151
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
152
|
Mencacci NE. The Endless Expansion of the Phenotypic Spectrum of ATP1A3 Mutations: A True Diagnostic Challenge. Mov Disord Clin Pract 2016; 3:395-397. [PMID: 30363572 PMCID: PMC6178772 DOI: 10.1002/mdc3.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/11/2022] Open
Affiliation(s)
- Niccolò E. Mencacci
- Department of Molecular NeuroscienceUniversity College London Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
153
|
Friedrich T, Tavraz NN, Junghans C. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease. Front Physiol 2016; 7:239. [PMID: 27445835 PMCID: PMC4914835 DOI: 10.3389/fphys.2016.00239] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na(+),K(+)-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na(+),K(+)-ATPase maintains the physiological gradients for Na(+) and K(+) ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca(2+) signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na(+),K(+)-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes. Finally, perspectives for future research on the implications of Na(+),K(+)-ATPase mutations in human pathologies are presented.
Collapse
Affiliation(s)
- Thomas Friedrich
- Department of Physical Chemistry/Bioenergetics, Institute of Chemistry, Technical University of BerlinBerlin, Germany
| | | | | |
Collapse
|
154
|
Holm TH, Lykke-Hartmann K. Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:209. [PMID: 27378932 PMCID: PMC4906016 DOI: 10.3389/fphys.2016.00209] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
The transmembrane Na(+)-/K(+) ATPase is located at the plasma membrane of all mammalian cells. The Na(+)-/K(+) ATPase utilizes energy from ATP hydrolysis to extrude three Na(+) cations and import two K(+) cations into the cell. The minimum constellation for an active Na(+)-/K(+) ATPase is one alpha (α) and one beta (β) subunit. Mammals express four α isoforms (α1-4), encoded by the ATP1A1-4 genes, respectively. The α1 isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas α2 primarily is expressed in astrocytes and α3 in neurons. Na(+) and K(+) are the principal ions involved in action potential propagation during neuronal depolarization. The α1 and α3 Na(+)-/K(+) ATPases are therefore prime candidates for restoring neuronal membrane potential after depolarization and for maintaining neuronal excitability. The α3 isoform has approximately four-fold lower Na(+) affinity compared to α1 and is specifically required for rapid restoration of large transient increases in [Na(+)]i. Conditions associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal activity. The α3 isoform been suggested to support re-uptake of neurotransmitters. These processes are required for normal brain activity, and in fact autosomal dominant de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset of neurological symptoms, but the predominant neurological manifestations differ with particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC, ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated to study the in vivo consequences of Atp1a3 modulation. The different mice show varying degrees of hyperactivity, gait problems, and learning disability as well as stress-induced seizures. With the advent of several Atp1a3-gene or chemically modified animal models that closely phenocopy many aspects of the human disorders, we will be able to reach a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.
Collapse
Affiliation(s)
- Thomas H. Holm
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
155
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
156
|
Sampson JB, Michaeli TH, Wright BA, Goldman JE, Vonsattel JP, Fahn S. Basal Ganglia Gliosis in a Case of Rapid-Onset Dystonia-Parkinsonism (DYT12) with a Novel Mutation in ATPase 1A3 ( ATP1A3). Mov Disord Clin Pract 2016; 3:618-620. [PMID: 30838256 DOI: 10.1002/mdc3.12354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jacinda B Sampson
- Department of Neurology Stanford University Medical Center Stanford California USA
| | - Tamar H Michaeli
- Department of Genetics and Development Columbia University Medical Center New York New York USA
| | - Brenton A Wright
- Department of Neurology Washington University Medical Center St. Louis USA
| | - James E Goldman
- Department of Pathology Columbia University Medical Center New York New York USA
| | - Jean-Paul Vonsattel
- Department of Neurology Columbia University Medical Center New York New York USA
| | - Stanley Fahn
- Neurological Institute Columbia University Medical Center New York New York USA
| |
Collapse
|
157
|
Bhagat SL, Qiu S, Caffall ZF, Wan Y, Pan Y, Rodriguiz RM, Wetsel WC, Badea A, Hochgeschwender U, Calakos N. Mouse model of rare TOR1A variant found in sporadic focal dystonia impairs domains affected in DYT1 dystonia patients and animal models. Neurobiol Dis 2016; 93:137-45. [PMID: 27168150 DOI: 10.1016/j.nbd.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
Abstract
Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.
Collapse
Affiliation(s)
- Srishti L Bhagat
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sunny Qiu
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yehong Wan
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yuanji Pan
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - William C Wetsel
- Duke Institute of Brain Sciences, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Alexandra Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ute Hochgeschwender
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Duke Institute of Brain Sciences, United States.
| |
Collapse
|
158
|
Abstract
All animals are characterized by steep gradients of Na(+) and K(+) across the plasma membrane, and in spite of their highly similar chemical properties, the ions can be distinguished by numerous channels and transporters. The gradients are generated by the Na(+),K(+)-ATPase, or sodium pump, which pumps out Na(+) and takes up K(+) at the expense of the chemical energy from ATP. Because the membrane is more permeable to K(+) than to Na(+), the uneven ion distribution causes a transmembrane voltage difference, and this membrane potential forms the basis for the action potential and for much of the neuronal signaling in general. The potential energy stored in the concentration gradients is also used to drive a large number of the secondary transporters responsible for transmembrane carriage of solutes ranging from sugars, amino acids, and neurotransmitters to inorganic ions such as chloride, inorganic phosphate, and bicarbonate. Furthermore, Na(+) and K(+) themselves are important enzymatic cofactors that typically lower the energy barrier of substrate binding.In this chapter, we describe the roles of Na(+) and K(+) in the animal cell with emphasis on the creation and usage of the steep gradients across the membrane. More than 50 years of Na(+),K(+)-ATPase research has revealed many details of the molecular machinery and offered insights into how the pump is regulated by post-translational modifications and specific drugs.
Collapse
Affiliation(s)
- Michael Jakob Voldsgaard Clausen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, University of Aarhus, Science Park, Gustav Wieds Vej 10c, Aarhus C, Denmark,
| | | |
Collapse
|
159
|
Larsen BR, Stoica A, MacAulay N. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms. Front Physiol 2016; 7:141. [PMID: 27148079 PMCID: PMC4841311 DOI: 10.3389/fphys.2016.00141] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
160
|
Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, Mercimek-Mahmutoglu S, Ebrahimi-Fakhari D, Warner TT, Durr A, Assmann B, Lohmann K, Kostic V, Klein C. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31:436-57. [PMID: 27079681 DOI: 10.1002/mds.26527] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.
Collapse
Affiliation(s)
- Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Anthony Lang
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital and Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Darius Ebrahimi-Fakhari
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurology & F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
| | - Alexandra Durr
- Sorbonne Université, UPMC, Inserm and Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | - Birgit Assmann
- Division of Pediatric Neurology, Department of Pediatrics I, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir Kostic
- Institute of Neurology, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
161
|
Sweadner KJ, Toro C, Whitlow CT, Snively BM, Cook JF, Ozelius LJ, Markello TC, Brashear A. ATP1A3 Mutation in Adult Rapid-Onset Ataxia. PLoS One 2016; 11:e0151429. [PMID: 26990090 PMCID: PMC4798776 DOI: 10.1371/journal.pone.0151429] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/28/2016] [Indexed: 11/18/2022] Open
Abstract
A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP) with a similar age and speed of onset, as well as severe diseases of infancy. The patient's ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4), a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1) deletes a motif with multiple copies and is unlikely to be causative.
Collapse
Affiliation(s)
- Kathleen J. Sweadner
- Departments of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, and Office of the Clinical Director, NHGRI, Bethesda, Maryland, United States of America
| | - Christopher T. Whitlow
- Departments of Radiology and Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Beverly M. Snively
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jared F. Cook
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Laurie J. Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston Massachusetts, United States of America
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, and Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, Bethesda, Maryland, United States of America
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
162
|
Ganos C, Crowe B, Stamelou M, Kresojević N, Lukić MJ, Bras J, Guerreiro R, Taiwo F, Balint B, Batla A, Schneider SA, Erro R, Svetel M, Kostić V, Kurian MA, Bhatia KP. The clinical syndrome of dystonia with anarthria/aphonia. Parkinsonism Relat Disord 2016; 24:20-7. [DOI: 10.1016/j.parkreldis.2016.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/10/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
163
|
Ruegsegger C, Maharjan N, Goswami A, Filézac de L'Etang A, Weis J, Troost D, Heller M, Gut H, Saxena S. Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS. Acta Neuropathol 2016; 131:427-51. [PMID: 26619836 DOI: 10.1007/s00401-015-1510-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/03/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na(+)/K(+)ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na(+)/K(+)ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na(+)/K(+)ATPase-α3 onto a 10 amino acid stretch that is unique to Na(+)/K(+)ATPase-α3 but not found in the closely related Na(+)/K(+)ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na(+)/K(+)ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na(+)/K(+)ATPase-α3 restored Na(+)/K(+)ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na(+)/K(+)ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.
Collapse
Affiliation(s)
- Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Niran Maharjan
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anand Goswami
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | - Audrey Filézac de L'Etang
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Neuroscience, Genentech, Inc., South San Francisco, California, USA
| | - Joachim Weis
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | - Dirk Troost
- Division of Neuropathology, Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Manfred Heller
- Department of Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
164
|
Rose CR, Verkhratsky A. Principles of sodium homeostasis and sodium signalling in astroglia. Glia 2016; 64:1611-27. [DOI: 10.1002/glia.22964] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences; the University of Manchester; Manchester United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
- University of Nizhny Novgorod; Nizhny Novgorod Russia
| |
Collapse
|
165
|
Olgiati S, Quadri M, Bonifati V. Genetics of movement disorders in the next-generation sequencing era. Mov Disord 2016; 31:458-70. [DOI: 10.1002/mds.26521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Simone Olgiati
- Department of Clinical Genetics; Erasmus MC; Rotterdam The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics; Erasmus MC; Rotterdam The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics; Erasmus MC; Rotterdam The Netherlands
| |
Collapse
|
166
|
Gussow AB, Petrovski S, Wang Q, Allen AS, Goldstein DB. The intolerance to functional genetic variation of protein domains predicts the localization of pathogenic mutations within genes. Genome Biol 2016; 17:9. [PMID: 26781712 PMCID: PMC4717634 DOI: 10.1186/s13059-016-0869-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ranking human genes based on their tolerance to functional genetic variation can greatly facilitate patient genome interpretation. It is well established, however, that different parts of proteins can have different functions, suggesting that it will ultimately be more informative to focus attention on functionally distinct portions of genes. Here we evaluate the intolerance of genic sub-regions using two biological sub-region classifications. We show that the intolerance scores of these sub-regions significantly correlate with reported pathogenic mutations. This observation extends the utility of intolerance scores to indicating where pathogenic mutations are mostly likely to fall within genes.
Collapse
Affiliation(s)
- Ayal B Gussow
- Institute for Genomic Medicine, Columbia University, New York, NY, USA. .,Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University, New York, NY, USA. .,Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, VIC, Australia.
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University, New York, NY, USA.
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
167
|
Abstract
High performance liquid chromatography (HPLC) is a powerful tool to measure neurotransmitter levels in specific tissue samples and dialysates from patients and animals. In this chapter, we list the current protocols used to measure neurotransmitters in the form of biogenic amines from murine brain samples.
Collapse
Affiliation(s)
- Thomas Hellesøe Holm
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark
| | - Toke Jost Isaksen
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark. .,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark. .,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
168
|
Pereira P, Guerreiro A, Fonseca M, Halpern C, Pinto-Basto J, Monteiro JP. A Distinct Phenotype in a Novel ATP1A3 Mutation: Connecting the Two Ends of a Spectrum. Mov Disord Clin Pract 2015; 3:398-401. [PMID: 30713930 DOI: 10.1002/mdc3.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/18/2015] [Accepted: 08/30/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pedro Pereira
- Neurology Department Hospital Garcia de Orta Almada Portugal
| | | | - Maria Fonseca
- Center for Child Development Torrado da Silva Hospital Garcia de Orta Almada Portugal
| | - Cristina Halpern
- Center for Child Development Torrado da Silva Hospital Garcia de Orta Almada Portugal
| | - Jorge Pinto-Basto
- Clinical Genetics Department Centro de Genética Clínica Porto Portugal
| | - José P Monteiro
- Center for Child Development Torrado da Silva Hospital Garcia de Orta Almada Portugal
| |
Collapse
|
169
|
Heimer G, Sadaka Y, Israelian L, Feiglin A, Ruggieri A, Marshall CR, Scherer SW, Ganelin-Cohen E, Marek-Yagel D, Tzadok M, Nissenkorn A, Anikster Y, Minassian BA, Zeev BB. CAOS-Episodic Cerebellar Ataxia, Areflexia, Optic Atrophy, and Sensorineural Hearing Loss: A Third Allelic Disorder of the ATP1A3 Gene. J Child Neurol 2015; 30:1749-56. [PMID: 25895915 DOI: 10.1177/0883073815579708] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
We describe the molecular basis of a distinctive syndrome characterized by infantile stress-induced episodic weakness, ataxia, and sensorineural hearing loss, with permanent areflexia and optic nerve pallor. Whole exome sequencing identified a deleterious heterozygous c.2452 G>A, p.(E818K) variant in the ATP1A3 gene and structural analysis predicted its protein-destabilizing effect. This variant has not been reported in context with rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood, the 2 main diseases associated with ATP1A3. The clinical presentation in the family described here differs categorically from these diseases in age of onset, clinical course, cerebellar over extrapyramidal movement disorder predominance, and peripheral nervous system involvement. While this paper was in review, a highly resembling phenotype was reported in additional patients carrying the same c.2452 G>A variant. Our findings substantiate this variant as the cause of a unique inherited autosomal dominant neurologic syndrome that constitutes a third allelic disease of the ATP1A3 gene.
Collapse
Affiliation(s)
- Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel The Pinchas Borenstein Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yair Sadaka
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lori Israelian
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada
| | - Ariel Feiglin
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alessandra Ruggieri
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Esther Ganelin-Cohen
- Pediatric Neurology Unit, Edmond and Lily Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Children's Hospital, the Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Michal Tzadok
- Pediatric Neurology Unit, Edmond and Lily Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Andreea Nissenkorn
- Pediatric Neurology Unit, Edmond and Lily Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Children's Hospital, the Chaim Sheba Medical Center, Ramat Gan, Israel The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
170
|
Panagiotakaki E, De Grandis E, Stagnaro M, Heinzen EL, Fons C, Sisodiya S, de Vries B, Goubau C, Weckhuysen S, Kemlink D, Scheffer I, Lesca G, Rabilloud M, Klich A, Ramirez-Camacho A, Ulate-Campos A, Campistol J, Giannotta M, Moutard ML, Doummar D, Hubsch-Bonneaud C, Jaffer F, Cross H, Gurrieri F, Tiziano D, Nevsimalova S, Nicole S, Neville B, van den Maagdenberg AMJM, Mikati M, Goldstein DB, Vavassori R, Arzimanoglou A. Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood-a study of 155 patients. Orphanet J Rare Dis 2015; 10:123. [PMID: 26410222 PMCID: PMC4583741 DOI: 10.1186/s13023-015-0335-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype. METHODS Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient. RESULTS In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included: p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis, compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient of severity between the three major mutations with differences in intellectual (p = 0.029) and motor (p = 0.039) disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p < 0.001). With regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No statistically significant clinical correlations were found between patients with and without ATP1A3 mutations. CONCLUSIONS Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with the most frequent mutations and the clinical picture of those with less common mutations confirms the results from previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC. They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials.
Collapse
Affiliation(s)
- Eleni Panagiotakaki
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.
| | - Elisa De Grandis
- Department of Child Neuropsychiatry, G. Gaslini Hospital, University of Genoa, Genoa, Italy
| | - Michela Stagnaro
- Department of Child Neuropsychiatry, G. Gaslini Hospital, University of Genoa, Genoa, Italy
| | - Erin L Heinzen
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christophe Goubau
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Weckhuysen
- Department of Molecular Genetics, Neurogenetics Group, VIB, Antwerp, Belgium
| | - David Kemlink
- Department of Neurology, Charles University, First Faculty of Medicine and Teaching Hospital, Prague, Czech Republic
| | - Ingrid Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Gaëtan Lesca
- Department of Genetics, University Hospitals of Lyon (HCL) and Claude Bernard Lyon I University, Lyon, France.,Lyon Neuroscience Research Center (CRNL), CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Muriel Rabilloud
- Biostatistics Department, University Hospitals of Lyon and UMR 5558, Lyon, France
| | - Amna Klich
- Biostatistics Department, University Hospitals of Lyon and UMR 5558, Lyon, France
| | - Alia Ramirez-Camacho
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.,Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Jaume Campistol
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Marie-Laure Moutard
- Department of Child Neurology, Armand Trousseau Hospital, APHP, Paris, France
| | - Diane Doummar
- Department of Child Neurology, Armand Trousseau Hospital, APHP, Paris, France
| | | | - Fatima Jaffer
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Helen Cross
- Institute of Child Health, University College London, London, UK
| | - Fiorella Gurrieri
- Institute of Medical Genetics, University Cattolica del Sacro Cuore, Policlinics A. Gemelli, Rome, Italy
| | - Danilo Tiziano
- Institute of Medical Genetics, University Cattolica del Sacro Cuore, Policlinics A. Gemelli, Rome, Italy
| | - Sona Nevsimalova
- Department of Neurology, Charles University, First Faculty of Medicine and Teaching Hospital, Prague, Czech Republic
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Paris, France
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mohamad Mikati
- Division of Pediatric Neurology and Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - David B Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Rosaria Vavassori
- Associazione Italiana per la Sindrome di Emiplegia Alternante (A.I.S.EA Onlus), Lecco, Italy
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.,DYCOG team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028; CNRS UMR 5292, Lyon, France
| | | | | | | |
Collapse
|
171
|
Termsarasab P, Yang AC, Frucht SJ. Intermediate Phenotypes of ATP1A3 Mutations: Phenotype-Genotype Correlations. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:336. [PMID: 26417536 PMCID: PMC4578012 DOI: 10.7916/d8mg7ns8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/25/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND ATP1A3-related disorders include rapid-onset dystonia-parkinsonism (RDP or DYT12), alternating hemiplegia of childhood (AHC), and CAPOS syndrome (Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss). CASE REPORT We report two cases with intermediate forms between RDP and AHC. Patient 1 initially presented with the AHC phenotype, but the RDP phenotype emerged at age 14 years. The second patient presented with levodopa-responsive paroxysmal oculogyria, a finding never before reported in ATP1A3-related disorders. Genetic testing confirmed heterozygous changes in the ATP1A3 gene in both patients, one of them novel. DISCUSSION Intermediate phenotypes of RDP and AHC support the concept that these two disorders are part of a spectrum. We add our cases to the phenotype-genotype correlations of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Pichet Termsarasab
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy C Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven J Frucht
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
172
|
Shrivastava AN, Redeker V, Fritz N, Pieri L, Almeida LG, Spolidoro M, Liebmann T, Bousset L, Renner M, Léna C, Aperia A, Melki R, Triller A. α-synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient. EMBO J 2015; 34:2408-23. [PMID: 26323479 DOI: 10.15252/embj.201591397] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022] Open
Abstract
Extracellular α-synuclein (α-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that α-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the α3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of α-syn assemblies. The interaction strength depended on the state of α-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific α3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing α3-NKA are trapped within α-syn clusters resulting in α3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of α3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of α3-NKA with extracellular α-syn assemblies reduce its pumping activity as its mutations in RDP/AHC.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Nicolas Fritz
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Laura Pieri
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Leandro G Almeida
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Maria Spolidoro
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Thomas Liebmann
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Marianne Renner
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Clément Léna
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Anita Aperia
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| |
Collapse
|
173
|
Qu J, Yang ZQ, Zhang Y, Mao CX, Wang ZB, Mao XY, Zhou BT, Yin JY, He H, Long HY, Gong JE, Xiao B, Zhou HH, Liu ZQ. Common variants of ATP1A3 but not ATP1A2 are associated with Chinese genetic generalized epilepsies. J Neurol Sci 2015; 354:56-62. [DOI: 10.1016/j.jns.2015.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
|
174
|
Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of Rapid Onset Dystonia-Parkinsonism. Neurobiol Dis 2015; 82:200-212. [PMID: 26093171 DOI: 10.1016/j.nbd.2015.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in the α3 isoform of the sodium pump are responsible for Rapid Onset Dystonia-Parkinsonism (RDP). A pharmacologic model of RDP replicates the most salient features of RDP, and implicates both the cerebellum and basal ganglia in the disorder; dystonia is associated with aberrant cerebellar output, and the parkinsonism-like features are attributable to the basal ganglia. The pharmacologic agent used to generate the model, ouabain, is selective for sodium pumps. However, close to the infusion sites in vivo it likely affects all sodium pump isoforms. Therefore, it remains to be established whether selective loss of α3-containing sodium pumps replicates the pharmacologic model. Moreover, while the pharmacologic model suggested that aberrant firing of Purkinje cells was the main cause of abnormal cerebellar output, it did not allow the scrutiny of this hypothesis. To address these questions RNA interference using small hairpin RNAs (shRNAs) delivered via adeno-associated viruses (AAV) was used to specifically knockdown α3-containing sodium pumps in different regions of the adult mouse brain. Knockdown of the α3-containing sodium pumps mimicked both the behavioral and electrophysiological changes seen in the pharmacologic model of RDP, recapitulating key aspects of the human disorder. Further, we found that knockdown of the α3 isoform altered the intrinsic pacemaking of Purkinje cells, but not the neurons of the deep cerebellar nuclei. Therefore, acute knockdown of proteins associated with inherited dystonias may be a good strategy for developing phenotypic genetic mouse models where traditional transgenic models have failed to produce symptomatic mice.
Collapse
Affiliation(s)
- Rachel Fremont
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ambika Tewari
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kamran Khodakhah
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
175
|
Regulation of cough by neuronal Na(+)-K(+) ATPases. Curr Opin Pharmacol 2015; 22:140-5. [PMID: 26048736 DOI: 10.1016/j.coph.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/10/2023]
Abstract
The Na(+)-K(+) ATPases play an essential role in establishing the sodium gradients in excitable cells. Multiple isoforms of the sodium pumps have been identified, with tissue and cell specific expression patterns. Because the vagal afferent nerves regulating cough must be activated at sustained high frequencies of action potential patterning to achieve cough initiation thresholds, it is a certainty that sodium pump function is essential to maintaining cough reflex sensitivities in health and in disease. The mechanisms by which Na(+)-K(+) ATPases regulate bronchopulmonary vagal afferent nerve excitability are reviewed as are potential therapeutic strategies targeting the sodium pumps in cough.
Collapse
|
176
|
MacDonald ML, Ding Y, Newman J, Hemby S, Penzes P, Lewis DA, Yates N, Sweet RA. Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol Psychiatry 2015; 77:959-68. [PMID: 25433904 PMCID: PMC4428927 DOI: 10.1016/j.biopsych.2014.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/11/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired glutamatergic signaling is believed to underlie auditory cortex pyramidal neuron dendritic spine loss and auditory symptoms in schizophrenia. Many schizophrenia risk loci converge on the synaptic glutamate signaling network. We therefore hypothesized that alterations in glutamate signaling protein expression and co-expression network features are present in schizophrenia. METHODS Gray matter homogenates were prepared from auditory cortex gray matter of 22 schizophrenia and 23 matched control subjects, a subset of whom had been previously assessed for dendritic spine density. One hundred fifty-five selected synaptic proteins were quantified by targeted mass spectrometry. Protein co-expression networks were constructed using weighted gene co-expression network analysis. RESULTS Proteins with evidence for altered expression in schizophrenia were significantly enriched for glutamate signaling pathway proteins (GRIA4, GRIA3, ATP1A3, and GNAQ). Synaptic protein co-expression was significantly decreased in schizophrenia with the exception of a small group of postsynaptic density proteins, whose co-expression increased and inversely correlated with spine density in schizophrenia subjects. CONCLUSIONS We observed alterations in the expression of glutamate signaling pathway proteins. Among these, the novel observation of reduced ATP1A3 expression is supported by strong genetic evidence indicating it may contribute to psychosis and cognitive impairment phenotypes. The observations of altered protein network topology further highlight the complexity of glutamate signaling network pathology in schizophrenia and provide a framework for evaluating future experiments to model the contribution of genetic risk to disease pathology.
Collapse
Affiliation(s)
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Scott Hemby
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Il,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Il
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
177
|
Viollet L, Glusman G, Murphy KJ, Newcomb TM, Reyna SP, Sweney M, Nelson B, Andermann F, Andermann E, Acsadi G, Barbano RL, Brown C, Brunkow ME, Chugani HT, Cheyette SR, Collins A, DeBrosse SD, Galas D, Friedman J, Hood L, Huff C, Jorde LB, King MD, LaSalle B, Leventer RJ, Lewelt AJ, Massart MB, Mérida MR, Ptáček LJ, Roach JC, Rust RS, Renault F, Sanger TD, Sotero de Menezes MA, Tennyson R, Uldall P, Zhang Y, Zupanc M, Xin W, Silver K, Swoboda KJ. Alternating Hemiplegia of Childhood: Retrospective Genetic Study and Genotype-Phenotype Correlations in 187 Subjects from the US AHCF Registry. PLoS One 2015; 10:e0127045. [PMID: 25996915 PMCID: PMC4440742 DOI: 10.1371/journal.pone.0127045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/11/2015] [Indexed: 11/21/2022] Open
Abstract
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers’ questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.
Collapse
Affiliation(s)
- Louis Viollet
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Gustavo Glusman
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kelley J. Murphy
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Tara M. Newcomb
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sandra P. Reyna
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew Sweney
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Benjamin Nelson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Frederick Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Gyula Acsadi
- Departments of Pediatrics and Neurology, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Hartford, CT, United States of America
| | - Richard L. Barbano
- Department of Neurology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Candida Brown
- Diablo Valley Child Neurology, an affiliate of Stanford Health Alliance, Pleasant Hill, California, United States of America
| | - Mary E. Brunkow
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Harry T. Chugani
- Division of Pediatric Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan, United States of America
| | - Sarah R. Cheyette
- Department of Child Neurology, Palo Alto Medical Foundation Redwood City Clinic, Redwood City, California, United States of America
| | - Abigail Collins
- Department of Pediatric Neurology, Children’s Hospital Colorado, University of Colorado Hospital, Aurora, Colorado, United States of America
| | - Suzanne D. DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, United States of America
| | - Jennifer Friedman
- Departments of Neuroscience and Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Lee Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Chad Huff
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary D. King
- Departments of Pediatrics and Neurology, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bernie LaSalle
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Richard J. Leventer
- Children’s Neuroscience Centre, Murdoch Childrens Research Institute, University of Melbourne Department of Paediatrics, The Royal Children’s Hospital Melbourne, Parkville Victoria, Australia
| | - Aga J. Lewelt
- Department of Pediatrics, College of Medicine Jacksonville, University of Florida, Jacksonville, Florida, United States of America
| | - Mylynda B. Massart
- Department of Family Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mario R. Mérida
- Stevens Henager College, Salt Lake City, Utah, United States of America
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jared C. Roach
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Robert S. Rust
- Center for Medical Ethics and Humanities in Medicine, University Of Virginia UVA health system, Charlottesville, Virginia, United States of America
| | - Francis Renault
- Departement de Neurophysiologie. Hopital Armand Trousseau APHP, Paris, France
| | - Terry D. Sanger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | | | - Rachel Tennyson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Peter Uldall
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yue Zhang
- Study Design and Biostatistics Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary Zupanc
- Department of Neurology, Children’s Hospital Orange County, and Department of Pediatrics, University of California, Orange, California, United States of America
| | - Winnie Xin
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kenneth Silver
- Departments of Pediatrics and Neurology, University of Chicago and Comer Children's Hospital, Chicago, Illinois, United States of America
| | - Kathryn J. Swoboda
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
178
|
Camargo CHF, Camargos ST, Cardoso FEC, Teive HAG. The genetics of the dystonias--a review based on the new classification of the dystonias. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:350-8. [PMID: 25992527 DOI: 10.1590/0004-282x20150030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
Abstract
The definition and classification of the dystonias was recently revisited. In the new 2013 classification, the dystonias are subdivided in terms of their etiology according to whether they are the result of pathological changes or structural damage, have acquired causes or are inherited. As hereditary dystonias are clinically and genetically heterogeneous, we sought to classify them according to the new recently defined criteria. We observed that although the new classification is still the subject of much debate and controversy, it is easy to use in a logical and objective manner with the inherited dystonias. With the discovery of new genes, however, it remains to be seen whether the new classification will continue to be effective.
Collapse
Affiliation(s)
- Carlos Henrique F Camargo
- Unidade de Distúrbios do Movimento, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sarah Teixeira Camargos
- Unidade de Distúrbios do Movimento, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francisco Eduardo C Cardoso
- Unidade de Distúrbios do Movimento, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hélio Afonso G Teive
- Unidade de Distúrbios do Movimento, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
179
|
Developmental expression analysis of Na, K-ATPase α subunits in Xenopus. Dev Genes Evol 2015; 225:105-11. [PMID: 25772274 DOI: 10.1007/s00427-015-0497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Na, K-ATPase is an integral membrane protein complex responsible for maintaining the ionic gradients of Na(+) and K(+) across the plasma membrane and has a variety of cellular functions including neuronal activity. Studies in several organisms have shown that this protein complex regulates multiple aspects of embryonic development and is responsible for the pathogenesis of several human diseases. Here, we report the cloning and expression of Na, K-ATPase α2 (atp1a2) and α3 (atp1a3) subunits during Xenopus development and compare the expression patterns of each subunit. Using in situ hybridization in whole embryos and on sections, we show that all three α subunits are co-expressed in the pronephric kidney, with varying expression in neurogenic derivatives. The atp1a2 has a unique expression in the ependymal cell layer of the developing brain that is not shared with other α subunits. The Na, K-ATPase α1 (atp1a1), and atp1a3 share many expression domains in placode derivatives, including the otic vesicle, lens, ganglion of the anterodorsal lateral line nerve, and ganglia of the facial and anteroventral lateral line nerve and olfactory cells. All the subunits share a common expression domain, the myocardium.
Collapse
|
180
|
Holm R, Einholm AP, Andersen JP, Vilsen B. Rescue of Na+ affinity in aspartate 928 mutants of Na+,K+-ATPase by secondary mutation of glutamate 314. J Biol Chem 2015; 290:9801-11. [PMID: 25713066 DOI: 10.1074/jbc.m114.625509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
The Na(+),K(+)-ATPase binds Na(+) at three transport sites denoted I, II, and III, of which site III is Na(+)-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na(+) affinity in the α1-, α2-, and α3-isoforms of Na(+),K(+)-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na(+)-coordinating residues in site III. Remarkably, the Na(+) affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na(+) binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na(+) affinity is likely intrinsic to the Na(+) binding pocket, and the underlying mechanism could be a tightening of Na(+) binding at Na(+) site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na(+),K(+) pump function in intact cells. Rescue of Na(+) affinity and Na(+) and K(+) transport by second-site mutation is unique in the history of Na(+),K(+)-ATPase and points to new possibilities for treatment of neurological patients carrying Na(+),K(+)-ATPase mutations.
Collapse
Affiliation(s)
- Rikke Holm
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Anja P Einholm
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Jens P Andersen
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Bente Vilsen
- From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| |
Collapse
|
181
|
Abstract
Dystonia, a common and genetically heterogeneous neurological disorder, was recently defined as "a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both." Via the application of whole-exome sequencing, the genetic landscape of dystonia and closely related movement disorders is becoming exposed. In particular, several "novel" genetic causes have been causally associated with dystonia or dystonia-related disorders over the past 2 years. These genes include PRRT2 (DYT10), CIZ1 (DYT23), ANO3 (DYT24), GNAL (DYT25), and TUBB4A (DYT4). Despite these advances, major gaps remain in identifying the genetic origins for most cases of adult-onset isolated dystonia. Furthermore, model systems are needed to study the biology of PRRT2, CIZ1, ANO3, Gαolf, and TUBB4A in the context of dystonia. This review focuses on these recent additions to the family of dystonia genes, genotype-phenotype correlations, and possible cellular contributions of the encoded proteins to the development of dystonia.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Link Building Suite 415, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
182
|
Paciorkowski AR, McDaniel SS, Jansen LA, Tully H, Tuttle E, Ghoneim DH, Tupal S, Gunter SA, Vasta V, Zhang Q, Tran T, Liu YB, Ozelius LJ, Brashear A, Sweadner KJ, Dobyns WB, Hahn S. Novel mutations in ATP1A3 associated with catastrophic early life epilepsy, episodic prolonged apnea, and postnatal microcephaly. Epilepsia 2015; 56:422-30. [PMID: 25656163 DOI: 10.1111/epi.12914] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Mutations of ATP1A3 have been associated with rapid onset dystonia-parkinsonism and more recently with alternating hemiplegia of childhood. Here we report one child with catastrophic early life epilepsy and shortened survival, and another with epilepsy, episodic prolonged apnea, postnatal microcephaly, and severe developmental disability. Novel heterozygous mutations (p.Gly358Val and p.Ile363Asn) were identified in ATP1A3 in these children. METHODS Subjects underwent next-generation sequencing under a research protocol. Clinical data were collected retrospectively. The biochemical effects of the mutations on ATP1A3 protein function were investigated. Postmortem neuropathologic specimens from control and affected subjects were studied. RESULTS The mutations localized to the P domain of the Na,K-ATPase α3 protein, and resulted in significant reduction of Na,K-ATPase activity in vitro. We demonstrate in both control human brain tissue and that from the subject with the p.Gly358Val mutation that ATP1A3 immunofluorescence is prominently associated with interneurons in the cortex, which may provide some insight into the pathogenesis of the disease. SIGNIFICANCE The findings indicate these mutations cause severe phenotypes of ATP1A3-related disorder spectrum that include catastrophic early life epilepsy, episodic apnea, and postnatal microcephaly.
Collapse
Affiliation(s)
- Alex R Paciorkowski
- Departments of Neurology, Pediatrics, and Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, U.S.A; Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Balint B, Bhatia KP. Isolated and combined dystonia syndromes - an update on new genes and their phenotypes. Eur J Neurol 2015; 22:610-7. [DOI: 10.1111/ene.12650] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
Affiliation(s)
- B. Balint
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London UK
- Department of Neurology; University Hospital Heidelberg; Heidelberg Germany
| | - K. P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London UK
| |
Collapse
|
184
|
P2C-Type ATPases and Their Regulation. Mol Neurobiol 2015; 53:1343-1354. [DOI: 10.1007/s12035-014-9076-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
|
185
|
|
186
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
187
|
Calderon DP, Khodakhah K. Modeling Dystonia-Parkinsonism. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
188
|
The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia-Parkinsonism, CAPOS and beyond. Pediatr Neurol 2015; 52:56-64. [PMID: 25447930 PMCID: PMC4352574 DOI: 10.1016/j.pediatrneurol.2014.09.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/09/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND ATP1A3 mutations have now been recognized in infants and children presenting with a diverse group of neurological phenotypes, including Rapid-onset Dystonia-Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and most recently, Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss (CAPOS) syndrome. METHODS Existing literature on ATP1A3-related disorders in the pediatric population were reviewed, with attention to clinical features and associated genotypes among those with RDP, AHC, or CAPOS syndrome phenotypes. RESULTS While classically defined phenotypes associated with AHC, RDP, and CAPOS syndromes are distinct, common elements among ATP1A3-related neurological disorders include characteristic episodic neurological symptoms and signs that vary in severity, duration, and frequency of occurrence. Affected children typically present in the context of an acute onset of paroxysmal, episodic neurological symptoms ranging from oculomotor abnormalities, hypotonia, paralysis, dystonia, ataxia, seizure-like episodes, or encephalopathy. Neurodevelopmental delays or persistence of dystonia, chorea, or ataxia after resolution of an initial episode are common, providing important clues for diagnosis. CONCLUSIONS The phenotypic spectrum of ATP1A3-related neurological disorders continues to expand beyond the distinct yet overlapping phenotypes in patients with AHC, RDP, and CAPOS syndromes. ATP1A3 mutation analysis is appropriate to consider in the diagnostic algorithm for any child presenting with episodic or fluctuating ataxia, weakness or dystonia whether they manifest persistence of neurological symptoms between episodes. Additional work is needed to better identify and classify affected patients and develop targeted treatment approaches.
Collapse
|
189
|
Schneider SA. Clinical Phenomenology and Genetics of Other Parkinsonian Syndromes Associated with Either Dystonia or Spasticity. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
190
|
|
191
|
Brücke C, Horn A, Huppke P, Kupsch A, Schneider GH, Kühn AA. Failure of Pallidal Deep Brain Stimulation in a Case of Rapid-Onset Dystonia Parkinsonism (DYT12). Mov Disord Clin Pract 2014; 2:76-78. [PMID: 30713884 DOI: 10.1002/mdc3.12124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christof Brücke
- Department of Neurology Charité-University Medicine Berlin Germany
| | - Andreas Horn
- Department of Neurology Charité-University Medicine Berlin Germany
| | - Peter Huppke
- Department of Pediatrics University of Göttingen Göttingen Germany
| | - Andreas Kupsch
- Department of Neurology Charité-University Medicine Berlin Germany.,Department of Neurology/Stereotaxy Otto-von-Guericke University Magdeburg Germany
| | | | - Andrea A Kühn
- Department of Neurology Charité-University Medicine Berlin Germany
| |
Collapse
|
192
|
Forrest MD. The sodium-potassium pump is an information processing element in brain computation. Front Physiol 2014; 5:472. [PMID: 25566080 PMCID: PMC4274886 DOI: 10.3389/fphys.2014.00472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
|
193
|
Short latency cerebellar modulation of the basal ganglia. Nat Neurosci 2014; 17:1767-75. [PMID: 25402853 PMCID: PMC4241171 DOI: 10.1038/nn.3868] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/14/2014] [Indexed: 12/13/2022]
Abstract
The graceful, purposeful motion of our body is an engineering feat which remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. Here we show in mice that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway. Under physiological conditions this short latency pathway is capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition this pathway relays aberrant cerebellar activity to the basal ganglia to cause dystonia.
Collapse
|
194
|
Akkuratov EE, Lopacheva OM, Kruusmägi M, Lopachev AV, Shah ZA, Boldyrev AA, Liu L. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol Neurobiol 2014; 52:1726-1734. [DOI: 10.1007/s12035-014-8975-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022]
|
195
|
Wilcox R, Brænne I, Brüggemann N, Winkler S, Wiegers K, Bertram L, Anderson T, Lohmann K. Genome sequencing identifies a novel mutation in ATP1A3 in a family with dystonia in females only. J Neurol 2014; 262:187-93. [PMID: 25359261 DOI: 10.1007/s00415-014-7547-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/28/2023]
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements or postures. Several genetic causes of dystonia have been elucidated but genetic causes of dystonia specifically affecting females have not yet been described. In the present study, we investigated a large dystonia family from New Zealand in which only females were affected. They presented with a generalized form of the disorder including laryngeal, cervical, and arm dystonia. We found a novel, likely disease-causing, three base-pair deletion (c.443_445delGAG, p.Ser148del) in ATP1A3 in this family by combining genome and exome sequencing. Mutations in ATP1A3 have previously been linked to rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and CAPOS syndrome. Therefore, we re-examined our patients with a specific focus on typical symptoms of these conditions. It turned out that all patients reported a rapid onset of dystonic symptoms following a trigger suggesting a diagnosis of RDP. Notably, none of the patients showed clear symptoms of parkinsonism or symptoms specific for AHC or CAPOS. The ATP1A3 gene is located on chromosome 19q13.2, thus, providing no obvious explanation for the preponderance to affect females. Interestingly, we also identified one unaffected male offspring carrying the p.Ser148del mutation suggesting reduced penetrance of this mutation, a phenomenon that has also been observed for other RDP-causing mutations in ATP1A3. Although phenotypic information in this family was initially incomplete, the identification of the p.Ser148del ATP1A3 mutation elicited clinical re-examination of patients subsequently allowing establishing the correct diagnosis, a phenomenon known as "reverse phenotyping".
Collapse
Affiliation(s)
- Robert Wilcox
- Department of Neurology, Flinders Medical Centre, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci 2014; 34:11723-32. [PMID: 25164667 DOI: 10.1523/jneurosci.1409-14.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss-of-function mutations in the α3 isoform of the Na(+)/K(+) ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12.
Collapse
|
197
|
Sugimoto H, Ikeda K, Kawakami K. Heterozygous mice deficient in Atp1a3 exhibit motor deficits by chronic restraint stress. Behav Brain Res 2014; 272:100-10. [DOI: 10.1016/j.bbr.2014.06.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
198
|
|
199
|
Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration. Exp Neurol 2014; 261:791-801. [PMID: 25205229 DOI: 10.1016/j.expneurol.2014.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The activity of Na(+)/K(+)-ATPase establishes transmembrane ion gradients and is essential to cell function and survival. Either dysregulation or deficiency of neuronal Na(+)/K(+)-ATPase has been implicated in the pathogenesis of many neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and rapid-onset dystonia Parkinsonism. However, genetic evidence that directly links neuronal Na(+)/K(+)-ATPase deficiency to in vivo neurodegeneration has been lacking. In this study, we use Drosophila photoreceptors to investigate the cell-autonomous effects of neuronal Na(+)/K(+) ATPase. Loss of ATPα, an α subunit of Na(+)/K(+)-ATPase, in photoreceptors through UAS/Gal4-mediated RNAi eliminated the light-triggered depolarization of the photoreceptors, rendering the fly virtually blind in behavioral assays. Intracellular recordings indicated that ATPα knockdown photoreceptors were already depolarized in the dark, which was due to a loss of intracellular K(+). Importantly, ATPα knockdown resulted in the degeneration of photoreceptors in older flies. This degeneration was independent of light and showed characteristics of apoptotic/hybrid cell death as observed via electron microscopy analysis. Loss of Nrv3, a Na(+)/K(+)-ATPase β subunit, partially reproduced the signaling and degenerative defects observed in ATPα knockdown flies. Thus, the loss of Na(+)/K(+)-ATPase not only eradicates visual function but also causes age-dependent degeneration in photoreceptors, confirming the link between neuronal Na(+)/K(+) ATPase deficiency and in vivo neurodegeneration. This work also establishes Drosophila photoreceptors as a genetic model for studying the cell-autonomous mechanisms underlying neuronal Na(+)/K(+) ATPase deficiency-mediated neurodegeneration.
Collapse
|
200
|
Vila-Pueyo M, Pons R, Raspall-Chaure M, Marcé-Grau A, Carreño O, Sintas C, Cormand B, Pineda-Marfà M, Macaya A. Clinical and genetic analysis in alternating hemiplegia of childhood: Ten new patients from Southern Europe. J Neurol Sci 2014; 344:37-42. [DOI: 10.1016/j.jns.2014.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|