151
|
Abstract
Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Rehabilitation Research Center, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Rehabilitation Research Center, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| |
Collapse
|
152
|
Nicolas S, Zoukimian C, Bosmans F, Montnach J, Diochot S, Cuypers E, De Waard S, Béroud R, Mebs D, Craik D, Boturyn D, Lazdunski M, Tytgat J, De Waard M. Chemical Synthesis, Proper Folding, Na v Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins (Basel) 2019; 11:toxins11060367. [PMID: 31234412 PMCID: PMC6628435 DOI: 10.3390/toxins11060367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022] Open
Abstract
Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.
Collapse
Affiliation(s)
- Sébastien Nicolas
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Claude Zoukimian
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Frank Bosmans
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, 9000 Gent, Belgium.
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jérôme Montnach
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Eva Cuypers
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Stephan De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| | - Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, Frankfurt, Germany.
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Michel Lazdunski
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| |
Collapse
|
153
|
Haustrate A, Hantute-Ghesquier A, Prevarskaya N, Lehen'kyi V. Monoclonal Antibodies Targeting Ion Channels and Their Therapeutic Potential. Front Pharmacol 2019; 10:606. [PMID: 31231216 PMCID: PMC6561378 DOI: 10.3389/fphar.2019.00606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) represent a rapidly growing pharmaceutical class of protein drugs that becomes an important part of the precision therapy. mAbs are characterized by their high specificity and affinity for the target antigen, which is mostly present on the cell surface. Ion channels are a large family of transmembrane proteins that control ion transport across the cell membrane. They are involved in almost all biological processes in both health and disease and are widely considered as prospective targets. However, no antibody-based drug targeting ion channel has been developed so far that has progressed to clinical use. Thus, we provide a comprehensive review of the elaborated mAbs against ion channels, describe their mechanisms of action, and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France
| | - Aline Hantute-Ghesquier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France
| | - V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France.,FONDATION ARC, Villejuif, France
| |
Collapse
|
154
|
Murray JK, Wu B, Tegley CM, Nixey TE, Falsey JR, Herberich B, Yin L, Sham K, Long J, Aral J, Cheng Y, Netirojjanakul C, Doherty L, Glaus C, Ikotun T, Li H, Tran L, Soto M, Salimi-Moosavi H, Ligutti J, Amagasu S, Andrews KL, Be X, Lin MHJ, Foti RS, Ilch CP, Youngblood B, Kornecook TJ, Karow M, Walker KW, Moyer BD, Biswas K, Miranda LP. Engineering Na V1.7 Inhibitory JzTx-V Peptides with a Potency and Basicity Profile Suitable for Antibody Conjugation To Enhance Pharmacokinetics. ACS Chem Biol 2019; 14:806-818. [PMID: 30875193 DOI: 10.1021/acschembio.9b00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug discovery research on new pain targets with human genetic validation, including the voltage-gated sodium channel NaV1.7, is being pursued to address the unmet medical need with respect to chronic pain and the rising opioid epidemic. As part of early research efforts on this front, we have previously developed NaV1.7 inhibitory peptide-antibody conjugates with tarantula venom-derived GpTx-1 toxin peptides with an extended half-life (80 h) in rodents but only moderate in vitro activity (hNaV1.7 IC50 = 250 nM) and without in vivo activity. We identified the more potent peptide JzTx-V from our natural peptide collection and improved its selectivity against other sodium channel isoforms through positional analogueing. Here we report utilization of the JzTx-V scaffold in a peptide-antibody conjugate and architectural variations in the linker, peptide loading, and antibody attachment site. We found conjugates with 100-fold improved in vitro potency relative to those of complementary GpTx-1 analogues, but pharmacokinetic and bioimaging analyses of these JzTx-V conjugates revealed a shorter than expected plasma half-life in vivo with accumulation in the liver. In an attempt to increase circulatory serum levels, we sought the reduction of the net +6 charge of the JzTx-V scaffold while retaining a desirable NaV in vitro activity profile. The conjugate of a JzTx-V peptide analogue with a +2 formal charge maintained NaV1.7 potency with 18-fold improved plasma exposure in rodents. Balancing the loss of peptide and conjugate potency associated with the reduction of net charge necessary for improved target exposure resulted in a compound with moderate activity in a NaV1.7-dependent pharmacodynamic model but requires further optimization to identify a conjugate that can fully engage NaV1.7 in vivo.
Collapse
|
155
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 462] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
156
|
Abstract
Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively.
Collapse
|
157
|
McDermott LA, Weir GA, Themistocleous AC, Segerdahl AR, Blesneac I, Baskozos G, Clark AJ, Millar V, Peck LJ, Ebner D, Tracey I, Serra J, Bennett DL. Defining the Functional Role of Na V1.7 in Human Nociception. Neuron 2019; 101:905-919.e8. [PMID: 30795902 PMCID: PMC6424805 DOI: 10.1016/j.neuron.2019.01.047] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
Loss-of-function mutations in NaV1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how NaV1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous NaV1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that NaV1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some NaV1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Andrew R Segerdahl
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Iulia Blesneac
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Liam J Peck
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jordi Serra
- Department of Clinical Neurophysiology, King's College Hospital, London SE5 9RS, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
158
|
Eijkenboom I, Sopacua M, Hoeijmakers JGJ, de Greef BTA, Lindsey P, Almomani R, Marchi M, Vanoevelen J, Smeets HJM, Waxman SG, Lauria G, Merkies ISJ, Faber CG, Gerrits MM. Yield of peripheral sodium channels gene screening in pure small fibre neuropathy. J Neurol Neurosurg Psychiatry 2019; 90:342-352. [PMID: 30554136 DOI: 10.1136/jnnp-2018-319042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/01/2018] [Accepted: 11/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuropathic pain is common in peripheral neuropathy. Recent genetic studies have linked pathogenic voltage-gated sodium channel (VGSC) variants to human pain disorders. Our aims are to determine the frequency of SCN9A, SCN10A and SCN11A variants in patients with pure small fibre neuropathy (SFN), analyse their clinical features and provide a rationale for genetic screening. METHODS Between September 2009 and January 2017, 1139 patients diagnosed with pure SFN at our reference centre were screened for SCN9A, SCN10A and SCN11A variants. Pathogenicity of variants was classified according to established guidelines of the Association for Clinical Genetic Science and frequencies were determined. Patients with SFN were grouped according to the VGSC variants detected, and clinical features were compared. RESULTS Among 1139 patients with SFN, 132 (11.6%) patients harboured 73 different (potentially) pathogenic VGSC variants, of which 50 were novel and 22 were found in ≥ 1 patient. The frequency of (potentially) pathogenic variants was 5.1% (n=58/1139) for SCN9A, 3.7% (n=42/1139) for SCN10A and 2.9% (n=33/1139) for SCN11A. Only erythromelalgia-like symptoms and warmth-induced pain were significantly more common in patients harbouring VGSC variants. CONCLUSION (Potentially) pathogenic VGSC variants are present in 11.6% of patients with pure SFN. Therefore, genetic screening of SCN9A, SCN10A and SCN11A should be considered in patients with pure SFN, independently of clinical features or underlying conditions.
Collapse
Affiliation(s)
- Ivo Eijkenboom
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands.,MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Maurice Sopacua
- MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneke G J Hoeijmakers
- MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Bianca T A de Greef
- MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick Lindsey
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
| | - Rowida Almomani
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands.,MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Margherita Marchi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Jo Vanoevelen
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands
| | - Hubertus J M Smeets
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands.,MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Centre for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Ingemar S J Merkies
- MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, St. Elisabeth Hospital, Willemstad, Curaçao
| | - Catharina G Faber
- MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
159
|
Pediatric Erythromelalgia and SCN9A Mutations: Systematic Review and Single-Center Case Series. J Pediatr 2019; 206:217-224.e9. [PMID: 30416015 DOI: 10.1016/j.jpeds.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the clinical features of erythromelalgia in childhood associated with gain-of-function SCN9A mutations that increase activity of the Nav1.7 voltage-gated sodium channel, we conducted a systematic review of pediatric presentations of erythromelalgia related to SCN9A mutations, and compared pediatric clinical presentations of symptomatic erythromelalgia, with or without SCN9A mutations. STUDY DESIGN PubMed, Embase, and PsycINFO Databases were searched for reports of inherited erythromelalgia in childhood. Clinical features, management, and genotype were extracted. Case notes of pediatric patients with erythromelalgia from the Great Ormond Street Hospital Pain Service were reviewed for clinical features, patient-reported outcomes, and treatments. Children aged over 10 years were recruited for quantitative sensory testing. RESULTS Twenty-eight publications described erythromelalgia associated with 15 different SCN9A gene variants in 25 children. Pain was severe and often refractory to multiple treatments, including nonspecific sodium channel blockers. Skin damage or other complications of cold immersion for symptomatic relief were common (60%). SCN9A mutations resulting in greater hyperpolarizing shifts in Nav1.7 sodium channels correlated with symptom onset at younger ages (P = .016). Variability in reporting, and potential publication bias toward severe cases, limit any estimations of overall prevalence. In our case series, symptoms were similar but comorbidities were more common in children with SCN9A mutations. Quantitative sensory testing revealed marked dynamic warm allodynia. CONCLUSIONS Inherited erythromelalgia in children is associated with difficult-to-manage pain and significant morbidity. Standardized reporting of outcome and management in larger series will strengthen identification of genotype-phenotype relationships. More effective long-term therapies are a significant unmet clinical need.
Collapse
|
160
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
161
|
Shen H, Liu D, Wu K, Lei J, Yan N. Structures of human Na v1.7 channel in complex with auxiliary subunits and animal toxins. Science 2019; 363:1303-1308. [PMID: 30765606 DOI: 10.1126/science.aaw2493] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Voltage-gated sodium channel Nav1.7 represents a promising target for pain relief. Here we report the cryo-electron microscopy structures of the human Nav1.7-β1-β2 complex bound to two combinations of pore blockers and gating modifier toxins (GMTs), tetrodotoxin with protoxin-II and saxitoxin with huwentoxin-IV, both determined at overall resolutions of 3.2 angstroms. The two structures are nearly identical except for minor shifts of voltage-sensing domain II (VSDII), whose S3-S4 linker accommodates the two GMTs in a similar manner. One additional protoxin-II sits on top of the S3-S4 linker in VSDIV The structures may represent an inactivated state with all four VSDs "up" and the intracellular gate closed. The structures illuminate the path toward mechanistic understanding of the function and disease of Nav1.7 and establish the foundation for structure-aided development of analgesics.
Collapse
Affiliation(s)
- Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongliang Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- Medical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
162
|
Coates MD, Vrana KE, Ruiz-Velasco V. The influence of voltage-gated sodium channels on human gastrointestinal nociception. Neurogastroenterol Motil 2019; 31:e13460. [PMID: 30216585 DOI: 10.1111/nmo.13460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain is a frequent and persistent problem in the most common gastrointestinal disorders, including irritable bowel syndrome and inflammatory bowel disease. Pain adversely impacts quality of life, incurs significant healthcare expenditures, and remains a challenging issue to manage with few safe therapeutic options currently available. It is imperative that new methods are developed for identifying and treating this symptom. A variety of peripherally active neuroendocrine signaling elements have the capability to influence gastrointestinal pain perception. A large and growing body of evidence suggests that voltage-gated sodium channels (VGSCs) play a critical role in the development and modulation of nociceptive signaling associated with the gut. Several VGSC isoforms demonstrate significant promise as potential targets for improved diagnosis and treatment of gut-based disorders associated with hyper- and hyposensitivity to abdominal pain. PURPOSE In this article, we critically review key investigations that have evaluated the potential role that VGSCs play in visceral nociception and discuss recent advances related to this topic. Specifically, we discuss the following: (a) what is known about the structure and basic function of VGSCs, (b) the role that each VGSC plays in gut nociception, particularly as it relates to human physiology, and (c) potential diagnostic and therapeutic uses of VGSCs to manage disorders associated with chronic abdominal pain.
Collapse
Affiliation(s)
- Matthew D Coates
- Division of Gastroenterology & Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
163
|
Increased Resurgent Sodium Currents in Nav1.8 Contribute to Nociceptive Sensory Neuron Hyperexcitability Associated with Peripheral Neuropathies. J Neurosci 2019; 39:1539-1550. [PMID: 30617209 DOI: 10.1523/jneurosci.0468-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/22/2018] [Accepted: 11/25/2018] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain is a significant public health challenge, yet the underlying mechanisms remain poorly understood. Painful small fiber neuropathy (SFN) may be caused by gain-of-function mutations in Nav1.8, a sodium channel subtype predominantly expressed in peripheral nociceptive neurons. However, it is not clear how Nav1.8 disease mutations induce sensory neuron hyperexcitability. Here we studied two mutations in Nav1.8 associated with hypersensitive sensory neurons: G1662S reported in painful SFN; and T790A, which underlies increased pain behaviors in the Possum transgenic mouse strain. We show that, in male DRG neurons, these mutations, which impair inactivation, significantly increase TTX-resistant resurgent sodium currents mediated by Nav1.8. The G1662S mutation doubled resurgent currents, and the T790A mutation increased them fourfold. These unusual currents are typically evoked during the repolarization phase of action potentials. We show that the T790A mutation greatly enhances DRG neuron excitability by reducing current threshold and increasing firing frequency. Interestingly, the mutation endows DRG neurons with multiple early afterdepolarizations and leads to substantial prolongation of action potential duration. In DRG neurons, siRNA knockdown of sodium channel β4 subunits fails to significantly alter T790A current density but reduces TTX-resistant resurgent currents by 56%. Furthermore, DRG neurons expressing T790A channels exhibited reduced excitability with fewer early afterdepolarizations and narrower action potentials after β4 knockdown. Together, our data demonstrate that open-channel block of TTX-resistant currents, enhanced by gain-of-function mutations in Nav1.8, can make major contributions to the hyperexcitability of nociceptive neurons, likely leading to altered sensory phenotypes including neuropathic pain in SFN.SIGNIFICANCE STATEMENT This work demonstrates that two disease mutations in the voltage-gated sodium channel Nav1.8 that induce nociceptor hyperexcitability increase resurgent currents. Nav1.8 is crucial for pain sensations. Because resurgent currents are evoked during action potential repolarization, they can be crucial regulators of action potential activity. Our data indicate that increased Nav1.8 resurgent currents in DRG neurons greatly prolong action potential duration and enhance repetitive firing. We propose that Nav1.8 open-channel block is a major factor in Nav1.8-associated pain mechanisms and that targeting the molecular mechanism underlying these unique resurgent currents represents a novel therapeutic target for the treatment of aberrant pain sensations.
Collapse
|
164
|
Familial episodic limb pain in kindreds with novel Nav1.9 mutations. PLoS One 2018; 13:e0208516. [PMID: 30557356 PMCID: PMC6296736 DOI: 10.1371/journal.pone.0208516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
We previously performed genetic analysis in six unrelated families with infantile limb pain episodes, characterized by cold-induced deterioration and mitigation in adolescence, and reported two new mutations p.R222H/S in SCN11A responsible for these episodes. As no term described this syndrome (familial episodic pain: FEP) in Japanese, we named it as”小児四肢疼痛発作症”. In the current study, we recruited an additional 42 new unrelated Japanese FEP families, between March 2016 and March 2018, and identified a total of 11 mutations in SCN11A: p.R222H in seven families, and p.R225C, p.F814C, p.F1146S, or p.V1184A, in independent families. A founder mutation, SCN11A p.R222H was confirmed to be frequently observed in patients with FEP in the Tohoku region of Japan. We also identified two novel missense variants of SCN11A, p.F814C and p.F1146S. To evaluate the effects of these latter two mutations, we generated knock-in mouse models harboring p.F802C (F802C) and p.F1125S (F1125S), orthologues of the human p.F814C and p.F1146S, respectively. We then performed electrophysiological investigations using dorsal root ganglion neurons dissected from the 6–8 week-old mice. Dissected neurons of F802C and F1125S mice showed increased resting membrane potentials and firing frequency of the action potentials (APs) by high input–current stimulus compared with WT mice. Furthermore, the firing probability of evoked APs increased in low stimulus input in F1125S mice, whereas several AP parameters and current threshold did not differ significantly between either of the mutations and WT mice. These results suggest a higher level of excitability in the F802C or F1125S mice than in WT, and indicate that these novel mutations are gain of function mutations. It can be expected that a considerable number of potential patients with FEP may be the result of gain of function SCN11A mutations.
Collapse
|
165
|
|
166
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
167
|
Brown AD, Bagal SK, Blackwell P, Blakemore DC, Brown B, Bungay PJ, Corless M, Crawforth J, Fengas D, Fenwick DR, Gray V, Kemp M, Klute W, Malet Sanz L, Miller D, Murata Y, Payne CE, Skerratt S, Stevens EB, Warmus JS. The discovery and optimization of benzimidazoles as selective Na V1.8 blockers for the treatment of pain. Bioorg Med Chem 2018; 27:230-239. [PMID: 30538065 DOI: 10.1016/j.bmc.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 11/16/2022]
Abstract
The voltage gated sodium channel NaV1.8 has been postulated to play a key role in the transmission of pain signals. Core hopping from our previously reported phenylimidazole leads has allowed the identification of a novel series of benzimidazole NaV1.8 blockers. Subsequent optimization allowed the identification of compound 9, PF-06305591, as a potent, highly selective blocker with an excellent preclinical in vitro ADME and safety profile.
Collapse
Affiliation(s)
- Alan D Brown
- Pfizer Medicine Design, Pfizer Ltd., The Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Sharan K Bagal
- Pfizer Medicine Design, Pfizer Ltd., The Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Blackwell
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - David C Blakemore
- Pfizer Medicine Design, Groton Laboratories, Eastern Point Road, Groton, CT 06340, USA
| | - Bruce Brown
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Peter J Bungay
- Medicinal Sciences, Pfizer Ltd., The Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Martin Corless
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - James Crawforth
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - David Fengas
- Concept Life Sciences, Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9FF, UK
| | - David R Fenwick
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Victoria Gray
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Mark Kemp
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Wolfgang Klute
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Laia Malet Sanz
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Duncan Miller
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - Yoshihisa Murata
- Pfizer Medicinal Sciences, Pfizer Global R&D, Sandwich CT13 9FF, UK
| | - C Elizabeth Payne
- Medicinal Sciences, Pfizer Ltd., The Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Sarah Skerratt
- Pfizer Medicine Design, Pfizer Ltd., The Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Edward B Stevens
- Medicinal Sciences, Pfizer Ltd., The Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Joseph S Warmus
- Pfizer Medicine Design, Groton Laboratories, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
168
|
Luo P, Shao J, Jiao Y, Yu W, Rong W. CC chemokine ligand 2 (CCL2) enhances TTX-sensitive sodium channel activity of primary afferent neurons in the complete Freud adjuvant-induced inflammatory pain model. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1219-1226. [PMID: 30339176 DOI: 10.1093/abbs/gmy123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 11/14/2022] Open
Abstract
CC chemokine ligand 2 (CCL2) has been implicated in pathological pain, but the mechanism underlying the pronociceptive effect of CCL2 is not fully understood. Voltage-gated sodium (Nav) channels are important determinants of the excitability of sensory neurons. Hence we tested the hypothesis that CCL2 contributes to inflammatory pain via modulating Nav channel activity of primary afferent neurons. Chronic inflammatory pain was induced in rats by intraplantar injection of the complete Freud adjuvant (CFA) to one of the hind paws. Control rats received intraplantar injection of equal volume of saline. A significant increase of CCL2 mRNA and CCL2 receptor (CCR2) protein expression was detected in the ipsilateral dorsal root ganglion (DRG) in CFA-treated rats. Intraplantar injection of CCL2 protein in the control rats had minimal effect on the paw withdrawal threshold (PWT) in response to mechanical stimulation. However, in CFA-treated rats, intraplantar CCL2 led to an increase in pain responses. Patch-clamp recording of acutely dissociated DRG neurons revealed that CCL2 had minimum effect on the excitability of sensory neurons from control rats. However, CCL2 directly depolarized a large proportion of small to medium-sized sensory neurons from CFA-treated rats. In addition, CCL2 was found to enhance whole-cell TTX-sensitive sodium currents without significantly affecting the TTX-resistant sodium currents and the potassium currents. These results are in agreement with previous reports concerning the involvement of CCL2-CCR2 signaling in inflammatory hyperalgesia and further indicate that enhanced TTX-sensitive channel activity may partly underlie the pronociceptive effects of CCL2.
Collapse
Affiliation(s)
- Ping Luo
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiayun Shao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifang Rong
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
169
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
170
|
Sun S, Jia Q, Zenova AY, Wilson MS, Chowdhury S, Focken T, Li J, Decker S, Grimwood ME, Andrez JC, Hemeon I, Sheng T, Chen CA, White A, Hackos DH, Deng L, Bankar G, Khakh K, Chang E, Kwan R, Lin S, Nelkenbrecher K, Sellers BD, DiPasquale AG, Chang J, Pang J, Sojo L, Lindgren A, Waldbrook M, Xie Z, Young C, Johnson JP, Robinette CL, Cohen CJ, Safina BS, Sutherlin DP, Ortwine DF, Dehnhardt CM. Identification of Selective Acyl Sulfonamide–Cycloalkylether Inhibitors of the Voltage-Gated Sodium Channel (NaV) 1.7 with Potent Analgesic Activity. J Med Chem 2018; 62:908-927. [DOI: 10.1021/acs.jmedchem.8b01621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Alla Y. Zenova
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael S. Wilson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Thilo Focken
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Li
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Shannon Decker
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tao Sheng
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Chien-An Chen
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - Andy White
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - David H. Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Lunbin Deng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Benjamin D. Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Antonio G. DiPasquale
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jae Chang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jodie Pang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Luis Sojo
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - James P. Johnson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Brian S. Safina
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel P. Sutherlin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel F. Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Christoph M. Dehnhardt
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
171
|
MicroRNA-182 Alleviates Neuropathic Pain by Regulating Nav1.7 Following Spared Nerve Injury in Rats. Sci Rep 2018; 8:16750. [PMID: 30425258 PMCID: PMC6233159 DOI: 10.1038/s41598-018-34755-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023] Open
Abstract
The sodium channel 1.7 (Nav1.7), which is encoded by SCN9A gene, is involved in neuropathic pain. As crucial regulators of gene expression, many miRNAs have already gained importance in neuropathic pain, including miR-182, which is predicted to regulate the SCN9A gene. Nav1.7 expression in L4-L6 dorsal root ganglions (DRGs) can be up regulated by spared nerve injury (SNI), while miR-182 expression was down regulated following SNI model. Exploring the connection between Nav1.7 and miR-182 may facilitate the development of a better-targeted therapy. In the current study, direct pairing of miR-182 with the SCN9A gene was verified using a luciferase assay in vitro. Over-expression of miR-182 via microinjection of miR-182 agomir reversed the abnormal increase of Nav1.7 at both mRNA and protein level in L4-6 DRGs of SNI rats, and significantly attenuated the hypersensitivity to mechanical stimulus in the rats. In contrast, administration of miR-182 antagomir enhanced the Nav1.7 expression at both mRNA and protein level in L4-6 DRGs, companied with the generation of mechanical hypersensitivity in naïve rats. Collectively, we concluded that miR-182 can alleviate SNI- induced neuropathic pain through regulating Nav1.7 in rats.
Collapse
|
172
|
Salvatierra J, Diaz-Bustamante M, Meixiong J, Tierney E, Dong X, Bosmans F. A disease mutation reveals a role for NaV1.9 in acute itch. J Clin Invest 2018; 128:5434-5447. [PMID: 30395542 DOI: 10.1172/jci122481] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 02/02/2023] Open
Abstract
Itch (pruritis) and pain represent two distinct sensory modalities; yet both have evolved to alert us to potentially harmful external stimuli. Compared with pain, our understanding of itch is still nascent. Here, we report a new clinical case of debilitating itch and altered pain perception resulting from the heterozygous de novo p.L811P gain-of-function mutation in NaV1.9, a voltage-gated sodium (NaV) channel subtype that relays sensory information from the periphery to the spine. To investigate the role of NaV1.9 in itch, we developed a mouse line in which the channel is N-terminally tagged with a fluorescent protein, thereby enabling the reliable identification and biophysical characterization of NaV1.9-expressing neurons. We also assessed NaV1.9 involvement in itch by using a newly created NaV1.9-/- and NaV1.9L799P/WT mouse model. We found that NaV1.9 is expressed in a subset of nonmyelinated, nonpeptidergic small-diameter dorsal root ganglia (DRGs). In WT DRGs, but not those of NaV1.9-/- mice, pruritogens altered action potential parameters and NaV channel gating properties. Additionally, NaV1.9-/- mice exhibited a strong reduction in acute scratching behavior in response to pruritogens, whereas NaV1.9L799P/WT mice displayed increased spontaneous scratching. Altogether, our data suggest an important contribution of NaV1.9 to itch signaling.
Collapse
Affiliation(s)
| | | | | | | | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Bosmans
- Department of Physiology.,Solomon H. Snyder Department of Neuroscience.,Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
173
|
Han C, Themistocleous AC, Estacion M, Dib-Hajj FB, Blesneac I, Macala L, Fratter C, Bennett DL, Waxman SG, Dib-Hajj SD. The Novel Activity of Carbamazepine as an Activation Modulator Extends from Na V1.7 Mutations to the Na V1.8-S242T Mutant Channel from a Patient with Painful Diabetic Neuropathy. Mol Pharmacol 2018; 94:1256-1269. [PMID: 30135145 PMCID: PMC7501587 DOI: 10.1124/mol.118.113076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023] Open
Abstract
Neuropathic pain in patients carrying sodium channel gain-of-function mutations is generally refractory to pharmacotherapy. However, we have shown that pretreatment of cells with clinically achievable concentration of carbamazepine (CBZ; 30 μM) depolarizes the voltage dependence of activation in some NaV1.7 mutations such as S241T, a novel CBZ mode of action of this drug. CBZ reduces the excitability of dorsal root ganglion (DRG) neurons expressing NaV1.7-S241T mutant channels, and individuals carrying the S241T mutation respond to treatment with CBZ. Whether the novel activation-modulating activity of CBZ is specific to NaV1.7, and whether this pharmacogenomic approach can be extended to other sodium channel subtypes, are not known. We report here the novel NaV1.8-S242T mutation, which corresponds to the NaV1.7-S241T mutation, in a patient with neuropathic pain and diabetic peripheral neuropathy. Voltage-clamp recordings demonstrated hyperpolarized and accelerated activation of NaV1.8-S242T. Current-clamp recordings showed that NaV1.8-S242T channels render DRG neurons hyperexcitable. Structural modeling shows that despite a substantial difference in the primary amino acid sequence of NaV1.7 and NaV1.8, the S242 (NaV1.8) and S241 (NaV1.7) residues have similar position and orientation in the domain I S4-S5 linker of the channel. Pretreatment with a clinically achievable concentration of CBZ corrected the voltage dependence of activation of NaV1.8-S242T channels and reduced DRG neuron excitability as predicted from our pharmacogenomic model. These findings extend the novel activation modulation mode of action of CBZ to a second sodium channel subtype, NaV1.8.
Collapse
Affiliation(s)
- Chongyang Han
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Andreas C Themistocleous
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Mark Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Fadia B Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Iulia Blesneac
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Lawrence Macala
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Carl Fratter
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - David L Bennett
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| | - Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Center for restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut (C.H., M.E., F.B.D.-H., L.M., S.G.W., S.D.D.-H.); Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (A.C.T., I.B., D.L.B.); Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.C.T.); and Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom (C.F.)
| |
Collapse
|
174
|
Xie MX, Yang J, Pang RP, Zeng WA, Ouyang HD, Liu YQ, Liu XG. Bulleyaconitine A attenuates hyperexcitability of dorsal root ganglion neurons induced by spared nerve injury: The role of preferably blocking Nav1.7 and Nav1.3 channels. Mol Pain 2018; 14:1744806918778491. [PMID: 29783906 PMCID: PMC5967161 DOI: 10.1177/1744806918778491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Oral administration of Bulleyaconitine A, an extracted diterpenoid alkaloid from Aconitum bulleyanum plants, is effective for treating chronic pain in rats and in human patients, but the underlying mechanisms are poorly understood. Results As the hyperexcitability of dorsal root ganglion neurons resulting from the upregulation of voltage-gated sodium (Nav) channels has been proved critical for development of chronic pain, we tested the effects of Bulleyaconitine A on Nav channels in rat spared nerve injury model of neuropathic pain. We found that Bulleyaconitine A at 5 nM increased the threshold of action potentials and reduced the firing rate of dorsal root ganglion neurons in spared nerve injury rats but not in sham rats. Bulleyaconitine A preferably blocked tetrodotoxin-sensitive Nav channels over tetrodotoxin-resistant ones in dorsal root ganglion neurons of spared nerve injury rats. Bulleyaconitine A was more potent for blocking Nav1.3 and Nav1.7 than Nav1.8 in cell lines. The half maximal inhibitory concentration (IC50) values for resting Nav1.3, Nav1.7, and Nav1.8 were 995.6 ± 139.1 nM, 125.7 ± 18.6 nM, and 151.2 ± 15.4 μM, respectively, which were much higher than those for inactivated Nav1.3 (20.3 ± 3.4 pM), Nav1.7 (132.9 ± 25.5 pM), and Nav1.8 (18.0 ± 2.5 μM). The most profound use-dependent blocking effect of Bulleyaconitine A was observed on Nav1.7, less on Nav1.3, and least on Nav1.8 at IC50 concentrations. Bulleyaconitine A facilitated the inactivation of Nav channels in each subtype. Conclusions Preferably blocking tetrodotoxin-sensitive Nav1.7 and Nav1.3 in dorsal root ganglion neurons may contribute to Bulleyaconitine A’s antineuropathic pain effect.
Collapse
Affiliation(s)
- Man-Xiu Xie
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Yang
- 2 Department of Physiology, Pain Research Center, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, China
| | - Rui-Ping Pang
- 2 Department of Physiology, Pain Research Center, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, China.,3 Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong, China
| | - Wei-An Zeng
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han-Dong Ouyang
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan-Qing Liu
- 4 Department of Pain Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xian-Guo Liu
- 2 Department of Physiology, Pain Research Center, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, China.,3 Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong, China
| |
Collapse
|
175
|
Zhang Y, Peng D, Huang B, Yang Q, Zhang Q, Chen M, Rong M, Liu Z. Discovery of a Novel Na v1.7 Inhibitor From Cyriopagopus albostriatus Venom With Potent Analgesic Efficacy. Front Pharmacol 2018; 9:1158. [PMID: 30386239 PMCID: PMC6198068 DOI: 10.3389/fphar.2018.01158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 01/15/2023] Open
Abstract
Spider venoms contain a vast array of bioactive peptides targeting ion channels. A large number of peptides have high potency and selectivity toward sodium channels. Nav1.7 contributes to action potential generation and propagation and participates in pain signaling pathway. In this study, we describe the identification of μ-TRTX-Ca2a (Ca2a), a novel 35-residue peptide from the venom of Vietnam spider Cyriopagopus albostriatus (C. albostriatus) that potently inhibits Nav1.7 (IC50 = 98.1 ± 3.3 nM) with high selectivity against skeletal muscle isoform Nav1.4 (IC50 > 10 μM) and cardiac muscle isoform Nav1.5 (IC50 > 10 μM). Ca2a did not significantly alter the voltage-dependent activation or fast inactivation of Nav1.7, but it hyperpolarized the slow inactivation. Site-directed mutagenesis analysis indicated that Ca2a bound with Nav1.7 at the extracellular S3–S4 linker of domain II. Meanwhile, Ca2a dose-dependently attenuated pain behaviors in rodent models of formalin-induced paw licking, hot plate test, and acetic acid-induced writhing. This study indicates that Ca2a is a potential lead molecule for drug development of novel analgesics.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Biao Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
176
|
François-Moutal L, Dustrude ET, Wang Y, Brustovetsky T, Dorame A, Ju W, Moutal A, Perez-Miller S, Brustovetsky N, Gokhale V, Khanna M, Khanna R. Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 2018; 159:2115-2127. [PMID: 29847471 PMCID: PMC6150792 DOI: 10.1097/j.pain.0000000000001294] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Erik T. Dustrude
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Yue Wang
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angie Dorame
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Weina Ju
- Department of Neurology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
- Department of Pharmacology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Aubin Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Samantha Perez-Miller
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vijay Gokhale
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - May Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Rajesh Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| |
Collapse
|
177
|
Pike A, Flanagan NJ, Storer RI, Swain NA, Tseng E. The role of organic anion-transporting polypeptides and formulation in the clearance and distribution of a novel Na v
1.7 channel blocker. Biopharm Drug Dispos 2018; 39:388-393. [DOI: 10.1002/bdd.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Andy Pike
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - Neil J. Flanagan
- Pharmaceutical Sciences; Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - R. Ian Storer
- Worldwide Medicinal Chemistry Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - Nigel A. Swain
- Worldwide Medicinal Chemistry Pfizer Ltd; The Portway, Granta Park Cambridge UK
| | - Elaine Tseng
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Inc.; Groton CT USA
| |
Collapse
|
178
|
Li M, Wu Y, Zou B, Wang X, Li M, Yu H. Identification of WB4101, an α1-Adrenoceptor Antagonist, as a Sodium Channel Blocker. Mol Pharmacol 2018; 94:896-906. [PMID: 29884692 DOI: 10.1124/mol.117.111252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/31/2018] [Indexed: 02/14/2025] Open
Abstract
Sodium channels are important proteins in modulating neuronal membrane excitability. Genetic studies from patients and animals have indicated neuronal sodium channels play key roles in pain sensitization. We identified WB4101 (2-(2,6-Dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride), an antagonist of α1-adrenoceptor, as a Nav1.7 inhibitor from a screen. The present study characterized the effects of WB4101 on sodium channels. We demonstrated that WB4101 inhibited both Nav1.7 and Nav1.8 channels with similar levels of potency. The half-inhibition concentrations (IC50 values) of WB4101 were 11.6 ± 2.07 and 1.0 ± 0.07 µM for the resting and inactivated Nav1.7 channels, respectively, and 8.67 ± 1.31 and 0.91 ± 0.25 µM for the resting and inactivated Nav1.8 channels, respectively. WB4101 induced a hyperpolarizing shift in the voltage-dependent inactivation for both Nav1.7 (15 mV) and Nav1.8 (20 mV) channels. The IC50 values for the open-state sodium channel were 2.50 ± 1.16 µM for Nav1.7 and 1.1 ± 0.2 µM for Nav1.8, as determined by the block of persistent late currents in inactivation-deficient Nav1.7 and Nav1.8 channels, respectively. Consistent with the state-dependent block, the drug also displayed use-dependent inhibitory properties on both wild-type Nav1.7 and Nav1.8 channels, which were removed by the local anesthetic-insensitive mutations but still existed in the inactivation-deficient channels. Further, the state-dependent inhibition on sodium channels induced by WB4101 was demonstrated in dorsal root ganglion neurons. In conclusion, the present study identified WB4101 as a sodium channel blocker with an open-state-dependent property, which may contribute to WB4101's analgesic action.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (M.L., Y.W., X.W., H.Y.) and The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, Maryland (B.Z., M.L.)
| | | | | | | | - Min Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (M.L., Y.W., X.W., H.Y.) and The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, Maryland (B.Z., M.L.)
| | | |
Collapse
|
179
|
Haehner A, Hummel T, Heinritz W, Krueger S, Meinhardt M, Whitcroft KL, Sabatowski R, Gossrau G. Mutation in Nav
1.7 causes high olfactory sensitivity. Eur J Pain 2018; 22:1767-1773. [DOI: 10.1002/ejp.1272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- A. Haehner
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Germany
| | - T. Hummel
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Germany
| | - W. Heinritz
- ÜBAG for Human Genetics Oberelbe/Spree; Cottbus/Dresden Germany
| | - S. Krueger
- ÜBAG for Human Genetics Oberelbe/Spree; Cottbus/Dresden Germany
| | | | - K. L. Whitcroft
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Germany
- UCL Ear Institute; University College London; UK
- Centre for the Study of the Senses; School of Advanced Study; London UK
| | | | | |
Collapse
|
180
|
Infantile Epileptic Encephalopathy With Multiple Genetic Mutations: How Important are Variants of Undetermined Significance? Semin Pediatr Neurol 2018; 26:33-36. [PMID: 29961513 DOI: 10.1016/j.spen.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The importance of so called variants of undetermined significance in the development of Infantile Epileptic Encephalopathy is discussed and an illustrative case is presented.
Collapse
|
181
|
Liu Y, Liu Z, Wang Q, Wang Z, Zhang Y. HNTX-III Alleviates Inflammatory and Neuropathic Pain in Animal Models. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9729-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
182
|
Rastogi V, Singh D, Mazza JJ, Parajuli D, Yale SH. Flushing Disorders Associated with Gastrointestinal Symptoms: Part 2, Systemic Miscellaneous Conditions. Clin Med Res 2018; 16:29-36. [PMID: 29650526 PMCID: PMC6108508 DOI: 10.3121/cmr.2017.1379b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Flushing disorders with involvement of the gastrointestinal tract represent a heterogeneous group of conditions. In part 1 of this review series, neuroendocrine tumors (NET), mast cell activation disorders (MCAD), and hyperbasophilia were discussed. In this section we discuss the remaining flushing disorders which primarily or secondarily involve the gastrointestinal tract. This includes dumping syndrome, mesenteric traction syndrome, rosacea, hyperthyroidism and thyroid storm, anaphylaxis, panic disorders, paroxysmal extreme pain disorder, and food, alcohol and medications. With the exception of paroxysmal pain disorders, panic disorders and some medications, these disorders presents with dry flushing. A detailed and comprehensive family, social, medical and surgical history, as well as recognizing the presence of other systemic symptoms are important in distinguishing the different disease that cause flushing with gastrointestinal symptoms.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- University of Central Florida College of Medicine/HCA, Consortium Graduate Medical Education, North Florida, Regional Medical Center, 6500 W Newberry Rd, Gainesville, FL 32605
- University of Central Florida College of Medicine, 6850, Lake Nona Blvd, Orlando, FL 32827
| | - Devina Singh
- Feinstein Institute for Medical Research, 350 Community, Dr. Manhasset, NY 11030
| | - Joseph J Mazza
- Marshfield Clinic Research Institute, 1000 North Oak, Avenue, Marshfield, WI 54449
| | - Dipendra Parajuli
- University of Louisville, Department of Medicine, Gastroenterology, Hepatology and Nutrition. Director, Fellowship Training Program, Director, Medical Procedure Unit Louisville VAMC 401 East Chestnut Street, Louisville, KY 40202
| | - Steven H Yale
- University of Central Florida College of Medicine/HCA, Consortium Graduate Medical Education, North Florida, Regional Medical Center, 6500 W Newberry Rd, Gainesville, FL 32605.
- University of Central Florida College of Medicine, 6850, Lake Nona Blvd, Orlando, FL 32827
| |
Collapse
|
183
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
184
|
Co-expression of β Subunits with the Voltage-Gated Sodium Channel Na V1.7: the Importance of Subunit Association and Phosphorylation and Their Effects on Channel Pharmacology and Biophysics. J Mol Neurosci 2018; 65:154-166. [PMID: 29744740 DOI: 10.1007/s12031-018-1082-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
The voltage-gated sodium ion channel NaV1.7 is crucial in pain signaling. We examined how auxiliary β2 and β3 subunits and the phosphorylation state of the channel influence its biophysical properties and pharmacology. The human NaV1.7α subunit was co-expressed with either β2 or β3 subunits in HEK-293 cells. The β2 subunits and the NaV1.7α, however, were barely associated as evidenced by immunoprecipitation. Therefore, the β2 subunits did not change the biophysical properties of the channel. In contrast, β3 subunit was clearly associated with NaV1.7α. This subunit had a significant degree of glycosylation, and only the fully glycosylated β3 subunit was associated with the NaV1.7α. Electrophysiological characterisation revealed that the β3 subunit had small but consistent effects: a right-hand shift of the steady-state inactivation and faster recovery from inactivation. Furthermore, the β3 subunit reduced the susceptibility of NaV1.7α to several sodium channel blockers. In addition, we assessed the functional effect of NaV1.7α phosphorylation. Inhibition of kinase activity increased channel inactivation, while the blocking phosphatases produced the opposite effect. In conclusion, co-expression of β subunits with NaV1.7α, to better mimic the native channel properties, may be ineffective in cases when subunits are not associated, as shown in our experiments with β2. The β3 subunit significantly influences the function of NaV1.7α and, together with the phosphorylation of the channel, regulates its biophysical and pharmacological properties. These are important findings to take into account when considering the role of NaV1.7 channel in pain signaling.
Collapse
|
185
|
Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P, Jia Q, Sun S, Young C, Lin S, Goodchild SJ, Shuart NG, Chang E, Xie Z, Li B, Khakh K, Bankar G, Waldbrook M, Kwan R, Nelkenbrecher K, Karimi Tari P, Chahal N, Sojo L, Robinette CL, White AD, Chen CA, Zhang Y, Pang J, Chang JH, Hackos DH, Johnson JP, Cohen CJ, Ortwine DF, Sutherlin DP, Dehnhardt CM, Safina BS. Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3-a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J Med Chem 2018; 61:4810-4831. [DOI: 10.1021/acs.jmedchem.7b01826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Zenova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Christine Chabot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tao Sheng
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M. Decker
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael Wilson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shaoyi Sun
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Samuel J. Goodchild
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Noah G. Shuart
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Bowen Li
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Parisa Karimi Tari
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Navjot Chahal
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Luis Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Andrew D. White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Chien-An Chen
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Yi Zhang
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H. Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Daniel F. Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
186
|
Moyer BD, Murray JK, Ligutti J, Andrews K, Favreau P, Jordan JB, Lee JH, Liu D, Long J, Sham K, Shi L, Stöcklin R, Wu B, Yin R, Yu V, Zou A, Biswas K, Miranda LP. Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V. PLoS One 2018; 13:e0196791. [PMID: 29723257 PMCID: PMC5933747 DOI: 10.1371/journal.pone.0196791] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
Identification of voltage-gated sodium channel NaV1.7 inhibitors for chronic pain therapeutic development is an area of vigorous pursuit. In an effort to identify more potent leads compared to our previously reported GpTx-1 peptide series, electrophysiology screening of fractionated tarantula venom discovered the NaV1.7 inhibitory peptide JzTx-V from the Chinese earth tiger tarantula Chilobrachys jingzhao. The parent peptide displayed nominal selectivity over the skeletal muscle NaV1.4 channel. Attribute-based positional scan analoging identified a key Ile28Glu mutation that improved NaV1.4 selectivity over 100-fold, and further optimization yielded the potent and selective peptide leads AM-8145 and AM-0422. NMR analyses revealed that the Ile28Glu substitution changed peptide conformation, pointing to a structural rationale for the selectivity gains. AM-8145 and AM-0422 as well as GpTx-1 and HwTx-IV competed for ProTx-II binding in HEK293 cells expressing human NaV1.7, suggesting that these NaV1.7 inhibitory peptides interact with a similar binding site. AM-8145 potently blocked native tetrodotoxin-sensitive (TTX-S) channels in mouse dorsal root ganglia (DRG) neurons, exhibited 30- to 120-fold selectivity over other human TTX-S channels and exhibited over 1,000-fold selectivity over other human tetrodotoxin-resistant (TTX-R) channels. Leveraging NaV1.7-NaV1.5 chimeras containing various voltage-sensor and pore regions, AM-8145 mapped to the second voltage-sensor domain of NaV1.7. AM-0422, but not the inactive peptide analog AM-8374, dose-dependently blocked capsaicin-induced DRG neuron action potential firing using a multi-electrode array readout and mechanically-induced C-fiber spiking in a saphenous skin-nerve preparation. Collectively, AM-8145 and AM-0422 represent potent, new engineered NaV1.7 inhibitory peptides derived from the JzTx-V scaffold with improved NaV selectivity and biological activity in blocking action potential firing in both DRG neurons and C-fibers.
Collapse
Affiliation(s)
- Bryan D. Moyer
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
- * E-mail:
| | - Justin K. Murray
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Joseph Ligutti
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Kristin Andrews
- Molecular Engineering, Amgen Discovery Research, Cambridge, Massachusetts, United States of America
| | | | - John B. Jordan
- Discovery Attribute Sciences, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Josie H. Lee
- Neuroscience, Amgen Discovery Research, Cambridge, Massachusetts, United States of America
| | - Dong Liu
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Jason Long
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Kelvin Sham
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Licheng Shi
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Reto Stöcklin
- Atheris Laboratories, CH Bernex, Geneva, Switzerland
| | - Bin Wu
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Ruoyuan Yin
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Violeta Yu
- Neuroscience, Amgen Discovery Research, Cambridge, Massachusetts, United States of America
| | - Anruo Zou
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Kaustav Biswas
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Les P. Miranda
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| |
Collapse
|
187
|
Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 2018; 470:745-759. [PMID: 29484488 PMCID: PMC5945325 DOI: 10.1007/s00424-018-2120-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the neuron's response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full understanding of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their particular habitats or behavioral circumstances.
Collapse
Affiliation(s)
- Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
| |
Collapse
|
188
|
Zhang P, Bi RY, Gan YH. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation 2018; 15:117. [PMID: 29678208 PMCID: PMC5910598 DOI: 10.1186/s12974-018-1154-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background The proinflammatory cytokine interleukin-1β (IL-1β) drives pain by inducing the expression of inflammatory mediators; however, its ability to regulate sodium channel 1.7 (Nav1.7), a key driver of temporomandibular joint (TMJ) hypernociception, remains unknown. IL-1β induces cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). We previously showed that PGE2 upregulated trigeminal ganglionic Nav1.7 expression. Satellite glial cells (SGCs) involve in inflammatory pain through glial cytokines. Therefore, we explored here in the trigeminal ganglion (TG) whether IL-1β upregulated Nav1.7 expression and whether the IL-1β located in the SGCs upregulated Nav1.7 expression in the neurons contributing to TMJ inflammatory hypernociception. Methods We treated rat TG explants with IL-1β with or without inhibitors, including NS398 for COX-2, PF-04418948 for EP2, and H89 and PKI-(6-22)-amide for protein kinase A (PKA), or with adenylate cyclase agonist forskolin, and used real-time PCR, Western blot, and immunohistofluorescence to determine the expressions or locations of Nav1.7, COX-2, cAMP response element-binding protein (CREB) phosphorylation, and IL-1β. We used chromatin immunoprecipitation to examine CREB binding to the Nav1.7 promoter. Finally, we microinjected IL-1β into the TGs or injected complete Freund’s adjuvant into TMJs with or without previous microinjection of fluorocitrate, an inhibitor of SGCs activation, into the TGs, and evaluated nociception and gene expressions. Differences between groups were examined by one-way analysis of variance (ANOVA) or independent samples t test. Results IL-1β upregulated Nav1.7 mRNA and protein expressions in the TG explants, whereas NS398, PF-04418948, H89, or PKI-(6-22)-amide could all block this upregulation, and forskolin could also upregulate Nav1.7 mRNA and protein expressions. IL-1β enhanced CREB binding to the Nav1.7 promoter. Microinjection of IL-1β into the TGs or TMJ inflammation both induced hypernociception of TMJ region and correspondingly upregulated COX-2, phospho-CREB, and Nav1.7 expressions in the TGs. Moreover, microinjection of fluorocitrate into the TGs completely blocked TMJ inflammation-induced activation of SGCs and the upregulation of IL-1β and COX-2 in the SGCs, and phospho-CREB and Nav1.7 in the neurons and alleviated inflammation-induced TMJ hypernociception. Conclusions Glial IL-1β upregulated neuronal Nav1.7 expression via the crosstalk between signaling pathways of the glial IL-1β/COX-2/PGE2 and the neuronal EP2/PKA/CREB/Nav1.7 in TG contributing to TMJ inflammatory hypernociception.
Collapse
Affiliation(s)
- Peng Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
| | - Rui-Yun Bi
- The Third Dental Center, Peking University School and Hospital of Stomatology, 10 Huayuan Lu, Haidian District, Beijing, 100088, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.
| |
Collapse
|
189
|
Levine TD. Small Fiber Neuropathy: Disease Classification Beyond Pain and Burning. J Cent Nerv Syst Dis 2018; 10:1179573518771703. [PMID: 29706768 PMCID: PMC5912271 DOI: 10.1177/1179573518771703] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/27/2018] [Indexed: 01/12/2023] Open
Abstract
Small fiber neuropathy (SFN) has a poorly understood pathology, but patients would benefit from determination of clinical phenotypes that allows for better diagnosis and treatment planning. I propose that patients should be classified dependent on whether there is sodium channel dysfunction, classic neurologic symptoms only, widespread neuropathic pain, or autonomic symptoms. Patients with SFN can then be considered in light of their clinical phenotype, allowing for focus on subsets of patients who might have diagnosable conditions or be more prone to responding to a particular type of therapy that may not be efficacious in the broader patient population with SFN. There are several therapies currently available that can address the symptoms of SFN; however, to develop novel therapeutic strategies, it will be imperative to classify patients to understand and target the underlying pathology.
Collapse
Affiliation(s)
- Todd D Levine
- Honor Health Neurology Department, Phoenix Neurological Associates, Phoenix, AZ, USA
| |
Collapse
|
190
|
Zheng YM, Wang WF, Li YF, Yu Y, Gao ZB. Enhancing inactivation rather than reducing activation of Nav1.7 channels by a clinically effective analgesic CNV1014802. Acta Pharmacol Sin 2018; 39:587-596. [PMID: 29094728 PMCID: PMC5888685 DOI: 10.1038/aps.2017.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022]
Abstract
The Nav1.7 channel represents a promising target for pain relief. In the recent decades, a number of Nav1.7 channel inhibitors have been developed. According to the effects on channel kinetics, these inhibitors could be divided into two major classes: reducing activation or enhancing inactivation. To date, however, only several inhibitors have moved forward into phase 2 clinical trials and most of them display a less than ideal analgesic efficacy, thus intensifying the controversy regarding if an ideal candidate should preferentially affect the activation or inactivation state. In the present study, we investigated the action mechanisms of a recently clinically confirmed inhibitor CNV1014802 using both electrophysiology and site-directed mutagenesis. We found that CNV1014802 inhibited Nav1.7 channels through stabilizing a nonconductive inactivated state. When the cells expressing Nav1.7 channels were hold at 70 mV or 120 mV, the half maximal inhibitory concentration (IC50) values (with 95% confidence limits) were 1.77 (1.20-2.33) and 71.66 (46.85-96.48) μmol/L, respectively. This drug caused dramatic hyperpolarizing shift of channel inactivation but did not affect activation. Moreover, CNV1014802 accelerated the onset of inactivation and delayed the recovery from inactivation. Notably, application of CNV1014802 (30 μmol/L) could rescue the Nav1.7 mutations expressed in CHO cells that cause paroxysmal extreme pain disorder (PEPD), thereby restoring the impaired inactivation to those of the wild-type channel. Our study demonstrates that CNV1014802 enhances the inactivation but does not reduce the activation of Nav1.7 channels, suggesting that identifying inhibitors that preferentially affect inactivation is a promising approach for developing drugs targeting Nav1.7.
Collapse
Affiliation(s)
- Yue-ming Zheng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wan-fu Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan-fen Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yong Yu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-bing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
191
|
Thompson A, Infield DT, Smith AR, Smith GT, Ahern CA, Zakon HH. Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biol 2018; 16:e2004892. [PMID: 29584718 PMCID: PMC5870949 DOI: 10.1371/journal.pbio.2004892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/21/2018] [Indexed: 11/26/2022] Open
Abstract
Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle–specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene. The electrical properties of excitable cells, such as those in muscle and nervous tissue, were enabled in large part by the evolution of voltage-gated ion channel genes. The regulated conduction of ions through these channels results in the propagation of electrical signals, facilitating communication between cells. Here, we investigated how voltage-gated sodium (Nav) channels contributed to the evolution of a novel electric organ system in the Apteronotids—a lineage of weakly electric fish. This organ is developmentally derived from motor neurons and used for communication between individual fish, as well as for probing their nocturnal environment. We used transcriptomic data to show that the gene encoding a broadly conserved muscle-specific sodium channel was duplicated in an ancestral fish. One duplicated gene copy subsequently gained expression in the spinal cord, where the electric organ is located. Through evolutionary analysis and biophysical experiments, we demonstrate that sequence changes in this new sodium channel transformed its function to cause novel electrical properties that can facilitate spontaneous high-frequency action potentials. This study shows that duplicate genes can gain highly novel expression patterns and quickly adapt to contribute to the phenotypic evolution of novel organ systems.
Collapse
Affiliation(s)
- Ammon Thompson
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
- Department of Neuroscience, The University of Texas, Austin, Texas, United States of America
- * E-mail:
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam R. Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - G. Troy Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Harold H. Zakon
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
- Department of Neuroscience, The University of Texas, Austin, Texas, United States of America
| |
Collapse
|
192
|
Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 2018; 159:1465-1476. [DOI: 10.1097/j.pain.0000000000001227] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
193
|
Zhang P, Gan YH. Prostaglandin E 2 Upregulated Trigeminal Ganglionic Sodium Channel 1.7 Involving Temporomandibular Joint Inflammatory Pain in Rats. Inflammation 2018; 40:1102-1109. [PMID: 28349234 DOI: 10.1007/s10753-017-0552-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostaglandin E2 (PGE2) is a key proinflammatory mediator that contributes to inflammatory hyperalgesia. Voltage-gated sodium channel 1.7 (Nav1.7) plays an important role in inflammatory pain. However, the modulation of Nav1.7 in inflammatory pain remains poorly understood. We hypothesized that PGE2 might regulate Nav1.7 expression in inflammatory pain. We here showed that treatment of rat trigeminal ganglion (TG) explants with PGE2 significantly upregulated the mRNA and protein expressions of Nav1.7 through PGE2 receptor EP2. This finding was confirmed by studies on EP2-selective antagonist PF-04418948. We also demonstrated that Nav1.7 and COX-2 expressions, as well as PGE2 levels, were upregulated in the TG after induction of rats' temporomandibular joint (TMJ) inflammation. Correspondingly, hyperalgesia, as indicated by head withdrawal threshold, was observed. Moreover, TMJ inflammation-induced upregulation of Nav1.7 expression and PGE2 levels in the TG could be reversed by COX-2-selective inhibitor meloxicam given by oral gavage, and meanwhile, the hyperalgesia of inflamed TMJ was also mitigated. So we concluded that PGE2 upregulated trigeminal ganglionic Nav1.7 expression to contribute to TMJ inflammatory pain in rats. Our finding suggests that PGE2 was an important regulator of Nav1.7 in TMJ inflammatory pain, which may help increase understanding on the hyperalgesia of peripheral inflammation and develop a new strategy to address inflammatory pain.
Collapse
Affiliation(s)
- Peng Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.
| |
Collapse
|
194
|
Erickson A, Deiteren A, Harrington AM, Garcia‐Caraballo S, Castro J, Caldwell A, Grundy L, Brierley SM. Voltage-gated sodium channels: (Na V )igating the field to determine their contribution to visceral nociception. J Physiol 2018; 596:785-807. [PMID: 29318638 PMCID: PMC5830430 DOI: 10.1113/jp273461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV ) channel family have been identified, which induce either painful neuropathies, an insensitivity to pain, or alterations in smooth muscle function. The identification of these disorders, in addition to the recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical evidence to reveal how the nine NaV channel family members (NaV 1.1-NaV 1.9) contribute to abdominal visceral function in normal and disease states.
Collapse
Affiliation(s)
- Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Sonia Garcia‐Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| |
Collapse
|
195
|
Na V 1.7 as a Pharmacogenomic Target for Pain: Moving Toward Precision Medicine. Trends Pharmacol Sci 2018; 39:258-275. [DOI: 10.1016/j.tips.2017.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
|
196
|
Abstract
For the past three decades, the use of genomics to inform drug discovery and development pipelines has generated both excitement and scepticism. Although earlier efforts successfully identified some new drug targets, the overall clinical efficacy of developed drugs has remained unimpressive, owing in large part to the heterogeneous causes of disease. Recent technological and analytical advances in genomics, however, have now made it possible to rapidly identify and interpret the genetic variation underlying a single patient's disease, thereby providing a window into patient-specific mechanisms that cause or contribute to disease, which could ultimately enable the 'precise' targeting of these mechanisms. Here, we first examine and highlight the successes and limitations of the earlier phases of genomics in drug discovery and development. We then review the current major efforts in precision medicine and discuss the potential broader utility of mechanistically guided treatments going forward.
Collapse
Affiliation(s)
- Sarah A Dugger
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, 1408, 701 West 168th Street, New York, New York 10032, USA
- Department of Genetics & Development, Columbia University Medical Center, Hammer Health Sciences, 1602, 701 West 168th Street, New York, New York 10032, USA
| | - Adam Platt
- AstraZeneca Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, 1408, 701 West 168th Street, New York, New York 10032, USA
- Department of Genetics & Development, Columbia University Medical Center, Hammer Health Sciences, 1602, 701 West 168th Street, New York, New York 10032, USA
- AstraZeneca Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK
| |
Collapse
|
197
|
Zorina-Lichtenwalter K, Parisien M, Diatchenko L. Genetic studies of human neuropathic pain conditions: a review. Pain 2018; 159:583-594. [PMID: 29240606 PMCID: PMC5828382 DOI: 10.1097/j.pain.0000000000001099] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level.
Collapse
Affiliation(s)
| | - Marc Parisien
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
198
|
Wu Y, Ma H, Zhang F, Zhang C, Zou X, Cao Z. Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem Neurosci 2018; 9:187-197. [PMID: 29161016 DOI: 10.1021/acschemneuro.7b00406] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play critical roles in action potential generation and propagation. Nav channelopathy as well as pathological sensitization contribute to allodynia and hyperalgesia. Recent evidence has demonstrated the significant roles of Nav subtypes (Nav1.3, 1.7, 1.8, and 1.9) in nociceptive transduction, and therefore these Navs may represent attractive targets for analgesic drug discovery. Animal toxins are structurally diverse peptides that are highly potent yet selective on ion channel subtypes and therefore represent valuable probes to elucidate the structures, gating properties, and cellular functions of ion channels. In this review, we summarize recent advances on peptide toxins from animal venom that selectively target Nav1.3, 1.7, 1.8, and 1.9, along with their potential in analgesic drug discovery.
Collapse
Affiliation(s)
- Ying Wu
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohan Zou
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
199
|
Bang S, Yoo J, Gong X, Liu D, Han Q, Luo X, Chang W, Chen G, Im ST, Kim YH, Strong JA, Zhang MZ, Zhang JM, Lee SY, Ji RR. Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies. Neurosci Bull 2018; 34:22-41. [PMID: 29333591 PMCID: PMC5799132 DOI: 10.1007/s12264-018-0203-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
The voltage-gated Na+ channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na+ currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na+ currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na+ currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.
Collapse
Affiliation(s)
- Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Jiho Yoo
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Xingrui Gong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - Di Liu
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Qingjian Han
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Xin Luo
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Wonseok Chang
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
- Department of Physiology and Biophysics, College of Medicine, Eulji University, 143-5 Yongdu-Dong, Jung-Gu, Daejeon, 34824, Korea
| | - Gang Chen
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Sang-Taek Im
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA
| | - Ma-Zhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA.
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA.
| |
Collapse
|
200
|
Rubinstein M, Patowary A, Stanaway IB, McCord E, Nesbitt RR, Archer M, Scheuer T, Nickerson D, Raskind WH, Wijsman EM, Bernier R, Catterall WA, Brkanac Z. Association of rare missense variants in the second intracellular loop of Na V1.7 sodium channels with familial autism. Mol Psychiatry 2018; 23:231-239. [PMID: 27956748 PMCID: PMC5468514 DOI: 10.1038/mp.2016.222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder often accompanied by intellectual disability, language impairment and medical co-morbidities. The heritability of autism is high and multiple genes have been implicated as causal. However, most of these genes have been identified in de novo cases. To further the understanding of familial autism, we performed whole-exome sequencing on five families in which second- and third-degree relatives were affected. By focusing on novel and protein-altering variants, we identified a small set of candidate genes. Among these, a novel private missense C1143F variant in the second intracellular loop of the voltage-gated sodium channel NaV1.7, encoded by the SCN9A gene, was identified in one family. Through electrophysiological analysis, we show that NaV1.7C1143F exhibits partial loss-of-function effects, resulting in slower recovery from inactivation and decreased excitability in cultured cortical neurons. Furthermore, for the same intracellular loop of NaV1.7, we found an excess of rare variants in a case-control variant-burden study. Functional analysis of one of these variants, M932L/V991L, also demonstrated reduced firing in cortical neurons. However, although this variant is rare in Caucasians, it is frequent in Latino population, suggesting that genetic background can alter its effects on phenotype. Although the involvement of the SCN1A and SCN2A genes encoding NaV1.1 and NaV1.2 channels in de novo ASD has previously been demonstrated, our study indicates the involvement of inherited SCN9A variants and partial loss-of-function of NaV1.7 channels in the etiology of rare familial ASD.
Collapse
Affiliation(s)
- M Rubinstein
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - A Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - I B Stanaway
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - E McCord
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - R R Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - M Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - T Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - D Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - W H Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E M Wijsman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - R Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - W A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, USA,Department of Pharmacology, University of Washington, Seattle, WA 98195, USA E-mail:
| | - Z Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Psychiatry and Behavioral Science, University of Washington, 1959N.E. Pacific Street, Room BB1526, Seattle, WA 98195-6560, USA. E-mail:
| |
Collapse
|