151
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
152
|
Moreau AW, Kullmann DM. NMDA receptor-dependent function and plasticity in inhibitory circuits. Neuropharmacology 2013; 74:23-31. [DOI: 10.1016/j.neuropharm.2013.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/20/2013] [Accepted: 03/01/2013] [Indexed: 01/22/2023]
|
153
|
Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 2013; 79:308-21. [PMID: 23889935 DOI: 10.1016/j.neuron.2013.05.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 12/01/2022]
Abstract
The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the ultrastructure of inhibitory synapses and to count scaffold proteins and receptor binding sites. We observed a close correspondence between the spatial organization of gephyrin scaffolds and glycine receptors at spinal cord synapses. Endogenous gephyrin was clustered at densities of 5,000-10,000 molecules/μm(2). The stoichiometry between gephyrin molecules and receptor binding sites was approximately 1:1, consistent with a two-dimensional scaffold in which all gephyrin molecules can contribute to receptor binding. The competition of glycine and GABAA receptor complexes for synaptic binding sites highlights the potential of single-molecule imaging to quantify synaptic plasticity on the nanoscopic scale.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure ENS, 46 rue d'Ulm, Paris 75005, France
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 2013; 35:185-95. [PMID: 24120048 DOI: 10.1016/j.biomaterials.2013.09.077] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022]
Abstract
Regeneration of neural tissues will require regrowth of axons lost due to trauma or degeneration to reestablish neuronal connectivity. One approach toward this goal is to provide directional cues to neurons that can promote and guide neurite growth. Our laboratory previously reported the formation of aligned monodomain gels of peptide amphiphile (PA) nanofibers over macroscopic length scales. In this work, we modified these aligned scaffolds specifically to support neural cell growth and function. This was achieved by displaying extracellular matrix (ECM) derived bioactive peptide epitopes on the surface of aligned nanofibers of the monodomain gel. Presentation of IKVAV or RGDS epitopes enhanced the growth of neurites from neurons encapsulated in the scaffold, while the alignment guided these neurites along the direction of the nanofibers. After two weeks of culture in the scaffold, neurons displayed spontaneous electrical activity and established synaptic connections. Scaffolds encapsulating neural progenitor cells were formed in situ within the spinal cord and resulted in the growth of oriented processes in vivo. Moreover, dorsal root ganglion (DRG) cells demonstrated extensive migration inside the scaffold, with the direction of their movement guided by fiber orientation. The bioactive and macroscopically aligned scaffold investigated here and similar variants can potentially be tailored for use in neural tissue regeneration.
Collapse
|
155
|
|
156
|
Chaumont S, André C, Perrais D, Boué-Grabot E, Taly A, Garret M. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem 2013; 288:28254-65. [PMID: 23935098 DOI: 10.1074/jbc.m113.470807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.
Collapse
Affiliation(s)
- Severine Chaumont
- From the Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, F-33000 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
157
|
Deeb TZ, Nakamura Y, Frost GD, Davies PA, Moss SJ. Disrupted Cl(-) homeostasis contributes to reductions in the inhibitory efficacy of diazepam during hyperexcited states. Eur J Neurosci 2013; 38:2453-67. [PMID: 23627375 PMCID: PMC3735799 DOI: 10.1111/ejn.12241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 11/28/2022]
Abstract
The K(+) -Cl(-) cotransporter type 2 is the major Cl(-) extrusion mechanism in most adult neurons. This process in turn leads to Cl(-) influx upon activation of γ-aminobutyric acid type A (GABAA ) receptors and the canonical hyperpolarising inhibitory postsynaptic potential. Several neurological disorders are treated with drugs that target and enhance GABAA receptor signaling, including the commonly used benzodiazepine diazepam and the anesthetic propofol. Some of these disorders are also associated with deficits in GABAA signaling and become less sensitive to therapeutic drugs that target GABAA receptors. To date, it is unknown if alterations in the neuronal Cl(-) gradient affect the efficacies of diazepam and propofol. We therefore used the in vitro model of glutamate-induced hyperexcitability to test if alterations in the Cl(-) gradient affect the efficacy of GABAA modulators. We exclusively utilised the gramicidin perforated-patch-clamp configuration to preserve the endogenous Cl(-) gradient in rat neurons. Brief exposure to glutamate reduced the inhibitory efficacy of diazepam within 5 min, which was caused by the collapse of the Cl(-) gradient, and not due to reductions in GABAA receptor number. Unlike diazepam, propofol retained its efficacy by shunting the membrane conductance despite the glutamate-induced appearance of depolarising GABAA -mediated currents. Similarly, pharmacological inhibition of K(+) -Cl(-) cotransporter type 2 by furosemide disrupted Cl(-) homeostasis and reduced the efficacy of diazepam but not propofol. Collectively our results suggest that pathological hyperexcitable conditions could cause the rapid accumulation of intracellular Cl(-) and the appearance of depolarising GABAA -mediated currents that would decrease the efficacy of diazepam.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
158
|
Schuemann A, Klawiter A, Bonhoeffer T, Wierenga CJ. Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation. Front Neural Circuits 2013; 7:113. [PMID: 23805077 PMCID: PMC3693093 DOI: 10.3389/fncir.2013.00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/05/2013] [Indexed: 11/23/2022] Open
Abstract
Coordinated changes at excitatory and inhibitory synapses are essential for normal brain development and function. It is well established that excitatory neurons undergo structural changes, but our knowledge about inhibitory structural plasticity is rather scarce. Here we present a quantitative analysis of the dynamics of GABAergic boutons in the dendritic region of the hippocampal CA1 area using time-lapse two-photon imaging in organotypic hippocampal cultures from GAD65-GFP mice. We show that ~20% of inhibitory boutons are not stable. They are appearing, disappearing and reappearing at specific locations along the inhibitory axon and reflect immature or incomplete synapses. Furthermore, we observed that persistent boutons show large volume fluctuations over several hours, suggesting that presynaptic content of inhibitory synapses is not constant. Our data show that inhibitory boutons are highly dynamic structures and suggest that inhibitory axons are continuously probing potential locations for inhibitory synapse formation by redistributing presynaptic material along the axon. In addition, we found that neuronal activity affects the exploratory dynamics of inhibitory axons. Blocking network activity rapidly reduces the number of transient boutons, whereas enhancing activity reduces the number of persistent inhibitory boutons, possibly reflecting enhanced competition between boutons along the axon. The latter effect requires signaling through GABAA receptors. We propose that activity-dependent regulation of bouton dynamics contributes to inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Anne Schuemann
- Department Synapses, Plasticity, Circuits, Max Planck Institute of Neurobiology Martinsried, Germany
| | | | | | | |
Collapse
|
159
|
Giannone G, Mondin M, Grillo-Bosch D, Tessier B, Saint-Michel E, Czöndör K, Sainlos M, Choquet D, Thoumine O. Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep 2013; 3:1996-2007. [PMID: 23770246 DOI: 10.1016/j.celrep.2013.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/08/2013] [Accepted: 05/09/2013] [Indexed: 11/28/2022] Open
Abstract
Adhesion between neurexin-1β (Nrx1β) and neuroligin-1 (Nlg1) induces early recruitment of the postsynaptic density protein 95 (PSD-95) scaffold; however, the associated signaling mechanisms are unknown. To dissociate the effects of ligand binding and receptor multimerization, we compared conditions in which Nlg1 in neurons was bound to Nrx1β or nonactivating HA antibodies. Time-lapse imaging, fluorescence recovery after photobleaching, and single-particle tracking demonstrated that in addition to aggregating Nlg1, Nrx1β binding stimulates the interaction between Nlg1 and PSD-95. Phosphotyrosine immunoblots and pull-down of gephyrin by Nlg1 peptides in vitro showed that Nlg1 can be phosphorylated at a unique tyrosine (Y782), preventing gephyrin binding. Expression of Nlg1 point mutants in neurons indicated that Y782 phosphorylation controls the preferential binding of Nlg1 to PSD-95 versus gephyrin, and accordingly the formation of inhibitory and excitatory synapses. We propose that ligand-induced changes in the Nlg1 phosphotyrosine level control the balance between excitatory and inhibitory scaffold assembly during synapse formation and stabilization.
Collapse
Affiliation(s)
- Grégory Giannone
- University Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Yamanaka I, Miki M, Asakawa K, Kawakami K, Oda Y, Hirata H. Glycinergic transmission and postsynaptic activation of CaMKII are required for glycine receptor clusteringin vivo. Genes Cells 2013; 18:211-24. [DOI: 10.1111/gtc.12032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Iori Yamanaka
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya; 464-8602; Japan
| | - Mariko Miki
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya; 464-8602; Japan
| | | | | | - Yoichi Oda
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya; 464-8602; Japan
| | | |
Collapse
|
161
|
Suzuki KGN, Kasai RS, Fujiwara TK, Kusumi A. Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol 2013; 117:373-90. [PMID: 24143988 DOI: 10.1016/b978-0-12-408143-7.00020-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-molecule imaging is a powerful tool for the study of dynamic molecular interactions in living cell plasma membranes. Herein, we describe a single-molecule imaging microscopy technique that can be used to measure lifetimes and densities of receptor dimers and oligomers. This method can be performed using a total internal reflection fluorescent microscope equipped with one or two high-sensitivity cameras. For dual-color observation, two images obtained synchronously in different colors are spatially corrected and then overlaid. Receptors must be expressed at low density in cell plasma membranes because high-density expression (>2 molecules/μm(2)) creates difficulty for tracking individual fluorescent spots. In addition, the receptors should be labeled with highly photostable fluorophores at high efficiency because short photobleaching lifetimes and low labeling efficiency of receptors reduce the probability of detecting dimers and oligomers. In this chapter, we describe methods for observing and detecting colocalization of the individual fluorescent spots of receptors labeled with fluorophores via small tags and the estimation of true dimer and oligomer lifetimes after correction with photobleaching lifetimes of fluorophores.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan; National Centre for Biological Sciences (NCBS)/Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | | | | | | |
Collapse
|
162
|
Mercer AJ, Thoreson WB. Tracking quantum dot-tagged calcium channels at vertebrate photoreceptor synapses: retinal slices and dissociated cells. CURRENT PROTOCOLS IN NEUROSCIENCE 2013; Chapter 2:Unit 2.18. [PMID: 23315944 PMCID: PMC3707139 DOI: 10.1002/0471142301.ns0218s62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
At synapses in the central nervous system, precisely localized assemblies of presynaptic proteins, neurotransmitter-filled vesicles, and postsynaptic receptors are required to communicate messages between neurons. Our understanding of synaptic function has been significantly advanced using electrophysiological methods, but the dynamic spatial behavior and real-time organization of synapses remains poorly understood. In this unit, we describe a method for labeling individual presynaptic calcium channels with photostable quantum dots for single-particle tracking analysis. We have used this technique to examine the mobility of L-type calcium channels in the presynaptic membrane of rod and cone photoreceptors in the retina. These channels control release of glutamate-filled synaptic vesicles at the ribbon synapses in photoreceptor terminals. This technique offers the advantage of providing a real-time biophysical readout of ion channel mobility and can be manipulated by pharmacological or electrophysiological methods. For example, the combination of electrophysiological and single-particle tracking experiments has revealed that fusion of nearby vesicles influences calcium channel mobility and changes in channel mobility can influence release. These approaches can also be readily adapted to examine membrane proteins in other systems.
Collapse
Affiliation(s)
- Aaron J Mercer
- Departments of Molecular and Integrative Physiology, University Of Michigan, Ann Arbor, USA
| | | |
Collapse
|
163
|
Deeb TZ, Maguire J, Moss SJ. Possible alterations in GABAA receptor signaling that underlie benzodiazepine-resistant seizures. Epilepsia 2012; 53 Suppl 9:79-88. [PMID: 23216581 PMCID: PMC4402207 DOI: 10.1111/epi.12037] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Benzodiazepines have been used for decades as first-line treatment for status epilepticus (SE). For reasons that are not fully understood, the efficacy of benzodiazepines decreases with increasing duration of seizure activity. This often forces clinicians to resort to more drastic second- and third-line treatments that are not always successful. The antiseizure properties of benzodiazepines are mediated by γ-aminobutyric acid type A (GABA(A) ) receptors. Decades of research have focused on the failure of GABAergic inhibition after seizure onset as the likely cause of the development benzodiazepine resistance during SE. However, the details of the deficits in GABA(A) signaling are still largely unknown. Therefore, it is necessary to improve our understanding of the mechanisms of benzodiazepine resistance so that more effective strategies can be formulated. In this review we discuss evidence supporting the role of altered GABA(A) receptor function as the major underlying cause of benzodiazepine-resistant SE in both humans and animal models. We specifically address the prevailing hypothesis, which is based on changes in the number and subtypes of GABA(A) receptors, as well as the potential influence of perturbed chloride homeostasis in the mature brain.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
164
|
Chang JC, Kovtun O, Blakely RD, Rosenthal SJ. Labeling of neuronal receptors and transporters with quantum dots. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:605-19. [PMID: 22887823 PMCID: PMC3753009 DOI: 10.1002/wnan.1186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to efficiently visualize protein targets in cells is a fundamental goal in biological research. Recently, quantum dots (QDots) have emerged as a powerful class of fluorescent probes for labeling membrane proteins in living cells because of breakthrough advances in QDot surface chemistry and biofunctionalization strategies. This review discusses the increasing use of QDots for fluorescence imaging of neuronal receptors and transporters. The readers are briefly introduced to QDot structure, photophysical properties, and common synthetic routes toward the generation of water-soluble QDots. The following section highlights several reports of QDot application that seek to unravel molecular aspects of neuronal receptor and transporter regulation and trafficking. This article is closed with a prospectus of the future of derivatized QDots in neurobiological and pharmacological research.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
165
|
Lee J, Woo J, Favorov OV, Tommerdahl M, Lee CJ, Whitsel BL. Columnar distribution of activity dependent gabaergic depolarization in sensorimotor cortical neurons. Mol Brain 2012; 5:33. [PMID: 23006518 PMCID: PMC3520830 DOI: 10.1186/1756-6606-5-33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background GABA, the major inhibitory neurotransmitter in CNS, has been demonstrated to paradoxically produce excitation even in mature brain. However activity-dependent form of GABA excitation in cortical neurons has not been observed. Here we report that after an intense electrical stimulation adult cortical neurons displayed a transient GABA excitation that lasted for about 30s. Results Whole-cell patch recordings were performed to evaluate the effects of briefly applied GABA on pyramidal neurons in adult rodent sensorimotor cortical slice before and after 1 s, 20 Hz suprathreshold electrical stimulation of the junction between layer 6 and the underlying white matter (L6/WM stimulation). Immediately after L6/WM stimulation, GABA puffs produced neuronal depolarization in the center of the column-shaped region. However, both prior to or 30s after stimulation GABA puffs produced hyperpolarization of neurons. 2-photon imaging in neurons infected with adenovirus carrying a chloride sensor Clomeleon revealed that GABA induced depolarization is due to an increase in [Cl-]i after stimulation. To reveal the spatial extent of excitatory action of GABA, isoguvacine, a GABAA receptors agonist, was applied right after stimulation while monitoring the intracellular Ca2+ concentration in pyramidal neurons. Isoguvacine induced an increase in [Ca2+]i in pyramidal neurons especially in the center of the column but not in the peripheral regions of the column. The global pattern of the Ca2+ signal showed a column-shaped distribution along the stimulation site. Conclusion These results demonstrate that the well-known inhibitory transmitter GABA rapidly switches from hyperpolarization to depolarization upon synaptic activity in adult somatosensory cortical neurons.
Collapse
Affiliation(s)
- Jaekwang Lee
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, CB#7575, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
166
|
|
167
|
Vlachos A, Reddy-Alla S, Papadopoulos T, Deller T, Betz H. Homeostatic regulation of gephyrin scaffolds and synaptic strength at mature hippocampal GABAergic postsynapses. ACTA ACUST UNITED AC 2012; 23:2700-11. [PMID: 22918984 DOI: 10.1093/cercor/bhs260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gephyrin is a scaffolding protein important for the postsynaptic clustering of inhibitory neurotransmitter receptors. Here, we investigated the properties of gephyrin scaffolds at γ-aminobutyric acid- (GABA-)ergic synapses in organotypic entorhino-hippocampal cultures prepared from a transgenic mouse line, which expresses green fluorescent protein-tagged gephyrin under the control of the Thy1.2 promoter. Fluorescence recovery after photobleaching revealed a developmental stabilization of postsynaptic gephyrin clusters concomitant with an increase in cluster size and synaptic strength between 1 and 4 weeks in vitro. Prolonged treatment of the slice cultures with diazepam or a GABAA receptor antagonist disclosed a homeostatic regulation of both inhibitory synaptic strength and gephyrin cluster size and stability in 4-weeks-old cultures, whereas at 1 week in vitro, the same drug treatments modulated GABAergic postsynapse and gephyrin cluster properties following a Hebbian mode of synaptic plasticity. Our data are consistent with a model in which the postnatal maturation of the hippocampal network endows CA1 pyramidal neurons with the ability to homeostatically adjust the strength of their inhibitory postsynapses to afferent GABAergic drive by regulating gephyrin scaffold properties.
Collapse
Affiliation(s)
- Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, 60590 Frankfurt am Main, Germany and
| | | | | | | | | |
Collapse
|
168
|
Abstract
The flux of neurotransmitter receptors in and out of synapses depends on receptor interaction with scaffolding molecules. However, the crowd of transmembrane proteins and the rich cytoskeletal environment may constitute obstacles to the diffusion of receptors within the synapse. To address this question, we studied the membrane diffusion of the γ-aminobutyric acid type A receptor (GABAAR) subunits clustered (γ2) or not (α5) at inhibitory synapses in rat hippocampal dissociated neurons. Relative to the extrasynaptic region, γ2 and α5 showed reduced diffusion and increased confinement at both inhibitory and excitatory synapses but they dwelled for a short time at excitatory synapses. In contrast, γ2 was ∼3-fold more confined and dwelled ∼3-fold longer in inhibitory synapses than α5, indicating faster synaptic escape of α5. Furthermore, using a gephyrin dominant-negative approach, we showed that the increased residency time of γ2 at inhibitory synapses was due to receptor-scaffold interactions. As shown for GABAAR, the excitatory glutamate receptor 2 subunit (GluA2) of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) had lower mobility in both excitatory and inhibitory synapses but a higher residency time at excitatory synapses. Therefore barriers impose significant diffusion constraints onto receptors at synapses where they accumulate or not. Our data further reveal that the confinement and the dwell time but not the diffusion coefficient report on the synapse specific sorting, trapping and accumulation of receptors.
Collapse
|
169
|
Fritschy JM, Panzanelli P, Tyagarajan SK. Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 2012; 69:2485-99. [PMID: 22314501 PMCID: PMC11115047 DOI: 10.1007/s00018-012-0926-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 01/07/2023]
Abstract
Knowledge of the functional organization of the GABAergic system, the main inhibitory neurotransmitter system, in the CNS has increased remarkably in recent years. In particular, substantial progress has been made in elucidating the molecular mechanisms underlying the formation and plasticity of GABAergic synapses. Evidence available ascribes a key role to the cytoplasmic protein gephyrin to form a postsynaptic scaffold anchoring GABA(A) receptors along with other transmembrane proteins and signaling molecules in the postsynaptic density. However, the mechanisms of gephyrin scaffolding remain elusive, notably because gephyrin can auto-aggregate spontaneously and lacks PDZ protein interaction domains found in a majority of scaffolding proteins. In addition, the structural diversity of GABA(A) receptors, which are pentameric channels encoded by a large family of subunits, has been largely overlooked in these studies. Finally, the role of the dystrophin-glycoprotein complex, present in a subset of GABAergic synapses in cortical structures, remains ill-defined. In this review, we discuss recent results derived mainly from the analysis of mutant mice lacking a specific GABA(A) receptor subtype or a core protein of the GABAergic postsynaptic density (neuroligin-2, collybistin), highlighting the molecular diversity of GABAergic synapses and its relevance for brain plasticity and function. In addition, we discuss the contribution of the dystrophin-glycoprotein complex to the molecular and functional heterogeneity of GABAergic synapses.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
170
|
Tanaka H, Miyazaki N, Matoba K, Nogi T, Iwasaki K, Takagi J. Higher-Order Architecture of Cell Adhesion Mediated by Polymorphic Synaptic Adhesion Molecules Neurexin and Neuroligin. Cell Rep 2012; 2:101-10. [DOI: 10.1016/j.celrep.2012.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022] Open
|
171
|
Mikasova L, De Rossi P, Bouchet D, Georges F, Rogemond V, Didelot A, Meissirel C, Honnorat J, Groc L. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. ACTA ACUST UNITED AC 2012; 135:1606-21. [PMID: 22544902 DOI: 10.1093/brain/aws092] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Autoimmune synaptic encephalitides are recently described human brain diseases leading to psychiatric and neurological syndromes through inappropriate brain-autoantibody interactions. The most frequent synaptic autoimmune encephalitis is associated with autoantibodies against extracellular domains of the glutamatergic N-methyl-d-aspartate receptor, with patients developing psychotic and neurological symptoms in an autoantibody titre-dependent manner. Although N-methyl-d-aspartate receptors are the primary target of these antibodies, the cellular and molecular pathway(s) that rapidly lead to N-methyl-d-aspartate receptor dysfunction remain poorly understood. In this report, we used a unique combination of high-resolution nanoparticle and bulk live imaging approaches to demonstrate that anti-N-methyl-d-aspartate receptor autoantibodies from patients with encephalitis strongly alter, in a time-dependent manner, the surface content and trafficking of GluN2-NMDA receptor subtypes. Autoantibodies laterally displaced surface GluN2A-NMDA receptors out of synapses and completely blocked synaptic plasticity. This loss of extrasynaptic and synaptic N-methyl-d-aspartate receptor is prevented both in vitro and in vivo, by the activation of EPHB2 receptors. Indeed, the anti-N-methyl-d-aspartate receptor autoantibodies weaken the interaction between the extracellular domains of the N-methyl-d-aspartate and Ephrin-B2 receptors. Together, we demonstrate that the anti-N-methyl-d-aspartate receptor autoantibodies from patients with encephalitis alter the dynamic retention of synaptic N-methyl-d-aspartate receptor through extracellular domain-dependent mechanism(s), shedding new light on the pathology of the neurological and psychiatric disorders observed in these patients and opening possible new therapeutic strategies.
Collapse
Affiliation(s)
- Lenka Mikasova
- CNRS, Interdisciplinary Institute for Neurosciences UMR 5297, Universite de Bordeaux, 146 rue Leo Saignat, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Tretter V, Mukherjee J, Maric HM, Schindelin H, Sieghart W, Moss SJ. Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 2012; 6:23. [PMID: 22615685 PMCID: PMC3351755 DOI: 10.3389/fncel.2012.00023] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/23/2012] [Indexed: 11/17/2022] Open
Abstract
GABAA receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors is the 93 kDa protein gephyrin that forms oligomeric superstructures beneath the synaptic area. Gephyrin has long been known to be directly associated with glycine receptor β subunits that mediate synaptic inhibition in the spinal cord. Recently, synaptic GABAA receptors have also been shown to directly interact with gephyrin and interaction sites have been identified and mapped within the intracellular loops of the GABAA receptor α1, α2, and α3 subunits. Gephyrin-binding to GABAA receptors seems to be at least one order of magnitude weaker than to glycine receptors (GlyRs) and most probably is regulated by phosphorylation. Gephyrin not only has a structural function at synaptic sites, but also plays a crucial role in synaptic dynamics and is a platform for multiple protein-protein interactions, bringing receptors, cytoskeletal proteins and downstream signaling proteins into close spatial proximity.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna Vienna, Austria
| | | | | | | | | | | |
Collapse
|
173
|
Niwa F, Bannai H, Arizono M, Fukatsu K, Triller A, Mikoshiba K. Gephyrin-independent GABA(A)R mobility and clustering during plasticity. PLoS One 2012; 7:e36148. [PMID: 22563445 PMCID: PMC3338568 DOI: 10.1371/journal.pone.0036148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/27/2012] [Indexed: 11/18/2022] Open
Abstract
The activity-dependent modulation of GABA-A receptor (GABA(A)R) clustering at synapses controls inhibitory synaptic transmission. Several lines of evidence suggest that gephyrin, an inhibitory synaptic scaffold protein, is a critical factor in the regulation of GABA(A)R clustering during inhibitory synaptic plasticity induced by neuronal excitation. In this study, we tested this hypothesis by studying relative gephyrin dynamics and GABA(A)R declustering during excitatory activity. Surprisingly, we found that gephyrin dispersal is not essential for GABA(A)R declustering during excitatory activity. In cultured hippocampal neurons, quantitative immunocytochemistry showed that the dispersal of synaptic GABA(A)Rs accompanied with neuronal excitation evoked by 4-aminopyridine (4AP) or N-methyl-D-aspartic acid (NMDA) precedes that of gephyrin. Single-particle tracking of quantum dot labeled-GABA(A)Rs revealed that excitation-induced enhancement of GABA(A)R lateral mobility also occurred before the shrinkage of gephyrin clusters. Physical inhibition of GABA(A)R lateral diffusion on the cell surface and inhibition of a Ca(2+) dependent phosphatase, calcineurin, completely eliminated the 4AP-induced decrease in gephyrin cluster size, but not the NMDA-induced decrease in cluster size, suggesting the existence of two different mechanisms of gephyrin declustering during activity-dependent plasticity, a GABA(A)R-dependent regulatory mechanism and a GABA(A)R-independent one. Our results also indicate that GABA(A)R mobility and clustering after sustained excitatory activity is independent of gephyrin.
Collapse
Affiliation(s)
- Fumihiro Niwa
- Laboratory for Developmental Neurobiology, Brain Science Institute (BSI), RIKEN, Saitama, Japan
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroko Bannai
- Laboratory for Developmental Neurobiology, Brain Science Institute (BSI), RIKEN, Saitama, Japan
- * E-mail:
| | - Misa Arizono
- Laboratory for Developmental Neurobiology, Brain Science Institute (BSI), RIKEN, Saitama, Japan
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazumi Fukatsu
- Laboratory for Developmental Neurobiology, Brain Science Institute (BSI), RIKEN, Saitama, Japan
| | - Antoine Triller
- Institut de Biologie de l'École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, Paris, France
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute (BSI), RIKEN, Saitama, Japan
| |
Collapse
|
174
|
Activity-dependent phosphorylation of GABAA receptors regulates receptor insertion and tonic current. EMBO J 2012; 31:2937-51. [PMID: 22531784 DOI: 10.1038/emboj.2012.109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/22/2012] [Indexed: 01/21/2023] Open
Abstract
The expression of GABA(A) receptors and the efficacy of GABAergic neurotransmission are subject to adaptive compensatory regulation as a result of changes in neuronal activity. Here, we show that activation of L-type voltage-gated Ca(2+) channels (VGCCs) leads to Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of S383 within the β3 subunit of the GABA(A) receptor. Consequently, this results in rapid insertion of GABA(A) receptors at the cell surface and enhanced tonic current. Furthermore, we demonstrate that acute changes in neuronal activity leads to the rapid modulation of cell surface numbers of GABA(A) receptors and tonic current, which are critically dependent on Ca(2+) influx through L-type VGCCs and CaMKII phosphorylation of β3S383. These data provide a mechanistic link between activity-dependent changes in Ca(2+) influx through L-type channels and the rapid modulation of GABA(A) receptor cell surface numbers and tonic current, suggesting a homeostatic pathway involved in regulating neuronal intrinsic excitability in response to changes in activity.
Collapse
|
175
|
Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding motif within the GABA(A) receptor β3 subunit. J Neurosci 2012; 32:2485-98. [PMID: 22396422 DOI: 10.1523/jneurosci.1622-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The strength of synaptic inhibition can be controlled by the stability and endocytosis of surface and synaptic GABA(A) receptors (GABA(A)Rs), but the surface receptor dynamics that underpin GABA(A)R recruitment to dendritic endocytic zones (EZs) have not been investigated. Stabilization of GABA(A)Rs at EZs is likely to be regulated by receptor interactions with the clathrin-adaptor AP2, but the molecular determinants of these associations remain poorly understood. Moreover, although surface GABA(A)R downmodulation plays a key role in pathological disinhibition in conditions such as ischemia and epilepsy, whether this occurs in an AP2-dependent manner also remains unclear. Here we report the characterization of a novel motif containing three arginine residues (405RRR407) within the GABA(A)R β3-subunit intracellular domain (ICD), responsible for the interaction with AP2 and GABA(A)R internalization. When this motif is disrupted, binding to AP2 is abolished in vitro and in rat brain. Using single-particle tracking, we reveal that surface β3-subunit-containing GABA(A)Rs exhibit highly confined behavior at EZs, which is dependent on AP2 interactions via this motif. Reduced stabilization of mutant GABA(A)Rs at EZs correlates with their reduced endocytosis and increased steady-state levels at synapses. By imaging wild-type or mutant super-ecliptic pHluorin-tagged GABA(A)Rs in neurons, we also show that, under conditions of oxygen-glucose deprivation to mimic cerebral ischemia, GABA(A)Rs are depleted from synapses in dendrites, depending on the 405RRR407 motif. Thus, AP2 binding to an RRR motif in the GABA(A)R β3-subunit ICD regulates GABA(A)R residency time at EZs, steady-state synaptic receptor levels, and pathological loss of GABA(A)Rs from synapses during simulated ischemia.
Collapse
|
176
|
Arizono M, Bannai H, Nakamura K, Niwa F, Enomoto M, Matsu-Ura T, Miyamoto A, Sherwood MW, Nakamura T, Mikoshiba K. Receptor-selective diffusion barrier enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Sci Signal 2012; 5:ra27. [PMID: 22472649 DOI: 10.1126/scisignal.2002498] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabotropic glutamate receptor (mGluR)-dependent calcium ion (Ca²+) signaling in astrocytic processes regulates synaptic transmission and local blood flow essential for brain function. However, because of difficulties in imaging astrocytic processes, the subcellular spatial organization of mGluR-dependent Ca²+ signaling is not well characterized and its regulatory mechanism remains unclear. Using genetically encoded Ca²+ indicators, we showed that despite global stimulation by an mGluR agonist, astrocyte processes intrinsically exhibited a marked enrichment of Ca²+ responses. Immunocytochemistry indicated that these polarized Ca²+ responses could be attributed to increased density of surface mGluR5 on processes relative to the soma. Single-particle tracking of surface mGluR5 dynamics revealed a membrane barrier that blocked the movement of mGluR5 between the processes and the soma. Overexpression of mGluR or expression of its carboxyl terminus enabled diffusion of mGluR5 between the soma and the processes, disrupting the polarization of mGluR5 and of mGluR-dependent Ca²+ signaling. Together, our results demonstrate an mGluR5-selective diffusion barrier between processes and soma that compartmentalized mGluR Ca²+ signaling in astrocytes and may allow control of synaptic and vascular activity in specific subcellular domains.
Collapse
Affiliation(s)
- Misa Arizono
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Sarto-Jackson I, Milenkovic I, Smalla KH, Gundelfinger ED, Kaehne T, Herrera-Molina R, Thomas S, Kiebler MA, Sieghart W. The cell adhesion molecule neuroplastin-65 is a novel interaction partner of γ-aminobutyric acid type A receptors. J Biol Chem 2012; 287:14201-14. [PMID: 22389504 DOI: 10.1074/jbc.m111.293175] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
γ-Aminobutyric acid type A (GABA(A)) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABA(A) receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABA(A) receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABA(A) receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABA(A) receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABA(A) receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABA(A) receptor subtypes and might contribute to anchoring and/or confining GABA(A) receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Center for Brain Research, Department of Biochemistry and Molecular Biology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, Kaang BK, Cho K, Wang YT, Collingridge GL. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci 2012; 5:13. [PMID: 22363262 PMCID: PMC3279748 DOI: 10.3389/fnmol.2012.00013] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarize its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.
Collapse
|
179
|
Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABA(A) receptors. J Neurosci 2012; 31:17701-12. [PMID: 22131430 DOI: 10.1523/jneurosci.4476-11.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mechanisms of homeostatic plasticity scale synaptic strength according to changes in overall activity to maintain stability in neuronal network function. This study investigated mechanisms of GABAergic homeostatic plasticity. Cultured neurons exposed to depolarizing conditions reacted with an increased firing rate (high activity, HA) that normalized to control levels after 48 h of treatment. HA-treated hippocampal neurons displayed an attenuated response to further changes in depolarization, and the firing rate in HA-treated neurons increased above normalized levels when inhibition was partially reduced back to the level of control neurons. The amplitude and frequency of mIPSCs in hippocampal neurons increased after 48 h of HA, and increases in the size of GABA(A) receptor γ2 subunit clusters and presynaptic GAD-65 puncta were observed. Investigation of the time course of inhibitory homeostasis suggested that accumulation of GABA(A) receptors preceded presynaptic increases in GAD-65 puncta size. Interestingly, the size of GABA(A) receptor γ2 subunit clusters that colocalized with GAD-65 were larger at 12 h, coinciding in time with the increase found in mIPSC amplitude. The rate of internalization of GABA(A) receptors, a process involved in regulating the surface expression of inhibitory receptors, was slower in HA-treated neurons. These data also suggest that increased receptor expression was consolidated with presynaptic changes. HA induced an increase in postsynaptic GABA(A) receptors through a decrease in the rate of internalization, leading to larger synaptically localized receptor clusters that increased GABAergic synaptic strength and contributed to the homeostatic stabilization of neuronal firing rate.
Collapse
|
180
|
Abstract
At the synapse, vesicles stably dock at the active zone. However, in cellular membranes, proteins undergo a diffusive motion. It is not known how the motion of membrane proteins involved in vesicle exocytosis is compatible with both vesicle docking and the dynamic remodeling of the plasma membrane imposed by cycles of exocytosis and endocytosis. To address this question, we studied the motion of the presynaptic membrane protein syntaxin1A at both the population and single-molecule levels in primary cultures of rat spinal cord neurons. Syntaxin1A was rapidly exchanged between synaptic and extrasynaptic regions. Changes in syntaxin1A mobility were associated with interactions related to the formation of the exocytotic complex. Finally, we propose a reaction-diffusion model reconciling the observed diffusive properties of syntaxin at the population level and at the molecular level. This work allows us to describe the diffusive behavior and kinetics of interactions between syntaxin1A and its partners that lead to its transient stabilization at the synapse.
Collapse
|
181
|
Kuriu T, Yanagawa Y, Konishi S. Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers. Mol Cell Neurosci 2012; 49:184-95. [DOI: 10.1016/j.mcn.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/17/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022] Open
|
182
|
Heine M. Surface traffic in synaptic membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:197-219. [PMID: 22351057 DOI: 10.1007/978-3-7091-0932-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The precision of signal transmission in chemical synapses is highly dependent on the structural alignment between pre- and postsynaptic components. The thermal agitation of transmembrane signaling molecules by surrounding lipid molecules and activity-driven changes in the local protein interaction affinities indicate a dynamic molecular traffic of molecules within synapses. The observation of local protein surface dynamics starts to be a useful tool to determine the contribution of intracellular and extracellular structures in organizing a plastic synapse. Local rearrangements by lateral diffusion in the synaptic and perisynaptic membrane induce fast density changes of signaling molecules and enable the synapse to change efficacy in short time scales. The degree of lateral mobility is restricted by many passive and active interactions inside and outside the membrane. AMPAR at the glutamatergic synapse are the best explored receptors in this respect and reviewed here as an example molecule. In addition, transsynaptic adhesion molecule complexes also appear highly dynamically in the synapse and do further support the importance of local surface traffic in subcellular compartments like synapses.
Collapse
Affiliation(s)
- Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| |
Collapse
|
183
|
The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin. J Neurosci 2011; 31:14677-87. [PMID: 21994384 DOI: 10.1523/jneurosci.2001-11.2011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of fast synaptic inhibition in the brain is mediated by benzodiazepine-sensitive α1-subunit-containing GABA type A receptors (GABA(A)Rs); however, our knowledge of the mechanisms neurons use to regulate their synaptic accumulation is rudimentary. Using immunoprecipitation, we demonstrate that GABA(A)Rs and gephyrin are intimately associated at inhibitory synapses in cultured rat neurons. In vitro we reveal that the E-domain of gephyrin directly binds to the α1 subunit with an affinity of ∼20 μm, mediated by residues 360-375 within the intracellular domain of this receptor subunit. Mutating residues 360-375 decreases both the accumulation of α1-containing GABA(A)Rs at gephyrin-positive inhibitory synapses in hippocampal neurons and the amplitude of mIPSCs. We also demonstrate that the affinity of gephyrin for the α1 subunit is modulated by Thr375, a putative phosphorylation site. Mutation of Thr375 to a phosphomimetic, negatively charged amino acid decreases both the affinity of the α1 subunit for gephyrin, and therefore receptor accumulation at synapses, and the amplitude of mIPSCs. Finally, single-particle tracking reveals that gephyrin reduces the diffusion of α1-subunit-containing GABA(A)Rs specifically at inhibitory synapses, thereby increasing their confinement at these structures. Our results suggest that the direct binding of gephyrin to residues 360-375 of the α1 subunit and its modulation are likely to be important determinants for the stabilization of GABA(A)Rs at synaptic sites, thereby modulating the strength of synaptic inhibition.
Collapse
|
184
|
Hines RM, Davies PA, Moss SJ, Maguire J. Functional regulation of GABAA receptors in nervous system pathologies. Curr Opin Neurobiol 2011; 22:552-8. [PMID: 22036769 DOI: 10.1016/j.conb.2011.10.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 01/01/2023]
Abstract
Inhibitory neurotransmission is primarily governed by γ-aminobutyric acid (GABA) type A receptors (GABAARs). GABAARs are heteropentameric ligand-gated channels formed by the combination of 19 possible subunits. GABAAR subunits are subject to multiple types of regulation, impacting the localization, properties, and function of assembled receptors. GABAARs mediate both phasic (synaptic) and tonic (extrasynaptic) inhibition. While the regulatory mechanisms governing synaptic receptors have begun to be defined, little is known about the regulation of extrasynaptic receptors. We examine the contributions of GABAARs to the pathogenesis of neurodevelopmental disorders, schizophrenia, depression, epilepsy, and stroke, with particular focus on extrasynaptic GABAARs. We suggest that extrasynaptic GABAARs are attractive targets for the treatment of these disorders, and that research should be focused on delineating the mechanisms that regulate extrasynaptic GABAARs, promoting new therapeutic approaches.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
185
|
Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2011; 21:422-33. [PMID: 20087886 DOI: 10.1002/hipo.20758] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In major depression, one line of research indicates that a dysfunctional GABAergic inhibitory system is linked to the appearance of depressive symptoms. However, as the mechanistic details of such GABAergic deficit are largely unknown, we undertook a functional investigation of the GABAergic system in the rat chronic mild stress model of depression. Adult rats were exposed to an eight-week long stress protocol leading to anhedonic-like behavior. In hippocampal brain slices, phasic, and tonic GABA(A) receptor-mediated currents in dentate gyrus granule cells were examined using patch-clamp recordings. In granule cells, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was reduced to 41% in anhedonic-like rats, which was associated with a reduced probability of evoked GABA release. Using immunohistochemical analysis, there was no change in the number of parvalbumin-positive interneurons in the dentate gyrus. Notably, we observed a 60% increase in THIP-activated tonic GABA(A) mediated current in anhedonic-like rats, suggesting an upregulation of extrasynaptic GABA(A) receptors. Finally, five weeks treatment with the antidepressant escitalopram partially reversed the sIPSCs frequency. In summary, we have revealed a hippocampal dysfunction in the GABAergic system in the chronic mild stress model of depression in rats, caused by a reduction in action potential-dependent GABA release. Since the function of the GABAergic system was improved by antidepressant treatment, in parallel with behavioral read outs, it suggests a role of the GABAergic system in the pathophysiology of depression.
Collapse
Affiliation(s)
- Mai Marie Holm
- Department of Physiology and Biophysics, Synaptic Physiology Laboratory, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
186
|
Bouthour W, Leroy F, Emmanuelli C, Carnaud M, Dahan M, Poncer JC, Lévi S. A human mutation in Gabrg2 associated with generalized epilepsy alters the membrane dynamics of GABAA receptors. Cereb Cortex 2011; 22:1542-53. [PMID: 21908847 DOI: 10.1093/cercor/bhr225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neuronal activity modulates the membrane diffusion of postsynaptic γ-aminobutyric acid (GABA)(A) receptors (GABA(A)Rs), thereby regulating the efficacy of GABAergic synapses. The K289M mutation in GABA(A)Rs subunit γ2 has been associated with the generalized epilepsy with febrile seizures plus (GEFS+) syndrome. This mutation accelerates receptor deactivation and therefore reduces inhibitory synaptic transmission. Yet, it is not clear why this mutation specifically promotes febrile seizures. We show that upon raising temperature both the number of GABA(A)Rs clusters and the frequency of miniature inhibitory postsynaptic currents decreased in neurons expressing the K289M mutant but not wild-type (WT) recombinant γ2. Single-particle tracking experiments revealed that raising temperature increases the membrane diffusion of synaptic GABA(A)Rs containing the K289M mutant but not WT recombinant γ2. This effect was mediated by enhanced neuronal activity as it was blocked by glutamate receptor antagonists and was mimicked by the convulsant 4-aminopyridine. Our data suggest the K289M mutation in γ2 confers GABA(A)Rs with enhanced sensitivity of their membrane diffusion to neuronal activity. Enhanced activity during hyperthermia may then trigger the escape of receptors from synapses and thereby further reduce the efficacy of GABAergic inhibition. Alteration of the membrane diffusion of neurotransmitter receptors therefore represents a new mechanism in human epilepsy.
Collapse
Affiliation(s)
- Walid Bouthour
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 839, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
187
|
Vithlani M, Terunuma M, Moss SJ. The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev 2011; 91:1009-22. [PMID: 21742794 DOI: 10.1152/physrev.00015.2010] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition in the adult mammalian central nervous system (CNS) is mediated by γ-aminobutyric acid (GABA). The fast inhibitory actions of GABA are mediated by GABA type A receptors (GABA(A)Rs); they mediate both phasic and tonic inhibition in the brain and are the principle sites of action for anticonvulsant, anxiolytic, and sedative-hypnotic agents that include benzodiazepines, barbiturates, neurosteroids, and some general anesthetics. GABA(A)Rs are heteropentameric ligand-gated ion channels that are found concentrated at inhibitory postsynaptic sites where they mediate phasic inhibition and at extrasynaptic sites where they mediate tonic inhibition. The efficacy of inhibition and thus neuronal excitability is critically dependent on the accumulation of specific GABA(A)R subtypes at inhibitory synapses. Here we evaluate how neurons control the number of GABA(A)Rs on the neuronal plasma membrane together with their selective stabilization at synaptic sites. We then go on to examine the impact that these processes have on the strength of synaptic inhibition and behavior.
Collapse
Affiliation(s)
- Mansi Vithlani
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
188
|
Specht CG, Grünewald N, Pascual O, Rostgaard N, Schwarz G, Triller A. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J 2011; 30:3842-53. [PMID: 21829170 DOI: 10.1038/emboj.2011.276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 07/15/2011] [Indexed: 11/09/2022] Open
Abstract
Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Institut de Biologie de l'École Normale Supérieure, Inserm U, Paris, France
| | | | | | | | | | | |
Collapse
|
189
|
Salesse C, Mueller CL, Chamberland S, Topolnik L. Age-dependent remodelling of inhibitory synapses onto hippocampal CA1 oriens-lacunosum moleculare interneurons. J Physiol 2011; 589:4885-901. [PMID: 21825029 DOI: 10.1113/jphysiol.2011.215244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stratum oriens-lacunosum moleculare interneurons (O-LM INs) represent the major element of the hippocampal feedback inhibitory circuit, which provides inhibition to the distal dendritic sites of CA1 pyramidal neurons. Although the intrinsic conductance profile and the properties of glutamatergic transmission to O-LM INs have become a subject of intense investigation, far less is known about the properties of the inhibitory synapses formed onto these cells. Here, we used whole-cell patch-clamp recordings in acute mouse hippocampal slices to study the properties and plasticity of GABAergic inhibitory synapses onto O-LM INs. Surprisingly, we found that the kinetics of inhibitory postsynaptic currents (IPSCs) were slower in mature synapses (P26-40) due to the synaptic incorporation of the α5 subunit of the GABA(A) receptor (a5-GABA(A)R). Moreover, this age-dependent synaptic expression of a5-GABA(A)Rs was directly associated with the emergence of long-term potentiation at IN inhibitory synapses. Finally, the slower time course of IPSCs observed in O-LM INs of mature animals had a profound effect on IN excitability by significantly delaying its spike firing. Our data suggest that GABAergic synapses onto O-LM INs undergo significant modifications during postnatal maturation. The developmental switch in IPSC properties and plasticity is controlled by the synaptic incorporation of the a5-GABA(A)R subunit and may represent a potential mechanism for the age-dependent modifications in the inhibitory control of the hippocampal feedback inhibitory circuit.
Collapse
Affiliation(s)
- Charleen Salesse
- Axis of Cellular and Molecular Neuroscience, CRULRG, Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, PQ, Canada
| | | | | | | |
Collapse
|
190
|
Kuzirian MS, Paradis S. Emerging themes in GABAergic synapse development. Prog Neurobiol 2011; 95:68-87. [PMID: 21798307 DOI: 10.1016/j.pneurobio.2011.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 12/25/2022]
Abstract
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.
Collapse
Affiliation(s)
- Marissa S Kuzirian
- Brandeis Univeristy, Department of Biology, National Center for Behavioral Genomics, Volen Center for Complex Systems, Waltham, MA 02453, USA
| | | |
Collapse
|
191
|
Rusakov DA, Savtchenko LP, Zheng K, Henley JM. Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci 2011; 34:359-69. [PMID: 21470699 PMCID: PMC3133640 DOI: 10.1016/j.tins.2011.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 02/06/2023]
Abstract
Rapid communication in the brain relies on the release and diffusion of small transmitter molecules across the synaptic cleft. How these diffuse signals are transformed into cellular responses is determined by the scatter of target postsynaptic receptors, which in turn depends on receptor movement in cell membranes. Thus, by shaping information transfer in neural circuits, mechanisms that regulate molecular mobility affect nearly every aspect of brain function and dysfunction. Here we review two facets of molecular mobility that have traditionally been considered separately, namely extracellular and intra-membrane diffusion. By focusing on the interplay between these processes we illustrate the remarkable versatility of signal formation in synapses and highlight areas of emerging understanding in the molecular physiology and biophysics of synaptic transmission.
Collapse
Affiliation(s)
- Dmitri A. Rusakov
- Institute of Neurology, University College London, Queen Square, London WC1 3BG, UK
| | - Leonid P. Savtchenko
- Institute of Neurology, University College London, Queen Square, London WC1 3BG, UK
| | - Kaiyu Zheng
- Institute of Neurology, University College London, Queen Square, London WC1 3BG, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
192
|
Shrivastava AN, Triller A, Sieghart W. GABA(A) Receptors: Post-Synaptic Co-Localization and Cross-Talk with Other Receptors. Front Cell Neurosci 2011; 5:7. [PMID: 21734865 PMCID: PMC3123775 DOI: 10.3389/fncel.2011.00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/06/2011] [Indexed: 11/14/2022] Open
Abstract
γ-Aminobutyric acid type A receptors (GABA(A)Rs) are the major inhibitory neurotransmitter receptors in the central nervous system, and importantly contribute to the functional regulation of the nervous system. Several studies in the last few decades have convincingly shown that GABA can be co-localized with other neurotransmitters in the same synapse, and can be co-released with these neurotransmitters either from the same vesicles or from different vesicle pools. The co-released transmitters may act on post-synaptically co-localized receptors resulting in a simultaneous activation of both receptors. Most of the studies investigating such co-activation observed a reduced efficacy of GABA for activating GABA(A)Rs and thus, a reduced inhibition of the post-synaptic neuron. Similarly, in several cases activation of GABA(A)Rs has been reported to suppress the response of the associated receptors. Such a receptor cross-talk is either mediated via a direct coupling between the two receptors or via the activation of intracellular signaling pathways and is used for fine tuning of inhibition in the nervous system. Recently, it was demonstrated that a direct interaction of different receptors might already occur in intracellular compartments and might also be used to specifically target the receptors to the cell membrane. In this article, we provide an overview on such cross-talks between GABA(A)Rs and several other neurotransmitter receptors and briefly discuss their possible physiological and clinical importance.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of ViennaVienna, Austria
- INSERM U1024, CNRS UMR8197, Institut de Biologie de l’Ecole Normale Supérieure, Ecolé Normale SupérieureParis, France
| | - Antoine Triller
- INSERM U1024, CNRS UMR8197, Institut de Biologie de l’Ecole Normale Supérieure, Ecolé Normale SupérieureParis, France
| | - Werner Sieghart
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of ViennaVienna, Austria
| |
Collapse
|
193
|
Ribrault C, Sekimoto K, Triller A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci 2011; 12:375-87. [PMID: 21685931 DOI: 10.1038/nrn3025] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The variability of the postsynaptic response following a single action potential arises from two sources: the neurotransmitter release is probabilistic, and the postsynaptic response to neurotransmitter release has variable timing and amplitude. At individual synapses, the number of molecules of a given type that are involved in these processes is small enough that the stochastic (random) properties of molecular events cannot be neglected. How the stochasticity of molecular processes contributes to the variability of synaptic transmission, its sensitivity and its robustness to molecular fluctuations has important implications for our understanding of the mechanistic basis of synaptic transmission and of synaptic plasticity.
Collapse
Affiliation(s)
- Claire Ribrault
- Laboratoire Matières et Systèmes Complexes, CNRS-UMR7057, Université Paris 7, F-75205 Paris cedex 13, France
| | | | | |
Collapse
|
194
|
Haselwandter CA, Calamai M, Kardar M, Triller A, da Silveira RA. Formation and stability of synaptic receptor domains. PHYSICAL REVIEW LETTERS 2011; 106:238104. [PMID: 21770547 DOI: 10.1103/physrevlett.106.238104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Indexed: 05/31/2023]
Abstract
Neurotransmitter receptor molecules, concentrated in postsynaptic domains along with scaffold and a number of other molecules, are key regulators of signal transmission across synapses. Combining experiment and theory, we develop a quantitative description of synaptic receptor domains in terms of a reaction-diffusion model. We show that interactions between only receptors and scaffolds, together with the rapid diffusion of receptors on the cell membrane, are sufficient for the formation and stable characteristic size of synaptic receptor domains. Our work reconciles long-term stability of synaptic receptor domains with rapid turnover and diffusion of individual receptors, and suggests novel mechanisms for a form of short-term, postsynaptic plasticity.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
195
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 PMCID: PMC3093971 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
196
|
Shrivastava AN, Triller A, Sieghart W, Sarto-Jackson I. Regulation of GABA(A) receptor dynamics by interaction with purinergic P2X(2) receptors. J Biol Chem 2011; 286:14455-68. [PMID: 21343285 PMCID: PMC3077645 DOI: 10.1074/jbc.m110.165282] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/06/2011] [Indexed: 11/06/2022] Open
Abstract
γ-Aminobutyric acid type A receptors (GABA(A)Rs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X(2) receptors (P2X(2)Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABA(A)Rs. Here, we investigated a possible "dynamic" interaction between GABA(A)Rs and P2X(2)Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X(2)Rs forms a transient complex with GABA(A)Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X(2)Rs and GABA(A)Rs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X(2)Rs results in a Ca(2+)-dependent as well as an apparently Ca(2+)-independent increase in the mobility and an enhanced degradation of GABA(A)Rs, whereas P2X(2)Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X(2)Rs and GABA(A)Rs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA(A)Rs.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- From the Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
- the Ecolé Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France
- Inserm U1024, 75005 Paris, France, and
- CNRS UMR8197, 75005 Paris, France
| | - Antoine Triller
- the Ecolé Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France
- Inserm U1024, 75005 Paris, France, and
- CNRS UMR8197, 75005 Paris, France
| | - Werner Sieghart
- From the Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Isabella Sarto-Jackson
- From the Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
197
|
Castillo PE, Chiu CQ, Carroll RC. Long-term plasticity at inhibitory synapses. Curr Opin Neurobiol 2011; 21:328-38. [PMID: 21334194 PMCID: PMC3092861 DOI: 10.1016/j.conb.2011.01.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/25/2011] [Indexed: 12/18/2022]
Abstract
Experience-dependent modifications of neural circuits and function are believed to heavily depend on changes in synaptic efficacy such as LTP/LTD. Hence, much effort has been devoted to elucidating the mechanisms underlying these forms of synaptic plasticity. Although most of this work has focused on excitatory synapses, it is now clear that diverse mechanisms of long-term inhibitory plasticity have evolved to provide additional flexibility to neural circuits. By changing the excitatory/inhibitory balance, GABAergic plasticity can regulate excitability, neural circuit function and ultimately, contribute to learning and memory, and neural circuit refinement. Here we discuss recent advancements in our understanding of the mechanisms and functional relevance of GABAergic inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura, Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Room 703, Bronx, NY 10461, United States.
| | | | | |
Collapse
|
198
|
Mercer AJ, Chen M, Thoreson WB. Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J Neurosci 2011; 31:4397-406. [PMID: 21430141 PMCID: PMC3108431 DOI: 10.1523/jneurosci.5921-10.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/24/2011] [Accepted: 01/30/2011] [Indexed: 01/21/2023] Open
Abstract
At most synapses, presynaptic Ca(2+) channels are positioned near vesicle release sites, and increasing this distance reduces synaptic strength. We examined the lateral membrane mobility of presynaptic L-type Ca(2+) channels at photoreceptor ribbon synapses of the tiger salamander (Ambystoma tigrinum) retina. Movements of individual Ca(2+) channels were tracked by coupling quantum dots to an antibody against the extracellular α(2)δ(4) Ca(2+) channel subunit. α(2)δ(4) antibodies labeled photoreceptor terminals and colocalized with antibodies to synaptic vesicle glycoprotein 2 and voltage-gated Ca(2+) channel 1.4 (Ca(V)1.4) α(1) subunits. The results show that Ca(2+) channels are dynamic and move within a confined region beneath the synaptic ribbon. The size of this confinement area is regulated by actin and membrane cholesterol. Fusion of nearby synaptic vesicles caused jumps in Ca(2+) channel position, propelling them toward the outer edge of the confinement domain. Channels rebounded rapidly toward the center. Thus, although Ca(V) channels are mobile, molecular scaffolds confine them beneath the ribbon to maintain neurotransmission even at high release rates.
Collapse
Affiliation(s)
- Aaron J. Mercer
- Departments of Ophthalmology & Visual Sciences, and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5840
| | - Minghui Chen
- Departments of Ophthalmology & Visual Sciences, and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5840
| | - Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences, and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5840
| |
Collapse
|
199
|
Lévi S, Dahan M, Triller A. Labeling neuronal membrane receptors with quantum dots. Cold Spring Harb Protoc 2011; 2011:prot5580. [PMID: 21363944 DOI: 10.1101/pdb.prot5580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
200
|
Kuwajima M, Harris KM. GABAA receptor diversity revealed in freeze-fracture replica (commentary on Kasugai et al.). Eur J Neurosci 2010; 32:1866-7. [PMID: 21158015 DOI: 10.1111/j.1460-9568.2010.07532.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masaaki Kuwajima
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|