151
|
Pandya NJ, Koopmans F, Slotman JA, Paliukhovich I, Houtsmuller AB, Smit AB, Li KW. Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Sci Rep 2017; 7:12107. [PMID: 28935861 PMCID: PMC5608747 DOI: 10.1038/s41598-017-11690-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Protein correlation profiling might assist in defining co-assembled proteins and subcellular distribution. Here, we quantified the proteomes of five biochemically isolated mouse brain cellular sub-fractions, with emphasis on synaptic compartments, from three brain regions, hippocampus, cortex and cerebellum. We demonstrated the expected co-fractionation of canonical synaptic proteins belonging to the same functional groups. The enrichment profiles also suggested the presence of many novel pre- and post-synaptic proteins. Using super-resolution microscopy on primary neuronal culture we confirmed the postsynaptic localization of PLEKHA5 and ADGRA1. We further detected profound brain region specific differences in the extent of enrichment for some functionally associated proteins. This is exemplified by different AMPA receptor subunits and substantial differences in sub-fraction distribution of their potential interactors, which implicated the differences of AMPA receptor complex compositions. This resource aids the identification of proteins partners and subcellular distribution of synaptic proteins.
Collapse
Affiliation(s)
- Nikhil J Pandya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johan A Slotman
- Optical Imaging Center, Department of Pathology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Optical Imaging Center, Department of Pathology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
152
|
Castonguay J, Orth JHC, Müller T, Sleman F, Grimm C, Wahl-Schott C, Biel M, Mallmann RT, Bildl W, Schulte U, Klugbauer N. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep 2017; 7:10038. [PMID: 28855648 PMCID: PMC5577145 DOI: 10.1038/s41598-017-10607-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca2+ concentrations required for SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Jan Castonguay
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Joachim H C Orth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Thomas Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Faten Sleman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Robert Theodor Mallmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.,Logopharm GmbH, Schlossstrasse 14, 79232, March-Buchheim, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Norbert Klugbauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
153
|
Bröker-Lai J, Kollewe A, Schindeldecker B, Pohle J, Nguyen Chi V, Mathar I, Guzman R, Schwarz Y, Lai A, Weißgerber P, Schwegler H, Dietrich A, Both M, Sprengel R, Draguhn A, Köhr G, Fakler B, Flockerzi V, Bruns D, Freichel M. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. EMBO J 2017; 36:2770-2789. [PMID: 28790178 DOI: 10.15252/embj.201696369] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.
Collapse
Affiliation(s)
- Jenny Bröker-Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Astrid Kollewe
- Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Barbara Schindeldecker
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim, Germany
| | - Vivan Nguyen Chi
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Raul Guzman
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Yvonne Schwarz
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Alan Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Petra Weißgerber
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | | | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University München, München, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Georg Köhr
- Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim, Germany
| | - Bernd Fakler
- Institute of Physiology, University of Freiburg, Freiburg, Germany.,BIOSS, Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany‡
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
154
|
Renner MC, Albers EH, Gutierrez-Castellanos N, Reinders NR, van Huijstee AN, Xiong H, Lodder TR, Kessels HW. Synaptic plasticity through activation of GluA3-containing AMPA-receptors. eLife 2017; 6:25462. [PMID: 28762944 PMCID: PMC5578739 DOI: 10.7554/elife.25462] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.
Collapse
Affiliation(s)
- Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Eva Hh Albers
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Niels R Reinders
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Aile N van Huijstee
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hui Xiong
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tessa R Lodder
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
155
|
Diversity in AMPA receptor complexes in the brain. Curr Opin Neurobiol 2017; 45:32-38. [DOI: 10.1016/j.conb.2017.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/23/2022]
|
156
|
Frank RA, Grant SG. Supramolecular organization of NMDA receptors and the postsynaptic density. Curr Opin Neurobiol 2017; 45:139-147. [PMID: 28577431 PMCID: PMC5557338 DOI: 10.1016/j.conb.2017.05.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 01/21/2023]
Abstract
The postsynaptic density (PSD) of all vertebrate species share a highly complex proteome with ∼1000 conserved proteins that function as sophisticated molecular computational devices. Here, we review recent studies showing that this complexity can be understood in terms of the supramolecular organization of proteins, which self-assemble within a hierarchy of different length scales, including complexes, supercomplexes and nanodomains. We highlight how genetic and biochemical approaches in mice are being used to uncover the native molecular architecture of the synapse, revealing hitherto unknown molecular structures, including highly selective mechanisms for specifying the assembly of NMDAR-MAGUK supercomplexes. We propose there exists a logical framework that precisely dictates the subunit composition of synaptic complexes, supercomplexes, and nanodomains in vivo.
Collapse
Affiliation(s)
- René Aw Frank
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK.
| |
Collapse
|
157
|
Bettler B, Fakler B. Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes. Curr Opin Neurobiol 2017; 45:16-23. [DOI: 10.1016/j.conb.2017.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
|
158
|
Brechet A, Buchert R, Schwenk J, Boudkkazi S, Zolles G, Siquier-Pernet K, Schaber I, Bildl W, Saadi A, Bole-Feysot C, Nitschke P, Reis A, Sticht H, Al-Sanna'a N, Rolfs A, Kulik A, Schulte U, Colleaux L, Abou Jamra R, Fakler B. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nat Commun 2017; 8:15910. [PMID: 28675162 PMCID: PMC5500892 DOI: 10.1038/ncomms15910] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
AMPA-type glutamate receptors (AMPARs), key elements in excitatory neurotransmission in the brain, are macromolecular complexes whose properties and cellular functions are determined by the co-assembled constituents of their proteome. Here we identify AMPAR complexes that transiently form in the endoplasmic reticulum (ER) and lack the core-subunits typical for AMPARs in the plasma membrane. Central components of these ER AMPARs are the proteome constituents FRRS1l (C9orf4) and CPT1c that specifically and cooperatively bind to the pore-forming GluA1-4 proteins of AMPARs. Bi-allelic mutations in the human FRRS1L gene are shown to cause severe intellectual disability with cognitive impairment, speech delay and epileptic activity. Virus-directed deletion or overexpression of FRRS1l strongly impact synaptic transmission in adult rat brain by decreasing or increasing the number of AMPARs in synapses and extra-synaptic sites. Our results provide insight into the early biogenesis of AMPARs and demonstrate its pronounced impact on synaptic transmission and brain function. The biogenesis of AMPA-type glutamate receptor (AMPAR) complexes is only partially understood. Here the authors identify transient assemblies of GluA1-4 proteins and proteins FRRS1l/CPT1c that drive formation of mature AMPAR complexes in the ER. Mutations in FRRS1l are associated with intellectual disability and epilepsy in three families.
Collapse
Affiliation(s)
- Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Rebecca Buchert
- Institute of Human Genetics, University of Erlangen, Schwabachanlage 10, Erlangen 91054, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany
| | - Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Irene Schaber
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Abdelkrim Saadi
- Department de Neurologie, Etablissement Hospitalier Specialisé de Benaknoun, Algers, Algeria
| | - Christine Bole-Feysot
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Patrick Nitschke
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Andre Reis
- Institute of Human Genetics, University of Erlangen, Schwabachanlage 10, Erlangen 91054, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Fahrstraße 17, Erlangen 91054, Germany
| | - Nouriya Al-Sanna'a
- Dharan Health Center, 8131 Medical Access Rd 1, Gharb al Dharan, Dharan 34465, Saudi Arabia
| | - Arndt Rolfs
- Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany.,Albrecht-Kossel-Institute for Neuroregeneration, Medical University Rostock, Gehlsheimerstr. 20, Rostock 18147, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany.,Logopharm GmbH, Schlossstr. 14, March-Buchheim 79232, Germany
| | - Laurence Colleaux
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Erlangen, Schwabachanlage 10, Erlangen 91054, Germany.,Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany
| |
Collapse
|
159
|
Pozo M, Rodríguez-Rodríguez R, Ramírez S, Seoane-Collazo P, López M, Serra D, Herrero L, Casals N. Hypothalamic Regulation of Liver and Muscle Nutrient Partitioning by Brain-Specific Carnitine Palmitoyltransferase 1C in Male Mice. Endocrinology 2017; 158:2226-2238. [PMID: 28472467 DOI: 10.1210/en.2017-00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
Carnitine palmitoyltransferase (CPT) 1C, a brain-specific protein localized in the endoplasmic reticulum of neurons, is expressed in almost all brain regions. Based on global knockout (KO) models, CPT1C has demonstrated relevance in hippocampus-dependent spatial learning and in hypothalamic regulation of energy balance. Specifically, it has been shown that CPT1C is protective against high-fat diet-induced obesity (DIO), and that CPT1C KO mice show reduced peripheral fatty acid oxidation (FAO) during both fasting and DIO. However, the mechanisms mediating CPT1C-dependent regulation of energy homeostasis remain unclear. Here, we focus on the mechanistic understanding of hypothalamic CPT1C on the regulation of fuel selection in liver and muscle of male mice during energy deprivation situations, such as fasting. In CPT1C-deficient mice, modulation of the main hypothalamic energy sensors (5' adenosine monophosphate-activated protein kinase, Sirtuin 1, and mammalian target of rapamycin) was impaired and plasma catecholamine levels were decreased. Consequently, CPT1C-deficient mice presented defective fasting-induced FAO in liver, leading to higher triacylglycerol accumulation and lower glycogen levels. Moreover, muscle pyruvate dehydrogenase activity was increased, which was indicative of glycolysis enhancement. The respiratory quotient did not decrease in CPT1C KO mice after 48 hours of fasting, confirming a defective switch on fuel substrate selection under hypoglycemia. Phenotype reversion studies identified the mediobasal hypothalamus (MBH) as the main area mediating CPT1C effects on fuel selection. Overall, our data demonstrate that CPT1C in the MBH is necessary for proper hypothalamic sensing of a negative energy balance and fuel partitioning in liver and muscle.
Collapse
Affiliation(s)
- Macarena Pozo
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Sara Ramírez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
160
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
161
|
Baucum AJ. Proteomic Analysis of Postsynaptic Protein Complexes Underlying Neuronal Plasticity. ACS Chem Neurosci 2017; 8:689-701. [PMID: 28211672 DOI: 10.1021/acschemneuro.7b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Normal neuronal communication and synaptic plasticity at glutamatergic synapses requires dynamic regulation of postsynaptic molecules. Protein expression and protein post-translational modifications regulate protein interactions that underlie this organization. In this Review, we highlight data obtained over the last 20 years that have used qualitative and quantitative proteomics-based approaches to identify postsynaptic protein complexes. Herein, we describe how these proteomics studies have helped lay the foundation for understanding synaptic physiology and perturbations in synaptic signaling observed in different pathologies. We also describe emerging technologies that can be useful in these analyses. We focus on protein complexes associated with the highly abundant and functionally critical proteins: calcium/calmodulin-dependent protein kinase II, the N-methyl-d-aspartate, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, and postsynaptic density protein of 95 kDa.
Collapse
Affiliation(s)
- Anthony J. Baucum
- Department of Biology, Stark Neurosciences
Research Institute, Indiana University-Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
162
|
Lee Y, Kang H, Lee B, Zhang Y, Kim Y, Kim S, Kim WK, Han K. Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations. Front Mol Neurosci 2017; 10:110. [PMID: 28469556 PMCID: PMC5395616 DOI: 10.3389/fnmol.2017.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Hyojin Kang
- HPC-enabled Convergence Technology Research Division, Korea Institute of Science and Technology InformationDaejeon, South Korea
| | - Bokyoung Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| |
Collapse
|
163
|
Sirisi S, Elorza-Vidal X, Arnedo T, Armand-Ugón M, Callejo G, Capdevila-Nortes X, López-Hernández T, Schulte U, Barrallo-Gimeno A, Nunes V, Gasull X, Estévez R. Depolarization causes the formation of a ternary complex between GlialCAM, MLC1 and ClC-2 in astrocytes: implications in megalencephalic leukoencephalopathy. Hum Mol Genet 2017; 26:2436-2450. [DOI: 10.1093/hmg/ddx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
|
164
|
AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proc Natl Acad Sci U S A 2017; 114:3939-3944. [PMID: 28348228 DOI: 10.1073/pnas.1612943114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate central nervous system (CNS), and their function has been extensively studied in the mature mammalian brain. However, GluA expression begins very early in developing embryos, suggesting that they may also have unidentified developmental roles. Here, we identify developmental roles for GluAs in the ascidian Ciona intestinalis Mammals express Ca2+-permeable GluAs (Ca-P GluAs) and Ca2+-impermeable GluAs (Ca-I GluAs) by combining subunits derived from four genes. In contrast, ascidians have a single gluA gene. Taking advantage of the simple genomic GluA organization in ascidians, we knocked down (KD) GluAs in Ciona and observed severe impairments in formation of the ocellus, a photoreceptive organ used during the swimming stage, and in resorption of the tail and body axis rotation during metamorphosis to the adult stage. These defects could be rescued by injection of KD-resistant GluAs. GluA KD phenotypes could also be reproduced by expressing a GluA mutant that dominantly inhibits glutamate-evoked currents. These results suggest that, in addition to their role in synaptic communication in mature animals, GluAs also have critical developmental functions.
Collapse
|
165
|
Weingarten J, Weingarten M, Wegner M, Volknandt W. APP-A Novel Player within the Presynaptic Active Zone Proteome. Front Mol Neurosci 2017; 10:43. [PMID: 28265241 PMCID: PMC5316543 DOI: 10.3389/fnmol.2017.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The amyloid precursor protein (APP) was discovered in the 1980s as the precursor protein of the amyloid A4 peptide. The amyloid A4 peptide, also known as A-beta (Aβ), is the main constituent of senile plaques implicated in Alzheimer's disease (AD). In association with the amyloid deposits, increasing impairments in learning and memory as well as the degeneration of neurons especially in the hippocampus formation are hallmarks of the pathogenesis of AD. Within the last decades much effort has been expended into understanding the pathogenesis of AD. However, little is known about the physiological role of APP within the central nervous system (CNS). Allocating APP to the proteome of the highly dynamic presynaptic active zone (PAZ) identified APP as a novel player within this neuronal communication and signaling network. The analysis of the hippocampal PAZ proteome derived from APP-mutant mice demonstrates that APP is tightly embedded in the underlying protein network. Strikingly, APP deletion accounts for major dysregulation within the PAZ proteome network. Ca2+-homeostasis, neurotransmitter release and mitochondrial function are affected and resemble the outcome during the pathogenesis of AD. The observed changes in protein abundance that occur in the absence of APP as well as in AD suggest that APP is a structural and functional regulator within the hippocampal PAZ proteome. Within this review article, we intend to introduce APP as an important player within the hippocampal PAZ proteome and to outline the impact of APP deletion on individual PAZ proteome subcommunities.
Collapse
Affiliation(s)
- Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| | - Melanie Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| | - Martin Wegner
- Department of Molecular Bioinformatics, Goethe University Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
166
|
Subunit-specific synaptic delivery of AMPA receptors by auxiliary chaperone proteins TARPγ8 and GSG1L in classical conditioning. Neurosci Lett 2017; 645:53-59. [PMID: 28219790 DOI: 10.1016/j.neulet.2017.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
Abstract
AMPA receptor (AMPAR) trafficking has emerged as a fundamental concept for understanding mechanisms of learning and memory as well as many neurological disorders. Classical conditioning is a simple and highly conserved form of associative learning. Our studies use an ex vivo brainstem preparation in which to study cellular mechanisms underlying learning during a neural correlate of eyeblink conditioning. Two stages of AMPAR synaptic delivery underlie conditioning utilizing sequential trafficking of GluA1-containing AMPARs early in conditioning followed by replacement with GluA4 subunits later. Subunit-selective trafficking of AMPARs is poorly understood. Here, we focused on identification of auxiliary chaperone proteins that traffic AMPARs. The results show that auxiliary proteins TARPγ8 and GSG1L are colocalized with AMPARs on abducens motor neurons that generate the conditioning. Significantly, TARPγ8 was observed to chaperone GluA1-containing AMPARs during synaptic delivery early in conditioning while GSG1L chaperones GluA4 subunits later in conditioning. Interestingly, TARPγ8 remains at the membrane surface as GluA1 subunits are withdrawn and associates with GluA4 when they are delivered to synapses. These data indicate that GluA1- and GluA4-containing AMPARs are selectively chaperoned by TARPγ8 and GSG1L, respectively. Therefore, sequential subunit-selective trafficking of AMPARs during conditioning is achieved through the timing of their interactions with specific auxiliary proteins.
Collapse
|
167
|
Cysteine 893 is a target of regulatory thiol modifications of GluA1 AMPA receptors. PLoS One 2017; 12:e0171489. [PMID: 28152104 PMCID: PMC5289633 DOI: 10.1371/journal.pone.0171489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022] Open
Abstract
Recent studies indicate that glutamatergic signaling involves, and is regulated by, thiol modifying and redox-active compounds. In this study, we examined the role of a reactive cysteine residue, Cys-893, in the cytosolic C-terminal tail of GluA1 AMPA receptor as a potential regulatory target. Elimination of the thiol function by substitution of serine for Cys-893 led to increased steady-state expression level and strongly reduced interaction with SAP97, a major cytosolic interaction partner of GluA1 C-terminus. Moreover, we found that of the three cysteine residues in GluA1 C-terminal tail, Cys-893 is the predominant target for S-nitrosylation induced by exogenous nitric oxide donors in cultured cells and lysates. Co-precipitation experiments provided evidence for native association of SAP97 with neuronal nitric oxide synthase (nNOS) and for the potential coupling of Ca2+-permeable GluA1 receptors with nNOS via SAP97. Our results show that Cys-893 can serve as a molecular target for regulatory thiol modifications of GluA1 receptors, including the effects of nitric oxide.
Collapse
|
168
|
Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol Learn Mem 2017; 138:252-270. [DOI: 10.1016/j.nlm.2016.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
|
169
|
Luquet E, Biesemann C, Munier A, Herzog E. Purification of Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting. Methods Mol Biol 2017; 1538:121-134. [PMID: 27943188 DOI: 10.1007/978-1-4939-6688-2_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For several decades, neurobiologists have used subcellular fractionation methods to analyze the molecular structure and some functional features of the cells in the central nervous system. Indeed, brain tissue contains a complex intermingled network of neuronal, glial, and vascular cells. To reduce this complexity biochemists have optimized fractionation protocols that enrich in specific compartments such as synapses (called "synaptosomes") and synaptic vesicles, for example. However, recently, these approaches suffered from a lack of specificity and purity. In a recent effort, we extended the conventional synaptosome preparation to purify fluorescent synaptosomes on a cell sorter. We could prove that our method allows for the steep enrichment in fluorescent excitatory VGLUT1venus synaptosomes containing the presynaptic element and the tip of the post-synaptic element and a strong depletion in neuronal and glial contaminants. Here, we propose a detailed procedure for the implementation of Fluorescence Activated Synaptosome Sorting.
Collapse
Affiliation(s)
- Elisa Luquet
- Interdisciplinary Institute for Neuroscience, University Bordeaux, CNRS, UMR 5297, F-33000, Bordeaux, France
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, F-33000, Bordeaux, France
| | - Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Annie Munier
- Institut de Biologie Paris Seine, University Pierre et Marie Curie, IBPS, F-75005, Paris, France
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, University Bordeaux, CNRS, UMR 5297, F-33000, Bordeaux, France.
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
170
|
Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses. J Neurosci 2016; 37:1062-1080. [PMID: 27986928 DOI: 10.1523/jneurosci.2768-16.2016] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 01/05/2023] Open
Abstract
Three neuronal pentraxins are expressed in brain, the membrane-bound "neuronal pentraxin receptor" (NPR) and the secreted proteins NP1 and NARP (i.e., NP2). Neuronal pentraxins bind to AMPARs at excitatory synapses and play important, well-documented roles in the activity-dependent regulation of neural circuits via this binding activity. However, it is unknown whether neuronal pentraxins perform roles in synapses beyond modulating postsynaptic AMPAR-dependent plasticity, and whether they may even act in inhibitory synapses. Here, we show that NPR expressed in non-neuronal cells potently induces formation of both excitatory and inhibitory postsynaptic specializations in cocultured hippocampal neurons. Knockdown of NPR in hippocampal neurons, conversely, dramatically decreased assembly and function of both excitatory and inhibitory postsynaptic specializations. Overexpression of NPR rescued the NPR knockdown phenotype but did not in itself change synapse numbers or properties. However, the NPR knockdown decreased the levels of NARP, whereas NPR overexpression produced a dramatic increase in the levels of NP1 and NARP, suggesting that NPR recruits and stabilizes NP1 and NARP on the presynaptic plasma membrane. Mechanistically, NPR acted in excitatory synapse assembly by binding to the N-terminal domain of AMPARs; antagonists of AMPA and GABA receptors selectively inhibited NPR-induced heterologous excitatory and inhibitory synapse assembly, respectively, but did not affect neurexin-1β-induced synapse assembly as a control. Our data suggest that neuronal pentraxins act as signaling complexes that function as general trans-synaptic organizers of both excitatory and inhibitory synapses by a mechanism that depends, at least in part, on the activity of the neurotransmitter receptors at these synapses. SIGNIFICANCE STATEMENT Neuronal pentraxins comprise three neuronal proteins, neuronal pentraxin receptor (NPR) which is a type-II transmembrane protein on the neuronal surface, and secreted neuronal pentraxin-1 and NARP. The general functions of neuronal pentraxins at synapses have not been explored, except for their basic AMPAR binding properties. Here, we examined the functional role of NPR at synapses because it is the only neuronal pentraxin that is anchored to the neuronal cell-surface membrane. We find that NPR is a potent inducer of both excitatory and inhibitory heterologous synapses, and that knockdown of NPR in cultured neurons decreases the density of both excitatory and inhibitory synapses. Our data suggest that NPR performs a general, previously unrecognized function as a universal organizer of synapses.
Collapse
|
171
|
PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci 2016; 39:668-679. [DOI: 10.1016/j.tins.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
|
172
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
173
|
Patrizio A, Specht CG. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques. NEUROPHOTONICS 2016; 3:041805. [PMID: 27335891 PMCID: PMC4891561 DOI: 10.1117/1.nph.3.4.041805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.
Collapse
Affiliation(s)
- Angela Patrizio
- Institute of Biology, Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, École Normale Supérieure (ENS), 46 rue d’Ulm, Paris 75005, France
| | - Christian G. Specht
- Institute of Biology, Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, École Normale Supérieure (ENS), 46 rue d’Ulm, Paris 75005, France
| |
Collapse
|
174
|
Hanus C, Geptin H, Tushev G, Garg S, Alvarez-Castelao B, Sambandan S, Kochen L, Hafner AS, Langer JD, Schuman EM. Unconventional secretory processing diversifies neuronal ion channel properties. eLife 2016; 5:e20609. [PMID: 27677849 PMCID: PMC5077297 DOI: 10.7554/elife.20609] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation - the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus - is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane.
Collapse
Affiliation(s)
- Cyril Hanus
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Helene Geptin
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Georgi Tushev
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Sakshi Garg
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | | | | | - Lisa Kochen
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | | | - Julian D Langer
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
175
|
Whitehead G, Regan P, Whitcomb DJ, Cho K. Ca 2+-permeable AMPA receptor: A new perspective on amyloid-beta mediated pathophysiology of Alzheimer's disease. Neuropharmacology 2016; 112:221-227. [PMID: 27561971 DOI: 10.1016/j.neuropharm.2016.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the primary conduits of excitatory synaptic transmission. AMPARs are predominantly Ca2+-impermeable in the matured excitatory synapse, except under certain circumstances. Growing evidence implicates the Ca2+ permeability of AMPARs in the regulation of long-term synaptic plasticity and in the pathophysiology of several neurological disorders. Therefore, the Ca2+ conductance of AMPARs may have both physiological and pathological roles at synapses. However, our understanding of the role of Ca2+ permeable AMPARs (CP-AMPARs) in Alzheimer's disease is limited. Here we discuss insights into the potential CP-AMPAR mediated pathophysiology of Alzheimer's disease, including: 1. Ca2+-mediated aberrant regulation of synapse weakening mechanisms, and 2. neuronal network dysfunction in the brain. Consideration of CP-AMPARs as primary drivers of pathophysiology could help in understanding synaptopathologies, and highlights the potential of CP-AMPARs as therapeutic targets in Alzheimer's disease. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Garry Whitehead
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK; Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK; Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK.
| |
Collapse
|
176
|
Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells. eNeuro 2016; 3:eN-NWR-0109-15. [PMID: 27280156 PMCID: PMC4895128 DOI: 10.1523/eneuro.0109-15.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses.
Collapse
|
177
|
Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice. J Neurosci 2016; 36:1242-53. [PMID: 26818512 DOI: 10.1523/jneurosci.3280-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. SIGNIFICANCE STATEMENT Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin deficiency causes deficits in spatial memory and hippocampal LTP induction. Neuronal seipin deficiency selectively suppresses AMPA receptor expression, ERK-CREB phosphorylation with the decline of PPARγ. The PPARγ agonist rosiglitazone can ameliorate spatial cognitive deficits and rescue the LTP induction in seipin knock-out mice by restoring AMPA receptor expression and ERK-CREB activities.
Collapse
|
178
|
Shaheen R, Al Tala S, Ewida N, Abouelhoda M, Alkuraya F. Epileptic encephalopathy with continuous spike-and-wave during sleep maps to a homozygous truncating mutation in AMPA receptor component FRRS1L. Clin Genet 2016; 90:282-3. [DOI: 10.1111/cge.12796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- R. Shaheen
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - S. Al Tala
- Department of Pediatrics; Armed Forces Hospital; Khamis Mushayt Saudi Arabia
| | - N. Ewida
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - M. Abouelhoda
- Saudi Human Genome Program; King Abdulaziz City for Science and Technology; Riyadh Saudi Arabia
| | - F.S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| |
Collapse
|
179
|
Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R, Zhang B, Al-Hasani R, Bruchas MR, Chou YL, Demers CH, Carey CE, Conley ED, Fakira AK, Farrer LA, Goate A, Gordon S, Henders AK, Hesselbrock V, Kapoor M, Lynskey MT, Madden PA, Moron JA, Rice JP, Saccone NL, Schwab SG, Shand FL, Todorov AA, Wallace L, Wang T, Wray NR, Zhou X, Degenhardt L, Martin NG, Hariri AR, Kranzler HR, Gelernter J, Bierut LJ, Clark DJ, Montgomery GW. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry 2016; 21:608-14. [PMID: 26239289 PMCID: PMC4740268 DOI: 10.1038/mp.2015.102] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
Abstract
Opioid dependence, a severe addictive disorder and major societal problem, has been demonstrated to be moderately heritable. We conducted a genome-wide association study in Comorbidity and Trauma Study data comparing opioid-dependent daily injectors (N=1167) with opioid misusers who never progressed to daily injection (N=161). The strongest associations, observed for CNIH3 single-nucleotide polymorphisms (SNPs), were confirmed in two independent samples, the Yale-Penn genetic studies of opioid, cocaine and alcohol dependence and the Study of Addiction: Genetics and Environment, which both contain non-dependent opioid misusers and opioid-dependent individuals. Meta-analyses found five genome-wide significant CNIH3 SNPs. The A allele of rs10799590, the most highly associated SNP, was robustly protective (P=4.30E-9; odds ratio 0.64 (95% confidence interval 0.55-0.74)). Epigenetic annotation predicts that this SNP is functional in fetal brain. Neuroimaging data from the Duke Neurogenetics Study (N=312) provide evidence of this SNP's in vivo functionality; rs10799590 A allele carriers displayed significantly greater right amygdala habituation to threat-related facial expressions, a phenotype associated with resilience to psychopathology. Computational genetic analyses of physical dependence on morphine across 23 mouse strains yielded significant correlations for haplotypes in CNIH3 and functionally related genes. These convergent findings support CNIH3 involvement in the pathophysiology of opioid dependence, complementing prior studies implicating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate system.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Zhang
- Washington University, St. Louis, MO
| | | | | | | | | | | | | | - Amanda K. Fakira
- Columbia University College of Physicians and Surgeons, New York, NY
| | | | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anjali K. Henders
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Manav Kapoor
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Jose A. Moron
- Columbia University College of Physicians and Surgeons, New York, NY
| | | | | | - Sibylle G. Schwab
- Faculty of Science Medicine & Health, University of Wollongong, Wollongong Australia
| | | | | | - Leanne Wallace
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ting Wang
- Washington University, St. Louis, MO
| | - Naomi R. Wray
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Xin Zhou
- St. Jude Children’s Research Hospital, Memphis, TN
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Nicholas G. Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | | | | |
Collapse
|
180
|
Abstract
UNLABELLED AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of synaptic plasticity, and alterations in their expression or regulation are also seen in a number of serious neurological conditions, including stroke, motor neuron disease, and cocaine addiction. Several groups of auxiliary transmembrane proteins have been described that enhance the function and cell-surface expression of AMPARs. We now report that the recently identified auxiliary protein GSG1L decreases weighted mean channel conductance and calcium permeability of CP-AMPARs while increasing polyamine-dependent rectification by diminishing outward current. Our experiments reveal that GSG1L is an auxiliary subunit that can markedly suppress CP-AMPAR function, in both recombinant systems and central neurons.
Collapse
|
181
|
Valente P, Castroflorio E, Rossi P, Fadda M, Sterlini B, Cervigni RI, Prestigio C, Giovedì S, Onofri F, Mura E, Guarnieri FC, Marte A, Orlando M, Zara F, Fassio A, Valtorta F, Baldelli P, Corradi A, Benfenati F. PRRT2 Is a Key Component of the Ca(2+)-Dependent Neurotransmitter Release Machinery. Cell Rep 2016; 15:117-131. [PMID: 27052163 PMCID: PMC4826441 DOI: 10.1016/j.celrep.2016.03.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Enrico Castroflorio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pia Rossi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Romina Ines Cervigni
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Elisa Mura
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Fabrizia C Guarnieri
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Federico Zara
- Department of Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
182
|
Oikkonen J, Kuusi T, Peltonen P, Raijas P, Ukkola-Vuoti L, Karma K, Onkamo P, Järvelä I. Creative Activities in Music--A Genome-Wide Linkage Analysis. PLoS One 2016; 11:e0148679. [PMID: 26909693 PMCID: PMC4766096 DOI: 10.1371/journal.pone.0148679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.
Collapse
Affiliation(s)
- Jaana Oikkonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Tuire Kuusi
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Petri Peltonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Kai Karma
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
183
|
Dieterich DC, Kreutz MR. Proteomics of the Synapse--A Quantitative Approach to Neuronal Plasticity. Mol Cell Proteomics 2016; 15:368-81. [PMID: 26307175 PMCID: PMC4739661 DOI: 10.1074/mcp.r115.051482] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.
Collapse
Affiliation(s)
- Daniela C Dieterich
- From the ‡Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Michael R Kreutz
- §RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
184
|
Kirk LM, Ti SW, Bishop HI, Orozco-Llamas M, Pham M, Trimmer JS, Díaz E. Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain. J Comp Neurol 2015; 524:2266-80. [PMID: 26660156 DOI: 10.1002/cne.23945] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline-rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs. J. Comp. Neurol. 524:2266-2280, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lyndsey M Kirk
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - Shu W Ti
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | - Hannah I Bishop
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | - Mayra Orozco-Llamas
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - Michelle Pham
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616.,Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California, 95616
| | - Elva Díaz
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| |
Collapse
|
185
|
Lin DTS, Conibear E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 2015; 4:e11306. [PMID: 26701913 PMCID: PMC4755737 DOI: 10.7554/elife.11306] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Dynamic changes in protein S-palmitoylation are critical for regulating protein localization and signaling. Only two enzymes - the acyl-protein thioesterases APT1 and APT2 – are known to catalyze palmitate removal from cytosolic cysteine residues. It is unclear if these enzymes act constitutively on all palmitoylated proteins, or if additional depalmitoylases exist. Using a dual pulse-chase strategy comparing palmitate and protein half-lives, we found knockdown or inhibition of APT1 and APT2 blocked depalmitoylation of Huntingtin, but did not affect palmitate turnover on postsynaptic density protein 95 (PSD95) or N-Ras. We used activity profiling to identify novel serine hydrolase targets of the APT1/2 inhibitor Palmostatin B, and discovered that a family of uncharacterized ABHD17 proteins can accelerate palmitate turnover on PSD95 and N-Ras. ABHD17 catalytic activity is required for N-Ras depalmitoylation and re-localization to internal cellular membranes. Our findings indicate that the family of depalmitoylation enzymes may be substantially broader than previously believed. DOI:http://dx.doi.org/10.7554/eLife.11306.001 Proteins play important roles in many processes in cells. Some of these proteins can be modified by the addition of a molecule called palmitate. This process, termed “palmitoylation”, helps direct these proteins to the compartments within the cell where they are needed to carry out their roles. One target of palmitoylation is N-Ras, which is a protein that can promote the development of cancer. We understand quite a lot about how palmitate is added to proteins, but much less about how it is removed. So far, researchers have only identified two enzymes – known as APT1 and APT2 – that can remove palmitate from proteins, but it is possible that there are others. Identifying other “depalmitoylase” enzymes could help us find ways to block the removal of palmitate from N-Ras, which could lead to new treatments for some cancers. Lin and Conibear used several biochemical techniques to search for depalmitoylase enzymes in human cells. The experiments reveal that although APT1 and APT2 are important for removing palmitate from some proteins, they are not needed to remove palmitate from N-Ras. Instead, Lin and Conibear found that an enzyme called ABHD17 removes palmitate from N-Ras. The next step following on from this work will be to find out what other proteins ABHD17 acts on in cells. A longer-term challenge will be to develop specific chemicals that inhibit ABHD17 activity and test if they are able to reduce the growth of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.11306.002
Collapse
Affiliation(s)
- David Tse Shen Lin
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
186
|
Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 2015; 19:233-42. [PMID: 26691831 DOI: 10.1038/nn.4198] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023]
Abstract
GABAB receptors, the most abundant inhibitory G protein-coupled receptors in the mammalian brain, display pronounced diversity in functional properties, cellular signaling and subcellular distribution. We used high-resolution functional proteomics to identify the building blocks of these receptors in the rodent brain. Our analyses revealed that native GABAB receptors are macromolecular complexes with defined architecture, but marked diversity in subunit composition: the receptor core is assembled from GABAB1a/b, GABAB2, four KCTD proteins and a distinct set of G-protein subunits, whereas the receptor's periphery is mostly formed by transmembrane proteins of different classes. In particular, the periphery-forming constituents include signaling effectors, such as Cav2 and HCN channels, and the proteins AJAP1 and amyloid-β A4, both of which tightly associate with the sushi domains of GABAB1a. Our results unravel the molecular diversity of GABAB receptors and their postnatal assembly dynamics and provide a roadmap for studying the cellular signaling of this inhibitory neurotransmitter receptor.
Collapse
|
187
|
Carnitine palmitoyltransferase 1C: From cognition to cancer. Prog Lipid Res 2015; 61:134-48. [PMID: 26708865 DOI: 10.1016/j.plipres.2015.11.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022]
Abstract
Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.
Collapse
|
188
|
de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 2015; 17:22-35. [PMID: 26656254 DOI: 10.1038/nrn.2015.3] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular diversification of cell surface molecules has long been postulated to impart specific surface identities on neuronal cell types. The existence of unique cell surface identities would allow neurons to distinguish one another and connect with their appropriate target cells. Although progress has been made in identifying cell type-specific surface molecule repertoires and in characterizing their extracellular interactions, determining how this molecular diversity contributes to the precise wiring of neural circuitry has proven challenging. Here, we review the role of the cadherin, neurexin, immunoglobulin and leucine-rich repeat protein superfamilies in the specification of connectivity. The emerging evidence suggests that the concerted actions of these proteins may critically contribute to the assembly of neural circuits.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffman-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
189
|
Fadó R, Soto D, Miñano-Molina AJ, Pozo M, Carrasco P, Yefimenko N, Rodríguez-Álvarez J, Casals N. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus. J Biol Chem 2015; 290:25548-60. [PMID: 26338711 DOI: 10.1074/jbc.m115.681064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/04/2023] Open
Abstract
The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Rut Fadó
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain
| | - David Soto
- the Laboratori de Neurobiologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain, the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain
| | - Alfredo J Miñano-Molina
- the Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain, and
| | - Macarena Pozo
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain
| | - Patricia Carrasco
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain, the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), 15706 Santiago de Compostela, Spain
| | - Natalia Yefimenko
- the Laboratori de Neurobiologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain, the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain
| | - José Rodríguez-Álvarez
- the Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain, and
| | - Núria Casals
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain, the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), 15706 Santiago de Compostela, Spain
| |
Collapse
|
190
|
Savas JN, Ribeiro LF, Wierda KD, Wright R, DeNardo-Wilke LA, Rice HC, Chamma I, Wang YZ, Zemla R, Lavallée-Adam M, Vennekens KM, O'Sullivan ML, Antonios JK, Hall EA, Thoumine O, Attie AD, Yates JR, Ghosh A, de Wit J. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors. Neuron 2015; 87:764-80. [PMID: 26291160 PMCID: PMC4692362 DOI: 10.1016/j.neuron.2015.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Abstract
The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here, we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1-knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1-deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer disease, suggesting that perturbed receptor trafficking contributes to synaptic-composition and -function defects underlying synaptopathies.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luís F Ribeiro
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe D Wierda
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Rebecca Wright
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura A DeNardo-Wilke
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heather C Rice
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ingrid Chamma
- UMR 5297, Interdisciplinary Institute for Neuroscience, University of Bordeaux and Centre National de la Recherche Scientifique, 33000 Bordeaux, France
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Roland Zemla
- School of Medicine, New York University, New York, New York 10016, USA
| | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristel M Vennekens
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Matthew L O'Sullivan
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph K Antonios
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Hall
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Olivier Thoumine
- UMR 5297, Interdisciplinary Institute for Neuroscience, University of Bordeaux and Centre National de la Recherche Scientifique, 33000 Bordeaux, France
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Anirvan Ghosh
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neuroscience Discovery, F. Hoffman-La Roche, 4070 Basel, Switzerland
| | - Joris de Wit
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
191
|
Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophys J 2015; 109:1136-48. [PMID: 26255587 PMCID: PMC4576161 DOI: 10.1016/j.bpj.2015.06.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/26/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment.
Collapse
|
192
|
|
193
|
Schreiner D, Simicevic J, Ahrné E, Schmidt A, Scheiffele P. Quantitative isoform-profiling of highly diversified recognition molecules. eLife 2015; 4:e07794. [PMID: 25985086 PMCID: PMC4489214 DOI: 10.7554/elife.07794] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022] Open
Abstract
Complex biological systems rely on cell surface cues that govern cellular self-recognition and selective interactions with appropriate partners. Molecular diversification of cell surface recognition molecules through DNA recombination and complex alternative splicing has emerged as an important principle for encoding such interactions. However, the lack of tools to specifically detect and quantify receptor protein isoforms is a major impediment to functional studies. We here developed a workflow for targeted mass spectrometry by selected reaction monitoring that permits quantitative assessment of highly diversified protein families. We apply this workflow to dissecting the molecular diversity of the neuronal neurexin receptors and uncover an alternative splicing-dependent recognition code for synaptic ligands. DOI:http://dx.doi.org/10.7554/eLife.07794.001 To create a protein, a gene is first copied to form an RNA molecule that contains regions known as introns and exons. Splicing removes the introns and joins the exons together to form a molecule of ‘messenger RNA’, which is translated into a protein. Over the course of evolution, many groups—or families—of proteins have expanded and diversified their roles. One way in which this can occur is through a process known as alternative splicing, in which different exons can be included or excluded to generate the final messenger RNA. In this way, a single gene can produce a number of different proteins. These closely related proteins are known as isoforms. The brain contains billions of neurons that communicate with one another across connections known as synapses. A family of proteins called neurexins helps neurons to form these synapses. Humans have three neurexin genes, which undergo extensive alternative splicing to produce thousands of protein isoforms. However, it is not known whether all of these isoforms are produced in neurons, as existing experimental techniques were not sensitive enough to easily distinguish one isoform from another. A technique known as ‘selected reaction monitoring’ (or SRM for short) has recently emerged as a promising way to identify proteins. This allows proteins containing specific sequences to be separated out for analysis, in contrast to existing techniques that test randomly selected protein samples, which will result in most isoforms being missed. Schreiner, Simicevic et al. have now developed SRM further and show that this technique can detect the identity and amount of the neurexin isoforms present at synapses, including those that are only produced in very small quantities. Using SRM, Schreiner, Simicevic et al. demonstrate that neurexin isoforms differ in how they interact with synaptic receptors. Thus, alternative splicing of neurexins underlies a ‘recognition code’ at neuronal synapses. In the future, this newly developed SRM method could be used to investigate isoforms in other protein families and tissues, and so may prove valuable for understanding how a wide range of cellular recognition processes work. DOI:http://dx.doi.org/10.7554/eLife.07794.002
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
194
|
Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum. Proteomes 2015; 3:74-88. [PMID: 28248263 PMCID: PMC5217373 DOI: 10.3390/proteomes3020074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.
Collapse
|
195
|
Pandey SP, Rai R, Gaur P, Prasad S. Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. Biogerontology 2015; 16:317-28. [DOI: 10.1007/s10522-014-9548-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
196
|
Martenson JS, Tomita S. Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors. Curr Opin Pharmacol 2014; 20:102-8. [PMID: 25529200 DOI: 10.1016/j.coph.2014.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Ionotropic neurotransmitter receptors mediate fast synaptic transmission by localizing at postsynapses. Changes in receptor number at synapses induce synaptic plasticity. Thus, mechanisms for the synaptic localization of receptors in basal transmission and synaptic plasticity have been investigated extensively. Recent findings reveal that synaptic localization of tetrameric AMPA receptors in basal transmission requires the PDZ binding of TARP auxiliary subunits, which modulate receptor properties and pharmacology. On the other hand, pentameric GABAA receptors require multiple receptor subunits for their synaptic localization in basal transmission. AMPA receptors seem to utilize distinct mechanisms for basal synaptic localization and synaptic insertion during plasticity. Revealing precise mechanisms for receptor synaptic localization may establish new approaches to control synaptic transmission.
Collapse
Affiliation(s)
- James S Martenson
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susumu Tomita
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|