151
|
Li X, Yamawaki N, Barrett JM, Körding KP, Shepherd GMG. Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse. Front Syst Neurosci 2018; 12:16. [PMID: 29867381 PMCID: PMC5962832 DOI: 10.3389/fnsys.2018.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo. Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5-10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Collapse
Affiliation(s)
- Xiaojian Li
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - John M. Barrett
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Konrad P. Körding
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
152
|
Athalye VR, Santos FJ, Carmena JM, Costa RM. Evidence for a neural law of effect. Science 2018; 359:1024-1029. [PMID: 29496877 DOI: 10.1126/science.aao6058] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
Abstract
Thorndike's law of effect states that actions that lead to reinforcements tend to be repeated more often. Accordingly, neural activity patterns leading to reinforcement are also reentered more frequently. Reinforcement relies on dopaminergic activity in the ventral tegmental area (VTA), and animals shape their behavior to receive dopaminergic stimulation. Seeking evidence for a neural law of effect, we found that mice learn to reenter more frequently motor cortical activity patterns that trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual shaping of these patterns, with participating neurons progressively increasing and aligning their covariance to that of the target pattern. Motor cortex patterns that lead to phasic dopaminergic VTA activity are progressively reinforced and shaped, suggesting a mechanism by which animals select and shape actions to reliably achieve reinforcement.
Collapse
Affiliation(s)
- Vivek R Athalye
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.,Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Fernando J Santos
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Jose M Carmena
- Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA. .,Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA.,Joint Graduate Group in Bioengineering University of California-Berkeley and University of California-San Francisco, Berkeley, CA 94720, USA
| | - Rui M Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal. .,Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
153
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
154
|
Yang W, Yuste R. Holographic imaging and photostimulation of neural activity. Curr Opin Neurobiol 2018; 50:211-221. [PMID: 29660600 DOI: 10.1016/j.conb.2018.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Optical imaging methods are powerful tools in neuroscience as they can systematically monitor the activity of neuronal populations with high spatiotemporal resolution using calcium or voltage indicators. Moreover, caged compounds and optogenetic actuators enable to optically manipulate neural activity. Among optical methods, computer-generated holography offers an enormous flexibility to sculpt the excitation light in three-dimensions (3D), particularly when combined with two-photon light sources. By projecting holographic light patterns on the sample, the activity of multiple neurons across a 3D brain volume can be simultaneously imaged or optically manipulated with single-cell precision. This flexibility makes two-photon holographic microscopy an ideal all-optical platform to simultaneously read and write activity in neuronal populations in vivo in 3D, a critical ability to dissect the function of neural circuits.
Collapse
Affiliation(s)
- Weijian Yang
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
155
|
Antic SD, Hines M, Lytton WW. Embedded ensemble encoding hypothesis: The role of the "Prepared" cell. J Neurosci Res 2018; 96:1543-1559. [PMID: 29633330 DOI: 10.1002/jnr.24240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/08/2023]
Abstract
We here reconsider current theories of neural ensembles in the context of recent discoveries about neuronal dendritic physiology. The key physiological observation is that the dendritic plateau potential produces sustained depolarization of the cell body (amplitude 10-20 mV, duration 200-500 ms). Our central hypothesis is that synaptically-evoked dendritic plateau potentials lead to a prepared state of a neuron that favors spike generation. The plateau both depolarizes the cell toward spike threshold, and provides faster response to inputs through a shortened membrane time constant. As a result, the speed of synaptic-to-action potential (AP) transfer is faster during the plateau phase. Our hypothesis relates the changes from "resting" to "depolarized" neuronal state to changes in ensemble dynamics and in network information flow. The plateau provides the Prepared state (sustained depolarization of the cell body) with a time window of 200-500 ms. During this time, a neuron can tune into ongoing network activity and synchronize spiking with other neurons to provide a coordinated Active state (robust firing of somatic APs), which would permit "binding" of signals through coordination of neural activity across a population. The transient Active ensemble of neurons is embedded in the longer-lasting Prepared ensemble of neurons. We hypothesize that "embedded ensemble encoding" may be an important organizing principle in networks of neurons.
Collapse
Affiliation(s)
- Srdjan D Antic
- Department of Neuroscience, Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, Connecticut
| | - Michael Hines
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - William W Lytton
- Physiology and Pharmacology, Neurology, Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York.,Department of Neurology, Kings County Hospital, Brooklyn, New York
| |
Collapse
|
156
|
Abstract
OBJECTIVE Electrical brain stimulation provides therapeutic benefits for patients with drug-resistant neurological disorders. It, however, has restricted access to cell-type selectivity which limits its treatment effectiveness. Optogenetics, in contrast, enables precise targeting of a specific cell type which can address the issue with electrical brain stimulation. It, nonetheless, disregards real-time brain responses in delivering optimized stimulation to target cells. Closed-loop optogenetics, on the other hand, senses the difference between normal and abnormal states of the brain, and modulates stimulation parameters to achieve the desired stimulation outcome. Current review articles on closed-loop optogenetics have focused on its theoretical aspects and potential benefits. A review of the recent progress in miniaturized closed-loop optogenetic stimulation devices is thus needed. APPROACH This paper presents a comprehensive study on the existing miniaturized closed-loop optogenetic stimulation devices and their internal components. MAIN RESULTS Hardware components of closed-loop optogenetic stimulation devices including electrode, light-guiding mechanism, optical source, neural recorder, and optical stimulator are discussed. Next, software modules of closed-loop optogenetic stimulation devices including feature extraction, classification, control, and stimulation parameter modulation are described. Then, the existing devices are categorized into open-loop and closed-loop groups, and the combined operation of their neural recorder, optical stimulator, and control approach is discussed. Finally, the challenges in the design and implementation of closed-loop optogenetic stimulation devices are presented, suggestions on how to tackle these challenges are given, and future directions for closed-loop optogenetics are stated. SIGNIFICANCE A generic architecture for closed-loop optogenetic stimulation devices involving both hardware and software perspectives is devised. A comprehensive investigation into the most current miniaturized and tetherless closed-loop optogenetic stimulation devices is given. A detailed comparison of the closed-loop optogenetic stimulation devices is presented.
Collapse
Affiliation(s)
- Epsy S Edward
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | | | | |
Collapse
|
157
|
Serruya MD, Harris JP, Adewole DO, Struzyna LA, Burrell JC, Nemes A, Petrov D, Kraft RH, Chen HI, Wolf JA, Cullen DK. Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701183. [PMID: 34045935 PMCID: PMC8152180 DOI: 10.1002/adfm.201701183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel "biohybrid" strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based "living electrodes", which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain. Upon microinjection, the axonal segment penetrates to prescribed depth for synaptic integration with local host neurons, with the perikaryal segment remaining externalized below conforming electrical-optical arrays. In this paradigm, only the biological component ultimately remains in the brain, potentially attenuating a chronic foreign-body response. Axon-based living electrodes are constructed using multiple neuronal subtypes, each with differential capacity to stimulate, inhibit, and/or modulate neural circuitry based on specificity uniquely afforded by synaptic integration, yet ultimately computer controlled by optical/electrical components on the brain surface. Current efforts are assessing the efficacy of this biohybrid interface for targeted, synaptic-based neuromodulation, and the specificity, spatial density and long-term fidelity versus conventional microelectronic or optical substrates alone.
Collapse
Affiliation(s)
- Mijail D Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James P Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Ashley Nemes
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Reuben H Kraft
- Computational Biomechanics Group, Department of Mechanical & Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John A Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
158
|
Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C, Nespoli F, Mahn M, Baker CA, Bolton MM, Yizhar O, Fellin T. Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo. Cell Rep 2018; 22:3087-3098. [PMID: 29539433 PMCID: PMC5863087 DOI: 10.1016/j.celrep.2018.02.063] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Accepted: 02/14/2018] [Indexed: 12/01/2022] Open
Abstract
Sensory information is encoded within the brain in distributed spatiotemporal patterns of neuronal activity. Understanding how these patterns influence behavior requires a method to measure and to bidirectionally perturb with high spatial resolution the activity of the multiple neuronal cell types engaged in sensory processing. Here, we combined two-photon holography to stimulate neurons expressing blue light-sensitive opsins (ChR2 and GtACR2) with two-photon imaging of the red-shifted indicator jRCaMP1a in the mouse neocortex in vivo. We demonstrate efficient control of neural excitability across cell types and layers with holographic stimulation and improved spatial resolution by opsin somatic targeting. Moreover, we performed simultaneous two-photon imaging of jRCaMP1a and bidirectional two-photon manipulation of cellular activity with negligible effect of the imaging beam on opsin excitation. This all-optical approach represents a powerful tool to causally dissect how activity patterns in specified ensembles of neurons determine brain function and animal behavior.
Collapse
Affiliation(s)
- Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Noemi Binini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesco Nespoli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Mathias Mahn
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter 33458, FL, USA
| | - McLean M Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter 33458, FL, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy.
| |
Collapse
|
159
|
Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron 2018; 97:1004-1021. [PMID: 29518355 PMCID: PMC6402597 DOI: 10.1016/j.neuron.2018.01.029] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Migraine is an extremely common but poorly understood nervous system disorder. We conceptualize migraine as a disorder of sensory network gain and plasticity, and we propose that this framing makes it amenable to the tools of current systems neuroscience.
Collapse
Affiliation(s)
- K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
160
|
Yang W, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 2018; 7:32671. [PMID: 29412138 PMCID: PMC5832414 DOI: 10.7554/elife.32671] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/05/2018] [Indexed: 01/19/2023] Open
Abstract
The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity. Modern microscopy provides a window into the brain. The first light microscopes were able to magnify cells only in thin slices of tissue. By contrast, today’s light microscopes can image cells below the surface of the brain of a living animal. Even so, this remains challenging for several reasons. One is that the brain is three-dimensional. Another is that brain tissue scatters light. Trying to view neurons deep within the brain is a little like trying to view them through a glass of milk. Most of the light scatters on its way through the tissue with the result that little of the light reaches the target neurons. Yang et al. have now tackled these challenges using a technique called holography. Holography produces 3D images of objects by splitting a beam of light and then recombining the beams in a specific way. Yang et al. applied this technique to an infrared laser beam, opting for infrared because it scatters much less in brain tissue than visible light. Directing each of the infrared beams to a different neuron can produce 3D images of multiple cells within the brain’s outer layer, the cortex, all at the same time. The holographic infrared microscope can be used alongside two techniques called optogenetics and calcium imaging, in which light-sensitive proteins are inserted into neurons. Depending on the proteins introduced, shining light onto the neurons will either change their activity, or cause them to fluoresce whenever they are active. Just as a computer can both “read” and “write” data, the holographic microscope can thus read out existing neuronal activity or write new patterns of activity. By combining these techniques, Yang et al. were able to stimulate more than 80 neurons at the same time – and meanwhile visualize the activity of the surrounding neurons – at multiple depths within the mouse cortex. This new microscopy technique, while a clear advance over existing methods, still cannot image and control neurons throughout the entire cortex. The next goal is to further extend this method across multiple brain areas and manipulate the activity of any subset of neurons at will. Neuroscientists will greatly benefit from the ability to image and alter the activity of living neural circuits in 3D. In the future, clinicians may be able to use this technique to treat brain disorders by adjusting the activity of abnormal neural circuits.
Collapse
Affiliation(s)
- Weijian Yang
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, United States
| | - Luis Carrillo-Reid
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, United States
| | - Yuki Bando
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, United States
| | - Darcy S Peterka
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, United States
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
161
|
Deisseroth K, Hegemann P. The form and function of channelrhodopsin. Science 2018; 357:357/6356/eaan5544. [PMID: 28912215 PMCID: PMC5723383 DOI: 10.1126/science.aan5544] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Channelrhodopsins are light-gated ion channels that, via regulation of flagellar function, enable single-celled motile algae to seek ambient light conditions suitable for photosynthesis and survival. These plant behavioral responses were initially investigated more than 150 years ago. Recently, major principles of function for light-gated ion channels have been elucidated by creating channelrhodopsins with kinetics that are accelerated or slowed over orders of magnitude, by discovering and designing channelrhodopsins with altered spectral properties, by solving the high-resolution channelrhodopsin crystal structure, and by structural model-guided redesign of channelrhodopsins for altered ion selectivity. Each of these discoveries not only revealed basic principles governing the operation of light-gated ion channels, but also enabled the creation of new proteins for illuminating, via optogenetics, the fundamentals of brain function.
Collapse
Affiliation(s)
- Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Peter Hegemann
- Institute for Biology, Humboldt Universität zu Berlin, D-10115 Berlin, Germany. .,Experimental Biophysics, Humboldt Universität zu Berlin, D-10115 Berlin, Germany
| |
Collapse
|
162
|
Wolff SB, Ölveczky BP. The promise and perils of causal circuit manipulations. Curr Opin Neurobiol 2018; 49:84-94. [PMID: 29414070 DOI: 10.1016/j.conb.2018.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
The development of increasingly sophisticated methods for recording and manipulating neural activity is revolutionizing neuroscience. By probing how activity patterns in different types of neurons and circuits contribute to behavior, these tools can help inform mechanistic models of brain function and explain the roles of distinct circuit elements. However, in systems where functions are distributed over large networks, interpreting causality experiments can be challenging. Here we review common assumptions underlying circuit manipulations in behaving animals and discuss the strengths and limitations of different approaches.
Collapse
Affiliation(s)
- Steffen Be Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
163
|
Wu Q, Han Y, Tong Q. Current Genetic Techniques in Neural Circuit Control of Feeding and Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:211-233. [PMID: 30390293 DOI: 10.1007/978-981-13-1286-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current epidemic of obesity and its associated metabolic syndromes imposes unprecedented challenges to our society. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. The obesity development is due to a disturbed homeostatic control of feeding and energy expenditure, both of which are controlled by an intricate neural network in the brain. Given the inherent complexity of brain networks in controlling feeding and energy expenditure, the understanding of brain-based pathophysiology for obesity development is limited. One key limiting factor in dissecting neural pathways for feeding and energy expenditure is unavailability of techniques that can be used to effectively reduce the complexity of the brain network to a tractable paradigm, based on which a strong hypothesis can be tested. Excitingly, emerging techniques have been involved to be able to link specific groups of neurons and neural pathways to behaviors (i.e., feeding and energy expenditure). In this chapter, novel techniques especially those based on animal models and viral vector approaches will be discussed. We hope that this chapter will provide readers with a basis that can help to understand the literatures using these techniques and with a guide to apply these exciting techniques to investigate brain mechanisms underlying feeding and energy expenditure.
Collapse
Affiliation(s)
- Qi Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Children's Nutrition Research Center, Research Service of Department of Agriculture of USA, Houston, TX, USA.
| | - Yong Han
- Department of Pediatrics, Baylor College of Medicine, USDA-ARS, Houston, TX, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
164
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
165
|
Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. Sci Rep 2017; 7:15865. [PMID: 29158567 PMCID: PMC5696510 DOI: 10.1038/s41598-017-16129-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) suffer from chronic pain that severely affects quality of life. Although the underlying pathophysiology is not well understood, inhibition of bladder sensory afferents temporarily relieves pain. Here, we explored the possibility that optogenetic inhibition of nociceptive sensory afferents could be used to modulate bladder pain. The light-activated inhibitory proton pump Archaerhodopsin (Arch) was expressed under control of the sensory neuron-specific sodium channel (sns) gene to selectively silence these neurons. Optically silencing nociceptive sensory afferents significantly blunted the evoked visceromotor response to bladder distension and led to small but significant changes in bladder function. To study of the role of nociceptive sensory afferents in freely behaving mice, we developed a fully implantable, flexible, wirelessly powered optoelectronic system for the long-term manipulation of bladder afferent expressed opsins. We found that optogenetic inhibition of nociceptive sensory afferents reduced both ongoing pain and evoked cutaneous hypersensitivity in the context of cystitis, but had no effect in uninjured, naïve mice. These results suggest that selective optogenetic silencing of nociceptive bladder afferents may represent a potential future therapeutic strategy for the treatment of bladder pain.
Collapse
|
166
|
Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017; 96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Collapse
|
167
|
Ronzitti E, Conti R, Zampini V, Tanese D, Foust AJ, Klapoetke N, Boyden ES, Papagiakoumou E, Emiliani V. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos. J Neurosci 2017; 37:10679-10689. [PMID: 28972125 DOI: 10.1101/062182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 05/24/2023] Open
Abstract
Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity.SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns.
Collapse
Affiliation(s)
- Emiliano Ronzitti
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Rossella Conti
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Valeria Zampini
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Dimitrii Tanese
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Amanda J Foust
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Nathan Klapoetke
- Media Laboratory and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Edward S Boyden
- Media Laboratory and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Eirini Papagiakoumou
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| | - Valentina Emiliani
- Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France,
| |
Collapse
|
168
|
Samineni VK, Yoon J, Crawford KE, Jeong YR, McKenzie KC, Shin G, Xie Z, Sundaram SS, Li Y, Yang MY, Kim J, Wu D, Xue Y, Feng X, Huang Y, Mickle AD, Banks A, Ha JS, Golden JP, Rogers JA, Gereau RW. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 2017; 158:2108-2116. [PMID: 28700536 PMCID: PMC5640477 DOI: 10.1097/j.pain.0000000000000968] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (μ-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal μ-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.
Collapse
Affiliation(s)
- Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Jangyeol Yoon
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kaitlyn E Crawford
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Ra Jeong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Kajanna C McKenzie
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Gunchul Shin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Saranya S Sundaram
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing, China
| | - Min Young Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeonghyun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Di Wu
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
| | - Xue Feng
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
| | - Aaron D Mickle
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony Banks
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - John A Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery; Center for Bio-Integrated Electronics; Simpson Querrey Institute for Nano/biotechnology; Northwestern University, Evanston, IL, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
169
|
Sato MP, Higuchi T, Nin F, Ogata G, Sawamura S, Yoshida T, Ota T, Hori K, Komune S, Uetsuka S, Choi S, Masuda M, Watabe T, Kanzaki S, Ogawa K, Inohara H, Sakamoto S, Takebayashi H, Doi K, Tanaka KF, Hibino H. Hearing Loss Controlled by Optogenetic Stimulation of Nonexcitable Nonglial Cells in the Cochlea of the Inner Ear. Front Mol Neurosci 2017; 10:300. [PMID: 29018325 PMCID: PMC5616010 DOI: 10.3389/fnmol.2017.00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/06/2017] [Indexed: 01/22/2023] Open
Abstract
Light-gated ion channels and transporters have been applied to a broad array of excitable cells including neurons, cardiac myocytes, skeletal muscle cells and pancreatic β-cells in an organism to clarify their physiological and pathological roles. Nonetheless, among nonexcitable cells, only glial cells have been studied in vivo by this approach. Here, by optogenetic stimulation of a different nonexcitable cell type in the cochlea of the inner ear, we induce and control hearing loss. To our knowledge, deafness animal models using optogenetics have not yet been established. Analysis of transgenic mice expressing channelrhodopsin-2 (ChR2) induced by an oligodendrocyte-specific promoter identified this channel in nonglial cells—melanocytes—of an epithelial-like tissue in the cochlea. The membrane potential of these cells underlies a highly positive potential in a K+-rich extracellular solution, endolymph; this electrical property is essential for hearing. Illumination of the cochlea to activate ChR2 and depolarize the melanocytes significantly impaired hearing within a few minutes, accompanied by a reduction in the endolymphatic potential. After cessation of the illumination, the hearing thresholds and potential returned to baseline during several minutes. These responses were replicable multiple times. ChR2 was also expressed in cochlear glial cells surrounding the neuronal components, but slight neural activation caused by the optical stimulation was unlikely to be involved in the hearing impairment. The acute-onset, reversible and repeatable phenotype, which is inaccessible to conventional gene-targeting and pharmacological approaches, seems to at least partially resemble the symptom in a population of patients with sensorineural hearing loss. Taken together, this mouse line may not only broaden applications of optogenetics but also contribute to the progress of translational research on deafness.
Collapse
Affiliation(s)
- Mitsuo P Sato
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Department of Otolaryngology, Kindai University Faculty of MedicineOsaka, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan
| | - Genki Ogata
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Takamasa Yoshida
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Takeru Ota
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Karin Hori
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Shizuo Komune
- Division of Otolaryngology-Head and Neck Surgery, Yuaikai Oda HospitalSaga, Japan
| | - Satoru Uetsuka
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Samuel Choi
- Department of Electrical and Electronics Engineering, Niigata UniversityNiigata, Japan.,AMED-CREST, AMEDNiigata, Japan
| | - Masatsugu Masuda
- Department of Otolaryngology, Kyorin University School of MedicineTokyo, Japan
| | - Takahisa Watabe
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Sho Kanzaki
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Shuichi Sakamoto
- Department of Mechanical and Production Engineering, Niigata UniversityNiigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Katsumi Doi
- Department of Otolaryngology, Kindai University Faculty of MedicineOsaka, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of MedicineTokyo, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan.,AMED-CREST, AMEDNiigata, Japan
| |
Collapse
|
170
|
Nandi A, Schättler H, Ritt JT, Ching S. Fundamental Limits of Forced Asynchronous Spiking with Integrate and Fire Dynamics. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2017; 7:11. [PMID: 29022250 PMCID: PMC5636789 DOI: 10.1186/s13408-017-0053-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Anirban Nandi
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Heinz Schättler
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Jason T. Ritt
- Department of Biomedical Engineering, Boston University, Boston, MA USA
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
171
|
Symvoulidis P, Lauri A, Stefanoiu A, Cappetta M, Schneider S, Jia H, Stelzl A, Koch M, Perez CC, Myklatun A, Renninger S, Chmyrov A, Lasser T, Wurst W, Ntziachristos V, Westmeyer GG. NeuBtracker—imaging neurobehavioral dynamics in freely behaving fish. Nat Methods 2017; 14:1079-1082. [DOI: 10.1038/nmeth.4459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/28/2017] [Indexed: 11/09/2022]
|
172
|
Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos. J Neurosci 2017; 37:10679-10689. [PMID: 28972125 DOI: 10.1523/jneurosci.1246-17.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022] Open
Abstract
Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity.SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns.
Collapse
|
173
|
Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB, Yuste R, Peterka DS, Paninski L. Multi-scale approaches for high-speed imaging and analysis of large neural populations. PLoS Comput Biol 2017; 13:e1005685. [PMID: 28771570 PMCID: PMC5557609 DOI: 10.1371/journal.pcbi.1005685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/15/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.
Collapse
Affiliation(s)
- Johannes Friedrich
- Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail: (JF); (LP)
| | - Weijian Yang
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daniel Soudry
- Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Yu Mu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Kavli Institute of Brain Science, Columbia University, New York, New York, United States of America
| | - Darcy S. Peterka
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Liam Paninski
- Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Kavli Institute of Brain Science, Columbia University, New York, New York, United States of America
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- * E-mail: (JF); (LP)
| |
Collapse
|
174
|
Ordaz JD, Wu W, Xu XM. Optogenetics and its application in neural degeneration and regeneration. Neural Regen Res 2017; 12:1197-1209. [PMID: 28966628 PMCID: PMC5607808 DOI: 10.4103/1673-5374.213532] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Neural degeneration and regeneration are important topics in neurological diseases. There are limited options for therapeutic interventions in neurological diseases that provide simultaneous spatial and temporal control of neurons. This drawback increases side effects due to non-specific targeting. Optogenetics is a technology that allows precise spatial and temporal control of cells. Therefore, this technique has high potential as a therapeutic strategy for neurological diseases. Even though the application of optogenetics in understanding brain functional organization and complex behaviour states have been elaborated, reviews of its therapeutic potential especially in neurodegeneration and regeneration are still limited. This short review presents representative work in optogenetics in disease models such as spinal cord injury, multiple sclerosis, epilepsy, Alzheimer's disease and Parkinson's disease. It is aimed to provide a broader perspective on optogenetic therapeutic potential in neurodegeneration and neural regeneration.
Collapse
Affiliation(s)
- Josue D. Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
175
|
Higgins J, Hermanns C, Malloy C, Cooper RL. Considerations in repetitive activation of light sensitive ion channels for long-term studies: Channel rhodopsin in the Drosophila model. Neurosci Res 2017; 125:1-10. [PMID: 28728913 DOI: 10.1016/j.neures.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Optogenetics is a technique used in various animal models and holds a potential for therapeutic possibilities in mammals. There are technical issues with the use of light sensitive ion channels: reproducible effects over time, controlling where the non-native proteins are targeted within the cell and changes in the biophysical properties of the cells they are expressed in. We used a variant of channel rhodopsin (ChR2-XXL) and targeted expression in neurons of larval Drosophila to investigate the acute and chronic activation, with light pulses, of the channels on synaptic function. The rhodopsin channel modifier all trans retinal (ATR) also plays a role in the sensitivity of the channel to light. Periods of acute, repetitive, and pulsatile blue light exposure over larval development produced attenuated responses. These blue light sensitive ion channels, with ATR, show accommodation and produce an electrical refractory period in inducing synaptic responses. The biological significance and aim of this study is to demonstrate that in controlling particular neurons or neuronal circuits with optogenetics, over time and throughout development, one will have to understand the dynamic nature of activating and silencing the light sensitive channels as well as the biophysical effects on neuronal activity.
Collapse
Affiliation(s)
- Jake Higgins
- University of Kentucky College of Nursing, University of Kentucky, Lexington, KY 40536, USA; Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Christina Hermanns
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Cole Malloy
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Robin L Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
176
|
Chen CH, McCullagh EA, Pun SH, Mak PU, Vai MI, Mak PI, Klug A, Lei TC. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation. IEEE Trans Biomed Eng 2017; 64:557-568. [PMID: 28221990 DOI: 10.1109/tbme.2016.2609412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The ability to record and to control action potential firing in neuronal circuits is critical to understand how the brain functions. The objective of this study is to develop a monolithic integrated circuit (IC) to record action potentials and simultaneously control action potential firing using optogenetics. METHODS A low-noise and high input impedance (or low input capacitance) neural recording amplifier is combined with a high current laser/light-emitting diode (LED) driver in a single IC. RESULTS The low input capacitance of the amplifier (9.7 pF) was achieved by adding a dedicated unity gain stage optimized for high impedance metal electrodes. The input referred noise of the amplifier is [Formula: see text], which is lower than the estimated thermal noise of the metal electrode. Thus, the action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of at least 6.6. The LED/laser current driver delivers a maximum current of 330 mA, which is adequate for optogenetic control. The functionality of the IC was tested with an anesthetized Mongolian gerbil and auditory stimulated action potentials were recorded from the inferior colliculus. Spontaneous firings of fifth (trigeminal) nerve fibers were also inhibited using the optogenetic protein Halorhodopsin. Moreover, a noise model of the system was derived to guide the design. SIGNIFICANCE A single IC to measure and control action potentials using optogenetic proteins is realized so that more complicated behavioral neuroscience research and the translational neural disorder treatments become possible in the future.
Collapse
|
177
|
Harris AZ, Golder D, Likhtik E. Multisite Electrophysiology Recordings in Mice to Study Cross-Regional Communication During Anxiety. ACTA ACUST UNITED AC 2017; 80:8.40.1-8.40.21. [PMID: 28678397 DOI: 10.1002/cpns.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recording neural activity in awake, freely moving mice is a powerful and flexible technique for dissecting the neural circuit mechanisms underlying pathological behavior. This unit describes protocols for designing a drive and recording single neurons and local field potentials during anxiety-related paradigms. We also include protocols for integrating pharmacologic and optogenetic means for circuit manipulations, which, when combined with electrophysiological recordings, demonstrate input-specific and cell-specific contributions to circuit-wide activity. We discuss the planning, execution, and troubleshooting of physiology experiments during anxiety-like behavior. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Alexander Z Harris
- Department of Psychiatry, Columbia University Medical Center, New York City, New York
| | - Danielle Golder
- Department of Biological Sciences, Hunter College, CUNY, New York City, New York
| | - Ekaterina Likhtik
- Department of Biological Sciences, Hunter College, CUNY, New York City, New York.,CUNY Neuroscience Collaborative, The Graduate Center, CUNY, New York City, New York
| |
Collapse
|
178
|
Ji N, Freeman J, Smith SL. Technologies for imaging neural activity in large volumes. Nat Neurosci 2017; 19:1154-64. [PMID: 27571194 DOI: 10.1038/nn.4358] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023]
Abstract
Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Conventional microscopy collects data from individual planes and cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point-spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for processing and analyzing volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics and helping elucidate how brain regions work in concert to support behavior.
Collapse
Affiliation(s)
- Na Ji
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Jeremy Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Spencer L Smith
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
179
|
Genetically encoded indicators of neuronal activity. Nat Neurosci 2017; 19:1142-53. [PMID: 27571193 DOI: 10.1038/nn.4359] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
Experimental efforts to understand how the brain represents, stores and processes information require high-fidelity recordings of multiple different forms of neural activity within functional circuits. Thus, creating improved technologies for large-scale recordings of neural activity in the live brain is a crucial goal in neuroscience. Over the past two decades, the combination of optical microscopy and genetically encoded fluorescent indicators has become a widespread means of recording neural activity in nonmammalian and mammalian nervous systems, transforming brain research in the process. In this review, we describe and assess different classes of fluorescent protein indicators of neural activity. We first discuss general considerations in optical imaging and then present salient characteristics of representative indicators. Our focus is on how indicator characteristics relate to their use in living animals and on likely areas of future progress.
Collapse
|
180
|
Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. Neuron 2017; 95:424-435.e6. [DOI: 10.1016/j.neuron.2017.06.025] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/07/2017] [Accepted: 06/15/2017] [Indexed: 11/22/2022]
|
181
|
Medaglia JD, Zurn P, Sinnott-Armstrong W, Bassett DS. Mind control as a guide for the mind. Nat Hum Behav 2017. [DOI: 10.1038/s41562-017-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
182
|
Repina NA, Rosenbloom A, Mukherjee A, Schaffer DV, Kane RS. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. Annu Rev Chem Biomol Eng 2017; 8:13-39. [PMID: 28592174 PMCID: PMC5747958 DOI: 10.1146/annurev-chembioeng-060816-101254] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cells are bombarded by extrinsic signals that dynamically change in time and space. Such dynamic variations can exert profound effects on behaviors, including cellular signaling, organismal development, stem cell differentiation, normal tissue function, and disease processes such as cancer. Although classical genetic tools are well suited to introduce binary perturbations, new approaches have been necessary to investigate how dynamic signal variation may regulate cell behavior. This fundamental question is increasingly being addressed with optogenetics, a field focused on engineering and harnessing light-sensitive proteins to interface with cellular signaling pathways. Channelrhodopsins initially defined optogenetics; however, through recent use of light-responsive proteins with myriad spectral and functional properties, practical applications of optogenetics currently encompass cell signaling, subcellular localization, and gene regulation. Now, important questions regarding signal integration within branch points of signaling networks, asymmetric cell responses to spatially restricted signals, and effects of signal dosage versus duration can be addressed. This review summarizes emerging technologies and applications within the expanding field of optogenetics.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, California 94720;
- Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, California 94720;
| | - Alyssa Rosenbloom
- Department of Bioengineering, University of California, Berkeley, California 94720;
| | - Abhirup Mukherjee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; ,
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, California 94720;
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720;
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; ,
| |
Collapse
|
183
|
Patel YA, George A, Dorval AD, White JA, Christini DJ, Butera RJ. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI). PLoS Comput Biol 2017; 13:e1005430. [PMID: 28557998 PMCID: PMC5469488 DOI: 10.1371/journal.pcbi.1005430] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/13/2017] [Accepted: 02/10/2017] [Indexed: 01/24/2023] Open
Abstract
The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols.
Collapse
Affiliation(s)
- Yogi A. Patel
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Ansel George
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Alan D. Dorval
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - John A. White
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - David J. Christini
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (DJC); (RJB)
| | - Robert J. Butera
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail: (DJC); (RJB)
| |
Collapse
|
184
|
Extinction of Cocaine Seeking Requires a Window of Infralimbic Pyramidal Neuron Activity after Unreinforced Lever Presses. J Neurosci 2017; 37:6075-6086. [PMID: 28539416 DOI: 10.1523/jneurosci.3821-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/24/2022] Open
Abstract
The infralimbic cortex (IL) mediates extinction learning and the active suppression of cocaine-seeking behavior. However, the precise temporal relationship among IL activity, lever pressing, and extinction learning is unclear. To address this issue, we used activity-guided optogenetics in male Sprague Dawley rats to silence IL pyramidal neurons optically for 20 s immediately after unreinforced lever presses during early extinction training after cocaine self-administration. Optical inhibition of the IL increased active lever pressing during shortened extinction sessions, but did not alter the retention of the extinction learning as assessed in ensuing extinction sessions with no optical inhibition. During subsequent cued reinstatement sessions, rats that had previously received optical inhibition during the extinction sessions showed increased cocaine-seeking behavior. These findings appeared to be specific to inhibition during the post-lever press period because IL inhibition given in a noncontingent, pseudorandom manner during extinction sessions did not produce the same effects. Illumination alone (i.e., with no opsin expression) and food-seeking control experiments also failed to produce the same effects. In another experiment, IL inhibition after lever presses during cued reinstatement sessions increased cocaine seeking during those sessions. Finally, inhibition of the prelimbic cortex immediately after unreinforced lever presses during shortened extinction sessions decreased lever pressing during these sessions, but had no effect on subsequent reinstatement. These results indicate that IL activity immediately after unreinforced lever presses is necessary for normal extinction of cocaine seeking, suggesting that critical encoding of the new contingencies between a lever press and a cocaine reward occurs during that period.SIGNIFICANCE STATEMENT The infralimbic cortex (IL) contributes to the extinction of cocaine-seeking behavior, but the precise relationship among IL activity, lever pressing during extinction, and extinction learning has not been elucidated using traditional methods. Using a closed-loop optogenetic approach, we found that selective inhibition of the IL immediately after unreinforced lever pressing impaired within-session extinction learning and promoted the subsequent cued reinstatement of cocaine seeking. These studies suggest that IL activity immediately after the instrumental response during extinction learning of cocaine seeking encodes information required for such learning and that altering such activity produces long-lasting changes in subsequent measures of cocaine craving/relapse.
Collapse
|
185
|
Lo MC, Widge AS. Closed-loop neuromodulation systems: next-generation treatments for psychiatric illness. Int Rev Psychiatry 2017; 29:191-204. [PMID: 28523978 PMCID: PMC5461950 DOI: 10.1080/09540261.2017.1282438] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023]
Abstract
Despite deep brain stimulation's positive early results in psychiatric disorders, well-designed clinical trials have yielded inconsistent clinical outcomes. One path to more reliable benefit is closed-loop therapy: stimulation that is automatically adjusted by a device or algorithm in response to changes in the patient's electrical brain activity. These interventions may provide more precise and patient-specific treatments. This article first introduces the available closed-loop neuromodulation platforms, which have shown clinical efficacy in epilepsy and strong early results in movement disorders. It discusses the strengths and limitations of these devices in the context of psychiatric illness. It then describes emerging technologies to address these limitations, including pre-clinical developments such as wireless deep neurostimulation and genetically targeted neuromodulation. Finally, ongoing challenges and limitations for closed-loop psychiatric brain stimulation development, most notably the difficulty of identifying meaningful biomarkers for titration, are discussed. This is considered in the recently-released Research Domain Criteria (RDoC) framework, and how neuromodulation and RDoC are jointly very well suited to address the problem of treatment-resistant illness is described.
Collapse
Affiliation(s)
- Meng-Chen Lo
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | - Alik S. Widge
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
186
|
Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017; 18:222-235. [PMID: 28303019 PMCID: PMC5708544 DOI: 10.1038/nrn.2017.15] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern optogenetics can be tuned to evoke activity that corresponds to naturally occurring local or global activity in timing, magnitude or individual-cell patterning. This outcome has been facilitated not only by the development of core features of optogenetics over the past 10 years (microbial-opsin variants, opsin-targeting strategies and light-targeting devices) but also by the recent integration of optogenetics with complementary technologies, spanning electrophysiology, activity imaging and anatomical methods for structural and molecular analysis. This integrated approach now supports optogenetic identification of the native, necessary and sufficient causal underpinnings of physiology and behaviour on acute or chronic timescales and across cellular, circuit-level or brain-wide spatial scales.
Collapse
Affiliation(s)
- Christina K Kim
- Neurosciences Program, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
| | - Avishek Adhikari
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
187
|
Carrillo-Reid L, Yang W, Kang Miller JE, Peterka DS, Yuste R. Imaging and Optically Manipulating Neuronal Ensembles. Annu Rev Biophys 2017; 46:271-293. [PMID: 28301770 DOI: 10.1146/annurev-biophys-070816-033647] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo. Moreover, two-photon optogenetics enable the possibility of artificially imprinting neuronal ensembles into awake, behaving animals and of later recalling those ensembles selectively by stimulating individual cells. These methods could enable deciphering the neural code and also be used to understand the pathophysiology of and design novel therapies for neurological and mental diseases.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Weijian Yang
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Jae-Eun Kang Miller
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027.,Department of Neuroscience, Columbia University, New York, NY 10027;
| |
Collapse
|
188
|
Fast online deconvolution of calcium imaging data. PLoS Comput Biol 2017; 13:e1005423. [PMID: 28291787 PMCID: PMC5370160 DOI: 10.1371/journal.pcbi.1005423] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/28/2017] [Accepted: 02/24/2017] [Indexed: 11/19/2022] Open
Abstract
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. Calcium imaging methods enable simultaneous measurement of the activity of thousands of neighboring neurons, but come with major caveats: the slow decay of the fluorescence signal compared to the time course of the underlying neural activity, limitations in signal quality, and the large scale of the data all complicate the goal of efficiently extracting accurate estimates of neural activity from the observed video data. Further, current activity extraction methods are typically applied to imaging data after the experiment is complete. However, in many cases we would prefer to run closed-loop experiments—analyzing data on-the-fly to guide the next experimental steps or to control feedback—and this requires new methods for accurate real-time processing. Here we present a fast activity extraction algorithm addressing both issues. Our approach follows previous work in casting the activity extraction problem as a sparse nonnegative deconvolution problem. To solve this optimization problem, we introduce a new algorithm that is an order of magnitude faster than previous methods, and progresses through the data sequentially from beginning to end, thus enabling, in principle, real-time online estimation of neural activity during the imaging session. This computational advance thus opens the door to new closed-loop experiments.
Collapse
|
189
|
Agus V, Janovjak H. Optogenetic methods in drug screening: technologies and applications. Curr Opin Biotechnol 2017; 48:8-14. [PMID: 28273648 DOI: 10.1016/j.copbio.2017.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022]
Abstract
The optogenetic revolution enabled spatially-precise and temporally-precise control over protein function, signaling pathway activation, and animal behavior with tremendous success in the dissection of signaling networks and neural circuits. Very recently, optogenetic methods have been paired with optical reporters in novel drug screening platforms. In these all-optical platforms, light remotely activated ion channels and kinases thereby obviating the use of electrophysiology or reagents. Consequences were remarkable operational simplicity, throughput, and cost-effectiveness that culminated in the identification of new drug candidates. These blueprints for all-optical assays also revealed potential pitfalls and inspire all-optical variants of other screens, such as those that aim at better understanding dynamic drug action or orphan protein function.
Collapse
Affiliation(s)
- Viviana Agus
- AXXAM SpA, via Meucci 3, 20091 Bresso, Milan, Italy
| | - Harald Janovjak
- Institute of Science and Technology (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
190
|
Karamintziou SD, Custódio AL, Piallat B, Polosan M, Chabardès S, Stathis PG, Tagaris GA, Sakas DE, Polychronaki GE, Tsirogiannis GL, David O, Nikita KS. Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach. PLoS One 2017; 12:e0171458. [PMID: 28222198 PMCID: PMC5319757 DOI: 10.1371/journal.pone.0171458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson’s disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications.
Collapse
Affiliation(s)
- Sofia D. Karamintziou
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Department of Mechanical Engineering, University of California, Riverside, California, United States of America
- * E-mail: (SDK); (KSN)
| | | | - Brigitte Piallat
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France
- Inserm, U1216, Grenoble, France
| | - Mircea Polosan
- Inserm, U1216, Grenoble, France
- Department of Psychiatry, University Hospital of Grenoble, Grenoble, France
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France
- Inserm, U1216, Grenoble, France
- Department of Neurosurgery, University Hospital of Grenoble, Grenoble, France
| | | | - George A. Tagaris
- Department of Neurology, ‘G. Gennimatas’ General Hospital of Athens, Athens, Greece
| | - Damianos E. Sakas
- Department of Neurosurgery, University of Athens Medical School, ‘Evangelismos’ General Hospital, Athens, Greece
| | - Georgia E. Polychronaki
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - George L. Tsirogiannis
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Olivier David
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France
- Inserm, U1216, Grenoble, France
| | - Konstantina S. Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- * E-mail: (SDK); (KSN)
| |
Collapse
|
191
|
Abstract
More than a decade has passed since optics and genetics came together and lead to the emerging technologies of optogenetics. The advent of light-sensitive opsins made it possible to optically trigger the neurons into activation or inhibition by using visible light. The importance of spatiotemporally isolating a segment of a neural network and controlling nervous signaling in a precise manner has driven neuroscience researchers and engineers to invest great efforts in designing high precision in vivo implantable devices. These efforts have focused on delivery of sufficient power to deep brain regions, while monitoring neural activity with high resolution and fidelity. In this review, we report the progress made in the field of hybrid optoelectronic neural interfaces that combine optical stimulation with electrophysiological recordings. Different approaches that incorporate optical or electrical components on implantable devices are discussed in detail. Advantages of various different designs as well as practical and fundamental limitations are summarized to illuminate the future of neurotechnology development.
Collapse
Affiliation(s)
- Ege Iseri
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States of America
| | | |
Collapse
|
192
|
Girven KS, Sparta DR. Probing Deep Brain Circuitry: New Advances in in Vivo Calcium Measurement Strategies. ACS Chem Neurosci 2017; 8:243-251. [PMID: 27984692 DOI: 10.1021/acschemneuro.6b00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The study of neuronal ensembles in awake and behaving animals is a critical question in contemporary neuroscience research. Through the examination of calcium fluctuations, which are correlated with neuronal activity, we are able to better understand complex neural circuits. Recently, the development of technologies including two-photon microscopy, miniature microscopes, and fiber photometry has allowed us to examine calcium activity in behaving subjects over time. Visualizing changes in intracellular calcium in vivo has been accomplished utilizing GCaMP, a genetically encoded calcium indicator. GCaMP allows researchers to tag cell-type specific neurons with engineered fluorescent proteins that alter their levels of fluorescence in response to changes in intracellular calcium concentration. Even with the evolution of GCaMP, in vivo calcium imaging had yet to overcome the limitation of light scattering, which occurs when imaging from neural tissue in deep brain regions. Currently, researchers have created in vivo methods to bypass this problem; this Review will delve into three of these state of the art techniques: (1) two-photon calcium imaging, (2) single photon calcium imaging, and (3) fiber photometry. Here we discuss the advantages and disadvantages of the three techniques. Continued advances in these imaging techniques will provide researchers with unparalleled access to the inner workings of the brain.
Collapse
Affiliation(s)
- Kasey S. Girven
- Department
of Anatomy and Neurobiology and ‡Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Dennis R. Sparta
- Department
of Anatomy and Neurobiology and ‡Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
193
|
Panzeri S, Harvey CD, Piasini E, Latham PE, Fellin T. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior. Neuron 2017; 93:491-507. [PMID: 28182905 PMCID: PMC5308795 DOI: 10.1016/j.neuron.2016.12.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task.
Collapse
Affiliation(s)
- Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.
| | | | - Eugenio Piasini
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Peter E Latham
- Gatsby Computational Neuroscience Unit, University College London, London, W1T 4JG, UK
| | - Tommaso Fellin
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| |
Collapse
|
194
|
Headley DB, Paré D. Common oscillatory mechanisms across multiple memory systems. NPJ SCIENCE OF LEARNING 2017; 2:1. [PMID: 30294452 PMCID: PMC6171763 DOI: 10.1038/s41539-016-0001-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 05/09/2023]
Abstract
The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a 'slow' or 'fast' mode. The slow mode happens during slow-wave sleep (SWS) and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and REM and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have the similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to SWS, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during SWS seem to promote declarative and procedural memories.
Collapse
Affiliation(s)
- Drew B. Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102 USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102 USA
| |
Collapse
|
195
|
Perceptual Decision Making in Rodents, Monkeys, and Humans. Neuron 2017; 93:15-31. [DOI: 10.1016/j.neuron.2016.12.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
|
196
|
O'Shea DJ, Trautmann E, Chandrasekaran C, Stavisky S, Kao JC, Sahani M, Ryu S, Deisseroth K, Shenoy KV. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Exp Neurol 2017; 287:437-451. [PMID: 27511294 PMCID: PMC5154795 DOI: 10.1016/j.expneurol.2016.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/19/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Eric Trautmann
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | | | - Sergey Stavisky
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Jonathan C Kao
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Maneesh Sahani
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Stephen Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States; Deparment of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
197
|
Niederriter RD, Ozbay BN, Futia GL, Gibson EA, Gopinath JT. Compact diode laser source for multiphoton biological imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:315-322. [PMID: 28101420 PMCID: PMC5231301 DOI: 10.1364/boe.8.000315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power.
Collapse
Affiliation(s)
| | - Baris N. Ozbay
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8607, 12700 East 19th Ave, Aurora, CO 80045,
USA
| | - Gregory L. Futia
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8607, 12700 East 19th Ave, Aurora, CO 80045,
USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8607, 12700 East 19th Ave, Aurora, CO 80045,
USA
| | - Juliet T. Gopinath
- Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309-0390,
USA
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 425 UCB, Boulder, CO 80309-0425,
USA
| |
Collapse
|
198
|
Copits BA, Pullen MY, Gereau RW. Spotlight on pain: optogenetic approaches for interrogating somatosensory circuits. Pain 2016; 157:2424-2433. [PMID: 27340912 PMCID: PMC5069102 DOI: 10.1097/j.pain.0000000000000620] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
199
|
Tung JK, Berglund K, Gross RE. Optogenetic Approaches for Controlling Seizure Activity. Brain Stimul 2016; 9:801-810. [PMID: 27496002 PMCID: PMC5143193 DOI: 10.1016/j.brs.2016.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Optogenetics, a technique that utilizes light-sensitive ion channels or pumps to activate or inhibit neurons, has allowed scientists unprecedented precision and control for manipulating neuronal activity. With the clinical need to develop more precise and effective therapies for patients with drug-resistant epilepsy, these tools have recently been explored as a novel treatment for halting seizure activity in various animal models. In this review, we provide a detailed and current summary of these optogenetic approaches and provide a perspective on their future clinical application as a potential neuromodulatory therapy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA.
| |
Collapse
|
200
|
Abstract
Adaptation is fundamental to life. All organisms adapt over timescales that span from evolution to generations and lifetimes to moment-by-moment interactions. The nervous system is particularly adept at rapidly adapting to change, and this in fact may be one of its fundamental principles of organization and function. Rapid forms of sensory adaptation have been well documented across all sensory modalities in a wide range of organisms, yet we do not have a comprehensive understanding of the adaptive cellular mechanisms that ultimately give rise to the corresponding percepts, due in part to the complexity of the circuitry. In this Perspective, we aim to build links between adaptation at multiple scales of neural circuitry by investigating the differential adaptation across brain regions and sub-regions and across specific cell types, for which the explosion of modern tools has just begun to enable. This investigation points to a set of challenges for the field to link functional observations to adaptive properties of the neural circuit that ultimately underlie percepts.
Collapse
Affiliation(s)
- Clarissa J Whitmire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|