151
|
Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, Schnitzer MJ, Pieribone VA. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat Methods 2018; 15:1108-1116. [PMID: 30420685 PMCID: PMC6516062 DOI: 10.1038/s41592-018-0188-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
Abstract
Genetically encoded voltage indicators (GEVIs) are emerging optical tools for acquiring brain-wide cell-type-specific functional data at unparalleled temporal resolution. To broaden the application of GEVIs in high-speed multispectral imaging, we used a high-throughput strategy to develop voltage-activated red neuronal activity monitor (VARNAM), a fusion of the fast Acetabularia opsin and the bright red fluorophore mRuby3. Imageable under the modest illumination intensities required by bright green probes (<50 mW mm-2), VARNAM is readily usable in vivo. VARNAM can be combined with blue-shifted optical tools to enable cell-type-specific all-optical electrophysiology and dual-color spike imaging in acute brain slices and live Drosophila. With enhanced sensitivity to subthreshold voltages, VARNAM resolves postsynaptic potentials in slices and cortical and hippocampal rhythms in freely behaving mice. Together, VARNAM lends a new hue to the optical toolbox, opening the door to high-speed in vivo multispectral functional imaging.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- The John B. Pierce Laboratory, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Jin Zhong Li
- James H. Clark Center, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Hakan Inan
- James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
152
|
Donlea JM. Roles for sleep in memory: insights from the fly. Curr Opin Neurobiol 2018; 54:120-126. [PMID: 30366270 DOI: 10.1016/j.conb.2018.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023]
Abstract
Sleep has been universally conserved across animal species. The basic functions of sleep remain unclear, but insufficient sleep impairs memory acquisition and retention in both vertebrates and invertebrates. Sleep is also a homeostatic process that is influenced not only by the amount of time awake, but also by neural activity and plasticity. Because of the breadth and precision of available genetic tools, the fruit fly has become a powerful model system to understand sleep regulation and function. Importantly, these tools enable the dissection of memory-encoding circuits at the level of individual neurons, and have allowed the development of genetic tools to induce sleep on-demand. This review describes recent investigations of the role for sleep in memory using Drosophila and current hypotheses of sleep's functions for supporting plasticity, learning, and memory.
Collapse
Affiliation(s)
- Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
153
|
Miska NJ, Richter LM, Cary BA, Gjorgjieva J, Turrigiano GG. Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex. eLife 2018; 7:38846. [PMID: 30311905 PMCID: PMC6224193 DOI: 10.7554/elife.38846] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
Brief (2-3d) monocular deprivation (MD) during the critical period induces a profound loss of responsiveness within binocular (V1b) and monocular (V1m) regions of rodent primary visual cortex. This has largely been ascribed to long-term depression (LTD) at thalamocortical synapses, while a contribution from intracortical inhibition has been controversial. Here we used optogenetics to isolate and measure feedforward thalamocortical and feedback intracortical excitation-inhibition (E-I) ratios following brief MD. Despite depression at thalamocortical synapses, thalamocortical E-I ratio was unaffected in V1b and shifted toward excitation in V1m, indicating that thalamocortical excitation was not effectively reduced. In contrast, feedback intracortical E-I ratio was shifted toward inhibition in V1m, and a computational model demonstrated that these opposing shifts produced an overall suppression of layer 4 excitability. Thus, feedforward and feedback E-I ratios can be independently tuned by visual experience, and enhanced feedback inhibition is the primary driving force behind loss of visual responsiveness.
Collapse
Affiliation(s)
| | - Leonidas Ma Richter
- Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Brian A Cary
- Department of Biology, Brandeis University, Waltham, United States
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
154
|
Louros SR, Caldeira GL, Carvalho AL. Stargazin Dephosphorylation Mediates Homeostatic Synaptic Downscaling of Excitatory Synapses. Front Mol Neurosci 2018; 11:328. [PMID: 30271322 PMCID: PMC6146028 DOI: 10.3389/fnmol.2018.00328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
Synaptic scaling is a form of homeostatic plasticity that is critical for maintaining neuronal activity within a dynamic range, and which alters synaptic strength through changes in postsynaptic AMPA-type glutamate receptors. Homeostatic scaling down of excitatory synapses has been shown to occur during sleep, and to contribute to synapse remodeling and memory consolidation, but the underlying mechanisms are only partially known. Here, we report that synaptic downscaling in cortical neurons is accompanied by dephosphorylation of the transmembrane AMPA receptor regulatory protein stargazin, and by an increase in its cell surface mobility. The changes in stargazin surface diffusion were paralleled by an increase in the mobility of GluA1-containing AMPA receptors at synaptic sites. In addition, stargazin dephosphorylation was required for the downregulation of surface levels of GluA1-containing AMPA receptors promoted by chronic elevation of neuronal activity, specifically by mediating the interaction with the adaptor proteins AP-2 and AP-3A. Disruption of the stargazin-AP-3A interaction was sufficient to prevent the decrease in cell surface GluA1-AMPA receptor levels associated with chronically enhanced synaptic activity, suggesting that scaling down is accomplished through decreased AMPA receptor recycling and enhanced lysosomal degradation. Thus, synaptic downscaling is associated with both increased stargazin and AMPA receptor cell surface diffusion, as well as with stargazin-mediated AMPA receptor endocytosis and lysosomal degradation.
Collapse
Affiliation(s)
- Susana R Louros
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gladys L Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
155
|
Lovinger DM, Abrahao KP. Synaptic plasticity mechanisms common to learning and alcohol use disorder. ACTA ACUST UNITED AC 2018; 25:425-434. [PMID: 30115764 PMCID: PMC6097767 DOI: 10.1101/lm.046722.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022]
Abstract
Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression and long-term potentiation are widely recognized as mechanisms involved in learning and memory, responses to drugs of abuse, and addiction. In this review, we focus on the effects of chronic ethanol (EtOH) exposure on the induction of synaptic plasticity in different brain regions. We also review findings indicating that synaptic plasticity occurs in vivo during EtOH exposure, with a focus on ex vivo electrophysiological indices of plasticity. Evidence for effects of EtOH-induced or altered synaptic plasticity on learning and memory and EtOH-related behaviors is also reviewed. As this review indicates, there is much work needed to provide more information about the molecular, cellular, circuit, and behavioral consequences of EtOH interactions with synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| | - Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| |
Collapse
|
156
|
Dias RB, Rodrigues TM, Rombo DM, Ribeiro FF, Rodrigues J, McGarvey J, Orcinha C, Henley JM, Sebastião AM. Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cereb Cortex 2018; 28:2795-2809. [PMID: 29053799 PMCID: PMC6117472 DOI: 10.1093/cercor/bhx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023] Open
Abstract
The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Tiago M Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Diogo M Rombo
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Joana Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Jennifer McGarvey
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Catarina Orcinha
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| |
Collapse
|
157
|
Hirai S, Hotta K, Okado H. Developmental Roles and Evolutionary Significance of AMPA-Type Glutamate Receptors. Bioessays 2018; 40:e1800028. [PMID: 30058076 DOI: 10.1002/bies.201800028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/02/2018] [Indexed: 11/07/2022]
Abstract
Organogenesis and metamorphosis require the intricate orchestration of multiple types of cellular interactions and signaling pathways. Glutamate (Glu) is an excitatory extracellular signaling molecule in the nervous system, while Ca2+ is a major intracellular signaling molecule. The first Glu receptors to be cloned are Ca2+ -permeable receptors in mammalian brains. Although recent studies have focused on Glu signaling in synaptic mechanisms of the mammalian central nervous system, it is unclear how this signaling functions in development. Our recent article demonstrated that Ca2+ -permeable AMPA-type Glu receptors (GluAs) are essential for formation of a photosensitive organ, development of some neurons, and metamorphosis, including tail absorption and body axis rotation, in ascidian embryos. Based on findings in these embryos and mammalian brains, we formed several hypotheses regarding the evolution of GluAs, the non-synaptic function of Glu, the origin of GluA-positive neurons, and the neuronal network that controls metamorphosis in ascidians.
Collapse
Affiliation(s)
- Shinobu Hirai
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-0057, Japan
| | - Kohji Hotta
- Faculty of Science and Technology, Department of Biosciences and Informatics, Keio University, Kohoku, Yokohama, 223-8522, Japan
| | - Haruo Okado
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-0057, Japan
| |
Collapse
|
158
|
Maksimov A, Diesmann M, van Albada SJ. Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models. Front Comput Neurosci 2018; 12:44. [PMID: 30042668 PMCID: PMC6048296 DOI: 10.3389/fncom.2018.00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
During ongoing and Up state activity, cortical circuits manifest a set of dynamical features that are conserved across these states. The present work systematizes these phenomena by three notions: excitability, the ability to sustain activity without external input; balance, precise coordination of excitatory and inhibitory neuronal inputs; and stability, maintenance of activity at a steady level. Slice preparations exhibiting Up states demonstrate that balanced activity can be maintained by small local circuits. While computational models of cortical circuits have included different combinations of excitability, balance, and stability, they have done so without a systematic quantitative comparison with experimental data. Our study provides quantitative criteria for this purpose, by analyzing in-vitro and in-vivo neuronal activity and characterizing the dynamics on the neuronal and population levels. The criteria are defined with a tolerance that allows for differences between experiments, yet are sufficient to capture commonalities between persistently depolarized cortical network states and to help validate computational models of cortex. As test cases for the derived set of criteria, we analyze three widely used models of cortical circuits and find that each model possesses some of the experimentally observed features, but none satisfies all criteria simultaneously, showing that the criteria are able to identify weak spots in computational models. The criteria described here form a starting point for the systematic validation of cortical neuronal network models, which will help improve the reliability of future models, and render them better building blocks for larger models of the brain.
Collapse
Affiliation(s)
- Andrei Maksimov
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Jülich, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
159
|
Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology 2018; 138:182-192. [PMID: 29890190 DOI: 10.1016/j.neuropharm.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Soriano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
160
|
Moore AR, Richards SE, Kenny K, Royer L, Chan U, Flavahan K, Van Hooser SD, Paradis S. Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits. eLife 2018; 7:e33092. [PMID: 29809135 PMCID: PMC6010341 DOI: 10.7554/elife.33092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.
Collapse
Affiliation(s)
- Anna R Moore
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Sarah E Richards
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Katelyn Kenny
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| | - Leandro Royer
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Urann Chan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Kelly Flavahan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Suzanne Paradis
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| |
Collapse
|
161
|
Two distinct mechanisms for experience-dependent homeostasis. Nat Neurosci 2018; 21:843-850. [PMID: 29760525 PMCID: PMC6019646 DOI: 10.1038/s41593-018-0150-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022]
Abstract
Models of firing rate homeostasis such as synaptic scaling and the sliding synaptic plasticity modification threshold predict that decreasing neuronal activity (e.g. by sensory deprivation) will enhance synaptic function. Manipulations of cortical activity during two forms of visual deprivation (dark exposure (DE) and binocular lid suture (BS)) revealed that, contrary to expectations, spontaneous firing in conjunction with loss of visual input is necessary to lower the threshold for Hebbian plasticity and increases mEPSC amplitude. Blocking activation of GluN2B receptors, which are up-regulated by DE, also prevents the increase in mEPSC amplitude, suggesting that DE potentiates mEPSCs primarily through a Hebbian mechanism, not through synaptic scaling. Nevertheless, NMDAR-independent changes in mEPSC amplitude consistent with synaptic scaling could be induced by extreme reductions of activity. Therefore, two distinct mechanisms operate within different ranges of neuronal activity to homeostatically regulate synaptic strength.
Collapse
|
162
|
Rapid Disinhibition by Adjustment of PV Intrinsic Excitability during Whisker Map Plasticity in Mouse S1. J Neurosci 2018; 38:4749-4761. [PMID: 29678876 DOI: 10.1523/jneurosci.3628-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 01/11/2023] Open
Abstract
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 d whisker deprivation drives the rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing the excitation-inhibition conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, which is associated with an increase in low-threshold, voltage-activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation was precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, the rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex.SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1 d) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex.
Collapse
|
163
|
Milshtein-Parush H, Frere S, Regev L, Lahav C, Benbenishty A, Ben-Eliyahu S, Goshen I, Slutsky I. Sensory Deprivation Triggers Synaptic and Intrinsic Plasticity in the Hippocampus. Cereb Cortex 2018; 27:3457-3470. [PMID: 28407141 DOI: 10.1093/cercor/bhx084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/17/2022] Open
Abstract
Hippocampus, a temporal lobe structure involved in learning and memory, receives information from all sensory modalities. Despite extensive research on the role of sensory experience in cortical map plasticity, little is known about whether and how sensory experience regulates functioning of the hippocampal circuits. Here, we show that 9 ± 2 days of whisker deprivation during early mouse development depresses activity of CA3 pyramidal neurons by several principal mechanisms: decrease in release probability, increase in the fraction of silent synapses, and reduction in intrinsic excitability. As a result of deprivation-induced presynaptic inhibition, CA3-CA1 synaptic facilitation was augmented at high frequencies, shifting filtering properties of synapses. The changes in the AMPA-mediated synaptic transmission were accompanied by an increase in NR2B-containing NMDA receptors and a reduction in the AMPA/NMDA ratio. The observed reconfiguration of the CA3-CA1 connections may represent a homeostatic adaptation to augmentation in synaptic activity during the initial deprivation phase. In adult mice, tactile disuse diminished intrinsic excitability without altering synaptic facilitation. We suggest that sensory experience regulates computations performed by the hippocampus by tuning its synaptic and intrinsic characteristics.
Collapse
Affiliation(s)
- Hila Milshtein-Parush
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Limor Regev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904,Israel
| | - Coren Lahav
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Benbenishty
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Neuroimmunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Neuroimmunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Goshen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904,Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
164
|
Gallinaro JV, Rotter S. Associative properties of structural plasticity based on firing rate homeostasis in recurrent neuronal networks. Sci Rep 2018; 8:3754. [PMID: 29491474 PMCID: PMC5830542 DOI: 10.1038/s41598-018-22077-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Correlation-based Hebbian plasticity is thought to shape neuronal connectivity during development and learning, whereas homeostatic plasticity would stabilize network activity. Here we investigate another, new aspect of this dichotomy: Can Hebbian associative properties also emerge as a network effect from a plasticity rule based on homeostatic principles on the neuronal level? To address this question, we simulated a recurrent network of leaky integrate-and-fire neurons, in which excitatory connections are subject to a structural plasticity rule based on firing rate homeostasis. We show that a subgroup of neurons develop stronger within-group connectivity as a consequence of receiving stronger external stimulation. In an experimentally well-documented scenario we show that feature specific connectivity, similar to what has been observed in rodent visual cortex, can emerge from such a plasticity rule. The experience-dependent structural changes triggered by stimulation are long-lasting and decay only slowly when the neurons are exposed again to unspecific external inputs.
Collapse
Affiliation(s)
- Júlia V Gallinaro
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
165
|
Chowdhury D, Hell JW. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. F1000Res 2018; 7:234. [PMID: 29560257 PMCID: PMC5832907 DOI: 10.12688/f1000research.13561.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
The ability of neurons and circuits to maintain their excitability and activity levels within the appropriate dynamic range by homeostatic mechanisms is fundamental for brain function. Neuronal hyperactivity, for instance, could cause seizures. One such homeostatic process is synaptic scaling, also known as synaptic homeostasis. It involves a negative feedback process by which neurons adjust (scale) their postsynaptic strength over their whole synapse population to compensate for increased or decreased overall input thereby preventing neuronal hyper- or hypoactivity that could otherwise result in neuronal network dysfunction. While synaptic scaling is well-established and critical, our understanding of the underlying molecular mechanisms is still in its infancy. Homeostatic adaptation of synaptic strength is achieved through upregulation (upscaling) or downregulation (downscaling) of the functional availability of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites. Understanding how synaptic AMPARs are modulated in response to alterations in overall neuronal activity is essential to gain valuable insights into how neuronal networks adapt to changes in their environment, as well as the genesis of an array of neurological disorders. Here we discuss the key molecular mechanisms that have been implicated in tuning the synaptic abundance of postsynaptic AMPARs in order to maintain synaptic homeostasis.
Collapse
Affiliation(s)
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
166
|
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer's disease. Nat Neurosci 2018; 21:463-473. [PMID: 29403035 DOI: 10.1038/s41593-018-0080-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
During recent years, the preclinical stage of Alzheimer's disease (AD) has become a major focus of research. Continued failures in clinical trials and the realization that early intervention may offer better therapeutic outcome triggered a conceptual shift from late-stage AD pathology to early-stage pathophysiology. While much effort has been directed at understanding the factors initiating AD, little is known about the principle basis underlying the disease progression at its early stages. In this Perspective, we suggest a hypothesis to explain the transition from 'silent' signatures of aberrant neural circuit activity to clinically evident memory impairments. Namely, we propose that failures in firing homeostasis and imbalance between firing stability and synaptic plasticity in cortico-hippocampal circuits represent the driving force of early disease progression. We analyze the main types of possible homeostatic failures and provide the essential conceptual framework for examining the causal link between dysregulation of firing homeostasis, aberrant neural circuit activity and memory-related plasticity impairments associated with early AD.
Collapse
Affiliation(s)
- Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
167
|
Barrel Cortex: What is it Good for? Neuroscience 2018; 368:3-16. [DOI: 10.1016/j.neuroscience.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
|
168
|
Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex. eNeuro 2017; 4:eN-CFN-0402-17. [PMID: 29379869 PMCID: PMC5779119 DOI: 10.1523/eneuro.0402-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cortical circuits are profoundly shaped by experience during postnatal development. The consequences of altered vision during the critical period for ocular dominance plasticity have been extensively studied in rodent primary visual cortex (V1). However, little is known about how eye opening, a naturally occurring event, influences the maturation of cortical microcircuits. Here we used a combination of slice electrophysiology and immunohistochemistry in rat V1 to ask whether manipulating the time of eye opening for 3 or 7 d affects cortical excitatory and inhibitory synaptic transmission onto excitatory neurons uniformly across layers or induces laminar-specific effects. We report that binocular delayed eye opening for 3 d showed similar reductions of excitatory and inhibitory synaptic transmission in layers 2/3, 4, and 5. Synaptic transmission recovered to age-matched control levels if the delay was prolonged to 7 d, suggesting that these changes were dependent on binocular delay duration. Conversely, laminar-specific and long-lasting effects were observed if eye opening was delayed unilaterally. Our data indicate that pyramidal neurons located in different cortical laminae have distinct sensitivity to altered sensory drive; our data also strongly suggest that experience plays a fundamental role in not only the maturation of synaptic transmission, but also its coordination across cortical layers.
Collapse
|
169
|
Teichert M, Liebmann L, Hübner CA, Bolz J. Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex. Sci Rep 2017; 7:17423. [PMID: 29234064 PMCID: PMC5727212 DOI: 10.1038/s41598-017-17711-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
It has been demonstrated that sensory deprivation results in homeostatic adjustments recovering neuronal activity of the deprived cortex. For example, deprived vision multiplicatively scales up mEPSC amplitudes in the primary visual cortex, commonly referred to as synaptic scaling. However, whether synaptic scaling also occurs in auditory cortex after auditory deprivation remains elusive. Using periodic intrinsic optical imaging in adult mice, we show that conductive hearing loss (CHL), initially led to a reduction of primary auditory cortex (A1) responsiveness to sounds. However, this was followed by a complete recovery of A1 activity evoked sounds above the threshold for bone conduction, 3 days after CHL. Over the same time course patch-clamp experiments in slices revealed that mEPSC amplitudes in A1 layers 2/3 pyramids scaled up multiplicatively in CHL mice. No recovery of sensory evoked A1 activation was evident in TNFα KO animals, which lack synaptic scaling. Additionally, we could show that the suppressive effect of sounds on visually evoked visual cortex activity completely recovered along with TNFα dependent A1 homeostasis in WT animals. This is the first demonstration of homeostatic multiplicative synaptic scaling in the adult A1. These findings suggest that mild hearing loss massively affects auditory processing in adult A1.
Collapse
Affiliation(s)
- Manuel Teichert
- University of Jena, Institute of General Zoology and Animal Physiology, 07743, Jena, Germany
| | - Lutz Liebmann
- University of Jena, University Hospital Jena, Institute of Human Genetics, 07743, Jena, Germany
| | - Christian A Hübner
- University of Jena, University Hospital Jena, Institute of Human Genetics, 07743, Jena, Germany
| | - Jürgen Bolz
- University of Jena, Institute of General Zoology and Animal Physiology, 07743, Jena, Germany.
| |
Collapse
|
170
|
Turrigiano GG. The dialectic of Hebb and homeostasis. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0258. [PMID: 28093556 DOI: 10.1098/rstb.2016.0258] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 01/12/2023] Open
Abstract
It has become widely accepted that homeostatic and Hebbian plasticity mechanisms work hand in glove to refine neural circuit function. Nonetheless, our understanding of how these fundamentally distinct forms of plasticity compliment (and under some circumstances interfere with) each other remains rudimentary. Here, I describe some of the recent progress of the field, as well as some of the deep puzzles that remain. These include unravelling the spatial and temporal scales of different homeostatic and Hebbian mechanisms, determining which aspects of network function are under homeostatic control, and understanding when and how homeostatic and Hebbian mechanisms must be segregated within neural circuits to prevent interference.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
|
171
|
Gainey MA, Feldman DE. Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0157. [PMID: 28093551 DOI: 10.1098/rstb.2016.0157] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
We compare the circuit and cellular mechanisms for homeostatic plasticity that have been discovered in rodent somatosensory (S1) and visual (V1) cortex. Both areas use similar mechanisms to restore mean firing rate after sensory deprivation. Two time scales of homeostasis are evident, with distinct mechanisms. Slow homeostasis occurs over several days, and is mediated by homeostatic synaptic scaling in excitatory networks and, in some cases, homeostatic adjustment of pyramidal cell intrinsic excitability. Fast homeostasis occurs within less than 1 day, and is mediated by rapid disinhibition, implemented by activity-dependent plasticity in parvalbumin interneuron circuits. These processes interact with Hebbian synaptic plasticity to maintain cortical firing rates during learned adjustments in sensory representations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Melanie A Gainey
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3200, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|
172
|
Clopath C, Bonhoeffer T, Hübener M, Rose T. Variance and invariance of neuronal long-term representations. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0161. [PMID: 28093555 PMCID: PMC5247593 DOI: 10.1098/rstb.2016.0161] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 12/13/2022] Open
Abstract
The brain extracts behaviourally relevant sensory input to produce appropriate motor output. On the one hand, our constantly changing environment requires this transformation to be plastic. On the other hand, plasticity is thought to be balanced by mechanisms ensuring constancy of neuronal representations in order to achieve stable behavioural performance. Yet, prominent changes in synaptic strength and connectivity also occur during normal sensory experience, indicating a certain degree of constitutive plasticity. This raises the question of how stable neuronal representations are on the population level and also on the single neuron level. Here, we review recent data from longitudinal electrophysiological and optical recordings of single-cell activity that assess the long-term stability of neuronal stimulus selectivities under conditions of constant sensory experience, during learning, and after reversible modification of sensory input. The emerging picture is that neuronal representations are stabilized by behavioural relevance and that the degree of long-term tuning stability and perturbation resistance directly relates to the functional role of the respective neurons, cell types and circuits. Using a 'toy' model, we show that stable baseline representations and precise recovery from perturbations in visual cortex could arise from a 'backbone' of strong recurrent connectivity between similarly tuned cells together with a small number of 'anchor' neurons exempt from plastic changes.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Claudia Clopath
- Bioengineering Department, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tobias Bonhoeffer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tobias Rose
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
173
|
Feese BD, Pafundo DE, Schmehl MN, Kuhlman SJ. Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties. J Neurophysiol 2017; 119:738-751. [PMID: 29118195 DOI: 10.1152/jn.00386.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity of cortical inhibitory interneurons is rapidly reduced in response to monocular deprivation during the critical period for ocular dominance plasticity and in response to salient events encountered during learning. In the case of primary sensory cortex, a decrease in mean evoked firing rate of parvalbumin-positive (PV) inhibitory neurons is causally linked to a reorganization of excitatory networks following sensory perturbation. Converging evidence indicates that it is deprivation, and not an imbalance between open- and closed-eye inputs, that triggers rapid plasticity in PV neurons. However, this has not been directly tested in vivo. Using two-photon guided cell-attached recording, we examined the impact of closing both eyes for 24 h on PV neuron response properties in mouse primary visual cortex. We found that binocular deprivation induces a 30% reduction in stimulus-evoked mean firing rate and that this reduction is specific to critical period-aged mice. The number of PV neurons showing detectable tuning to orientation increased after 24 h of deprivation, and this effect was also specific to critical period-aged mice. In contrast to evoked mean firing rate and orientation tuning, measurements of trial-to-trial variability revealed that stimulus-driven decreases in variability are significantly dampened by deprivation during both the critical period and the postcritical period. These data establish that open-eye inputs are not required to drive deprivation-induced weakening of PV neuron evoked activity and that other aspects of in vivo PV neuron activity are malleable throughout life. NEW & NOTEWORTHY Parvalbumin-positive (PV) neurons in sensory cortex are generally considered to be mediators of experience-dependent plasticity, and their plasticity is restricted to the critical period. However, in regions outside of sensory cortex, accumulating evidence demonstrates that PV neurons are plastic in adults, raising the possibility that aspects of PV response properties may be plastic throughout life. Here we identify a feature of in vivo PV neuron activity that remains plastic past the critical period.
Collapse
Affiliation(s)
- Berquin D Feese
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Diego E Pafundo
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Meredith N Schmehl
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Sandra J Kuhlman
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| |
Collapse
|
174
|
Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss. Neuron 2017; 96:871-882.e5. [PMID: 29107520 PMCID: PMC5697914 DOI: 10.1016/j.neuron.2017.09.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023]
Abstract
Synaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling. Rather than occurring at all spines, the observed increases in spine size are spatially localized to a subset of dendritic branches and are correlated with the degree of recent local spine loss within that branch. Using simulations, we show that such a compartmentalized form of synaptic scaling has computational benefits over cell-wide scaling for information processing within the cell.
Collapse
|
175
|
Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity. PLoS One 2017; 12:e0186999. [PMID: 29073219 PMCID: PMC5658117 DOI: 10.1371/journal.pone.0186999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Abstract
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25–35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called “enriched environment” (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1–9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1.
Collapse
|
176
|
Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, Bao C, Jadhav V, Chen L, Chai Z, Ma C, Wu H, Feng J, Blesch A, White FA, Jin X. Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep 2017; 7:12743. [PMID: 28986567 PMCID: PMC5630599 DOI: 10.1038/s41598-017-12972-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023] Open
Abstract
Central sensitization and network hyperexcitability of the nociceptive system is a basic mechanism of neuropathic pain. We hypothesize that development of cortical hyperexcitability underlying neuropathic pain may involve homeostatic plasticity in response to lesion-induced somatosensory deprivation and activity loss, and can be controlled by enhancing cortical activity. In a mouse model of neuropathic pain, in vivo two-photon imaging and patch clamp recording showed initial loss and subsequent recovery and enhancement of spontaneous firings of somatosensory cortical pyramidal neurons. Unilateral optogenetic stimulation of cortical pyramidal neurons both prevented and reduced pain-like behavior as detected by bilateral mechanical hypersensitivity of hindlimbs, but corpus callosotomy eliminated the analgesic effect that was ipsilateral, but not contralateral, to optogenetic stimulation, suggesting involvement of inter-hemispheric excitatory drive in this effect. Enhancing activity by focally blocking cortical GABAergic inhibition had a similar relieving effect on the pain-like behavior. Patch clamp recordings from layer V pyramidal neurons showed that optogenetic stimulation normalized cortical hyperexcitability through changing neuronal membrane properties and reducing frequency of excitatory postsynaptic events. We conclude that development of neuropathic pain involves abnormal homeostatic activity regulation of somatosensory cortex, and that enhancing cortical excitatory activity may be a novel strategy for preventing and controlling neuropathic pain.
Collapse
Affiliation(s)
- Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew S Ripsch
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Grace Santa Cruz Chavez
- Department of Biomedical Engineering, Purdue School of Engineering and Technology. IUPUI, Indianapolis, USA
| | - Heidi Elise Hannon
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kewen Jiang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhui Bao
- Shanghai Research Institute of Acupuncture-Moxibustion and Meridian, Shanghai, China
| | - Vaishnavi Jadhav
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lifang Chen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Acupuncture, Zhejiang Traditional Chinese Medical University and the Third Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Zhi Chai
- Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Cungen Ma
- Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Huangan Wu
- Shanghai Research Institute of Acupuncture-Moxibustion and Meridian, Shanghai, China
| | - Jianqiao Feng
- Department of Acupuncture, Zhejiang Traditional Chinese Medical University and the Third Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Armin Blesch
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fletcher A White
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
177
|
Abstract
Cortical circuits are known to be plastic and adaptable, as shown by an impressive body of evidence demonstrating the ability of cortical circuits to adapt to changes in environmental stimuli, development, learning, and insults. In this review, we will discuss some of the features of cortical circuits that are thought to facilitate cortical circuit versatility and flexibility. Throughout life, cortical circuits can be extensively shaped and refined by experience while preserving their overall organization, suggesting that mechanisms are in place to favor change but also to stabilize some aspects of the circuit. First, we will describe the basic organization and some of the common features of cortical circuits. We will then discuss how this underlying cortical structure provides a substrate for the experience- and learning-dependent processes that contribute to cortical flexibility.
Collapse
Affiliation(s)
- Melissa S. Haley
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
178
|
Colonnese MT, Shen J, Murata Y. Uncorrelated Neural Firing in Mouse Visual Cortex during Spontaneous Retinal Waves. Front Cell Neurosci 2017; 11:289. [PMID: 28979189 PMCID: PMC5611364 DOI: 10.3389/fncel.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Synchronous firing among the elements of forming circuits is critical for stabilization of synapses. Understanding the nature of these local network interactions during development can inform models of circuit formation. Within cortex, spontaneous activity changes throughout development. Unlike the adult, early spontaneous activity occurs in discontinuous population bursts separated by long silent periods, suggesting a high degree of local synchrony. However, whether the micro-patterning of activity within early bursts is unique to this early age and specifically tuned for early development is poorly understood, particularly within the column. To study this we used single-shank multi-electrode array recordings of spontaneous activity in the visual cortex of non-anesthetized neonatal mice to quantify single-unit firing rates, and applied multiple measures of network interaction and synchrony throughout the period of map formation and immediately after eye-opening. We find that despite co-modulation of firing rates on a slow time scale (hundreds of ms), the number of coactive neurons, as well as pair-wise neural spike-rate correlations, are both lower before eye-opening. In fact, on post-natal days (P)6–9 correlated activity was lower than expected by chance, suggesting active decorrelation of activity during early bursts. Neurons in lateral geniculate nucleus developed in an opposite manner, becoming less correlated after eye-opening. Population coupling, a measure of integration in the local network, revealed a population of neurons with particularly strong local coupling present at P6–11, but also an adult-like diversity of coupling at all ages, suggesting that a neuron’s identity as locally or distally coupled is determined early. The occurrence probabilities of unique neuronal “words” were largely similar at all ages suggesting that retinal waves drive adult-like patterns of co-activation. These findings suggest that the bursts of spontaneous activity during early visual development do not drive hyper-synchronous activity within columns. Rather, retinal waves provide windows of potential activation during which neurons are active but poorly correlated, adult-like patterns of correlation are achieved soon after eye-opening.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Jing Shen
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| |
Collapse
|
179
|
Santin JM, Vallejo M, Hartzler LK. Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity. eLife 2017; 6:30005. [PMID: 28914603 PMCID: PMC5636609 DOI: 10.7554/elife.30005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. Neurons in the brain communicate using chemical signals that they send and receive across junctions called synapses. To maintain normal behavior over time, circuits of neurons must reliably process these signals. A variety of nervous system disorders may result if they are unable to do so, as may occur when neural activity changes as a result of disease or injury. The processes underlying the stability of a neuron’s synapses is referred to as “homeostatic” synaptic plasticity because the changes made by the neuron directly oppose the altered level of activity. In one form of homeostatic plasticity, known as synaptic scaling, neurons modify the strength of all of their synapses in response to changes in neural activity. There is substantial experimental evidence to show that in young animals, neurons that communicate using a chemical called glutamate undergo synaptic scaling in response to artificial changes in activity. It had not been directly shown that synaptic scaling protects the neural activity of adult animals in their natural environments, in part, because neural activity in most healthy animals generally only goes through small changes. However, the neurons in the brain that cause the breathing muscles of bullfrogs to contract are ideal for studying homeostatic plasticity because they are naturally inactive for several months when frogs hibernate in ponds during the winter. During this time, the bullfrogs do not need to use their lungs to breathe because enough oxygen passes through their skin to keep them alive. Santin et al. have now observed synaptic scaling of glutamate synapses in individual bullfrog neurons that had been inactive for two months. Further experiments that examined the activity of the breathing control circuit in the brainstem provided evidence that synaptic scaling leads to sufficient amounts of neural activity that would activate the breathing muscles when frogs emerge from hibernation. Therefore neural activity after prolonged, natural inactivity relies on synaptic scaling to preserve life-sustaining behavior in frogs. These results open up new questions: mainly, how do synaptic scaling and other forms of homeostatic plasticity operate in animals as they experience normal variations in neural activity? Determining how homeostatic plasticity works normally in an animal will help us to understand what happens when plasticity mechanisms go wrong, as is thought to occur in several human nervous system diseases including nervous system injury, Alzheimer’s disease, and epilepsy.
Collapse
Affiliation(s)
- Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States.,Department of Biological Sciences, Wright State University, Dayton, United States
| | - Mauricio Vallejo
- Department of Biological Sciences, Wright State University, Dayton, United States
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, United States
| |
Collapse
|
180
|
Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 2017; 20:1199-1208. [PMID: 28849791 DOI: 10.1038/nn.4619] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
Neocortical inhibitory neurons exhibit remarkably diverse morphology, physiological properties and connectivity. Genetic access to molecularly defined subtypes of inhibitory neurons has aided their functional characterization in recent years. These studies have established that, instead of simply balancing excitatory neuron activity, inhibitory neurons actively shape excitatory circuits in a subtype-specific manner. We review the emerging view that inhibitory neuron subtypes perform context-dependent modulation of excitatory activity, as well as regulate experience-dependent plasticity of excitatory circuits. We then review the roles of neuromodulators in regulating the subtype-specific functions of inhibitory neurons. Finally, we discuss the idea that dysfunctions of inhibitory neuron subtypes may be responsible for various aspects of neurological disorders.
Collapse
|
181
|
Puentes-Mestril C, Aton SJ. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 2017; 11:61. [PMID: 28932187 PMCID: PMC5592216 DOI: 10.3389/fncir.2017.00061] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY—namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Sara J Aton
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
182
|
Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, Jamwal S, Ali N, García Romero EM, Sharma S, Ghosh S, Sinha JK, Loke H, Jain V, Lepeta K, Salamian A, Sharma M, Golpich M, Nawrotek K, Paidi RK, Shahidzadeh SM, Piermartiri T, Amini E, Pastor V, Wilson Y, Adeniyi PA, Datusalia AK, Vafadari B, Saini V, Suárez-Pozos E, Kushwah N, Fontanet P, Turner AJ. The malleable brain: plasticity of neural circuits and behavior - a review from students to students. J Neurochem 2017. [PMID: 28632905 DOI: 10.1111/jnc.14107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Würzburg, Germany
| | - Carola Rotermund
- German Center of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pooja Joshi
- Inserm UMR 1141, Robert Debre Hospital, Paris, France
| | - Regina U Hegemann
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Sumit Jamwal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nilufar Ali
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shampa Ghosh
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Jitendra K Sinha
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Hannah Loke
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Vishal Jain
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mojtaba Golpich
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Katarzyna Nawrotek
- Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ramesh K Paidi
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sheila M Shahidzadeh
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Veronica Pastor
- Instituto de Biología Celular y Neurociencia Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yvette Wilson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip A Adeniyi
- Cell Biology and Neurotoxicity Unit, Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado - Ekiti, Ekiti State, Nigeria
| | | | - Benham Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vedangana Saini
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Edna Suárez-Pozos
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Toxicología, México
| | - Neetu Kushwah
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Paula Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience (IBCN), CONICET-UBA, School of Medicine, Buenos Aires, Argentina
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
183
|
Dorsoventral and Proximodistal Hippocampal Processing Account for the Influences of Sleep and Context on Memory (Re)consolidation: A Connectionist Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:8091780. [PMID: 28757864 PMCID: PMC5512097 DOI: 10.1155/2017/8091780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 11/23/2022]
Abstract
The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations.
Collapse
|
184
|
Jamann N, Jordan M, Engelhardt M. Activity-dependent axonal plasticity in sensory systems. Neuroscience 2017; 368:268-282. [PMID: 28739523 DOI: 10.1016/j.neuroscience.2017.07.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
The rodent whisker-to-barrel cortex pathway is a classic model to study the effects of sensory experience and deprivation on neuronal circuit formation, not only during development but also in the adult. Decades of research have produced a vast body of evidence highlighting the fundamental role of neuronal activity (spontaneous and/or sensory-evoked) for circuit formation and function. In this context, it has become clear that neuronal adaptation and plasticity is not just a function of the neonatal brain, but persists into adulthood, especially after experience-driven modulation of network status. Mechanisms for structural remodeling of the somatodendritic or axonal domain include microscale alterations of neurites or synapses. At the same time, functional alterations at the nanoscale such as expression or activation changes of channels and receptors contribute to the modulation of intrinsic excitability or input-output relationships. However, it remains elusive how these forms of structural and functional plasticity come together to shape neuronal network formation and function. While specifically somatodendritic plasticity has been studied in great detail, the role of axonal plasticity, (e.g. at presynaptic boutons, branches or axonal microdomains), is rather poorly understood. Therefore, this review will only briefly highlight somatodendritic plasticity and instead focus on axonal plasticity. We discuss (i) the role of spontaneous and sensory-evoked plasticity during critical periods, (ii) the assembly of axonal presynaptic sites, (iii) axonal plasticity in the mature brain under baseline and sensory manipulation conditions, and finally (iv) plasticity of electrogenic axonal microdomains, namely the axon initial segment, during development and in the mature CNS.
Collapse
Affiliation(s)
- Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Merryn Jordan
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany.
| |
Collapse
|
185
|
Visual Deprivation During the Critical Period Enhances Layer 2/3 GABAergic Inhibition in Mouse V1. J Neurosci 2017; 36:5914-9. [PMID: 27251614 DOI: 10.1523/jneurosci.0051-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/23/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The role of GABAergic signaling in establishing a critical period for experience in visual cortex is well understood. However, the effects of early experience on GABAergic synapses themselves are less clear. Here, we show that monocular deprivation (MD) during the adolescent critical period produces marked enhancement of GABAergic signaling in layer 2/3 of mouse monocular visual cortex. This enhancement coincides with a weakening of glutamatergic inputs, resulting in a significant reduction in the ratio of excitation to inhibition. The potentiation of GABAergic transmission arises from both an increased number of inhibitory synapses and an enhancement of presynaptic GABA release from parvalbumin- and somatostatin-expressing interneurons. Our results suggest that augmented GABAergic inhibition contributes to the experience-dependent regulation of visual function. SIGNIFICANCE STATEMENT Visual experience shapes the synaptic organization of cortical circuits in the mouse brain. Here, we show that monocular visual deprivation enhances GABAergic synaptic inhibition in primary visual cortex. This enhancement is mediated by an increase in both the number of postsynaptic GABAergic synapses and the probability of presynaptic GABA release. Our results suggest a contributing mechanism to altered visual responses after deprivation.
Collapse
|
186
|
All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control. J Neurosci 2017; 37:6778-6785. [PMID: 28592691 DOI: 10.1523/jneurosci.0618-17.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 02/05/2023] Open
Abstract
Neocortical circuits use a family of homeostatic plasticity mechanisms to stabilize firing, including excitatory and inhibitory synaptic scaling and homeostatic intrinsic plasticity (Turrigiano and Nelson, 2004). All three mechanisms can be induced in tandem in cultured rat neocortical pyramidal neurons by chronic manipulations of firing, but it is unknown whether they are coinduced by the same activity-sensors and signaling pathways, or whether they are under independent control. Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) is a key sensory/effector in excitatory synaptic scaling that senses perturbations in firing through changes in calcium influx, and translates this into compensatory changes in excitatory quantal amplitude (Ibata et al., 2008; Goold and Nicoll, 2010). Whether CaMKIV also controls inhibitory synaptic scaling and intrinsic homeostatic plasticity was unknown. To test this we manipulated CaMKIV signaling in individual neurons using dominant-negative (dn) or constitutively-active (ca) forms of nuclear-localized CaMKIV and measured the induction of all three forms of homeostatic plasticity. We found that excitatory synaptic scaling and intrinsic plasticity were bidirectionally coinduced by these manipulations. In contrast, these cell-autonomous manipulations had no impact on inhibitory quantal amplitude. Finally, we found that spontaneous firing rates were shifted up or down by dnCaMKIV or caCaMKIV, respectively, suggesting that uncoupling CaMKIV activation from activity generates an error signal in the negative feedback mechanism that controls firing rates. Together, our data show that excitatory synaptic scaling and intrinsic excitability are tightly coordinated through bidirectional changes in the same signaling pathway, whereas inhibitory synaptic scaling is sensed and regulated through an independent control mechanism.SIGNIFICANCE STATEMENT Maintaining stable function in highly interconnected neural circuits is essential for preventing circuit disorders, and is accomplished through a set of negative feedback mechanisms that sense and compensate for perturbations in activity. These "homeostatic" mechanisms can target synaptic excitation, synaptic inhibition, and intrinsic excitability, but whether they are independently controlled is not known. We find that synaptic excitation and intrinsic excitability are coregulated in individual neurons through CaMKIV signaling, which is tightly controlled by neuronal activity. In contrast, synaptic inhibition is unaffected by changes in firing or CaMKIV signaling in individual neurons. These results show that circuit stability is controlled both through cell-autonomous mechanisms that regulate some aspects of excitability, as well as circuit-level mechanisms that adjust inhibition.
Collapse
|
187
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|
188
|
Tien NW, Soto F, Kerschensteiner D. Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina. Neuron 2017; 94:656-665.e4. [PMID: 28457596 DOI: 10.1016/j.neuron.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar (B6) cells dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch-clamp recordings revealed that anatomical rewiring precisely preserved contrast and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
189
|
Timofeev I, Chauvette S. Sleep slow oscillation and plasticity. Curr Opin Neurobiol 2017; 44:116-126. [PMID: 28453998 DOI: 10.1016/j.conb.2017.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022]
Abstract
It is well documented that sleep contributes to memory consolidation and it is also accepted that long-term synaptic plasticity plays a critical role in memory formation. The mechanisms of this sleep-dependent memory formation are unclear. Two main hypotheses are proposed. According to the first one, synapses are potentiated during wake; and during sleep they are scaled back to become available for the learning tasks in the next day. The other hypothesis is that sleep slow oscillations potentiate synapses that were depressed due to persistent activities during the previous day and that potentiation provides physiological basis for memory consolidation. The objective of this review is to group information on whether cortical synapses are up-scaled or down-scaled during sleep. We conclude that the majority of cortical synapses are up-regulated by sleep slow oscillation.
Collapse
Affiliation(s)
- Igor Timofeev
- Department of Psychiatry and Neuroscience, Université Laval Québec, QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière Québec, QC G1J 2G3, Canada.
| | - Sylvain Chauvette
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière Québec, QC G1J 2G3, Canada
| |
Collapse
|
190
|
Cirelli C. Sleep, synaptic homeostasis and neuronal firing rates. Curr Opin Neurobiol 2017; 44:72-79. [PMID: 28399462 DOI: 10.1016/j.conb.2017.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/01/2017] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
The synaptic homeostasis hypothesis (SHY) states that wake brings about a net overall increase in synaptic strength in many brain circuits that needs to be renormalized by sleep. I will review recent studies that were either specifically designed to test SHY or were interpreted accordingly, including several experiments that focused on changes in neuronal firing rates. I will emphasize that central to SHY is the idea that what is being regulated across the sleep/wake cycle is synaptic strength, not firing rate, and firing rate taken in isolation is not necessarily an adequate proxy for synaptic strength.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| |
Collapse
|
191
|
Resnik J, Polley DB. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. eLife 2017; 6. [PMID: 28323619 PMCID: PMC5378474 DOI: 10.7554/elife.21452] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries. DOI:http://dx.doi.org/10.7554/eLife.21452.001
Collapse
Affiliation(s)
- Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States.,Department of Otolaryngology, Harvard Medical School, Boston, United States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States.,Department of Otolaryngology, Harvard Medical School, Boston, United States
| |
Collapse
|
192
|
Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, Gerstner W, Haydon PG, Hübener M, Lee HK, Lisman JE, Rose T, Sengpiel F, Stellwagen D, Stryker MP, Turrigiano GG, van Rossum MC. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160158. [PMID: 28093552 PMCID: PMC5247590 DOI: 10.1098/rstb.2016.0158] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next provide a synopsis of the outstanding questions that emerged from the discussion at the end of the meeting and finally suggest potential directions of research that we believe are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Lu Chen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kevin Fox
- Division of Neuroscience, University of Cardiff, Cardiff, Wales, UK
| | - Wulfram Gerstner
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Mark Hübener
- Department of Cellular and Systems Neuroscience, Max Planck Institute of Neurobiology, Martinsried, Bayern, Germany
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - John E Lisman
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tobias Rose
- Department of Cellular and Systems Neuroscience, Max Planck Institute of Neurobiology, Martinsried, Bayern, Germany
| | - Frank Sengpiel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Division of Neuroscience, University of Cardiff, Cardiff, Wales, UK
| | - David Stellwagen
- Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Michael P Stryker
- Sandler Neurosciences Center, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
193
|
Keck T, Hübener M, Bonhoeffer T. Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance. Curr Opin Neurobiol 2017; 43:87-93. [PMID: 28236778 DOI: 10.1016/j.conb.2017.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/03/2016] [Accepted: 02/01/2017] [Indexed: 11/17/2022]
Abstract
Homeostatic plasticity is proposed to be mediated by synaptic changes, such as synaptic scaling and shifts in the excitation/inhibition balance. These mechanisms are thought to be separate from the Bienenstock, Cooper, Munro (BCM) learning rule, where the threshold for the induction of long-term potentiation and long-term depression slides in response to changes in activity levels. Yet, both sets of mechanisms produce a homeostatic response of a relative increase (or decrease) in strength of excitatory synapses in response to overall activity-level changes. Here we review recent studies, with a focus on in vivo experiments, to re-examine the overlap and differences between these two mechanisms and we suggest how they may interact to facilitate firing-rate homeostasis, while maintaining functional properties of neurons.
Collapse
Affiliation(s)
- Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London, WC1E 6DE, UK
| | - Mark Hübener
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
194
|
Lampl I, Katz Y. Neuronal adaptation in the somatosensory system of rodents. Neuroscience 2017; 343:66-76. [DOI: 10.1016/j.neuroscience.2016.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
195
|
Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity. J Neurosci 2017; 37:1269-1283. [PMID: 28039374 PMCID: PMC6596863 DOI: 10.1523/jneurosci.2504-16.2016] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 02/04/2023] Open
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures mainly enwrapping parvalbumin-expressing inhibitory neurons. The assembly of PNNs coincides with the end of the period of heightened visual cortex plasticity in juveniles, whereas removal of PNNs in adults reopens for plasticity. The mechanisms underlying this phenomenon remain elusive. We have used chronic electrophysiological recordings to investigate accompanying electrophysiological changes to activity-dependent plasticity and we report on novel mechanisms involved in both induced and critical period plasticity. By inducing activity-dependent plasticity in the visual cortex of adult rats while recording single unit and population activity, we demonstrate that PNN removal alters the balance between inhibitory and excitatory spiking activity directly. Without PNNs, inhibitory activity was reduced, whereas spiking variability was increased as predicted in a simulation with a Brunel neural network. Together with a shift in ocular dominance and large effects on unit activity during the first 48 h of monocular deprivation (MD), we show that PNN removal resets the neural network to an immature, juvenile state. Furthermore, in PNN-depleted adults as well as in juveniles, MD caused an immediate potentiation of gamma activity, suggesting a novel mechanism initiating activity-dependent plasticity and driving the rapid changes in unit activity. SIGNIFICANCE STATEMENT Emerging evidence suggests a role for perineuronal nets (PNNs) in learning and regulation of plasticity, but the underlying mechanisms remain unresolved. Here, we used chronic in vivo extracellular recordings to investigate how removal of PNNs opens for plasticity and how activity-dependent plasticity affects neural activity over time. PNN removal caused reduced inhibitory activity and reset the network to a juvenile state. Experimentally induced activity-dependent plasticity by monocular deprivation caused rapid changes in single unit activity and a remarkable potentiation of gamma oscillations. Our results demonstrate how PNNs may be involved directly in stabilizing the neural network. Moreover, the immediate potentiation of gamma activity after plasticity onset points to potential new mechanisms for the initiation of activity-dependent plasticity.
Collapse
Affiliation(s)
- Kristian Kinden Lensjø
- Department of Biosciences
- Center for Integrative Neuroplasticity, University of Oslo, 0370 Oslo, Norway
| | - Mikkel Elle Lepperød
- Institute of Basic Medical Sciences, and
- Center for Integrative Neuroplasticity, University of Oslo, 0370 Oslo, Norway
| | | | - Torkel Hafting
- Institute of Basic Medical Sciences, and
- Center for Integrative Neuroplasticity, University of Oslo, 0370 Oslo, Norway
| | - Marianne Fyhn
- Department of Biosciences,
- Center for Integrative Neuroplasticity, University of Oslo, 0370 Oslo, Norway
| |
Collapse
|
196
|
Cholanian M, Wealing J, Levine RB, Fregosi RF. Developmental nicotine exposure alters potassium currents in hypoglossal motoneurons of neonatal rat. J Neurophysiol 2017; 117:1544-1552. [PMID: 28148643 DOI: 10.1152/jn.00774.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
We previously showed that nicotine exposure in utero and after birth via breast milk [developmental nicotine exposure (DNE)] is associated with many changes in the structure and function of hypoglossal motoneurons (XIIMNs), including a reduction in the size of the dendritic arbor and an increase in cell excitability. Interestingly, the elevated excitability was associated with a reduction in the expression of glutamate receptors on the cell body. Together, these observations are consistent with a homeostatic compensation aimed at restoring cell excitability. Compensation for increased cell excitability could also occur by changing potassium conductance, which plays a critical role in regulating resting potential, spike threshold, and repetitive spiking behavior. Here we test the hypothesis that the previously observed increase in the excitability of XIIMNs from DNE animals is associated with an increase in whole cell potassium currents. Potassium currents were measured in XIIMNs in brain stem slices derived from DNE and control rat pups ranging in age from 0 to 4 days by whole cell patch-clamp electrophysiology. All currents were measured after blockade of action potential-dependent synaptic transmission with tetrodotoxin. Compared with control cells, XIIMNs from DNE animals showed significantly larger transient and sustained potassium currents, but this was observed only under conditions of increased cell and network excitability, which we evoked by raising extracellular potassium from 3 to 9 mM. These observations suggest that the larger potassium currents in nicotine-exposed neurons are an important homeostatic compensation that prevents "runaway" excitability under stressful conditions, when neurons are receiving elevated excitatory synaptic input.NEW & NOTEWORTHY Developmental nicotine exposure is associated with increased cell excitability, which is often accompanied by compensatory changes aimed at normalizing excitability. Here we show that whole cell potassium currents are also increased in hypoglossal motoneurons from nicotine-exposed neonatal rats under conditions of increased cell and network excitability. This is consistent with a compensatory response aimed at preventing instability under conditions in which excitatory synaptic input is high and is compatible with the concept of homeostatic plasticity.
Collapse
Affiliation(s)
- Marina Cholanian
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Jesse Wealing
- Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Environmental and Evolutionary Biology, The University of Arizona, Tucson, Arizona; and
| | - Richard B Levine
- Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Neuroscience, The University of Arizona, Tucson, Arizona
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona; .,Department of Neuroscience, The University of Arizona, Tucson, Arizona
| |
Collapse
|
197
|
Frank MG. Sleep and plasticity in the visual cortex: more than meets the eye. Curr Opin Neurobiol 2017; 44:8-12. [PMID: 28126451 DOI: 10.1016/j.conb.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022]
Abstract
The visual cortex has provided key insights into how experience shapes cortical circuitry. Scientists have identified how different manipulations of visual experience trigger distinct forms of plasticity as well as many of the underlying cellular and molecular mechanisms. Intriguingly, experience is not the only factor driving plasticity in the visual system. Sleep is also required for the full expression of plasticity in the developing visual cortex. In this review, I discuss what we have learned about the role of sleep in visual cortical plasticity and what it tells us about sleep function.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane,Pharmaceutical and Biomedical Science Building 213, 412 E. Spokane Falls Blvd., Spokane, WA 99202, USA.
| |
Collapse
|
198
|
Leibo JZ, Liao Q, Anselmi F, Freiwald WA, Poggio T. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation. Curr Biol 2017; 27:62-67. [PMID: 27916522 PMCID: PMC5319833 DOI: 10.1016/j.cub.2016.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3-6]. Here, we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here, we demonstrate that one specific biologically plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli, like faces, at intermediate levels of the architecture and show why it does so. Thus, the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside.
Collapse
Affiliation(s)
- Joel Z Leibo
- Center for Brains, Minds, and Machines and McGovern Institute for Brain Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Qianli Liao
- Center for Brains, Minds, and Machines and McGovern Institute for Brain Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Fabio Anselmi
- Center for Brains, Minds, and Machines and McGovern Institute for Brain Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Winrich A Freiwald
- Center for Brains, Minds, and Machines and McGovern Institute for Brain Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tomaso Poggio
- Center for Brains, Minds, and Machines and McGovern Institute for Brain Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
199
|
Circadian dynamics in measures of cortical excitation and inhibition balance. Sci Rep 2016; 6:33661. [PMID: 27651114 PMCID: PMC5030482 DOI: 10.1038/srep33661] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Several neuropsychiatric and neurological disorders have recently been characterized as dysfunctions arising from a ‘final common pathway’ of imbalanced excitation to inhibition within cortical networks. How the regulation of a cortical E/I ratio is affected by sleep and the circadian rhythm however, remains to be established. Here we addressed this issue through the analyses of TMS-evoked responses recorded over a 29 h sleep deprivation protocol conducted in young and healthy volunteers. Spectral analyses of TMS-evoked responses in frontal cortex revealed non-linear changes in gamma band evoked oscillations, compatible with an influence of circadian timing on inhibitory interneuron activity. In silico inferences of cell-to-cell excitatory and inhibitory connectivity and GABA/Glutamate receptor time constant based on neural mass modeling within the Dynamic causal modeling framework, further suggested excitation/inhibition balance was under a strong circadian influence. These results indicate that circadian changes in EEG spectral properties, in measure of excitatory/inhibitory connectivity and in GABA/glutamate receptor function could support the maintenance of cognitive performance during a normal waking day, but also during overnight wakefulness. More generally, these findings demonstrate a slow daily regulation of cortical excitation/inhibition balance, which depends on circadian-timing and prior sleep-wake history.
Collapse
|
200
|
Steinmetz CC, Tatavarty V, Sugino K, Shima Y, Joseph A, Lin H, Rutlin M, Lambo M, Hempel CM, Okaty BW, Paradis S, Nelson SB, Turrigiano GG. Upregulation of μ3A Drives Homeostatic Plasticity by Rerouting AMPAR into the Recycling Endosomal Pathway. Cell Rep 2016; 16:2711-2722. [PMID: 27568566 DOI: 10.1016/j.celrep.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 01/06/2023] Open
Abstract
Synaptic scaling is a form of homeostatic plasticity driven by transcription-dependent changes in AMPA-type glutamate receptor (AMPAR) trafficking. To uncover the pathways involved, we performed a cell-type-specific screen for transcripts persistently altered during scaling, which identified the μ subunit (μ3A) of the adaptor protein complex AP-3A. Synaptic scaling increased μ3A (but not other AP-3 subunits) in pyramidal neurons and redistributed dendritic μ3A and AMPAR to recycling endosomes (REs). Knockdown of μ3A prevented synaptic scaling and this redistribution, while overexpression (OE) of full-length μ3A or a truncated μ3A that cannot interact with the AP-3A complex was sufficient to drive AMPAR to REs. Finally, OE of μ3A acted synergistically with GRIP1 to recruit AMPAR to the dendritic membrane. These data suggest that excess μ3A acts independently of the AP-3A complex to reroute AMPAR to RE, generating a reservoir of receptors essential for the regulated recruitment to the synaptic membrane during scaling up.
Collapse
Affiliation(s)
- Celine C Steinmetz
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Vedakumar Tatavarty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Ken Sugino
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Yasuyuki Shima
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Anne Joseph
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Heather Lin
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rutlin
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Mary Lambo
- Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
| | - Chris M Hempel
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Benjamin W Okaty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Sacha B Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | - Gina G Turrigiano
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|