151
|
Nigral Glutamatergic Neurons Control the Speed of Locomotion. J Neurosci 2017; 37:9759-9770. [PMID: 28924005 DOI: 10.1523/jneurosci.1810-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 08/26/2017] [Indexed: 01/16/2023] Open
Abstract
The mesencephalic locomotor region (MLR) plays a crucial role in locomotor control. In vertebrates, stimulation of the MLR at increasing intensities elicits locomotion of growing speed. This effect has been presumed to result from higher brain inputs activating the MLR like a dimmer switch. Here, we show in lampreys (Petromyzon marinus) of either sex that incremental stimulation of a region homologous to the mammalian substantia nigra pars compacta (SNc) evokes increasing activation of MLR cells with a graded increase in the frequency of locomotor movements. Neurons co-storing glutamate and dopamine were found to project from the primal SNc to the MLR. Blockade of glutamatergic transmission largely diminished MLR cell responses and locomotion. Local blockade of D1 receptors in the MLR decreased locomotor frequency, but did not disrupt the SNc-evoked graded control of locomotion. Our findings revealed the presence of a glutamatergic input to the MLR originating from the primal SNc that evokes graded locomotor movements.SIGNIFICANCE STATEMENT The mesencephalic locomotor region (MLR) plays a crucial role in the control of locomotion. It projects downward to reticulospinal neurons that in turn activate the spinal locomotor networks. Increasing the intensity of MLR stimulation produces a growing activation of reticulospinal cells and a progressive increase in the speed of locomotor movements. Since the discovery of the MLR some 50 years ago, it has been presumed that higher brain regions activate the MLR in a graded fashion, but this has not been confirmed yet. Here, using a combination of techniques from cell to behavior, we provide evidence of a new glutamatergic pathway activating the MLR in a graded fashion, and consequently evoking a progressive increase in locomotor output.
Collapse
|
152
|
Aguilar JI, Dunn M, Mingote S, Karam CS, Farino ZJ, Sonders MS, Choi SJ, Grygoruk A, Zhang Y, Cela C, Choi BJ, Flores J, Freyberg RJ, McCabe BD, Mosharov EV, Krantz DE, Javitch JA, Sulzer D, Sames D, Rayport S, Freyberg Z. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron 2017; 95:1074-1088.e7. [PMID: 28823729 DOI: 10.1016/j.neuron.2017.07.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 01/04/2023]
Abstract
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.
Collapse
Affiliation(s)
- Jenny I Aguilar
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew Dunn
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Susana Mingote
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Caline S Karam
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark S Sonders
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Se Joon Choi
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anna Grygoruk
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - Yuchao Zhang
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Carolina Cela
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Ben Jiwon Choi
- Center for Motor Neuron Biology and Disease, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Jorge Flores
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Robin J Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Eugene V Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Stephen Rayport
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
153
|
Fernández-López B, Sobrido-Cameán D, Anadón R, Rodicio MC, Barreiro-Iglesias A. Restricted co-localization of glutamate and dopamine in neurons of the adult sea lamprey brain. J Anat 2017; 231:776-784. [PMID: 28791699 DOI: 10.1111/joa.12674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 01/04/2023] Open
Abstract
Co-localization of dopamine with other classical neurotransmitters in the same neuron is a common phenomenon in the brain of vertebrates. In mammals, some dopaminergic neurons of the ventral tegmental area and the hypothalamus have a glutamatergic co-phenotype. However, information on the presence of this type of dopaminergic neurons in other vertebrate groups is very scant. Here, we aimed to provide new insights on the evolution of this neuronal co-phenotype by studying the presence of a dual dopaminergic/glutamatergic neuron phenotype in the central nervous system of lampreys. Double immunofluorescence experiments for dopamine and glutamate in adult sea lampreys revealed co-localization of both neurotransmitters in some neurons of the preoptic nucleus, the nucleus of the postoptic commissure, the dorsal hypothalamus and in cerebrospinal fluid-contacting cells of the caudal rhombencephalon and rostral spinal cord. Moreover, co-localization of dopamine and glutamate was found in dopaminergic fibres in a few brain regions including the lateral pallium, striatum, and the preoptic and postoptic areas but not in the brainstem. Our results suggest that the presence of neurons with a dopaminergic/glutamatergic co-phenotype is a primitive character shared by jawless and jawed vertebrates. However, important differences in the distribution of these neurons and fibres were noted among the few vertebrates investigated to date. This study offers an anatomical basis for further work on the role of glutamate in dopaminergic neurons.
Collapse
Affiliation(s)
- B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - D Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
154
|
Schenck S, Kunz L, Sahlender D, Pardon E, Geertsma ER, Savtchouk I, Suzuki T, Neldner Y, Štefanić S, Steyaert J, Volterra A, Dutzler R. Generation and Characterization of Anti-VGLUT Nanobodies Acting as Inhibitors of Transport. Biochemistry 2017; 56:3962-3971. [DOI: 10.1021/acs.biochem.7b00436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Stephan Schenck
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Laura Kunz
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela Sahlender
- Department
of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Els Pardon
- VIB
Center for Structural Biology, VIB, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Eric R. Geertsma
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute
of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Straβe
9, 60438 Frankfurt
am Main, Germany
| | - Iaroslav Savtchouk
- Department
of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Toshiharu Suzuki
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yvonne Neldner
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Saša Štefanić
- Institute
of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - Jan Steyaert
- VIB
Center for Structural Biology, VIB, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Andrea Volterra
- Department
of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Raimund Dutzler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
155
|
Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, Sferrazza C, Zucker-Scharff I, Siena AC, Welch MG, Lizardi-Ortiz J, Sulzer D, Moore H, Gaisler-Salomon I, Rayport S. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. eLife 2017; 6. [PMID: 28703706 PMCID: PMC5599237 DOI: 10.7554/elife.27566] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling a selective focus on the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience.
Collapse
Affiliation(s)
- Susana Mingote
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Abigail Kalmbach
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | | | - Yvonne Wang
- Department of Psychiatry, Columbia University, New York, United States
| | - Andra Mihali
- Department of Psychiatry, Columbia University, New York, United States
| | | | | | - Anna-Claire Siena
- Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Martha G Welch
- Department of Psychiatry, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,Department of Developmental Neuroscience, NYS Psychiatric Institute, New York, United States
| | | | - David Sulzer
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States.,Department of Neurology, Columbia University, New York, United States.,Department of Pharmacology, Columbia University, New York, United States
| | - Holly Moore
- Department of Psychiatry, Columbia University, New York, United States.,Department of Integrative Neuroscience, NYS Psychiatric Institute, New York, United States
| | - Inna Gaisler-Salomon
- Department of Psychiatry, Columbia University, New York, United States.,Department of Psychology, University of Haifa, Haifa, Israel
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| |
Collapse
|
156
|
Oliveira MAP, Balling R, Smidt MP, Fleming RMT. Embryonic development of selectively vulnerable neurons in Parkinson's disease. NPJ Parkinsons Dis 2017; 3:21. [PMID: 28685157 PMCID: PMC5484687 DOI: 10.1038/s41531-017-0022-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
A specific set of brainstem nuclei are susceptible to degeneration in Parkinson's disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson's disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to degeneration in early Parkinson's disease. Some transcription factors can even distinguish between differentially vulnerable nuclei within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral tegmental area. We do not suggest that Parkinson's disease is a developmental disorder. In contrast, we consider identification of shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors should be completed for all neuronal populations vulnerable to degeneration in early Parkinson's disease.
Collapse
Affiliation(s)
- Miguel A. P. Oliveira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux, L-4362 Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux, L-4362 Luxembourg
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Ronan M. T. Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux, L-4362 Luxembourg
| |
Collapse
|
157
|
Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal 2017; 13:387-404. [PMID: 28616712 DOI: 10.1007/s11302-017-9568-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022] Open
Abstract
Vesicular storage of ATP is one of the processes initiating purinergic chemical transmission. Although an active transport mechanism was postulated to be involved in the processes, a transporter(s) responsible for the vesicular storage of ATP remained unidentified for some time. In 2008, SLC17A9, the last identified member of the solute carrier 17 type I inorganic phosphate transporter family, was found to encode the vesicular nucleotide transporter (VNUT) that is responsible for the vesicular storage of ATP. VNUT transports various nucleotides in a membrane potential-dependent fashion and is expressed in the various ATP-secreting cells. Mice with knockout of the VNUT gene lose vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the initiation of purinergic chemical transmission. Thus, VNUT plays an essential role in the vesicular storage and release of ATP. The VNUT knockout mice exhibit resistance for neuropathic pain and a therapeutic effect against diabetes by way of increased insulin sensitivity. Thus, VNUT inhibitors and suppression of VNUT gene expression may be used for therapeutic purposes through suppression of purinergic chemical transmission. This review summarizes the studies to date on VNUT and discusses what we have learned about the relevance of vesicular ATP release as a potential drug target.
Collapse
|
158
|
Fasano C, Rocchetti J, Pietrajtis K, Zander JF, Manseau F, Sakae DY, Marcus-Sells M, Ramet L, Morel LJ, Carrel D, Dumas S, Bolte S, Bernard V, Vigneault E, Goutagny R, Ahnert-Hilger G, Giros B, Daumas S, Williams S, El Mestikawy S. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells. Front Cell Neurosci 2017; 11:140. [PMID: 28559797 PMCID: PMC5432579 DOI: 10.3389/fncel.2017.00140] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/26/2017] [Indexed: 01/29/2023] Open
Abstract
Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.
Collapse
Affiliation(s)
- Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Jill Rocchetti
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Katarzyna Pietrajtis
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | | | - Frédéric Manseau
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Diana Y Sakae
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Maya Marcus-Sells
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Lauriane Ramet
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Lydie J Morel
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Damien Carrel
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250Paris, France
| | | | - Susanne Bolte
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris SeineParis, France
| | - Véronique Bernard
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Erika Vigneault
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Romain Goutagny
- CNRS UMR 7364, Team NCD, Université de StrasbourgStrasbourg, France
| | | | - Bruno Giros
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada.,Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Stéphanie Daumas
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Sylvain Williams
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada.,Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| |
Collapse
|
159
|
Cavalieri EL, Rogan EG, Zahid M. Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. Int J Cancer 2017; 141:1078-1090. [PMID: 28388839 DOI: 10.1002/ijc.30728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/17/2017] [Indexed: 01/19/2023]
Abstract
Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.
Collapse
Affiliation(s)
- Ercole L Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Eleanor G Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
160
|
Orr AL, Rutaganira FU, de Roulet D, Huang EJ, Hertz NT, Shokat KM, Nakamura K. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochem Int 2017; 109:106-116. [PMID: 28434973 DOI: 10.1016/j.neuint.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals.
Collapse
Affiliation(s)
- Adam L Orr
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Mitokinin LLC, 2 Wall Street, 4th Floor, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
161
|
Kljakic O, Janickova H, Prado VF, Prado MAM. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J Neurochem 2017; 142 Suppl 2:90-102. [PMID: 28421605 DOI: 10.1111/jnc.14003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior. Our review highlights the recent research into identifying mechanisms that regulate the secretion and function of Glu and ACh released by CINs and the roles these neurons play in regulating dopamine secretion and striatal activity. In particular, we focus on how the transporters for ACh (VAChT) and Glu (VGLUT3) influence the storage of neurotransmitters in CINs. We further discuss how these individual neurotransmitters regulate striatal computation and distinct aspects of behavior that are regulated by the striatum. We suggest that understanding the distinct and complementary functional roles of these two neurotransmitters may prove beneficial in the development of therapies for Parkinson's disease and addiction. Overall, understanding how Glu and ACh secreted by CINs impacts striatal activity may provide insight into how different populations of 'bilingual' neurons are able to develop sophisticated regulation of their targets by interacting with multiple receptors but also by regulating each other's vesicular storage. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
162
|
Perelmuter JT, Forlano PM. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J Comp Neurol 2017; 525:2090-2108. [PMID: 28118481 DOI: 10.1002/cne.24177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a conserved modulator of vertebrate neural circuitry, yet our knowledge of its role in peripheral auditory processing is limited to mammals. The present study combines immunohistochemistry, neural tract tracing, and electron microscopy to investigate the origin and synaptic characteristics of DA fibers innervating the inner ear and the hindbrain auditory efferent nucleus in the plainfin midshipman, a vocal fish that relies upon the detection of mate calls for reproductive success. We identify a DA cell group in the diencephalon as a common source for innervation of both the hindbrain auditory efferent nucleus and saccule, the main hearing endorgan of the inner ear. We show that DA terminals in the saccule contain vesicles but transmitter release appears paracrine in nature, due to the apparent lack of synaptic contacts. In contrast, in the hindbrain, DA terminals form traditional synaptic contacts with auditory efferent neuronal cell bodies and dendrites, as well as unlabeled axon terminals, which, in turn, form inhibitory-like synapses on auditory efferent somata. Our results suggest a distinct functional role for brain-derived DA in the direct and indirect modulation of the peripheral auditory system of a vocal nonmammalian vertebrate.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, New York, 10016.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210
| | - Paul M Forlano
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, New York, 10016.,Program in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, New York, 10016.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, 10016.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn NY, New York, 11210
| |
Collapse
|
163
|
Vrettou M, Granholm L, Todkar A, Nilsson KW, Wallén-Mackenzie Å, Nylander I, Comasco E. Ethanol affects limbic and striatal presynaptic glutamatergic and DNA methylation gene expression in outbred rats exposed to early-life stress. Addict Biol 2017; 22:369-380. [PMID: 26610727 DOI: 10.1111/adb.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is the outcome of both genetic and environmental influences and their interaction via epigenetic mechanisms. The neurotransmitter glutamate is an important regulator of reward circuits and implicated in adaptive changes induced by ethanol intake. The present study aimed at investigating corticolimbic and corticostriatal genetic signatures focusing on the glutamatergic phenotype in relation to early-life stress (ELS) and consequent adult ethanol consumption. A rodent maternal separation model was employed to mimic ELS, and a free-choice paradigm was used to assess ethanol intake in adulthood. Gene expression levels of the Vesicular Glutamate Transporters (Vglut) 1, 2 and 3, as well as two key regulators of DNA methylation, DNA (cytosine-5)-methyltransferase 1 (Dnmt1) and methyl-CpG-binding protein 2 (Mecp2), were analyzed. Brain regions of interest were the ventral tegmental area (VTA), nucleus accumbens (Acb), medial prefrontal cortex (mPFC) and dorsal striatum (dStr), all involved in mediating aspects of ethanol reward. Region-specific Vglut, Dnmt1 and Mecp2 expression patterns were observed. ELS was associated with down-regulated expression of Vglut2 in the VTA and mPFC. Rats exposed to ELS were more sensitive to ethanol-induced changes in Vglut expression in the VTA, Acb, and dStr and in Dnmt1 and Mecp2 expression in the striatal regions. These findings suggest long-term glutamatergic and DNA methylation neuroadaptations as a consequence of ELS, and show an association between voluntary drinking in non-preferring, non-dependent, rodents and different Vglut, Dnmt1 and Mecp2 expression depending on early-life history.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Linnea Granholm
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | | | - Kent W. Nilsson
- Västerås Centre for Clinical Research; Uppsala University; Västerås Sweden
| | - Åsa Wallén-Mackenzie
- Department of Organismal Biology/Comparative Physiology; Uppsala University; Uppsala Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - Erika Comasco
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
164
|
Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology 2017; 42:615-627. [PMID: 27515791 PMCID: PMC5240174 DOI: 10.1038/npp.2016.151] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023]
Abstract
Several neuropsychiatric conditions, such as addiction and schizophrenia, may arise in part from dysregulated activity of ventral tegmental area dopaminergic (THVTA) neurons, as well as from more global maladaptation in neurocircuit function. However, whether THVTA activity affects large-scale brain-wide function remains unknown. Here we selectively activated THVTA neurons in transgenic rats and measured resulting changes in whole-brain activity using stimulus-evoked functional magnetic resonance imaging. Applying a standard generalized linear model analysis approach, our results indicate that selective optogenetic stimulation of THVTA neurons enhanced cerebral blood volume signals in striatal target regions in a dopamine receptor-dependent manner. However, brain-wide voxel-based principal component analysis of the same data set revealed that dopaminergic modulation activates several additional anatomically distinct regions throughout the brain, not typically associated with dopamine release events. Furthermore, explicit pairing of THVTA neuronal activation with a forepaw stimulus of a particular frequency expanded the sensory representation of that stimulus, not exclusively within the somatosensory cortices, but brain-wide. These data suggest that modulation of THVTA neurons can impact brain dynamics across many distributed anatomically distinct regions, even those that receive little to no direct THVTA input.
Collapse
|
165
|
Survival of a Novel Subset of Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on NeuroD Proteins. J Neurosci 2017; 37:2305-2316. [PMID: 28130357 PMCID: PMC5354344 DOI: 10.1523/jneurosci.2414-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022] Open
Abstract
Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbrain dopaminergic neurons located in the ventral tegmental area that expresses the basic helix-loop-helix transcription factor, Neurogenic Differentiation Factor-6 (NEUROD6). Retrograde fluorogold tracing experiments demonstrate that Neurod6+ midbrain dopaminergic neurons neurons project to two distinct septal regions: the dorsal and intermediate region of the lateral septum. Loss-of-function studies in mice demonstrate that Neurod6 and the closely related family member Neurod1 are both specifically required for the survival of this lateral-septum projecting neuronal subset during development. Our findings underscore the complex organization of midbrain dopaminergic neurons and provide an entry point for future studies of the functions of the Neurod6+ subset of midbrain dopaminergic neurons.SIGNIFICANCE STATEMENT Midbrain dopaminergic neurons regulate diverse brain functions, including voluntary movement and cognitive and emotive behaviors. These neurons are heterogeneous, and distinct subsets are thought to regulate different behaviors. However, we currently lack the means to identify and modify gene function in specific subsets of midbrain dopaminergic neurons. In this study, we identify the transcription factor NEUROD6 as a specific marker for a novel subset of midbrain dopaminergic neurons in the ventral midbrain that project to the lateral septum, and we reveal essential roles for Neurod1 and Neurod6 in the survival of these neurons during development. Our findings highlight the molecular and anatomical heterogeneity of midbrain dopaminergic neurons and contribute to a better understanding of this functionally complex group of neurons.
Collapse
|
166
|
Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci Rep 2017; 7:41369. [PMID: 28128321 PMCID: PMC5269678 DOI: 10.1038/srep41369] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.
Collapse
|
167
|
Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 2017; 18:73-85. [DOI: 10.1038/nrn.2016.165] [Citation(s) in RCA: 594] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
168
|
Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry 2017; 81:43-51. [PMID: 27692238 PMCID: PMC5121049 DOI: 10.1016/j.biopsych.2016.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Brain imaging has revealed alterations in dopamine uptake, release, and receptor levels in patients with schizophrenia that have been resolved on the scale of striatal subregions. However, the underlying synaptic mechanisms are on a finer scale. Dopamine neuron synaptic actions vary across the striatum, involving variations not only in dopamine release but also in dopamine neuron connectivity, cotransmission, modulation, and activity. Optogenetic studies have revealed that dopamine neurons release dopamine in a synaptic signal mode, and that the neurons also release glutamate and gamma-aminobutyric acid as cotransmitters, with striking regional variation. Fast glutamate and gamma-aminobutyric acid cotransmission convey discrete patterns of dopamine neuron activity to striatal neurons. Glutamate may function not only in a signaling role at a subset of dopamine neuron synapses, but also in mediating vesicular synergy, contributing to regional differences in loading of dopamine into synaptic vesicles. Regional differences in dopamine neuron signaling are likely to be differentially involved in the schizophrenia disease process and likely determine the subregional specificity of the action of psychostimulants that exacerbate the disorder, and antipsychotics that ameliorate the disorder. Elucidating dopamine neuron synaptic signaling offers the potential for achieving greater pharmacological specificity through intersectional pharmacological actions targeting subsets of dopamine neuron synapses.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Abigail Kalmbach
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Leora Yetnikoff
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York.
| |
Collapse
|
169
|
Liu H, Chaudhury D. Understanding Mood Disorders Using Electrophysiology and Circuit Breaking. DECODING NEURAL CIRCUIT STRUCTURE AND FUNCTION 2017:343-370. [DOI: 10.1007/978-3-319-57363-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
170
|
Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse. Neuropsychopharmacology 2017; 42:156-177. [PMID: 27402494 PMCID: PMC5143481 DOI: 10.1038/npp.2016.121] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022]
Abstract
Drugs of abuse cause persistent alterations in synaptic plasticity that may underlie addiction behaviors. Evidence suggests glial cells have an essential and underappreciated role in the development and maintenance of drug abuse by influencing neuronal and synaptic functions in multifaceted ways. Microglia and astrocytes perform critical functions in synapse formation and refinement in the developing brain, and there is growing evidence that disruptions in glial function may be implicated in numerous neurological disorders throughout the lifespan. Linking evidence of function in health and under pathological conditions, this review will outline the glial and neuroimmune mechanisms that may contribute to drug-abuse liability, exploring evidence from opioids, alcohol, and psychostimulants. Drugs of abuse can activate microglia and astrocytes through signaling at innate immune receptors, which in turn influence neuronal function not only through secretion of soluble factors (eg, cytokines and chemokines) but also potentially through direct remodeling of the synapses. In sum, this review will argue that neural-glial interactions represent an important avenue for advancing our understanding of substance abuse disorders.
Collapse
|
171
|
Yoo JH, Zell V, Gutierrez-Reed N, Wu J, Ressler R, Shenasa MA, Johnson AB, Fife KH, Faget L, Hnasko TS. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun 2016; 7:13697. [PMID: 27976722 PMCID: PMC5171775 DOI: 10.1038/ncomms13697] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.
Ventral tegmental area (VTA) is involved in reward behaviours, but the precise contribution of VTA glutamatergic neurons to this process is not known. Here the authors show that phasic but not sustained optogenetic stimulation of VTA glutamatergic neurons is rewarding and involves co-release of GABA.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Navarre Gutierrez-Reed
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Johnathan Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Ressler
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Alexander B Johnson
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Kathryn H Fife
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
172
|
Bui TV, Stifani N, Akay T, Brownstone RM. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. eLife 2016; 5. [PMID: 27977000 PMCID: PMC5218533 DOI: 10.7554/elife.21715] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023] Open
Abstract
The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery.
Collapse
Affiliation(s)
- Tuan V Bui
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Nicolas Stifani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Robert M Brownstone
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada.,Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Canada.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
173
|
Zechel S, Nakagawa Y, Ibáñez CF. Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons. eLife 2016; 5:20770. [PMID: 27935475 PMCID: PMC5167520 DOI: 10.7554/elife.20770] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022] Open
Abstract
Neocortical GABAergic interneuron migration and thalamo-cortical axon (TCA) pathfinding follow similar trajectories and timing, suggesting they may be interdependent. The mechanisms that regulate the radial dispersion of neocortical interneurons are incompletely understood. Here we report that disruption of TCA innervation, or TCA-derived glutamate, affected the laminar distribution of GABAergic interneurons in mouse neocortex, resulting in abnormal accumulation in deep layers of interneurons that failed to switch from tangential to radial orientation. Expression of the KCC2 cotransporter was elevated in interneurons of denervated cortex, and KCC2 deletion restored normal interneuron lamination in the absence of TCAs. Disruption of interneuron NMDA receptors or pharmacological inhibition of calpain also led to increased KCC2 expression and defective radial dispersion of interneurons. Thus, although TCAs are not required to guide the tangential migration of GABAergic interneurons, they provide crucial signals that restrict interneuron KCC2 levels, allowing coordinated neocortical invasion of TCAs and interneurons. DOI:http://dx.doi.org/10.7554/eLife.20770.001
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
174
|
Ludwig M, Apps D, Menzies J, Patel JC, Rice ME. Dendritic Release of Neurotransmitters. Compr Physiol 2016; 7:235-252. [PMID: 28135005 DOI: 10.1002/cphy.c160007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Apps
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - John Menzies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
175
|
Silva TM, Takakura AC, Moreira TS. Acute hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the C1 region. Exp Neurol 2016; 285:1-11. [DOI: 10.1016/j.expneurol.2016.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
176
|
Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease. Sci Rep 2016; 6:35203. [PMID: 27762319 PMCID: PMC5071886 DOI: 10.1038/srep35203] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022] Open
Abstract
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.
Collapse
|
177
|
Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson PR, Lowell BB, Hattar SS. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 2016; 5:e15392. [PMID: 27669145 PMCID: PMC5079752 DOI: 10.7554/elife.15392] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.
Collapse
Affiliation(s)
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rachel A Ross
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, United States
| | - Preethi Somasundaram
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Tudor C Badea
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Samer S Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
178
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
179
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
180
|
Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain. Neuropsychopharmacology 2016; 41:2122-32. [PMID: 26792442 PMCID: PMC4908643 DOI: 10.1038/npp.2016.12] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure-the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release.
Collapse
|
181
|
Etxeberria A, Hokanson KC, Dao DQ, Mayoral SR, Mei F, Redmond SA, Ullian EM, Chan JR. Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity. J Neurosci 2016; 36:6937-48. [PMID: 27358452 PMCID: PMC4926240 DOI: 10.1523/jneurosci.0908-16.2016] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.
Collapse
Affiliation(s)
- Ainhoa Etxeberria
- Department of Neurology, University of California, San Francisco, California 94158
| | - Kenton C Hokanson
- Department of Ophthalmology, University of California, San Francisco, California 94143, and Program in Neuroscience, University of California, San Francisco, California 94158
| | - Dang Q Dao
- Department of Ophthalmology, University of California, San Francisco, California 94143, and
| | - Sonia R Mayoral
- Department of Neurology, University of California, San Francisco, California 94158
| | - Feng Mei
- Department of Neurology, University of California, San Francisco, California 94158
| | - Stephanie A Redmond
- Department of Neurology, University of California, San Francisco, California 94158, Program in Neuroscience, University of California, San Francisco, California 94158
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, California 94143, and Program in Neuroscience, University of California, San Francisco, California 94158
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, California 94158, Program in Neuroscience, University of California, San Francisco, California 94158
| |
Collapse
|
182
|
Soden ME, Miller SM, Burgeno LM, Phillips PEM, Hnasko TS, Zweifel LS. Genetic Isolation of Hypothalamic Neurons that Regulate Context-Specific Male Social Behavior. Cell Rep 2016; 16:304-313. [PMID: 27346361 DOI: 10.1016/j.celrep.2016.05.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Nearly all animals engage in a complex assortment of social behaviors that are essential for the survival of the species. In mammals, these behaviors are regulated by sub-nuclei within the hypothalamus, but the specific cell types within these nuclei responsible for coordinating behavior in distinct contexts are only beginning to be resolved. Here, we identify a population of neurons in the ventral premammillary nucleus of the hypothalamus (PMV) that are strongly activated in male intruder mice in response to a larger resident male but that are not responsive to females. Using a combination of molecular and genetic approaches, we demonstrate that these PMV neurons regulate intruder-specific male social behavior and social novelty recognition in a manner dependent on synaptic release of the excitatory neurotransmitter glutamate. These data provide direct evidence for a unique population of neurons that regulate social behaviors in specific contexts.
Collapse
Affiliation(s)
- Marta E Soden
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Samara M Miller
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lauren M Burgeno
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Paul E M Phillips
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
183
|
Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, Yoo JH, Callaway EM, Hnasko TS. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. Cell Rep 2016; 15:2796-808. [PMID: 27292633 DOI: 10.1016/j.celrep.2016.05.057] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
The ventral tegmental area (VTA) plays a central role in the neural circuit control of behavioral reinforcement. Though considered a dopaminergic nucleus, the VTA contains substantial heterogeneity in neurotransmitter type, containing also GABA and glutamate neurons. Here, we used a combinatorial viral approach to transsynaptically label afferents to defined VTA dopamine, GABA, or glutamate neurons. Surprisingly, we find that these populations received qualitatively similar inputs, with dominant and comparable projections from the lateral hypothalamus, raphe, and ventral pallidum. However, notable differences were observed, with striatal regions and globus pallidus providing a greater share of input to VTA dopamine neurons, cortical input preferentially on to glutamate neurons, and GABA neurons receiving proportionally more input from the lateral habenula and laterodorsal tegmental nucleus. By comparing inputs to each of the transmitter-defined VTA cell types, this study sheds important light on the systems-level organization of diverse inputs to VTA.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fumitaka Osakada
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Jinyi Duan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reed Ressler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander B Johnson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - James A Proudfoot
- Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
184
|
Kanlikilicer P, Zhang D, Dragomir A, Akay YM, Akay M. Gene expression profiling of midbrain dopamine neurons upon gestational nicotine exposure. Med Biol Eng Comput 2016; 55:467-482. [PMID: 27255453 DOI: 10.1007/s11517-016-1531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
Maternal smoking during pregnancy is associated with low birth weight, increased risk of stillbirth, conduct disorder, attention-deficit/hyperactivity disorder and neurocognitive deficits. Ventral tegmental area dopamine (DA) neurons in the mesocorticolimbic pathway were suggested to play a critical role in these pathological mechanisms induced by nicotine. Nicotine-mediated changes in genetic expression during pregnancy are of great interest for current researchers. We used patch clamp methods to identify and harvest DA and non-DA neurons separately and assayed them using oligonucleotide arrays to elucidate the alterations in gene expressions in these cells upon gestational nicotine exposure. Microarray analysis identified a set of 135 genes as significantly differentially expressed between DA and non-DA neurons. Some of the genes were found to be related to neurological disease pathways, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Significantly up-/down-regulated genes found in DA neurons were mostly related to G-protein-coupled protein receptor signaling and developmental processes. These alterations in gene expressions may explain, partially at least, the possible pathological mechanisms for the diseases induced by maternal smoking.
Collapse
Affiliation(s)
- Pınar Kanlikilicer
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Die Zhang
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Andrei Dragomir
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
185
|
Saunders BT, Richard JM, Janak PH. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140210. [PMID: 26240425 DOI: 10.1098/rstb.2014.0210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of genetically and anatomically defined neurons, which when used in concert with sophisticated behavioural models, have the potential to provide great insight into neural circuit bases of behaviour. Here we discuss contemporary approaches for understanding reward and addiction, with a focus on midbrain dopamine and cortico-striato-pallidal circuits.
Collapse
Affiliation(s)
- Benjamin T Saunders
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
186
|
Eriksen J, Chang R, McGregor M, Silm K, Suzuki T, Edwards RH. Protons Regulate Vesicular Glutamate Transporters through an Allosteric Mechanism. Neuron 2016; 90:768-80. [PMID: 27133463 DOI: 10.1016/j.neuron.2016.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/25/2016] [Accepted: 03/21/2016] [Indexed: 11/25/2022]
Abstract
The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles.
Collapse
Affiliation(s)
- Jacob Eriksen
- Department of Physiology, UCSF School of Medicine, San Francisco, CA 94143, USA; Department of Neurology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Roger Chang
- Department of Physiology, UCSF School of Medicine, San Francisco, CA 94143, USA; Department of Neurology, UCSF School of Medicine, San Francisco, CA 94143, USA; Graduate Program in Biomedical Sciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Matt McGregor
- Department of Physiology, UCSF School of Medicine, San Francisco, CA 94143, USA; Department of Neurology, UCSF School of Medicine, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Katlin Silm
- Department of Physiology, UCSF School of Medicine, San Francisco, CA 94143, USA; Department of Neurology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Toshiharu Suzuki
- Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Robert H Edwards
- Department of Physiology, UCSF School of Medicine, San Francisco, CA 94143, USA; Department of Neurology, UCSF School of Medicine, San Francisco, CA 94143, USA; Graduate Program in Biomedical Sciences, UCSF School of Medicine, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
187
|
Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions. J Neurosci 2016; 35:16259-71. [PMID: 26658874 DOI: 10.1523/jneurosci.1674-15.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. SIGNIFICANCE STATEMENT Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals.
Collapse
|
188
|
Barker DJ, Root DH, Zhang S, Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat 2016; 73:33-42. [PMID: 26763116 PMCID: PMC4818729 DOI: 10.1016/j.jchemneu.2015.12.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022]
Abstract
The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in 'multiplexed' neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression.
Collapse
Affiliation(s)
- David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - Shiliang Zhang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
189
|
Rice ME, Patel JC. Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0185. [PMID: 26009764 DOI: 10.1098/rstb.2014.0185] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.
Collapse
Affiliation(s)
- Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
190
|
Münster-Wandowski A, Zander JF, Richter K, Ahnert-Hilger G. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters. Front Synaptic Neurosci 2016; 8:4. [PMID: 26909036 PMCID: PMC4754932 DOI: 10.3389/fnsyn.2016.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters.
Collapse
Affiliation(s)
| | | | - Karin Richter
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
191
|
Takamori S. Presynaptic Molecular Determinants of Quantal Size. Front Synaptic Neurosci 2016; 8:2. [PMID: 26903855 PMCID: PMC4744840 DOI: 10.3389/fnsyn.2016.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 01/22/2023] Open
Abstract
The quantal hypothesis for the release of neurotransmitters at the chemical synapse has gained wide acceptance since it was first worked out at the motor endplate in frog skeletal muscle in the 1950’s. Considering the morphological identification of synaptic vesicles (SVs) at the nerve terminals that appeared to be homogeneous in size, the hypothesis proposed that signal transduction at synapses is mediated by the release of neurotransmitters packed in SVs that are individually uniform in size; the amount of transmitter in a synaptic vesicle is called a quantum. Although quantal size—the amplitude of the postsynaptic response elicited by the release of neurotransmitters from a single vesicle—clearly depends on the number and sensitivity of the postsynaptic receptors, accumulating evidence has also indicated that the amount of neurotransmitters stored in SVs can be altered by various presynaptic factors. Here, I provide an overview of the concepts and underlying presynaptic molecular underpinnings that may regulate quantal size.
Collapse
Affiliation(s)
- Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| |
Collapse
|
192
|
Wood J, Ahmari SE. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors. Front Syst Neurosci 2015; 9:171. [PMID: 26733823 PMCID: PMC4681810 DOI: 10.3389/fnsys.2015.00171] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network's potential role as a locus of OCD pathology and effective treatment.
Collapse
Affiliation(s)
- Jesse Wood
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
| | - Susanne E. Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
193
|
Lo Iacono L, Valzania A, Visco-Comandini F, Viscomi MT, Felsani A, Puglisi-Allegra S, Carola V. Regulation of nucleus accumbens transcript levels in mice by early-life social stress and cocaine. Neuropharmacology 2015; 103:183-94. [PMID: 26706499 DOI: 10.1016/j.neuropharm.2015.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022]
Abstract
Much interest has been piqued regarding the quality of one's environment at early ages in modulating the susceptibility to drug addiction in adulthood. However, the molecular mechanisms that are engaged during early trauma and mediate the risk for drug addiction are poorly understood. In rodents, exposure to early-life stress alters the rewarding effects of cocaine, amphetamine, and morphine in adulthood. Recently, we demonstrated that the exposure of juvenile mice to social threat (Social Stress, S-S) promoted cocaine-seeking behavior and relapse of cocaine-seeking after periods of withdrawal, compared with unhandled controls (UN) and with juvenile mice that experienced only daily isolation in a novel environment (no social stress, NS-S). Interestingly, while the exposure to NS-S slightly increased cocaine-seeking behavior compared with UN, the same was not sufficient to promote cocaine reinstatement. In this study, we examined the long-term transcriptional changes that are induced by S-S compared to NS-S and linked the increased susceptibility of S-S mice to cocaine reinstatement. To this end, we performed genome-wide RNA sequencing analysis in the nucleus accumbens (NAC), which revealed that 89 transcripts were differentially expressed between S-S and NS-S mice. By Gene Ontology classification, these hits were enriched in genes that mediate cell proliferation, neuronal differentiation, and neuron/forebrain development. Eleven of these genes have been reported to be involved in substance use disorders, and the remaining genes are novel candidates in this area. We characterized 4 candidates with regard to their significant neurobiological relevance (ZIC1, ZIC2, FABP7, and PRDM12) and measured their expression in the NAC by immunohistochemistry. These findings provide insights into novel molecular mechanisms in NAC that might be associated with the risk of relapse in cocaine-dependent individuals.
Collapse
Affiliation(s)
| | | | - Federica Visco-Comandini
- Sobell Department of Motor Neuroscience and Movement Disorders, University College of London, Great Britain, UK
| | | | - Armando Felsani
- Institute of Cellular Biology and Neurobiology, CNR, Rome, Italy
| | - Stefano Puglisi-Allegra
- IRCSS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and "Daniel Bovet" Center, University of Rome "La Sapienza", Italy
| | | |
Collapse
|
194
|
Deehan GA, Hauser SR, Waeiss RA, Knight CP, Toalston JE, Truitt WA, McBride WJ, Rodd ZA. Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats. Psychopharmacology (Berl) 2015; 232:4293-302. [PMID: 26306917 PMCID: PMC4899841 DOI: 10.1007/s00213-015-4056-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Jamie E Toalston
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - William A Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| |
Collapse
|
195
|
Frahm S, Antolin-Fontes B, Görlich A, Zander JF, Ahnert-Hilger G, Ibañez-Tallon I. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. eLife 2015; 4:e11396. [PMID: 26623516 PMCID: PMC4718731 DOI: 10.7554/elife.11396] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/03/2015] [Indexed: 12/24/2022] Open
Abstract
A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior.
Collapse
Affiliation(s)
- Silke Frahm
- Molecular Neurobiology Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Beatriz Antolin-Fontes
- Molecular Neurobiology Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Laboratory of Molecular Biology, The Rockefeller University, New York, United States
| | - Andreas Görlich
- Laboratory of Molecular Biology, The Rockefeller University, New York, United States
| | | | - Gudrun Ahnert-Hilger
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Ibañez-Tallon
- Molecular Neurobiology Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Laboratory of Molecular Biology, The Rockefeller University, New York, United States
| |
Collapse
|
196
|
Vesicular glutamate transporters as anion channels? Pflugers Arch 2015; 468:513-8. [DOI: 10.1007/s00424-015-1760-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
|
197
|
Kim JI, Ganesan S, Luo SX, Wu YW, Park E, Huang EJ, Chen L, Ding JB. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 2015; 350:102-6. [PMID: 26430123 DOI: 10.1126/science.aac4690] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.
Collapse
Affiliation(s)
- Jae-Ick Kim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Subhashree Ganesan
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sarah X Luo
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA. Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Esther Park
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA. Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA. Pathology Service 113B, San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
198
|
Anderegg A, Poulin JF, Awatramani R. Molecular heterogeneity of midbrain dopaminergic neurons--Moving toward single cell resolution. FEBS Lett 2015; 589:3714-26. [PMID: 26505674 DOI: 10.1016/j.febslet.2015.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022]
Abstract
Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution.
Collapse
Affiliation(s)
- Angela Anderegg
- Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jean-Francois Poulin
- Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
199
|
Omote H, Miyaji T, Hiasa M, Juge N, Moriyama Y. Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu Rev Pharmacol Toxicol 2015; 56:385-402. [PMID: 26514205 DOI: 10.1146/annurev-pharmtox-010814-124816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; ,
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; ,
| | - Narinobu Juge
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; , .,Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
200
|
Villalba RM, Mathai A, Smith Y. Morphological changes of glutamatergic synapses in animal models of Parkinson's disease. Front Neuroanat 2015; 9:117. [PMID: 26441550 PMCID: PMC4585113 DOI: 10.3389/fnana.2015.00117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| |
Collapse
|