mounting evidence has emerged recently that phase-separated condensates participate in various biological activities. This article reviews the occurrence of LLPS and underlying regulatory mechanisms for understanding how multivalent molecules drive phase transitions to form the biomolecular condensates. And, it also summarizes recent major progress in elucidating the roles of LLPS in chromatin organization and provides clues for the development of new innovative therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yao Zhang
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Chen
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lijuan Ma
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Haijie Yu
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
197
|
Pease NA, Nguyen PHB, Woodworth MA, Ng KKH, Irwin B, Vaughan JC, Kueh HY. Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Rep 2021; 34:108888. [PMID: 33761349 PMCID: PMC8024876 DOI: 10.1016/j.celrep.2021.108888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
During development, progenitors often differentiate many cell generations after receiving signals. These delays must be robust yet tunable for precise population size control. Polycomb repressive mechanisms, involving histone H3 lysine-27 trimethylation (H3K27me3), restrain the expression of lineage-specifying genes in progenitors and may delay their activation and ensuing differentiation. Here, we elucidate an epigenetic switch controlling the T cell commitment gene Bcl11b that holds its locus in a heritable inactive state for multiple cell generations before activation. Integrating experiments and modeling, we identify a mechanism where H3K27me3 levels at Bcl11b, regulated by methyltransferase and demethylase activities, set the time delay at which the locus switches from a compacted, silent state to an extended, active state. This activation delay robustly spans many cell generations, is tunable by chromatin modifiers and transcription factors, and is independent of cell division. With their regulatory flexibility, such timed epigenetic switches may broadly control timing in development.
Collapse
Affiliation(s)
- Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Phuc H B Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Marcus A Woodworth
- Biological Physics, Structure and Design Program, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Blythe Irwin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
198
|
Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. Int J Mol Sci 2021; 22:ijms22063017. [PMID: 33809541 PMCID: PMC8002189 DOI: 10.3390/ijms22063017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.
Collapse
Affiliation(s)
- Nazanin Farahi
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shoshana J. Wodak
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (P.T.); (R.P.)
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (P.T.); (R.P.)
| |
Collapse
|
199
|
Kamimura YR, Kanai M. Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yugo R. Kamimura
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
200
|
Keenen MM, Brown D, Brennan LD, Renger R, Khoo H, Carlson CR, Huang B, Grill SW, Narlikar GJ, Redding S. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 2021; 10:e64563. [PMID: 33661100 PMCID: PMC7932698 DOI: 10.7554/elife.64563] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.
Collapse
Affiliation(s)
- Madeline M Keenen
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Lucy D Brennan
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Roman Renger
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Christopher R Carlson
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|