151
|
Tsunematsu T, Sakata S, Sanagi T, Tanaka KF, Matsui K. Region-Specific and State-Dependent Astrocyte Ca 2+ Dynamics during the Sleep-Wake Cycle in Mice. J Neurosci 2021; 41:5440-5452. [PMID: 34006590 PMCID: PMC8221592 DOI: 10.1523/jneurosci.2912-20.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/06/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca2+) concentrations of mice during sleep/wakefulness states in the cortex, hippocampus, hypothalamus, cerebellum, and pons using fiber photometry. For this purpose, male transgenic mice expressing the genetically encoded ratiometric Ca2+ sensor YCnano50 specifically in their astrocytes were used. We demonstrated that Ca2+ levels in astrocytes substantially decrease during rapid eye movement (REM) sleep, and increase after the onset of wakefulness. In contrast, differences in Ca2+ levels during non-REM (NREM) sleep were observed among the different brain regions, and no significant decrease was observed in the hypothalamus and pons. Further analyses focusing on the transition between sleep/wakefulness states and correlation analysis with the duration of REM sleep showed that Ca2+ dynamics differs among brain regions, suggesting the existence of several clusters, i.e., the first comprising the cortex and hippocampus, the second comprising the hypothalamus and pons, and the third comprising the cerebellum. Our study thus demonstrated that astrocyte Ca2+ levels change substantially according to sleep/wakefulness states. These changes were consistent in general unlike neural activity. However, we also clarified that Ca2+ dynamics varies depending on the brain region, implying that astrocytes may play various physiological roles in sleep.SIGNIFICANCE STATEMENT Sleep is an instinctive behavior of many organisms. In the previous five decades, the mechanism of the neural circuits controlling sleep/wakefulness states and the neural activities associated with sleep/wakefulness states in various brain regions have been elucidated. However, whether astrocytes, which are a type of glial cell, change their activity during different sleep/wakefulness states was poorly understood. Here, we demonstrated that dynamic changes in astrocyte Ca2+ concentrations occur in the cortex, hippocampus, hypothalamus, cerebellum, and pons of mice during natural sleep. Further analyses demonstrated that Ca2+ dynamics slightly differ among different brain regions, implying that the physiological roles of astrocytes in sleep/wakefulness might vary depending on the brain region.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Tomomi Sanagi
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
152
|
Lim EY, Ye L, Paukert M. Potential and Realized Impact of Astroglia Ca 2 + Dynamics on Circuit Function and Behavior. Front Cell Neurosci 2021; 15:682888. [PMID: 34163330 PMCID: PMC8215280 DOI: 10.3389/fncel.2021.682888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Astroglia display a wide range of spontaneous and behavioral state-dependent Ca2+ dynamics. During heightened vigilance, noradrenergic signaling leads to quasi-synchronous Ca2+ elevations encompassing soma and processes across the brain-wide astroglia network. Distinct from this vigilance-associated global Ca2+ rise are apparently spontaneous fluctuations within spatially restricted microdomains. Over the years, several strategies have been pursued to shed light on the physiological impact of these signals including deletion of endogenous ion channels or receptors and reduction of intracellular Ca2+ through buffering, extrusion or inhibition of release. Some experiments that revealed the most compelling behavioral alterations employed chemogenetic and optogenetic manipulations to modify astroglia Ca2+ signaling. However, there is considerable contrast between these findings and the comparatively modest effects of inhibiting endogenous sources of Ca2+. In this review, we describe the underlying mechanisms of various forms of astroglia Ca2+ signaling as well as the functional consequences of their inhibition. We then discuss how the effects of exogenous astroglia Ca2+ modification combined with our knowledge of physiological mechanisms of astroglia Ca2+ activation could guide further refinement of behavioral paradigms that will help elucidate the natural Ca2+-dependent function of astroglia.
Collapse
Affiliation(s)
- Eunice Y. Lim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,*Correspondence: Martin Paukert,
| |
Collapse
|
153
|
Morimoto K, Eguchi R, Kitano T, Otsuguro KI. Alpha and beta adrenoceptors activate interleukin-6 transcription through different pathways in cultured astrocytes from rat spinal cord. Cytokine 2021; 142:155497. [PMID: 33770644 DOI: 10.1016/j.cyto.2021.155497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
In brain astrocytes, noradrenaline (NA) has been shown to up-regulate IL-6 production via β-adrenoceptors (ARs). However, the underlying intracellular mechanisms for this regulation are not clear, and it remains unknown whether α-ARs are involved. In this study, we investigated the AR-mediated regulation of IL-6 mRNA levels in the cultured astrocytes from rat spinal cord. NA, the α1-agonist phenylephrine, and the β-agonist isoproterenol increased IL-6 mRNA levels. The phenylephrine-induced IL-6 increase was accompanied by an increase in ERK phosphorylation, and these effects were blocked by inhibitors of PKC and ERK. The isoproterenol-induced IL-6 increase was accompanied by an increase in CREB phosphorylation, and these effects were blocked by a PKA inhibitor. Our results indicate that IL-6 increases by α1- and β-ARs are mediated via the PKC/ERK and cAMP/PKA/CREB pathways, respectively. Moreover, conditioned medium collected from astrocytes treated with the α2-AR agonist dexmedetomidine, increased IL-6 mRNA in other astrocytes. In this study, we elucidate that α1- and α2-ARs, in addition to β-ARs, promote IL-6 transcription through different pathways in spinal cord astrocytes.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Spinal Cord/cytology
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Rats
Collapse
Affiliation(s)
- Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Taisuke Kitano
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
154
|
Wei Y, Chen T, Bosco DB, Xie M, Zheng J, Dheer A, Ying Y, Wu Q, Lennon VA, Wu LJ. The complement C3-C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia 2021; 69:1155-1169. [PMID: 33314324 PMCID: PMC7936954 DOI: 10.1002/glia.23955] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3-/- and C3aR-/- mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3-/- mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qian Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vanda A. Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
155
|
Brighenti T, Malerba M, Cozzini T, Marcon A, Vedovi E, Nocini R, Formentini D, Pedrotti E, Nocini PF. Effects of oral function on pupil response: a new view on bruxism pathophysiology. Minerva Dent Oral Sci 2021; 70:233-238. [PMID: 33908745 DOI: 10.23736/s2724-6329.21.04506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND There are increasing evidences of the influence of the oropharyngeal stimulations on the autonomic nervous system and an easy approach to evaluate the balance between parasympathetic and sympathetic system is the measurement of the pupil diameter. The aim of this analytic observational study is to define the effects of clenching and swallowing on pupil diameter, and how an oral appliance can affect the outcome of these tasks, to establish their influence on the sympathetic-parasympathetic balance. METHODS We measured the pupil diameter in 30 healthy subjects during clenching and swallowing, both with and without oral appliance. We compared the results with the mandibular rest position. The respective positions with and without oral appliance were also compared. RESULTS Pupillometry showed a mydriatic effect of swallowing (rest=6.94 mm, swallowing=7.26 mm, p=0.04) and oral appliance, more relevant in scotopic conditions. On the contrary, clenching seemed to enhance miosis, especially in intense brightness condition (rest=3.95 mm, clenching=3.83 mm, p=0.02). CONCLUSIONS Swallowing and oral appliance facilitate the sympathetic system, while clenching activates the parasympathetic branch. We argue that probably the locus coeruleus is the main hub. These results could have practical implications in bruxism physiology, because it could be an attempt to counteract the activation of the sympathetic system.
Collapse
Affiliation(s)
- Tommaso Brighenti
- Department of Neuroscience, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy -
| | - Mauro Malerba
- School of Dentistry, Department of Surgery, Dentistry, Paediatrics and Gynaecology (DIPSCOMI), University of Verona, Verona, Italy
| | - Tiziano Cozzini
- Department of Neuroscience, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ermes Vedovi
- UOC Rehabilitation, Department of Neuroscience, Verona University Hospital, Verona, Italy
| | - Riccardo Nocini
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Verona, Verona, Italy
| | - Daniele Formentini
- School of Dentistry, Department of Surgery, Dentistry, Paediatrics and Gynaecology (DIPSCOMI), University of Verona, Verona, Italy
| | - Emilio Pedrotti
- Department of Neuroscience, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, Italy
| | - Pier Francesco Nocini
- School of Dentistry, Department of Surgery, Dentistry, Paediatrics and Gynaecology (DIPSCOMI), University of Verona, Verona, Italy
| |
Collapse
|
156
|
Mapping Astrocyte Transcriptional Signatures in Response to Neuroactive Compounds. Int J Mol Sci 2021; 22:ijms22083975. [PMID: 33921461 PMCID: PMC8069033 DOI: 10.3390/ijms22083975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/11/2023] Open
Abstract
Astrocytes play central roles in normal brain function and are critical components of synaptic networks that oversee behavioral outputs. Despite their close affiliation with neurons, how neuronal-derived signals influence astrocyte function at the gene expression level remains poorly characterized, largely due to difficulties associated with dissecting neuron- versus astrocyte-specific effects. Here, we use an in vitro system of stem cell-derived astrocytes to identify gene expression profiles in astrocytes that are influenced by neurons and regulate astrocyte development. Furthermore, we show that neurotransmitters and neuromodulators induce distinct transcriptomic and chromatin accessibility changes in astrocytes that are unique to each of these neuroactive compounds. These findings are highlighted by the observation that noradrenaline has a more profound effect on transcriptional profiles of astrocytes compared to glutamate, gamma-aminobutyric acid (GABA), acetylcholine, and serotonin. This is demonstrated through enhanced noradrenaline-induced transcriptomic and chromatin accessibility changes in vitro and through enhanced calcium signaling in vivo. Taken together, our study reveals distinct transcriptomic and chromatin architecture signatures in astrocytes in response to neuronal-derived neuroactive compounds. Since astrocyte function is affected in all neurological disorders, this study provides a new entry point for exploring genetic mechanisms of astrocyte-neuron communication that may be dysregulated in disease.
Collapse
|
157
|
Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:1-53. [PMID: 34253292 DOI: 10.1016/bs.ircmb.2021.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cells exploit calcium (Ca2+) signals to perceive the information about the activity of the nervous tissue and the tissue environment to translate this information into an array of homeostatic, signaling and defensive reactions. Astrocytes, the best studied glial cells, use several Ca2+ signaling generation pathways that include Ca2+ entry through plasma membrane, release from endoplasmic reticulum (ER) and from mitochondria. Activation of metabotropic receptors on the plasma membrane of glial cells is coupled to an enzymatic cascade in which a second messenger, InsP3 is generated thus activating intracellular Ca2+ release channels in the ER endomembrane. Astrocytes also possess store-operated Ca2+ entry and express several ligand-gated Ca2+ channels. In vivo astrocytes generate heterogeneous Ca2+ signals, which are short and frequent in distal processes, but large and relatively rare in soma. In response to neuronal activity intracellular and inter-cellular astrocytic Ca2+ waves can be produced. Astrocytic Ca2+ signals are involved in secretion, they regulate ion transport across cell membranes, and are contributing to cell morphological plasticity. Therefore, astrocytic Ca2+ signals are linked to fundamental functions of the central nervous system ranging from synaptic transmission to behavior. In oligodendrocytes, Ca2+ signals are generated by plasmalemmal Ca2+ influx, or by release from intracellular stores, or by combination of both. Microglial cells exploit Ca2+ permeable ionotropic purinergic receptors and transient receptor potential channels as well as ER Ca2+ release. In this contribution, basic morphology of glial cells, glial Ca2+ signaling toolkit, intracellular Ca2+ signals and Ca2+-regulated functions are discussed with focus on astrocytes.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
158
|
Mervin LH, Mitricheva E, Logothetis NK, Bifone A, Bender A, Noori HR. Neurochemical underpinning of hemodynamic response to neuropsychiatric drugs: A meta- and cluster analysis of preclinical studies. J Cereb Blood Flow Metab 2021; 41:874-885. [PMID: 32281457 PMCID: PMC7983335 DOI: 10.1177/0271678x20916003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is an extensively used method for the investigation of normal and pathological brain function. In particular, fMRI has been used to characterize spatiotemporal hemodynamic response to pharmacological challenges as a non-invasive readout of neuronal activity. However, the mechanisms underlying regional signal changes are yet unclear. In this study, we use a meta-analytic approach to converge data from microdialysis experiments with relative cerebral blood volume (rCBV) changes following acute administration of neuropsychiatric drugs in adult male rats. At whole-brain level, the functional response patterns show very weak correlation with neurochemical alterations, while for numerous brain areas a strong positive correlation with noradrenaline release exists. At a local scale of individual brain regions, the rCBV response to neurotransmitters is anatomically heterogeneous and, importantly, based on a complex interplay of different neurotransmitters that often exert opposing effects, thus providing a mechanism for regulating and fine tuning hemodynamic responses in specific regions.
Collapse
Affiliation(s)
- Lewis H Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ekaterina Mitricheva
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hamid R Noori
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
159
|
Gordleeva SY, Tsybina YA, Krivonosov MI, Ivanchenko MV, Zaikin AA, Kazantsev VB, Gorban AN. Modeling Working Memory in a Spiking Neuron Network Accompanied by Astrocytes. Front Cell Neurosci 2021; 15:631485. [PMID: 33867939 PMCID: PMC8044545 DOI: 10.3389/fncel.2021.631485] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
We propose a novel biologically plausible computational model of working memory (WM) implemented by a spiking neuron network (SNN) interacting with a network of astrocytes. The SNN is modeled by synaptically coupled Izhikevich neurons with a non-specific architecture connection topology. Astrocytes generating calcium signals are connected by local gap junction diffusive couplings and interact with neurons via chemicals diffused in the extracellular space. Calcium elevations occur in response to the increased concentration of the neurotransmitter released by spiking neurons when a group of them fire coherently. In turn, gliotransmitters are released by activated astrocytes modulating the strength of the synaptic connections in the corresponding neuronal group. Input information is encoded as two-dimensional patterns of short applied current pulses stimulating neurons. The output is taken from frequencies of transient discharges of corresponding neurons. We show how a set of information patterns with quite significant overlapping areas can be uploaded into the neuron-astrocyte network and stored for several seconds. Information retrieval is organized by the application of a cue pattern representing one from the memory set distorted by noise. We found that successful retrieval with the level of the correlation between the recalled pattern and ideal pattern exceeding 90% is possible for the multi-item WM task. Having analyzed the dynamical mechanism of WM formation, we discovered that astrocytes operating at a time scale of a dozen of seconds can successfully store traces of neuronal activations corresponding to information patterns. In the retrieval stage, the astrocytic network selectively modulates synaptic connections in the SNN leading to successful recall. Information and dynamical characteristics of the proposed WM model agrees with classical concepts and other WM models.
Collapse
Affiliation(s)
- Susanna Yu Gordleeva
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Yuliya A Tsybina
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Mikhail I Krivonosov
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Mikhail V Ivanchenko
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey A Zaikin
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Center for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia.,Institute for Women's Health and Department of Mathematics, University College London, London, United Kingdom
| | - Victor B Kazantsev
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia.,Neuroscience Research Institute, Samara State Medical University, Samara, Russia
| | - Alexander N Gorban
- Scientific and Educational Mathematical Center "Mathematics of Future Technology," Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Mathematics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
160
|
Fischer T, Prey J, Eschholz L, Rotermund N, Lohr C. Norepinephrine-Induced Calcium Signaling and Store-Operated Calcium Entry in Olfactory Bulb Astrocytes. Front Cell Neurosci 2021; 15:639754. [PMID: 33833669 PMCID: PMC8021869 DOI: 10.3389/fncel.2021.639754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
It is well-established that astrocytes respond to norepinephrine with cytosolic calcium rises in various brain areas, such as hippocampus or neocortex. However, less is known about the effect of norepinephrine on olfactory bulb astrocytes. In the present study, we used confocal calcium imaging and immunohistochemistry in mouse brain slices of the olfactory bulb, a brain region with a dense innervation of noradrenergic fibers, to investigate the calcium signaling evoked by norepinephrine in astrocytes. Our results show that application of norepinephrine leads to a cytosolic calcium rise in astrocytes which is independent of neuronal activity and mainly mediated by PLC/IP3-dependent internal calcium release. In addition, store-operated calcium entry (SOCE) contributes to the late phase of the response. Antagonists of both α1- and α2-adrenergic receptors, but not β-receptors, largely reduce the adrenergic calcium response, indicating that both α-receptor subtypes mediate norepinephrine-induced calcium transients in olfactory bulb astrocytes, whereas β-receptors do not contribute to the calcium transients.
Collapse
Affiliation(s)
- Timo Fischer
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Jessica Prey
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Lena Eschholz
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
161
|
Iwai Y, Ozawa K, Yahagi K, Mishima T, Akther S, Vo CT, Lee AB, Tanaka M, Itohara S, Hirase H. Transient Astrocytic Gq Signaling Underlies Remote Memory Enhancement. Front Neural Circuits 2021; 15:658343. [PMID: 33828463 PMCID: PMC8019746 DOI: 10.3389/fncir.2021.658343] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Astrocytes elicit transient Ca2+ elevations induced by G protein-coupled receptors (GPCRs), yet their role in vivo remains unknown. To address this, transgenic mice with astrocytic expression of the optogenetic Gq-type GPCR, Optoα1AR, were established, in which transient Ca2+ elevations similar to those in wild type mice were induced by brief blue light illumination. Activation of cortical astrocytes resulted in an adenosine A1 receptor-dependent inhibition of neuronal activity. Moreover, sensory stimulation with astrocytic activation induced long-term depression of sensory evoked response. At the behavioral level, repeated astrocytic activation in the anterior cortex gradually affected novel open field exploratory behavior, and remote memory was enhanced in a novel object recognition task. These effects were blocked by A1 receptor antagonism. Together, we demonstrate that GPCR-triggered Ca2+ elevation in cortical astrocytes has causal impacts on neuronal activity and behavior.
Collapse
Affiliation(s)
- Youichi Iwai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
| | - Katsuya Ozawa
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
| | - Kazuko Yahagi
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
| | - Tsuneko Mishima
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonam Akther
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Trang Vo
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ashley Bomin Lee
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mika Tanaka
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
162
|
Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. eLife 2021; 10:63329. [PMID: 33729913 PMCID: PMC7968927 DOI: 10.7554/elife.63329] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Non-rapid eye movement (NREM) sleep, characterized by slow-wave electrophysiological activity, underlies several critical functions, including learning and memory. However, NREM sleep is heterogeneous, varying in duration, depth, and spatially across the cortex. While these NREM sleep features are thought to be largely independently regulated, there is also evidence that they are mechanistically coupled. To investigate how cortical NREM sleep features are controlled, we examined the astrocytic network, comprising a cortex-wide syncytium that influences population-level neuronal activity. We quantified endogenous astrocyte activity in mice over natural sleep and wake, then manipulated specific astrocytic G-protein-coupled receptor (GPCR) signaling pathways in vivo. We find that astrocytic Gi- and Gq-coupled GPCR signaling separately control NREM sleep depth and duration, respectively, and that astrocytic signaling causes differential changes in local and remote cortex. These data support a model in which the cortical astrocyte network serves as a hub for regulating distinct NREM sleep features. Sleep has many roles, from strengthening new memories to regulating mood and appetite. While we might instinctively think of sleep as a uniform state of reduced brain activity, the reality is more complex. First, over the course of the night, we cycle between a number of different sleep stages, which reflect different levels of sleep depth. Second, the amount of sleep depth is not necessarily even across the brain but can vary between regions. These sleep stages consist of either rapid eye movement (REM) sleep or non-REM (NREM) sleep. REM sleep is when most dreaming occurs, whereas NREM sleep is particularly important for learning and memory and can vary in duration and depth. During NREM sleep, large groups of neurons synchronize their firing to create rhythmic waves of activity known as slow waves. The more synchronous the activity, the deeper the sleep. Vaidyanathan et al. now show that brain cells called astrocytes help regulate NREM sleep. Astrocytes are not neurons but belong to a group of specialized cells called glia. They are the largest glia cell type in the brain and display an array of proteins on their surfaces called G-protein-coupled receptors (GPCRs). These enable them to sense sleep-wake signals from other parts of the brain and to generate their own signals. In fact, each astrocyte can communicate with thousands of neurons at once. They are therefore well-poised to coordinate brain activity during NREM sleep. Using innovative tools, Vaidyanathan et al. visualized astrocyte activity in mice as the animals woke up or fell asleep. The results showed that astrocytes change their activity just before each sleep–wake transition. They also revealed that astrocytes control both the depth and duration of NREM sleep via two different types of GPCR signals. Increasing one of these signals (Gi-GPCR) made the mice sleep more deeply but did not change sleep duration. Decreasing the other (Gq-GPCR) made the mice sleep for longer but did not affect sleep depth. Sleep problems affect many people at some point in their lives, and often co-exist with other conditions such as mental health disorders. Understanding how the brain regulates different features of sleep could help us develop better – and perhaps more specific – treatments for sleep disorders. The current study suggests that manipulating GPCRs on astrocytes might increase sleep depth, for example. But before work to test this idea can begin, we must first determine whether findings from sleeping mice also apply to people.
Collapse
Affiliation(s)
- Trisha V Vaidyanathan
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Max Collard
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michael E Reitman
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Kira E Poskanzer
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, San Francisco, United States
| |
Collapse
|
163
|
Redolfi N, Greotti E, Zanetti G, Hochepied T, Fasolato C, Pendin D, Pozzan T. A New Transgenic Mouse Line for Imaging Mitochondrial Calcium Signals. FUNCTION 2021; 2:zqab012. [PMID: 35330679 PMCID: PMC8788866 DOI: 10.1093/function/zqab012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padua, Italy
| |
Collapse
|
164
|
Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021; 15:645691. [PMID: 33716677 PMCID: PMC7947346 DOI: 10.3389/fncel.2021.645691] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Noradrenaline is a major neuromodulator in the central nervous system (CNS). It is released from varicosities on neuronal efferents, which originate principally from the main noradrenergic nuclei of the brain - the locus coeruleus - and spread throughout the parenchyma. Noradrenaline is released in response to various stimuli and has complex physiological effects, in large part due to the wide diversity of noradrenergic receptors expressed in the brain, which trigger diverse signaling pathways. In general, however, its main effect on CNS function appears to be to increase arousal state. Although the effects of noradrenaline have been researched extensively, the majority of studies have assumed that noradrenaline exerts its effects by acting directly on neurons. However, neurons are not the only cells in the CNS expressing noradrenaline receptors. Astrocytes are responsive to a range of neuromodulators - including noradrenaline. In fact, noradrenaline evokes robust calcium transients in astrocytes across brain regions, through activation of α1-adrenoreceptors. Crucially, astrocytes ensheath neurons at synapses and are known to modulate synaptic activity. Hence, astrocytes are in a key position to relay, or amplify, the effects of noradrenaline on neurons, most notably by modulating inhibitory transmission. Based on a critical appraisal of the current literature, we use this review to argue that a better understanding of astrocyte-mediated noradrenaline signaling is therefore essential, if we are ever to fully understand CNS function. We discuss the emerging concept of astrocyte heterogeneity and speculate on how this might impact the noradrenergic modulation of neuronal circuits. Finally, we outline possible experimental strategies to clearly delineate the role(s) of astrocytes in noradrenergic signaling, and neuromodulation in general, highlighting the urgent need for more specific and flexible experimental tools.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
165
|
Huntington TE, Srinivasan R. Astrocytic mitochondria in adult mouse brain slices show spontaneous calcium influx events with unique properties. Cell Calcium 2021; 96:102383. [PMID: 33676316 DOI: 10.1016/j.ceca.2021.102383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
Astrocytes govern critical aspects of brain function via spontaneous calcium signals in their soma and processes. A significant proportion of these spontaneous astrocytic calcium events are associated with mitochondria, however, the extent, sources, or kinetics of astrocytic mitochondrial calcium influx have not been studied in the adult mouse brain. To measure calcium influx into astrocytic mitochondria in situ, we generated an adeno-associated virus (AAV) with the astrocyte-specific GfaABC1D promoter driving expression of the genetically encoded calcium indicator, GCaMP6f tagged to mito7, a mitochondrial matrix targeted signal sequence. Using this construct, we observed AAV-mediated expression of GCaMP6f in adult mouse astrocytic mitochondria that co-localized with MitoTracker deep red (MTDR) in the dorsolateral striatum (DLS) and in the hippocampal stratum radiatum (HPC). Astrocytic mitochondria co-labeled with MTDR and GCaMP6f displayed robust, spontaneous calcium influx events in situ, with subcellular differences in calcium influx kinetics between somatic, branch, and branchlet mitochondria, and inter-regional differences between mitochondria in DLS and HPC astrocytes. Calcium influx into astrocytic mitochondria was strongly dependent on endoplasmic reticulum calcium stores, but did not require the mitochondrial calcium uniporter, MCU. Exposure to either glutamate, D1 or D2 dopamine receptor agonists increased calcium influx in some mitochondria, while simultaneously decreasing calcium influx in other mitochondria from the same astrocyte. These findings show that astrocytic mitochondria possess unique properties with regard to their subcellular morphology, mechanisms of calcium influx, and responses to neurotransmitter receptor agonists. Our results have important implications for understanding the role of astrocytic mitochondria during pathological processes.
Collapse
Affiliation(s)
- Taylor E Huntington
- Department of Neuroscience & Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX 77843, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
166
|
Ren B, Dunaevsky A. Modeling Neurodevelopmental and Neuropsychiatric Diseases with Astrocytes Derived from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1692. [PMID: 33567562 PMCID: PMC7915337 DOI: 10.3390/ijms22041692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Accumulating studies demonstrate the morphological and functional diversity of astrocytes, a subtype of glial cells in the central nervous system. Animal models are instrumental in advancing our understanding of the role of astrocytes in brain development and their contribution to neurological disease; however, substantial interspecies differences exist between rodent and human astrocytes, underscoring the importance of studying human astrocytes. Human pluripotent stem cell differentiation approaches allow the study of patient-specific astrocytes in the etiology of neurological disorders. In this review, we summarize the structural and functional properties of astrocytes, including the unique features of human astrocytes; demonstrate the necessity of the stem cell platform; and discuss how this platform has been applied to the research of neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Neurological Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Dunaevsky
- Department of Neurological Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
167
|
Chemogenetic manipulation of astrocytic activity: Is it possible to reveal the roles of astrocytes? Biochem Pharmacol 2021; 186:114457. [PMID: 33556341 DOI: 10.1016/j.bcp.2021.114457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes are the major glial cells in the central nervous system, but unlike neurons, they do not produce action potentials. For many years, astrocytes were considered supporting cells in the central nervous system (CNS). Technological advances over the last two decades are changing the face of glial research. Accumulating data from recent investigations show that astrocytes display transient calcium spikes and regulate synaptic transmission by releasing transmitters called gliotransmitters. Many new powerful technologies are used to interfere with astrocytic activity, in order to obtain a better understanding of the roles of astrocytes in the brain. Among these technologies, chemogenetics has recently been used frequently. In this review, we will summarize new functions of astrocytes in the brain that have been revealed using this cutting-edge technique. Moreover, we will discuss the possibilities and challenges of manipulating astrocytic activity using this technology.
Collapse
|
168
|
Institoris A, Murphy-Royal C, Tarantini S, Yabluchanskiy A, Haidey JN, Csiszar A, Ungvari Z, Gordon GR. Whole brain irradiation in mice causes long-term impairment in astrocytic calcium signaling but preserves astrocyte-astrocyte coupling. GeroScience 2021; 43:197-212. [PMID: 33094399 PMCID: PMC8050172 DOI: 10.1007/s11357-020-00289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Whole brain irradiation (WBI) therapy is an important treatment for brain metastases and potential microscopic malignancies. WBI promotes progressive cognitive dysfunction in over half of surviving patients, yet, the underlying mechanisms remain obscure. Astrocytes play critical roles in the regulation of neuronal activity, brain metabolism, and cerebral blood flow, and while neurons are considered radioresistant, astrocytes are sensitive to γ-irradiation. Hallmarks of astrocyte function are the ability to generate stimulus-induced intercellular Ca2+ signals and to move metabolic substrates through the connected astrocyte network. We tested the hypothesis that WBI-induced cognitive impairment associates with persistent impairment of astrocytic Ca2+ signaling and/or gap junctional coupling. Mice were subjected to a clinically relevant protocol of fractionated WBI, and 12 to 15 months after irradiation, we confirmed persistent cognitive impairment compared to controls. To test the integrity of astrocyte-to-astrocyte gap junctional coupling postWBI, astrocytes were loaded with Alexa-488-hydrazide by patch-based dye infusion, and the increase of fluorescence signal in neighboring astrocyte cell bodies was assessed with 2-photon microscopy in acute slices of the sensory-motor cortex. We found that WBI did not affect astrocyte-to-astrocyte gap junctional coupling. Astrocytic Ca2+ responses induced by bath administration of phenylephrine (detected with Rhod-2/AM) were also unaltered by WBI. However, an electrical stimulation protocol used in long-term potentiation (theta burst), revealed attenuated astrocyte Ca2+ responses in the astrocyte arbor and soma in WBI. Our data show that WBI causes a long-lasting decrement in synaptic-evoked astrocyte Ca2+ signals 12-15 months postirradiation, which may be an important contributor to cognitive decline seen after WBI.
Collapse
Affiliation(s)
- Adam Institoris
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ciaran Murphy-Royal
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stefano Tarantini
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Haidey
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Grant R Gordon
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
169
|
Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology 2021; 46:500-508. [PMID: 32464636 PMCID: PMC8027025 DOI: 10.1038/s41386-020-0721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are fundamental building blocks of the central nervous system. Their dysfunction has been implicated in many psychiatric disorders, including alcohol use disorder, yet our understanding of their functional role in ethanol intoxication and consumption is very limited. Astrocytes regulate behavior through multiple intracellular signaling pathways, including G-protein coupled-receptor (GPCR)-mediated calcium signals. To test the hypothesis that GPCR-induced calcium signaling is also involved in the behavioral effects of ethanol, we expressed astrocyte-specific excitatory DREADDs in the prefrontal cortex (PFC) of mice. Activating Gq-GPCR signaling in PFC astrocytes increased drinking in ethanol-naïve mice, but not in mice with a history of ethanol drinking. In contrast, reducing calcium signaling with an astrocyte-specific calcium extruder reduced ethanol intake. Cortical astrocyte calcium signaling also altered the acute stimulatory and sedative-hypnotic effects of ethanol. Astrocyte-specific Gq-DREADD activation increased both the locomotor-activating effects of low dose ethanol and the sedative-hypnotic effects of a high dose, while reduced astrocyte calcium signaling diminished sensitivity to the hypnotic effects. In addition, we found that adenosine A1 receptors were required for astrocyte calcium activation to increase ethanol sedation. These results support integral roles for PFC astrocytes in the behavioral actions of ethanol that are due, at least in part, to adenosine receptor activation.
Collapse
|
170
|
Abstract
Animal behavior was classically considered to be determined exclusively by neuronal activity, whereas surrounding glial cells such as astrocytes played only supportive roles. However, astrocytes are as numerous as neurons in the mammalian brain, and current findings indicate a chemically based dialog between astrocytes and neurons. Activation of astrocytes by synaptically released neurotransmitters converges on regulating intracellular Ca2+ in astrocytes, which then can regulate the efficacy of near and distant tripartite synapses at diverse timescales through gliotransmitter release. Here, we discuss recent evidence on how diverse behaviors are impacted by this dialog. These recent findings support a paradigm shift in neuroscience, in which animal behavior does not result exclusively from neuronal activity but from the coordinated activity of both astrocytes and neurons. Decoding how astrocytes and neurons interact with each other in various brain circuits will be fundamental to fully understanding how behaviors originate and become dysregulated in disease.
Collapse
Affiliation(s)
- Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
171
|
Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, Khakh BS. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2020; 109:576-596. [PMID: 33385325 DOI: 10.1016/j.neuron.2020.12.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes are a large and diverse population of morphologically complex cells that exist throughout nervous systems of multiple species. Progress over the last two decades has shown that astrocytes mediate developmental, physiological, and pathological processes. However, a long-standing open question is how astrocytes regulate neural circuits in ways that are behaviorally consequential. In this regard, we summarize recent studies using Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, and Mus musculus. The data reveal diverse astrocyte mechanisms operating in seconds or much longer timescales within neural circuits and shaping multiple behavioral outputs. We also refer to human diseases that have a known primary astrocytic basis. We suggest that including astrocytes in mechanistic, theoretical, and computational studies of neural circuits provides new perspectives to understand behavior, its regulation, and its disease-related manifestations.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; RIKEN Center for Brain Science, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 514 Burrill Hall, 407 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, Campus Box 8108, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Marc R Freeman
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kelly R Monk
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - David Rowitch
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
172
|
Sharma K, Gordon GRJ, Tran CHT. Heterogeneity of Sensory-Induced Astrocytic Ca 2+ Dynamics During Functional Hyperemia. Front Physiol 2020; 11:611884. [PMID: 33362585 PMCID: PMC7758506 DOI: 10.3389/fphys.2020.611884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Astrocytic Ca2+ fluctuations associated with functional hyperemia have typically been measured from large cellular compartments such as the soma, the whole arbor and the endfoot. The most prominent Ca2+ event is a large magnitude, delayed signal that follows vasodilation. However, previous work has provided little information about the spatio-temporal properties of such Ca2+ transients or their heterogeneity. Here, using an awake, in vivo two-photon fluorescence-imaging model, we performed detailed profiling of delayed astrocytic Ca2+ signals across astrocytes or within individual astrocyte compartments using small regions of interest next to penetrating arterioles and capillaries along with vasomotor responses to vibrissae stimulation. We demonstrated that while a 5-s air puff that stimulates all whiskers predominantly generated reproducible functional hyperemia in the presence or absence of astrocytic Ca2+ changes, whisker stimulation inconsistently produced astrocytic Ca2+ responses. More importantly, these Ca2+ responses were heterogeneous among subcellular structures of the astrocyte and across different astrocytes that resided within the same field of view. Furthermore, we found that whisker stimulation induced discrete Ca2+ “hot spots” that spread regionally within the endfoot. These data reveal that astrocytic Ca2+ dynamics associated with the microvasculature are more complex than previously thought, and highlight the importance of considering the heterogeneity of astrocytic Ca2+ activity to fully understanding neurovascular coupling.
Collapse
Affiliation(s)
- Kushal Sharma
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Cam Ha T Tran
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV, United States
| |
Collapse
|
173
|
Qin H, He W, Yang C, Li J, Jian T, Liang S, Chen T, Feng H, Chen X, Liao X, Zhang K. Monitoring Astrocytic Ca 2+ Activity in Freely Behaving Mice. Front Cell Neurosci 2020; 14:603095. [PMID: 33343304 PMCID: PMC7744696 DOI: 10.3389/fncel.2020.603095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Monitoring astrocytic Ca2+ activity is essential to understand the physiological and pathological roles of astrocytes in the brain. However, previous commonly used methods for studying astrocytic Ca2+ activities can be applied in only anesthetized or head-fixed animals, which significantly affects in vivo astrocytic Ca2+ dynamics. In the current study, we combined optic fiber recordings with genetically encoded Ca2+ indicators (GECIs) to monitor astrocytic activity in freely behaving mice. This approach enabled selective and reliable measurement of astrocytic Ca2+ activity, which was verified by the astrocyte-specific labeling of GECIs and few movement artifacts. Additionally, astrocytic Ca2+ activities induced by locomotion or footshock were stably recorded in the cortices and hippocampi of freely behaving mice. Furthermore, this method allowed for the longitudinal study of astrocytic activities over several weeks. This work provides a powerful approach to record astrocytic activity selectively, stably, and chronically in freely behaving mice.
Collapse
Affiliation(s)
- Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.,Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Wenjing He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
174
|
Ryczko D, Hanini‐Daoud M, Condamine S, Bréant BJB, Fougère M, Araya R, Kolta A. S100β‐mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. J Physiol 2020; 599:677-707. [DOI: 10.1113/jp280501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dimitri Ryczko
- Département de Neurosciences Université de Montréal Montréal QC Canada
- Département de Pharmacologie‐Physiologie Université de Sherbrooke Sherbrooke QC Canada
- Centre de recherche du CHUS Sherbrooke QC Canada
- Institut de Pharmacologie de Sherbrooke Sherbrooke QC Canada
- Centre d'excellence en neurosciences de l'Université de Sherbrooke Sherbrooke QC Canada
| | | | - Steven Condamine
- Département de Neurosciences Université de Montréal Montréal QC Canada
| | | | - Maxime Fougère
- Département de Pharmacologie‐Physiologie Université de Sherbrooke Sherbrooke QC Canada
| | - Roberto Araya
- Département de Neurosciences Université de Montréal Montréal QC Canada
| | - Arlette Kolta
- Département de Neurosciences Université de Montréal Montréal QC Canada
- Faculté de Médecine Dentaire Université de Montréal Montréal QC Canada
| |
Collapse
|
175
|
Shen W, Chen S, Xiang Y, Yao Z, Chen Z, Wu X, Li L, Zeng LH. Astroglial adrenoreceptors modulate synaptic transmission and contextual fear memory formation in dentate gyrus. Neurochem Int 2020; 143:104942. [PMID: 33340594 DOI: 10.1016/j.neuint.2020.104942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
Astrocytes perform various supporting functions, including ion buffering, metabolic supplying and neurotransmitter clearance. They can also sense neuronal activity owing to the presence of specific receptors for neurotransmitters. In turn, astrocytes can regulate synaptic activity through the release of gliotransmitters. Evidence has shown that astrocytes are very sensitive to the locus coeruleus (LC) afferents. However, little is known about how LC neuromodulatory norepinephrine (NE) modulates synaptic transmission through astrocytic activity. In mouse dentate gyrus (DG), we demonstrated an increase in the frequency of miniature excitatory postsynaptic currents (mEPSC) in response to NE, which required the release of glutamate from astrocytes. The rise in glutamate release probability is likely due to the activation of presynaptic GluN2B-containing NMDA receptors. Moreover, we showed that the activation of NE signaling in DG is necessary for the formation of contextual learning memory. Thus, NE signaling activation during fear conditioning training contributed to enduring changes in the frequency of mEPSC in DG. Our results strongly support the physiological neuromodulatory role of NE signaling, which is derived from activation of astrocytes.
Collapse
Affiliation(s)
- Weida Shen
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China.
| | - Shishuo Chen
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China; Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yingchun Xiang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zheyu Yao
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
| | - Zhitao Chen
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
| | - Xitian Wu
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
| | - Ling Li
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
| | - Ling-Hui Zeng
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China; Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
176
|
Shafi R, Poublanc J, Venkatraghavan L, Crawley AP, Sobczyk O, McKetton L, Bayley M, Chandra T, Foster E, Ruttan L, Comper P, Tartaglia MC, Tator CH, Duffin J, Mutch WA, Fisher J, Mikulis DJ. A Promising Subject-Level Classification Model for Acute Concussion Based on Cerebrovascular Reactivity Metrics. J Neurotrauma 2020; 38:1036-1047. [PMID: 33096952 DOI: 10.1089/neu.2020.7272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Concussion imaging research has primarily focused on neuronal disruption with lesser emphasis directed toward vascular dysfunction. However, blood flow metrics may be more sensitive than measures of neuronal integrity. Vascular dysfunction can be assessed by measuring cerebrovascular reactivity (CVR)-the change in cerebral blood flow per unit change in vasodilatory stimulus. CVR metrics, including speed and magnitude of flow responses to a standardized well-controlled vasoactive stimulus, are potentially useful for assessing individual subjects following concussion given that blood flow dysregulation is known to occur with traumatic brain injury. We assessed changes in CVR metrics to a standardized vasodilatory stimulus during the acute phase of concussion. Using a case control design, 20 concussed participants and 20 healthy controls (HCs) underwent CVR assessment measuring blood oxygen-level dependent (BOLD) magnetic resonance imaging using precise changes in end-tidal partial pressure of CO2 (PETCO2). Metrics were calculated for the whole brain, gray matter (GM), and white matter (WM) using sex-stratification. A leave-one-out receiver operating characteristic (ROC) analysis classified concussed from HCs based on CVR metrics. CVR magnitude was greater and speed of response faster in concussed participants relative to HCs, with WM showing higher classification accuracy compared with GM. ROC analysis for WM-CVR metrics revealed an area under the curve of 0.94 in males and 0.90 in females for speed and magnitude of response respectively. These greater than normal responses to a vasodilatory stimulus warrant further investigation to compare the predictive ability of CVR metrics against structural injury metrics for diagnosis and prognosis in acute concussion.
Collapse
Affiliation(s)
- Reema Shafi
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Lesley Ruttan
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Paul Comper
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Charles H Tator
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - James Duffin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - W Alan Mutch
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph Fisher
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
177
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
178
|
Ma Z, Freeman MR. TrpML-mediated astrocyte microdomain Ca 2+ transients regulate astrocyte-tracheal interactions. eLife 2020; 9:e58952. [PMID: 33284108 PMCID: PMC7721441 DOI: 10.7554/elife.58952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes exhibit spatially-restricted near-membrane microdomain Ca2+transients in their fine processes. How these transients are generated and regulate brain function in vivo remains unclear. Here we show that Drosophila astrocytes exhibit spontaneous, activity-independent microdomain Ca2+ transients in their fine processes. Astrocyte microdomain Ca2+ transients are mediated by the TRP channel TrpML, stimulated by reactive oxygen species (ROS), and can be enhanced in frequency by the neurotransmitter tyramine via the TyrRII receptor. Interestingly, many astrocyte microdomain Ca2+ transients are closely associated with tracheal elements, which dynamically extend filopodia throughout the central nervous system (CNS) to deliver O2 and regulate gas exchange. Many astrocyte microdomain Ca2+ transients are spatio-temporally correlated with the initiation of tracheal filopodial retraction. Loss of TrpML leads to increased tracheal filopodial numbers, growth, and increased CNS ROS. We propose that local ROS production can activate astrocyte microdomain Ca2+ transients through TrpML, and that a subset of these microdomain transients promotes tracheal filopodial retraction and in turn modulate CNS gas exchange.
Collapse
Affiliation(s)
- Zhiguo Ma
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
179
|
Bergel A, Tiran E, Deffieux T, Demené C, Tanter M, Cohen I. Adaptive modulation of brain hemodynamics across stereotyped running episodes. Nat Commun 2020; 11:6193. [PMID: 33273463 PMCID: PMC7713412 DOI: 10.1038/s41467-020-19948-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
During locomotion, theta and gamma rhythms are essential to ensure timely communication between brain structures. However, their metabolic cost and contribution to neuroimaging signals remain elusive. To finely characterize neurovascular interactions during locomotion, we simultaneously recorded mesoscale brain hemodynamics using functional ultrasound (fUS) and local field potentials (LFP) in numerous brain structures of freely-running overtrained rats. Locomotion events were reliably followed by a surge in blood flow in a sequence involving the retrosplenial cortex, dorsal thalamus, dentate gyrus and CA regions successively, with delays ranging from 0.8 to 1.6 seconds after peak speed. Conversely, primary motor cortex was suppressed and subsequently recruited during reward uptake. Surprisingly, brain hemodynamics were strongly modulated across trials within the same recording session; cortical blood flow sharply decreased after 10-20 runs, while hippocampal responses strongly and linearly increased, particularly in the CA regions. This effect occurred while running speed and theta activity remained constant and was accompanied by an increase in the power of hippocampal, but not cortical, high-frequency oscillations (100-150 Hz). Our findings reveal distinct vascular subnetworks modulated across fast and slow timescales and suggest strong hemodynamic adaptation, despite the repetition of a stereotyped behavior.
Collapse
Affiliation(s)
- Antoine Bergel
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine-Neuroscience, 75005, Paris, France.
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France.
| | - Elodie Tiran
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Thomas Deffieux
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Charlie Demené
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Mickaël Tanter
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France.
| | - Ivan Cohen
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine-Neuroscience, 75005, Paris, France.
| |
Collapse
|
180
|
Ye L, Orynbayev M, Zhu X, Lim EY, Dereddi RR, Agarwal A, Bergles DE, Bhat MA, Paukert M. Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nat Commun 2020; 11:6157. [PMID: 33268792 PMCID: PMC7710743 DOI: 10.1038/s41467-020-19475-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Norepinephrine adjusts sensory processing in cortical networks and gates plasticity enabling adaptive behavior. The actions of norepinephrine are profoundly altered by recreational drugs like ethanol, but the consequences of these changes on distinct targets such as astrocytes, which exhibit norepinephrine-dependent Ca2+ elevations during vigilance, are not well understood. Using in vivo two-photon imaging, we show that locomotion-induced Ca2+ elevations in mouse astroglia are profoundly inhibited by ethanol, an effect that can be reversed by enhancing norepinephrine release. Vigilance-dependent astroglial activation is abolished by deletion of α1A-adrenergic receptor from astroglia, indicating that norepinephrine acts directly on these ubiquitous glial cells. Ethanol reduces vigilance-dependent Ca2+ transients in noradrenergic terminals, but has little effect on astroglial responsiveness to norepinephrine, suggesting that ethanol suppresses their activation by inhibiting norepinephrine release. Since abolition of astroglia Ca2+ activation does not affect motor coordination, global suppression of astroglial networks may contribute to the cognitive effects of alcohol intoxication. The effects of norepinephrine on sensory processing in cortical networks are altered by recreational drugs like ethanol. The authors show that ethanol suppresses the activation of astrocytes by inhibiting norepinephrine release which may contribute to the cognitive effects of alcohol intoxication.
Collapse
Affiliation(s)
- Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Murat Orynbayev
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiangyu Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Eunice Y Lim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ram R Dereddi
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
181
|
Caudal LC, Gobbo D, Scheller A, Kirchhoff F. The Paradox of Astroglial Ca 2 + Signals at the Interface of Excitation and Inhibition. Front Cell Neurosci 2020; 14:609947. [PMID: 33324169 PMCID: PMC7726216 DOI: 10.3389/fncel.2020.609947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Astroglial networks constitute a non-neuronal communication system in the brain and are acknowledged modulators of synaptic plasticity. A sophisticated set of transmitter receptors in combination with distinct secretion mechanisms enables astrocytes to sense and modulate synaptic transmission. This integrative function evolved around intracellular Ca2+ signals, by and large considered as the main indicator of astrocyte activity. Regular brain physiology meticulously relies on the constant reciprocity of excitation and inhibition (E/I). Astrocytes are metabolically, physically, and functionally associated to the E/I convergence. Metabolically, astrocytes provide glutamine, the precursor of both major neurotransmitters governing E/I in the central nervous system (CNS): glutamate and γ-aminobutyric acid (GABA). Perisynaptic astroglial processes are structurally and functionally associated with the respective circuits throughout the CNS. Astonishingly, in astrocytes, glutamatergic as well as GABAergic inputs elicit similar rises in intracellular Ca2+ that in turn can trigger the release of glutamate and GABA as well. Paradoxically, as gliotransmitters, these two molecules can thus strengthen, weaken or even reverse the input signal. Therefore, the net impact on neuronal network function is often convoluted and cannot be simply predicted by the nature of the stimulus itself. In this review, we highlight the ambiguity of astrocytes on discriminating and affecting synaptic activity in physiological and pathological state. Indeed, aberrant astroglial Ca2+ signaling is a key aspect of pathological conditions exhibiting compromised network excitability, such as epilepsy. Here, we gather recent evidence on the complexity of astroglial Ca2+ signals in health and disease, challenging the traditional, neuro-centric concept of segregating E/I, in favor of a non-binary, mutually dependent perspective on glutamatergic and GABAergic transmission.
Collapse
Affiliation(s)
- Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
182
|
Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, Frank MG. A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol 2020; 30:4373-4383.e7. [PMID: 32976809 PMCID: PMC7919541 DOI: 10.1016/j.cub.2020.08.052] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Mammalian sleep expression and regulation have historically been thought to reflect the activity of neurons. Changes in other brain cells (glia) across the sleep-wake cycle and their role in sleep regulation are comparatively unexplored. We show that sleep and wakefulness are accompanied by state-dependent changes in astroglial activity. Using a miniature microscope in freely behaving mice and a two-photon microscope in head-fixed, unanesthetized mice, we show that astroglial calcium signals are highest in wake and lowest in sleep and are most pronounced in astroglial processes. We also find that astroglial calcium signals during non-rapid eye movement sleep change in proportion to sleep need. In contrast to neurons, astrocytes become less synchronized during non-rapid eye movement sleep after sleep deprivation at the network and single-cell level. Finally, we show that conditionally reducing intracellular calcium in astrocytes impairs the homeostatic response to sleep deprivation. Thus, astroglial calcium activity changes dynamically across vigilance states, is proportional to sleep need, and is a component of the sleep homeostat.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Christopher R Hayworth
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Daniel O Harvey
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Kristan G Singletary
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Michael J Rempe
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA; Department of Mathematics and Computer Science, Whitworth University, West Hawthorne Road, Spokane, WA 99251, USA
| | - Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, East Spokane Falls Boulevard, Spokane, WA 99202, USA.
| |
Collapse
|
183
|
Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, LaFerla FM. Astrocytes: From the Physiology to the Disease. Curr Alzheimer Res 2020; 16:675-698. [PMID: 31470787 DOI: 10.2174/1567205016666190830110152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In the present review, we highlight the physiological role of astrocytes in the CNS, including their communication with other cells in the brain. Furthermore, we discuss exciting findings and novel experimental approaches that elucidate the role of astrocytes in multiple neurological disorders.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Angela Gomez-Arboledas
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Alessandra Cadete Martini
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| |
Collapse
|
184
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
185
|
Okubo Y. Astrocytic Ca2+ signaling mediated by the endoplasmic reticulum in health and disease. J Pharmacol Sci 2020; 144:83-88. [DOI: 10.1016/j.jphs.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
|
186
|
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020; 14:581075. [PMID: 33192327 PMCID: PMC7554522 DOI: 10.3389/fncel.2020.581075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
187
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
188
|
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat Chem Biol 2020; 17:39-46. [PMID: 32989297 DOI: 10.1038/s41589-020-00660-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.
Collapse
|
189
|
Butkovich LM, Houser MC, Chalermpalanupap T, Porter-Stransky KA, Iannitelli AF, Boles JS, Lloyd GM, Coomes AS, Eidson LN, De Sousa Rodrigues ME, Oliver DL, Kelly SD, Chang J, Bengoa-Vergniory N, Wade-Martins R, Giasson BI, Joers V, Weinshenker D, Tansey MG. Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease. J Neurosci 2020; 40:7559-7576. [PMID: 32868457 PMCID: PMC7511194 DOI: 10.1523/jneurosci.1468-19.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration of locus ceruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson's disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly nonmotor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine β-hydroxylase promoter (DBH-hSNCA). These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal DA metabolism, and age-dependent behaviors reminiscent of nonmotor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.SIGNIFICANCE STATEMENT ɑ-Synuclein (asyn) pathology and loss of neurons in the locus ceruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson's disease (PD). Dysregulated norepinephrine (NE) neurotransmission is associated with the nonmotor symptoms of PD, including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, the loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in nonmotor behaviors without inclusions.
Collapse
Affiliation(s)
| | | | - Termpanit Chalermpalanupap
- Laney Graduate School, Emory University, Atlanta, Georgia 30322
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Kirsten A Porter-Stransky
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
- Department of Biomedical Sciences, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, Michigan 49008
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Jake S Boles
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Grace M Lloyd
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Alexandra S Coomes
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Lori N Eidson
- Department of Physiology, Emory School of Medicine, Atlanta, Georgia 30322
| | | | | | - Sean D Kelly
- Laney Graduate School, Emory University, Atlanta, Georgia 30322
| | - Jianjun Chang
- Laney Graduate School, Emory University, Atlanta, Georgia 30322
| | - Nora Bengoa-Vergniory
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Benoit I Giasson
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Valerie Joers
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - David Weinshenker
- Department of Human Genetics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida 32610
- Susan and Normal Fixel Chair in Parkinson's Disease, Normal Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, Florida 32610
| |
Collapse
|
190
|
Astroglial FMRP deficiency cell-autonomously up-regulates miR-128 and disrupts developmental astroglial mGluR5 signaling. Proc Natl Acad Sci U S A 2020; 117:25092-25103. [PMID: 32958647 DOI: 10.1073/pnas.2014080117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common inherited intellectual disability. How the loss of FMRP alters protein expression and astroglial functions remains essentially unknown. Here we showed that selective loss of astroglial FMRP in vivo up-regulates a brain-enriched miRNA, miR-128-3p, in mouse and human FMRP-deficient astroglia, which suppresses developmental expression of astroglial metabotropic glutamate receptor 5 (mGluR5), a major receptor in mediating developmental astroglia to neuron communication. Selective in vivo inhibition of miR-128-3p in FMRP-deficient astroglia sufficiently rescues decreased mGluR5 function, while astroglial overexpression of miR-128-3p strongly and selectively diminishes developmental astroglial mGluR5 signaling. Subsequent transcriptome and proteome profiling further suggests that FMRP commonly and preferentially regulates protein expression through posttranscriptional, but not transcriptional, mechanisms in astroglia. Overall, our study defines an FMRP-dependent cell-autonomous miR pathway that selectively alters developmental astroglial mGluR5 signaling, unveiling astroglial molecular mechanisms involved in FXS pathogenesis.
Collapse
|
191
|
Kamimura K, Odajima A, Ikegawa Y, Maru C, Maeda N. The HSPG Glypican Regulates Experience-Dependent Synaptic and Behavioral Plasticity by Modulating the Non-Canonical BMP Pathway. Cell Rep 2020; 28:3144-3156.e4. [PMID: 31533037 DOI: 10.1016/j.celrep.2019.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
Under food deprivation conditions, Drosophila larvae exhibit increases in locomotor speed and synaptic bouton numbers at neuromuscular junctions (NMJs). Octopamine, the invertebrate counterpart of noradrenaline, plays critical roles in this process; however, the underlying mechanisms remain unclear. We show here that a glypican (Dlp) negatively regulates type I synaptic bouton formation, postsynaptic expression of GluRIIA, and larval locomotor speed. Starvation-induced octopaminergic signaling decreases Dlp expression, leading to increases in synapse formation and locomotion. Dlp is expressed by postsynaptic muscle cells and suppresses the non-canonical BMP pathway, which is composed of the presynaptic BMP receptor Wit and postsynaptic GluRIIA-containing ionotropic glutamate receptor. We find that during starvation, decreases in Dlp increase non-canonical BMP signaling, leading to increases in GluRIIA expression, type I bouton number, and locomotor speed. Our results demonstrate that octopamine controls starvation-induced neural plasticity by regulating Dlp and provides insights into how proteoglycans can influence behavioral and synaptic plasticity.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Aiko Odajima
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Yuko Ikegawa
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Chikako Maru
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Nobuaki Maeda
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| |
Collapse
|
192
|
Natsubori A, Tsunematsu T, Karashima A, Imamura H, Kabe N, Trevisiol A, Hirrlinger J, Kodama T, Sanagi T, Masamoto K, Takata N, Nave KA, Matsui K, Tanaka KF, Honda M. Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep-wake states. Commun Biol 2020; 3:491. [PMID: 32895482 PMCID: PMC7477120 DOI: 10.1038/s42003-020-01215-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Whilst the brain is assumed to exert homeostatic functions to keep the cellular energy status constant under physiological conditions, this has not been experimentally proven. Here, we conducted in vivo optical recordings of intracellular concentration of adenosine 5'-triphosphate (ATP), the major cellular energy metabolite, using a genetically encoded sensor in the mouse brain. We demonstrate that intracellular ATP levels in cortical excitatory neurons fluctuate in a cortex-wide manner depending on the sleep-wake states, correlating with arousal. Interestingly, ATP levels profoundly decreased during rapid eye movement sleep, suggesting a negative energy balance in neurons despite a simultaneous increase in cerebral hemodynamics for energy supply. The reduction in intracellular ATP was also observed in response to local electrical stimulation for neuronal activation, whereas the hemodynamics were simultaneously enhanced. These observations indicate that cerebral energy metabolism may not always meet neuronal energy demands, consequently resulting in physiological fluctuations of intracellular ATP levels in neurons.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan.
| | - Tomomi Tsunematsu
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Akihiro Karashima
- Tohoku Institute of Technology, 35-1, Yagiyama Kasumi-cho, Taihaku-ku, Sendai, 982-8577, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Kabe
- Neural Prosthesis Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Andrea Trevisiol
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Gottingen, 37075, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Gottingen, 37075, Germany
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Liebigstrasse 27, 04103, Leipzig, Germany
| | - Tohru Kodama
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Tomomi Sanagi
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazuto Masamoto
- Department of Mechanical and Intelligent Systems Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Gottingen, 37075, Germany
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan
| |
Collapse
|
193
|
Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat Neurosci 2020; 23:1297-1306. [PMID: 32895565 PMCID: PMC7530038 DOI: 10.1038/s41593-020-0703-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
How astrocytes grow and integrate into neural circuits remains poorly defined. Zebrafish are well-suited for such investigations, but bona fide astrocytes have not been described in this system. Here, we characterize a zebrafish cell type that is remarkably similar to mammalian astrocytes that derive from radial glial cells and elaborate processes to establish their territories at early larval stages. Zebrafish astrocytes associate closely with synapses, tile with one another, and express markers including Glast and glutamine synthetase. Once integrated into circuits, they exhibit whole-cell and microdomain Ca2+ transients, which are sensitive to norepinephrine. Finally, using a cell-specific CRISPR/Cas9 approach we demonstrate that fgfr3/4 are required for vertebrate astrocyte morphogenesis. This work provides the first visualization of astrocyte morphogenesis from stem cell to post-mitotic astrocyte in vivo, identifies a role for Fgf receptors in vertebrate astrocytes, and establishes zebrafish as a valuable new model system to study astrocyte biology in vivo.
Collapse
|
194
|
Verkhratsky A, Semyanov A, Zorec R. Physiology of Astroglial Excitability. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa016. [PMID: 35330636 PMCID: PMC8788756 DOI: 10.1093/function/zqaa016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Classic physiology divides all neural cells into excitable neurons and nonexcitable neuroglia. Neuroglial cells, chiefly responsible for homeostasis and defense of the nervous tissue, coordinate their complex homeostatic responses with neuronal activity. This coordination reflects a specific form of glial excitability mediated by complex changes in intracellular concentration of ions and second messengers organized in both space and time. Astrocytes are equipped with multiple molecular cascades, which are central for regulating homeostasis of neurotransmitters, ionostasis, synaptic connectivity, and metabolic support of the central nervous system. Astrocytes are further provisioned with multiple receptors for neurotransmitters and neurohormones, which upon activation trigger intracellular signals mediated by Ca2+, Na+, and cyclic AMP. Calcium signals have distinct organization and underlying mechanisms in different astrocytic compartments thus allowing complex spatiotemporal signaling. Signals mediated by fluctuations in cytosolic Na+ are instrumental for coordination of Na+ dependent astrocytic transporters with tissue state and homeostatic demands. Astroglial ionic excitability may also involve K+, H+, and Cl-. The cyclic AMP signalling system is, in comparison to ions, much slower in targeting astroglial effector mechanisms. This evidence review summarizes the concept of astroglial intracellular excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK,Achucarro Center for Neuroscience, Ikerbasque, 48011 Bilbao, Spain,Address correspondence to A.V. (e-mail: )
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,Faculty of Biology, Moscow State University, Moscow, Russia,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Zorec
- Celica Biomedical, Ljubljana 1000, Slovenia,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
195
|
Semyanov A, Henneberger C, Agarwal A. Making sense of astrocytic calcium signals — from acquisition to interpretation. Nat Rev Neurosci 2020; 21:551-564. [DOI: 10.1038/s41583-020-0361-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
|
196
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
197
|
Yang L, Zhou Y, Jia H, Qi Y, Tu S, Shao A. Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front Immunol 2020; 11:1818. [PMID: 32973758 PMCID: PMC7468391 DOI: 10.3389/fimmu.2020.01818] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates the critical role of the immune response in the mechanisms relating to mood disorders, such as major depression (MDD) and bipolar disorder (BD). This has cast a spotlight on a specialized branch committed to the research of dynamics of the fine interaction between emotion (or affection) and immune response, which has been termed as “affective immunology.” Inflammatory cytokines and gut microbiota are actively involved in affective immunology. Furthermore, abnormalities of the astrocytes and microglia have been observed in mood disorders from both postmortem and molecular imaging studies; however, the underlying mechanisms remain elusive. Notably, the crosstalk between astrocyte and microglia acts as a mutual and pivotal intermediary factor modulating the immune response posed by inflammatory cytokines and gut microbiota. In this study, we propose the “altered astrocyte-microglia crosstalk (AAMC)” hypothesis which suggests that the astrocyte-microglia crosstalk regulates emotional alteration through mediating immune response, and thus, contributing to the development of mood disorders.
Collapse
Affiliation(s)
- Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglei Jia
- Department of Student Affairs, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
198
|
Hierarchical dynamics as a macroscopic organizing principle of the human brain. Proc Natl Acad Sci U S A 2020; 117:20890-20897. [PMID: 32817467 DOI: 10.1073/pnas.2003383117] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined "temporal receptive windows" are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.
Collapse
|
199
|
Lines J, Martin ED, Kofuji P, Aguilar J, Araque A. Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun 2020; 11:3689. [PMID: 32704144 PMCID: PMC7378834 DOI: 10.1038/s41467-020-17536-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/01/2020] [Indexed: 11/12/2022] Open
Abstract
While neurons principally mediate brain function, astrocytes are emerging as cells with important neuromodulatory actions in brain physiology. In addition to homeostatic roles, astrocytes respond to neurotransmitters with calcium transients stimulating the release of gliotransmitters that regulate synaptic and neuronal functions. We investigated astrocyte-neuronal network interactions in vivo by combining two-photon microscopy to monitor astrocyte calcium and electrocorticogram to record neuronal network activity in the somatosensory cortex during sensory stimulation. We found astrocytes respond to sensory stimuli in a stimulus-dependent manner. Sensory stimuli elicit a surge of neuronal network activity in the gamma range (30-50 Hz) followed by a delayed astrocyte activity that dampens the steady-state gamma activity. This sensory-evoked gamma activity increase is enhanced in transgenic mice with impaired astrocyte calcium signaling and is decreased by pharmacogenetic stimulation of astrocytes. Therefore, cortical astrocytes respond to sensory inputs and regulate sensory-evoked neuronal network activity maximizing its dynamic range.
Collapse
Affiliation(s)
- Justin Lines
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, USA
| | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, USA
| | - Juan Aguilar
- Experimental Neurophysiology, Hospital Nacional de Parapléjicos SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
200
|
Astroglia-Derived BDNF and MSK-1 Mediate Experience- and Diet-Dependent Synaptic Plasticity. Brain Sci 2020; 10:brainsci10070462. [PMID: 32708382 PMCID: PMC7407492 DOI: 10.3390/brainsci10070462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Experience- and diet-dependent regulation of synaptic plasticity can underlie beneficial effects of active lifestyle on the aging brain. Our previous results demonstrate a key role for brain-derived neurotrophic factor (BDNF) and MSK1 kinase in experience-related homeostatic synaptic scaling. Astroglia has been recently shown to release BDNF via a calcium-dependent mechanism. To elucidate a role for astroglia-derived BDNF in homeostatic synaptic plasticity in the aging brain, we explored the experience- and diet-related alterations of synaptic transmission and plasticity in transgenic mice with impairment of the BDNF/MSK1 pathway (MSK1 kinase dead knock-in mice, MSK1 KD) and impairment of glial exocytosis (dnSNARE mice). We found that prolonged tonic activation of astrocytes caused BDNF-dependent increase in the efficacy of excitatory synapses accompanied by enlargement of synaptic boutons. We also observed that exposure to environmental enrichment (EE) and caloric restriction (CR) enhanced the Ca2+ signalling in cortical astrocytes and strongly up-regulated the excitatory and down-regulated inhibitory synaptic currents in old wild-type mice, thus counterbalancing the impact of ageing on astroglial and synaptic signalling. The EE- and CR-induced up-scaling of excitatory synaptic transmission in neocortex was accompanied by the enhancement of long-term synaptic potentiation. Importantly, effects of EE and CR on synaptic transmission and plasticity was significantly reduced in the MSK1 KD and dnSNARE mice. Combined, our results suggest that astroglial release of BDNF is important for the homeostatic regulation of cortical synapses and beneficial effects of EE and CR on synaptic transmission and plasticity in aging brain.
Collapse
|