151
|
Walter KL, Strachan SD, Ferry NM, Albert HH, Castle LA, Sebastian SA. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. PEST MANAGEMENT SCIENCE 2014; 70:1831-9. [PMID: 24425499 PMCID: PMC4282486 DOI: 10.1002/ps.3725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides.
Collapse
Affiliation(s)
| | - Stephen D Strachan
- DuPont Crop Protection, DuPont Stine-Haskell Research CenterNewark, DE, USA
| | - Nancy M Ferry
- DuPont Crop Protection, DuPont Stine-Haskell Research CenterNewark, DE, USA
| | | | | | | |
Collapse
|
152
|
Jain P, Tar’an B. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide. Genome 2014; 57:593-600. [DOI: 10.1139/gen-2014-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT–qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.
Collapse
Affiliation(s)
- Parul Jain
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Bunyamin Tar’an
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
153
|
Mikami K. A technical breakthrough close at hand: feasible approaches toward establishing a gene-targeting genetic transformation system in seaweeds. FRONTIERS IN PLANT SCIENCE 2014; 5:498. [PMID: 25309568 PMCID: PMC4173807 DOI: 10.3389/fpls.2014.00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/08/2014] [Indexed: 05/23/2023]
|
154
|
Arias MC, Pelletier S, Hilliou F, Wattebled F, Renou JP, D'Hulst C. From dusk till dawn: the Arabidopsis thaliana sugar starving responsive network. FRONTIERS IN PLANT SCIENCE 2014; 5:482. [PMID: 25295047 PMCID: PMC4170100 DOI: 10.3389/fpls.2014.00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/31/2014] [Indexed: 05/28/2023]
Abstract
Plant growth and development are tightly controlled by photosynthetic carbon availability. The understanding of mechanisms governing carbon partitioning in plants will be a valuable tool in order to satisfy the rising global demand for food and biofuel. The goal of this study was to determine if sugar starvation responses were transcriptionally coordinated in Arabidopsis thaliana. A set of sugar-starvation responsive (SSR) genes was selected to perform a co-expression network analysis. Posteriorly, a guided-gene approach was used to identify the SSR-network from public data and to discover candidate regulators of this network. In order to validate the SSR network, a global transcriptome analysis was realized on three A. thaliana starch-deficient mutants. The starch-deficient phenotype in leaves induces sugar starvation syndrome at the end of the night due to the absence of photosynthesis. Promoter sequences of genes belonging to the SSR-network were analyzed in silico reveling over-represented motifs implicated in light, abscisic acid, and sugar responses. A small cluster of protein encoding genes belonging to different metabolic pathways, including three regulatory proteins, a protein kinase, a transcription factor, and a blue light receptor, were identified as the cornerstones of the SSR co-expression network. In summary, a large transcriptionally coordinated SSR network was identified and was validated with transcriptional data from three starch-deficient mutant lines. Candidate master regulators of this network were point out.
Collapse
Affiliation(s)
- Maria C. Arias
- Unité Glycobiologie Structurale et Fonctionnelle, UMR 8576-CNRS, Université de Lille 1Villeneuve d'Ascq, France
| | | | - Frédérique Hilliou
- Institut Sophia Agrobiotech, UMR 1355, Institut National de la Recherche AgronomiqueSophia-Antipolis, France
| | - Fabrice Wattebled
- Unité Glycobiologie Structurale et Fonctionnelle, UMR 8576-CNRS, Université de Lille 1Villeneuve d'Ascq, France
| | | | - Christophe D'Hulst
- Unité Glycobiologie Structurale et Fonctionnelle, UMR 8576-CNRS, Université de Lille 1Villeneuve d'Ascq, France
| |
Collapse
|
155
|
Yu Q, Powles SB. Resistance to AHAS inhibitor herbicides: current understanding. PEST MANAGEMENT SCIENCE 2014; 70:1340-50. [PMID: 24338926 DOI: 10.1002/ps.3710] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/08/2013] [Accepted: 12/14/2013] [Indexed: 05/04/2023]
Abstract
Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.
Collapse
Affiliation(s)
- Qin Yu
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
156
|
Liu X, Xu J, Wang J, Ji F, Yin X, Shi J. Involvement of threonine deaminase FgIlv1 in isoleucine biosynthesis and full virulence in Fusarium graminearum. Curr Genet 2014; 61:55-65. [PMID: 25129826 DOI: 10.1007/s00294-014-0444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
Abstract
In this study we characterized FgIlv1, a homologue of the Saccharomyces cerevisiae threonine dehydratase (TD) from the important Fusarium head blight fungus Fusarium graminearum. TD catalyzes the first step in the biosynthesis pathway of isoleucine (Ile) for conversion of threonine (Thr) to 2-ketobutyrate (2-KB). The FgILV1 deletion mutant ΔFgIlv1-3 was unable to grow on minimal medium or fructose gelatin agar which lacked Ile. Exogenous supplementation of Ile or 2-KB but not Thr rescued the mycelial growth defect of ΔFgIlv1-3, indicating the involvement of FgIlv1 in the conversion of Thr to 2-KB in Ile biosynthesis. Additionally, exogenous supplementation of Methionine (Met) could also rescue the mycelial growth defect of ΔFgIlv1-3, indicating a crosstalk between Ile biosynthesis and Met catabolism in F. graminearum. Deletion of FgILV1 also caused defects in conidial formation and germination. In addition, ΔFgIlv1-3 displayed decreased virulence on wheat heads and a low level of deoxynivalenol (DON) production in wheat kernels. Taken together, results of this study indicate that FgIlv1 is an essential component in Ile biosynthesis and is required for various cellular processes including mycelial and conidial morphogenesis, DON biosynthesis, and full virulence in F. graminearum. Our data indicate the potential of targeting Ile biosynthesis for anti-FHB management.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-Product Safety and Quality (Nanjing), Ministry of Agriculture/Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | | | | | | | | | | |
Collapse
|
157
|
Ochogavía AC, Breccia G, Vega T, Felitti SA, Picardi LA, Nestares G. Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:144-150. [PMID: 24908515 DOI: 10.1016/j.plantsci.2014.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Acetohydroxyacid synthase (AHAS) is the target site of several herbicides and catalyses the first step in the biosynthesis of branched chain amino acid. Three genes coding for AHAS catalytic subunit (ahas1, ahas2 and ahas3) have been reported for sunflower. The aim of this work was to study the expression pattern of ahas genes family and AHAS activity in sunflower (Helianthus annuus L.). Different organs (leaves, hypocotyls, roots, flowers and embryos) were evaluated at several developmental stages. The transcriptional profile was studied through RT-qPCR. The highest expression for ahas1 was shown in leaves, where all the induced and natural gene mutations conferring herbicide resistance were found. The maximal expression of ahas2 and ahas3 occurred in immature flowers and embryos. The highest AHAS activity was found in leaves and immature embryos. Correlation analysis among ahas gene expression and AHAS activity was discussed. Our results show that differences in ahas genes expression are tissue-specific and temporally regulated. Moreover, the conservation of multiple AHAS isoforms in sunflower seems to result from different expression requirements controlled by tissue-specific regulatory mechanisms at different developmental stages.
Collapse
Affiliation(s)
- Ana C Ochogavía
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina; CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina.
| | - Gabriela Breccia
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina; CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina
| | - Tatiana Vega
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina; CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina
| | - Silvina A Felitti
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina; CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina
| | - Liliana A Picardi
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina; CIUNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina
| | - Graciela Nestares
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA Zavalla, Argentina
| |
Collapse
|
158
|
Rustgi S, Matanguihan J, Mejías JH, Gemini R, Brew-Appiah RAT, Wen N, Osorio C, Ankrah N, Murphy KM, von Wettstein D. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance. PLoS One 2014; 9:e100998. [PMID: 24967712 PMCID: PMC4072767 DOI: 10.1371/journal.pone.0100998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Janet Matanguihan
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jaime H. Mejías
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
- Instituto de Investigaciones Agropecuarias INIA, Vilcún, Chile
| | - Richa Gemini
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Rhoda A. T. Brew-Appiah
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Nuan Wen
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Claudia Osorio
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Nii Ankrah
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Kevin M. Murphy
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Diter von Wettstein
- Department of Crop & Soil Sciences, Washington State University, Pullman, Washington, United States of America
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- Centre for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
159
|
Deng W, Cao Y, Yang Q, Liu MJ, Mei Y, Zheng MQ. Different cross-resistance patterns to AHAS herbicides of two tribenuron-methyl resistant flixweed (Descurainiasophia L.) biotypes in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 112:26-32. [PMID: 24974114 DOI: 10.1016/j.pestbp.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
Flixweed (Descurainiasophia L.) is a troublesome weed in winter wheat fields in China. Two flixweed accessions, HB08 and HB16 with a Pro-197-Leu and Pro-197-Ser AHAS-mutation respectively, have evolved very high levels resistance to sulfonylurea (SU) herbicide, tribenuron-methyl. Cross resistance of HB08 and HB16 to AHAS herbicides of SU, imidazolinone (IMI), triazolopyrimidine (TP) and pyrimidinyl-thiobenozoate (PTB) families was investigated by dose-response experiments. In addition, the effects of AHAS herbicides on the activity of AHAS extracted from HB08 and HB16 plants were evaluated. HB16 exhibited cross resistance to SU herbicides halosulfuron-methyl and triasulfuron, TP herbicides flumetsulam and penoxsulam, but displayed more sensitivity to IMI herbicide imazethapyr. By contrast, HB08 only showed cross resistance to SU herbicides halosulfuron-methyl and triasulfuron. The in vitro sensitivity of AHAS to AHAS herbicides is consistent with the results of dose-response experiments and the estimated Pearson's r values for HB08 and HB16 are 0.996 and 0.912 respectively. These indicated that altered AHAS sensitivity was responsible mainly for cross resistance patterns observed in the two resistant biotypes.
Collapse
Affiliation(s)
- Wei Deng
- Department of Applied Chemistry, China Agricultural University, No. 2 of Yuan Ming Yuan Xilu, Haidian District, Beijing 100193, China
| | - Yuan Cao
- Department of Applied Chemistry, China Agricultural University, No. 2 of Yuan Ming Yuan Xilu, Haidian District, Beijing 100193, China
| | - Qian Yang
- Department of Applied Chemistry, China Agricultural University, No. 2 of Yuan Ming Yuan Xilu, Haidian District, Beijing 100193, China
| | - Ming Jie Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 of Yuan Ming Yuan Xilu, Haidian District, Beijing 100193, China
| | - Yu Mei
- Department of Applied Chemistry, China Agricultural University, No. 2 of Yuan Ming Yuan Xilu, Haidian District, Beijing 100193, China
| | - Ming Qi Zheng
- Department of Applied Chemistry, China Agricultural University, No. 2 of Yuan Ming Yuan Xilu, Haidian District, Beijing 100193, China.
| |
Collapse
|
160
|
Lee YS, Liu KH, Moon JK, Ko BJ, Choi H, Hwang KS, Kim E, Kim JH. In Vitro Metabolism of Flucetosulfuron by Human Liver Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3057-3063. [PMID: 24628475 DOI: 10.1021/jf4048836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To investigate herbicide metabolism, human liver microsomes were incubated with threo- and erythro-isomers of flucetosulfuron. Each isomer produced one metabolite; the metabolites were unambiguously identified as enzymatic hydrolysis products by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These metabolites were synthesized, producing white solids characterized using LC-MS/MS and nuclear magnetic resonance spectroscopy (1H and 13C). Using specific esterase inhibitors and activators, carboxylesterases and cholinesterases were demonstrated to be involved in flucetosulfuron metabolism. Under optimized metabolic conditions, the kinetic parameters for metabolite formation from threo-flucetosulfuron and erythro-flucetosulfuron were: Vmax, 151.41 and 134.38 nmol/min/mg protein, respectively; Km, 2957.37 and 2798.53 μM, respectively; and CLint, 51.20 and 48.02 μL/min/mg microsomes respectively. No significant kinetic differences were observed between the two isomers. These results indicated that the primary metabolic pathway for both flucetosulfuron isomers in human liver microsomes involves hydrolysis, catalyzed by carboxylesterase and cholinesterase.
Collapse
Affiliation(s)
- Yong-Sang Lee
- Department of Agricultural Biotechnology, Seoul National University , Seoul 151-742, South Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 702-701, South Korea
| | - Joon-Kwan Moon
- Department of Plant Life and Environmental Sciences, Hankyong National University , Ansung 456-749, South Korea
| | - Beom Jun Ko
- Busan Branch of Forensic Chemistry Laboratory, Supreme Prosecutors' Office , Busan 611-743, South Korea
| | - Hoon Choi
- Ministry of Food and Drug Safety , Cheongwon 363-951, South Korea
| | - Kook-Sang Hwang
- Specialty Chemicals Division, LG Life Sciences Ltd. , Ulsan 689-896, South Korea
| | - Eunhye Kim
- Department of Agricultural Biotechnology, Seoul National University , Seoul 151-742, South Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University , Seoul 151-742, South Korea
| |
Collapse
|
161
|
Starkenburg SR, Kwon KJ, Jha RK, McKay C, Jacobs M, Chertkov O, Twary S, Rocap G, Cattolico RA. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 2014; 15:212. [PMID: 24646409 PMCID: PMC3999925 DOI: 10.1186/1471-2164-15-212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 03/11/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. RESULTS The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). CONCLUSIONS Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.
Collapse
Affiliation(s)
- Shawn R Starkenburg
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Kyungyoon J Kwon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley 94720, CA, USA
| | - Ramesh K Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Cedar McKay
- School of Oceanography, University of Washington, Seattle 98195, WA, USA
| | - Michael Jacobs
- Biology Department, University of Washington, Seattle 98195, WA, USA
| | - Olga Chertkov
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle 98195, WA, USA
| | | |
Collapse
|
162
|
Gao D, Huibers RP, Loonen AEHM, Visser RGF, Wolters AMA, Bai Y. Down-regulation of acetolactate synthase compromises Ol-1- mediated resistance to powdery mildew in tomato. BMC PLANT BIOLOGY 2014; 14:32. [PMID: 24438198 PMCID: PMC3898995 DOI: 10.1186/1471-2229-14-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/09/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND In a cDNA-AFLP analysis comparing transcript levels between powdery mildew (Oidium neolycopersici)-susceptible tomato cultivar Moneymaker (MM) and near isogenic lines (NILs) carrying resistance gene Ol-1 or Ol-4, a transcript-derived fragment (TDF) M11E69-195 was found to be present in NIL-Ol-1 but absent in MM and NIL-Ol-4. This TDF shows homology to acetolactate synthase (ALS). ALS is a key enzyme in the biosynthesis of branched-chain amino acids valine, leucine and isoleucine, and it is also a target of commercial herbicides. RESULTS Three ALS homologs ALS1, ALS2, ALS3 were identified in the tomato genome sequence. ALS1 and ALS2 show high similarity, whereas ALS3 is more divergent. Transient silencing of both ALS1 and ALS2 in NIL-Ol-1 by virus-induced gene silencing (VIGS) resulted in chlorotic leaf areas that showed increased susceptibility to O. neolycopersici (On). VIGS results were confirmed by stable transformation of NIL-Ol-1 using an RNAi construct targeting both ALS1 and ALS2. In contrast, silencing of the three ALS genes individually by RNAi constructs did not compromise the resistance of NIL-Ol-1. Application of the herbicide chlorsulfuron to NIL-Ol-1 mimicked the VIGS phenotype and caused loss of its resistance to On. Susceptible MM and On-resistant line NIL-Ol-4 carrying a nucleotide binding site and leucine rich repeat (NB-LRR) resistance gene were also treated with chlorsulfuron. Neither the susceptibility of MM nor the resistance of NIL-Ol-4 was affected. CONCLUSIONS ALS is neither involved in basal defense, nor in resistance conferred by NB-LRR type resistance genes. Instead, it is specifically involved in Ol-1-mediated resistance to tomato powdery mildew, suggesting that ALS-induced change in amino acid homeostasis is important for resistance conferred by Ol-1.
Collapse
Affiliation(s)
- Dongli Gao
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Robin P Huibers
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present address: Enza Zaden Beheer B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands
| | - Annelies EHM Loonen
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | | | - Yuling Bai
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
163
|
Hsiao YL, Wang YS, Yen JH. Enantioselective effects of herbicide imazapyr on Arabidopsis thaliana. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:646-653. [PMID: 25035913 DOI: 10.1080/03601234.2014.922404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The enantioselective toxicity of chiral herbicides in the environment is of increasing concern. To investigate the enantioselective effects of the chiral herbicide imazapyr on target organisms, we exposed Arabidopsis thaliana to imazapyr enantiomers and racemate. The results show that imazapyr was enantioselectively toxic to A. thaliana. The total chlorophyll content in A. thaliana was affected more by (+)-imazapyr than (±)-imazapyr and (-)-imazapyr. Concentrations of proline and malondialdehyde reflected a toxic effect in the order of (+)-imazapyr > (±)-imazapyr > (-)-imazapyr at every concentration. Acetolactate synthase (ALS) activity was inhibited more by (+)-imazapyr than (±)-imazapyr or (-)-imazapyr. At 100 mg L(-1) of imazapyr, ALS activity was 78%, 43%, and 19% with (-)-, (±)-, and (+)-imazapyr, respectively. The results suggest the significant enantioselective toxicity of imazapyr in A. thaliana for greater toxicity with (+)-imazapyr than (±)-imazapyr and (-)-imazapyr, which suggests that (+)-imazapyr has more herbicidal effect.
Collapse
Affiliation(s)
- Yu-Ling Hsiao
- a Department of Agricultural Chemistry , National Taiwan University , Taipei , Taiwan
| | | | | |
Collapse
|
164
|
Nenajdenko V. Fluorine-Containing Diazines in Medicinal Chemistry and Agrochemistry. FLUORINE IN HETEROCYCLIC CHEMISTRY VOLUME 2 2014. [PMCID: PMC7121506 DOI: 10.1007/978-3-319-04435-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The combination of a fluorine atom and a diazine ring, which both possess unique structural and chemical features, can generate new relevant building blocks for the discovery of efficient fluorinated biologically active agents. Herein we give a comprehensive review on the biological activity and synthesis of fluorine containing, pyrimidine, pyrazine and pyridazine derivatives with relevance to medicinal and agrochemistry.
Collapse
|
165
|
Chandler SF, Senior M, Nakamura N, Tsuda S, Tanaka Y. Expression of flavonoid 3',5'-hydroxylase and acetolactate synthase genes in transgenic carnation: assessing the safety of a nonfood plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11711-11720. [PMID: 23646984 DOI: 10.1021/jf4004384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For 16 years, genetically modified flowers of carnation ( Dianthus caryophyllus ) have been sold to the floristry industry. The transgenic carnation carries a herbicide tolerance gene (a mutant gene encoding acetolactate synthase (ALS)) and has been modified to produce delphinidin-based anthocyanins in flowers, which conventionally bred carnation cannot produce. The modified flower color has been achieved by introduction of a gene encoding flavonoid 3',5'-hydroxylase (F3'5'H). Transgenic carnation flowers are produced in South America and are primarily distributed to North America, Europe, and Japan. Although a nonfood crop, the release of the genetically modified carnation varieties required an environmental risk impact assessment and an assessment of the potential for any increased risk of harm to human or animal health compared to conventionally bred carnation. The results of the health safety assessment and the experimental studies that accompanied them are described in this review. The conclusion from the assessments has been that the release of genetically modified carnation varieties which express F3'5'H and ALS genes and which accumulate delphinidin-based anthocyanins do not pose an increased risk of harm to human or animal health.
Collapse
Affiliation(s)
- Stephen F Chandler
- School of Applied Sciences, RMIT University , P.O. Box 71, Bundoora, VIC 3083, Australia
| | | | | | | | | |
Collapse
|
166
|
García-Garijo A, Palma F, Lluch C, Tejera NA. Physiological and biochemical responses of common vetch to the imazamox accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:321-325. [PMID: 24184452 DOI: 10.1016/j.plaphy.2013.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
Common vetch (Vicia sativa L.) is a forage and grain legume, widely distributed throughout the world. Alterations induced by the herbicide imazamox on plant growth, acetohydroxyacid synthase activity, total free amino acids, as well as concentrations of valine, leucine, isoleucine and imazamox in young and mature leaves were investigated at 2 and 7 days after the herbicide application. Plant growth decreased significantly after 7 days of imazamox treatment. The herbicide was detected in both young and mature leaves inducing an inhibition of acetohydroxyacid synthase activity in the former and consequently decreasing valine and leucine contents in this organ. At the same time, the treatment caused an increase of total free amino acids in young leaves, presumably as result of proteolysis stimulation in such conditions. Given that these effects were not observed in mature leaves, we suggest a different sensitivity of the acetohydroxyacid synthase activity to imazamox depending on leaf age. Common vetch seems not to degrade imazamox since the herbicide was accumulated in shoot with increasing treatment time. To our knowledge, no physiological and biochemical studies of common vetch responses to imazamox have been previously reported.
Collapse
Affiliation(s)
- Amaranta García-Garijo
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | | | | | | |
Collapse
|
167
|
He Y, Niu C, Wen X, Xi Z. Molecular Drug Resistance Prediction for Acetohydroxyacid Synthase Mutants Against Chlorsulfuron Using MB-QSAR. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
168
|
Breccia G, Vega T, Felitti SA, Picardi L, Nestares G. Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 208:28-33. [PMID: 23683926 DOI: 10.1016/j.plantsci.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Acetohydroxyacid synthase (AHAS) catalyzes the first reaction in branch chain amino acids biosynthesis. This enzyme is the target of several herbicides, including all members of the imidazolinone family. Little is known about the expression of the three acetohydroxyacid synthase genes (ahas1, ahas2 and ahas3) in sunflower. The aim of this work was to evaluate ahas gene expression and AHAS activity in different tissues of sunflower plantlets. Three genotypes differing in imidazolinone resistance were evaluated, two of which carry an herbicide resistant-endowing mutation known as Ahasl1-1 allele. In vivo and in vitro AHAS activity and transcript levels were higher in leaves than in roots. The ahas3 transcript was the less abundant in both tissues. No significant difference was observed between ahas1 and ahas2 transcript levels of the susceptible genotype but a higher ahas1 transcript level was observed in leaves of genotypes carrying Ahasl1-1 allele. Similar transcript levels were found for ahas1 and ahas2 in roots of genotypes carrying Ahasl1-1 allele whereas higher ahas2 abundance was found in the susceptible genotype. Herbicide treatment triggered tissue-specific, gene and genotype-dependent changes in ahas gene expression. AHAS activity was highly inhibited in the susceptible genotype. Differential responses were observed between in vitro and in vivo AHAS inhibition assays. These findings enhance our understanding of AHAS expression in sunflower genotypes differing for herbicide resistance and its response to herbicide treatment.
Collapse
Affiliation(s)
- Gabriela Breccia
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, CC 14, S2125ZAA, Zavalla, Argentina
| | | | | | | | | |
Collapse
|
169
|
Li ZS, Wang WM, Lu W, Niu CW, Li YH, Li ZM, Wang JG. Synthesis and biological evaluation of nonsymmetrical aromatic disulfides as novel inhibitors of acetohydroxyacid synthase. Bioorg Med Chem Lett 2013; 23:3723-7. [PMID: 23726033 DOI: 10.1016/j.bmcl.2013.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/15/2022]
Abstract
46 Novel nonsymmetrical aromatic disulfides containing [1,3,4]thiadiazole or [1,3,4]oxadiazole groups were synthesized and their biological activities were evaluated as inhibitors of acetohydroxyacid synthase (AHAS, EC 2.2.1.6). Besides their strong in vitro inhibition against plant AHAS, compounds 3e and 3f also display 80-100% post-emergence herbicidal activities in greenhouse bioassay at 1500g /ha dosage. The assay of exogenous branched-chain amino acids supplementation on rape root growth of 3e suggests that the herbicidal activity has relationship with AHAS inhibition.
Collapse
Affiliation(s)
- Zai-Shun Li
- State-Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | |
Collapse
|
170
|
Yao JL, Tomes S, Gleave AP. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites. PLANT CELL REPORTS 2013; 32:703-14. [PMID: 23494389 DOI: 10.1007/s00299-013-1404-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.
Collapse
Affiliation(s)
- Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Ltd., Private Bag 92169, Auckland, New Zealand,
| | | | | |
Collapse
|
171
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
172
|
Song XH, Ma N, Wang JG, Li YH, Wang SH, Li ZM. Synthesis and Herbicidal Activities of Sulfonylureas Bearing 1,3,4-Thiadiazole Moiety. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiang-Hai Song
- Department of Chemistry, School of Science; Tianjin University; Tianjin 300072
| | - Ning Ma
- Department of Chemistry, School of Science; Tianjin University; Tianjin 300072
| | - Jian-Guo Wang
- State Key Laboratory of Elemento Organic Chemistry, Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071
| | - Yong-Hong Li
- State Key Laboratory of Elemento Organic Chemistry, Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071
| | - Su-Hua Wang
- State Key Laboratory of Elemento Organic Chemistry, Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071
| | - Zheng-Ming Li
- State Key Laboratory of Elemento Organic Chemistry, Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071
| |
Collapse
|
173
|
He Y, Niu C, Wen X, Xi Z. Biomacromolecular 3D-QSAR to Decipher Molecular Herbicide Resistance in Acetohydroxyacid Synthases. Mol Inform 2013; 32:139-44. [PMID: 27481275 DOI: 10.1002/minf.201200144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/05/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Yinwu He
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782.
| |
Collapse
|
174
|
He Y, Niu C, Li H, Wen X, Xi Z. Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4841-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
175
|
Endo M, Shimizu T, Fujimori T, Yanagisawa S, Toki S. Herbicide-Resistant Mutations in Acetolactate Synthase Can Reduce Feedback Inhibition and Lead to Accumulation of Branched-Chain Amino Acids. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.45067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
176
|
Lee YT, Cui CJ, Chow EWL, Pue N, Lonhienne T, Wang JG, Fraser JA, Guddat LW. Sulfonylureas Have Antifungal Activity and Are Potent Inhibitors of Candida albicans Acetohydroxyacid Synthase. J Med Chem 2012; 56:210-9. [DOI: 10.1021/jm301501k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Chang-Jun Cui
- State-Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | | - Jian-Guo Wang
- State-Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
177
|
Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Antimicrob Agents Chemother 2012; 57:1513-7. [PMID: 23263008 DOI: 10.1128/aac.02327-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy.
Collapse
|
178
|
Vega T, Breccia G, Gil M, Zorzoli R, Picardi L, Nestares G. Acetohydroxyacid synthase (AHAS) in vivo assay for screening imidazolinone-resistance in sunflower (Helianthus annuus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:103-7. [PMID: 23123550 DOI: 10.1016/j.plaphy.2012.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/26/2012] [Indexed: 05/20/2023]
Abstract
The objective of this work was to evaluate the in vivo acetohydroxyacid synthase (AHAS) activity response to imidazolinones and its possible use as a selection method for evaluating AHAS inhibitor resistance. In vivo AHAS assay and the comparison of parameters from dose-response curves have been used as a valid tool for comparing sunflower lines and hybrids differing in imidazolinone resistance. The sunflower resistant genotypes evaluated here were 100-fold and 20-fold more resistant compared with the susceptible line for imazethapyr and imazapyr, respectively. This assay also allowed discrimination of homozygous from heterozygous genotypes for I(mr1) locus that codify for the catalytic subunit of AHAS. The in vivo AHAS assay described in this study was useful for the selection of sunflower genotypes differing in herbicide resistance and could be a useful tool when breeding for imidazolinone resistance in sunflower.
Collapse
Affiliation(s)
- T Vega
- CONICET, Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental J. F. Villarino, CC 14, S2125ZAA Zavalla, Argentina.
| | | | | | | | | | | |
Collapse
|
179
|
Zhao Y, Wen X, Niu C, Xi Z. Arginine 26 and Aspartic Acid 69 of the Regulatory Subunit are Key Residues of Subunits Interaction of Acetohydroxyacid Synthase Isozyme III fromE. coli. Chembiochem 2012; 13:2445-54. [DOI: 10.1002/cbic.201200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/08/2022]
|
180
|
Krizevski R, Bar E, Shalit OR, Levy A, Hagel JM, Kilpatrick K, Marsolais F, Facchini PJ, Ben-Shabat S, Sitrit Y, Lewinsohn E. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp. PHYTOCHEMISTRY 2012; 81:71-9. [PMID: 22727117 DOI: 10.1016/j.phytochem.2012.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 05/13/2023]
Abstract
Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.
Collapse
Affiliation(s)
- Raz Krizevski
- Department of Aromatic, Medicinal and Spice Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Shang J, Wang WM, Li YH, Song HB, Li ZM, Wang JG. Synthesis, crystal structure, in vitro acetohydroxyacid synthase inhibition, in vivo herbicidal activity, and 3D-QSAR of new asymmetric aryl disulfides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8286-8293. [PMID: 22905906 DOI: 10.1021/jf302206x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is an important bioactive target for the design of environmentally benign herbicides. On the basis of previous virtual screening, 50 asymmetric aryl disulfides containing [1,2,4]triazole groups were synthesized and characterized by (1)H NMR, HRMS, and crystal structure. Compounds I-a, I-b, and I-p show Ki values of 1.70, 4.69, and 5.57 μM, respectively, for wild type Arabidopsis thaliana AHAS (AtAHAS) and low resistance against mutant type AtAHAS W574L. At 100 mg L(-1) concentration, compounds I-a, II-a, and II-b exhibit 86.6, 81.7, and 87.5% in vivo rape root growth inhibition. CoMFA steric and electrostatic contour maps were established, and a possible binding mode was suggested from molecular docking, which provide valuable information to understand the key structural features of these disulfide compounds. To the authors' knowledge, this is the first comprehensive case suggesting that asymmetric aryl disulfides are novel AHAS inhibitors.
Collapse
Affiliation(s)
- Jun Shang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
182
|
Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, Powles SB. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2012; 68:1164-70. [PMID: 22431132 DOI: 10.1002/ps.3278] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/23/2011] [Accepted: 01/13/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS-inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS-inhibiting herbicide resistance in a novel resistant population was studied. RESULTS ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala-122-Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS-inhibiting herbicides. Whole-plant dose-response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD₅₀ or GR₅₀ R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD₅₀ and GR₅₀ R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala-122-Tyr ALS was highly resistant to all tested ALS-inhibiting herbicides. CONCLUSION The molecular basis of ALS-inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala-122-Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala-122 in the plant ALS that confers high-level and broad-spectrum resistance to ALS-inhibiting herbicides, a remarkable contrast to the known mutation Ala-122-Thr endowing resistance to imidazolinone herbicide.
Collapse
Affiliation(s)
- Heping Han
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
183
|
Iwakami S, Uchino A, Watanabe H, Yamasue Y, Inamura T. Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. PEST MANAGEMENT SCIENCE 2012; 68:1098-106. [PMID: 22473865 DOI: 10.1002/ps.3287] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 12/14/2011] [Accepted: 01/23/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Target-site resistance is the major cause of herbicide resistance to acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides in arable weeds, whereas non-target-site resistance is rarely reported. In the Echinochloa phyllopogon biotypes resistant to these herbicides, target-site resistance has not been reported, and non-target-site resistance is assumed to be the basis for resistance. To explore why target-site resistance had not occurred, the target-site genes for these herbicides were isolated from E. phyllopogon, and their expression levels in a resistant biotype were determined. RESULTS Two complete ALS genes and the carboxyltransferase domain of four ACCase genes were isolated. The expression levels of ALS and ACCase genes were higher in organs containing metabolically active meristems, except for ACC4, which was not expressed in any organ. The differential expression among examined organs was more prominent for ALS2 and ACC2 and less evident for ALS1, ACC1 and ACC3. CONCLUSION E. phyllopogon has multiple copies of the ALS and ACCase genes, and different expression patterns were observed among the copies. The existence of three active ACCase genes and the difference in their relative expression levels could influence the occurrence of target-site resistance to ACCase inhibitors in E. phyllopogon.
Collapse
Affiliation(s)
- Satoshi Iwakami
- Kyoto University, Graduate School of Agriculture, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
184
|
Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res 2012; 21:1255-64. [PMID: 22430369 DOI: 10.1007/s11248-012-9597-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/03/2012] [Indexed: 11/27/2022]
Abstract
The Arabidopsis CSR1 gene codes for the enzyme acetohydroxyacid synthase (AHAS, EC 2.2.1.6), also known as acetolactate synthase, which catalyzes the first step in branched-chain amino acid biosynthesis. It is inhibited by several classes of herbicides, including the imidazolinone herbicides, such as imazapyr; however, a substitution mutation in csr1-2 (Ser-653-Asn) confers selective resistance to the imidazolinones. The transcriptome of csr1-2 seedlings grown in the presence of imazapyr has been shown in a previous study (Manabe in Plant Cell Physiol 48:1340-1358, 2007) to be identical to that of wild-type seedlings indicating that AHAS is the sole target of imazapyr and that the mutation is not associated with pleiotropic effects detectable by transcriptome analysis. In this study, a lethal null mutant, csr1-7, created by a T-DNA insertion into the CSR1 gene was complemented with a randomly-inserted 35S/CSR1-2/NOS transgene in a subsequent genetic transformation event. A comparison of the csr1-2 substitution mutant with the transgenic lines revealed that all were resistant to imazapyr; however, the transgenic lines yielded significantly higher levels of resistance and greater biomass accumulation in the presence of imazapyr. Microarray analysis revealed few differences in their transcriptomes. The most notable was a sevenfold to tenfold elevation in the CSR1-2 transcript level. The data indicate that transgenesis did not create significant unintended pleiotropic effects on gene expression and that the mutant and transgenic lines were highly similar, except for the level of herbicide resistance.
Collapse
Affiliation(s)
- Jaimie Schnell
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | | | | | | | | |
Collapse
|
185
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Sala CA, Bulos M, Altieri E, Weston B. Response to imazapyr and dominance relationships of two imidazolinone-tolerant alleles at the Ahasl1 locus of sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:385-396. [PMID: 21964993 DOI: 10.1007/s00122-011-1713-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
Imisun and CLPlus are two imidazolinone (IMI) tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of different alleles at the same locus, Ahasl1-1 and Ahasl1-3, respectively. This paper reports the level of tolerance expressed by plants containing both alleles in a homozygous, heterozygous and in a heterozygous stacked state to increasing doses of IMI at the enzyme and whole plant levels. Six genotypes of the Ahasl1 gene were compared with each other in three different genetic backgrounds. These materials were treated at the V2-V4 stage with increasing doses of imazapyr (from 0 to 480 g a.i. ha(-1)) followed by an assessment of the aboveground biomass and herbicide phytotoxicity. The estimated dose of imazapyr required to reduce biomass accumulation by 50% (GR(50)) differed statistically for the six genotypes of the Ahasl1 gene. Homozygous CLPlus (Ahasl1-3/Ahasl1-3) genotypes and materials containing a combination of both tolerant alleles (Imisun/CLPlus heterozygous stack, Ahasl1-1/Ahasl1-3) showed the highest values of GR(50), 300 times higher than the susceptible genotypes and more than 2.5 times higher than homozygous Imisun materials (Ahasl1-1/Ahasl1-1). In vitro AHAS enzyme activity assays using increasing doses of herbicide (from 0 to 100 μM) showed similar trends, where homozygous CLPlus materials and those containing heterozygous stacks of Imisun/CLPlus were statistically similar and showed the least level of inhibition of enzyme activity to increasing doses of herbicide. The degree of dominance for the accumulation of biomass after herbicide application calculated for the Ahasl1-1 allele indicated that it is co-dominant to recessive depending on the imazapyr dose used. By the contrary, the Ahasl1-3 allele showed dominance to semi dominance according to the applied dose. This last allele is dominant over Ahasl1-1 over the entire range of herbicide rates tested. At the level of enzymatic activity, however, both alleles showed recessivity to semi-recessivity with respect to the wild-type allele, even though the Ahasl1-3 allele is dominant over Ahasl1-1 at all the herbicides rates used.
Collapse
Affiliation(s)
- Carlos A Sala
- Departamento de Biotecnología, Nidera S.A, Casilla de Correo 6, CP.: 2600, Venado Tuerto, Santa Fe, Argentina.
| | | | | | | |
Collapse
|
187
|
Tribenuron-Methyl Resistant Shepherd's Purse (Capsella bursa-pastoris (L.) Medik.) in Hebei Province of China. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60115-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
188
|
Mereiter K. The herbicide triflusulfuron-methyl. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o1778-9. [PMID: 21837154 PMCID: PMC3151983 DOI: 10.1107/s1600536811023166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/14/2011] [Indexed: 05/26/2023]
Abstract
The molecule of the title compound [systematic name: methyl 2-({[4-dimethylamino-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]carbamoyl}sulfamoyl)-3-methylbenzoate], C17H19F3N6O6S, features a nearly planar (r.m.s. deviation = 0.098 Å) dimethylaminotriazinyl-urea group with a short intramolecular N—H⋯N hydrogen bond to a triazine N atom. An intramolecular dipole–dipole interaction between the sulfamide and carboxylate groups, with Os⋯Cc = 2.800 (1) Å and Ns⋯Oc = 2.835 (1) Å, controls the orientation of the methylbenzoate group and the shape of the molecule. The crystal structure is stabilized by intermolecular N—H⋯N hydrogen bonding, C—H⋯X (X = N,O) interactions and arene π–π stacking.
Collapse
|
189
|
Green JM, Owen MDK. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5819-29. [PMID: 20586458 PMCID: PMC3105486 DOI: 10.1021/jf101286h] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/09/2010] [Accepted: 06/16/2010] [Indexed: 05/06/2023]
Abstract
Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.
Collapse
Affiliation(s)
- Jerry M Green
- Stine-Haskell Research Center, Pioneer Hi-Bred International, Inc., Newark, Delaware 19714-0030, USA.
| | | |
Collapse
|
190
|
Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci U S A 2011; 108:8909-13. [PMID: 21551103 DOI: 10.1073/pnas.1105612108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Induced mutagenesis can be an effective way to increase variability in self-pollinated crops for a wide variety of agronomically important traits. Crop resistance to a given herbicide can be of practical value to control weeds with efficient chemical use. In some crops (for example, wheat, maize, and canola), resistance to imidazolinone herbicides (IMIs) has been introduced through mutation breeding and is extensively used commercially. However, this production system imposes plant-back restrictions on rotational crops because of herbicide residuals in the soil. In the case of barley, a preferred rotational crop after wheat, a period of 9-18 mo is required. Thus, introduction of barley varieties showing resistance to IMIs will provide greater flexibility as a rotational crop. The objective of the research reported was to identify resistance in barley for IMIs through induced mutagenesis. To achieve this objective, a sodium azide-treated M(2)/M(3) population of barley cultivar Bob was screened for resistance against acetohydroxy acid synthase (AHAS)-inhibiting herbicides. The phenotypic screening allowed identification of a mutant line showing resistance against IMIs. Molecular analysis identified a single-point mutation leading to a serine 653 to asparagine amino acid substitution in the herbicide-binding site of the barley AHAS gene. The transcription pattern of the AHAS gene in the mutant (Ser653Asn) and WT has been analyzed, and greater than fourfold difference in transcript abundance was observed. Phenotypic characteristics of the mutant line are promising and provide the base for the release of IMI-resistant barley cultivar(s).
Collapse
|
191
|
Kaloumenos NS, Adamouli VN, Dordas CA, Eleftherohorinos IG. Corn poppy (Papaver rhoeas) cross-resistance to ALS-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2011; 67:574-585. [PMID: 21308964 DOI: 10.1002/ps.2104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/08/2010] [Accepted: 11/06/2010] [Indexed: 05/27/2023]
Abstract
BACKGROUND Papaver rhoeas (L.) has evolved resistance to tribenuron in winter wheat fields in northern Greece owing to multiple Pro(197) substitutions. Therefore, the cross-resistance pattern to other sulfonylurea and non-sulfonylurea ALS-inhibiting herbicides of the tribenuron resistant (R) and susceptible (S) corn poppy populations was studied by using whole-plant trials and in vitro ALS catalytic activity assays. RESULTS The whole-plant trials revealed that tribenuron R populations were also cross-resistant to sulfonylureas mesosulfuron + iodosulfuron, chlorsulfuron and triasulfuron. The whole-plant resistance factors (RFs) calculated for pyrithiobac, imazamox and florasulam ranged from 12.4 to > 88, from 1.5 to 28.3 and from 5.6 to 25.4, respectively, and were lower than the respective tribenuron RF values (137 to > 2400). The ALS activity assay showed higher resistance of the ALS enzyme to sulfonylurea herbicides (tribenuron > chlorsulfuron) and lower resistance to non-sulfonylurea ALS-inhibiting herbicides (pyrithiobac > florasulam ≈ imazamox). CONCLUSION These findings indicate that Pro(197) substitution by Ala, Ser, Arg or Thr in corn poppy results in a less sensitive ALS enzyme to sulfonylurea herbicides than to other ALS-inhibiting herbicides. The continued use of sulfonylurea herbicides led to cross-resistance to all ALS-inhibiting herbicides, making their use impossible in corn poppy resistance management programmes.
Collapse
Affiliation(s)
- Nikolaos S Kaloumenos
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
192
|
Bunik VI, Schloss JV, Pinto JT, Dudareva N, Cooper AJL. A survey of oxidative paracatalytic reactions catalyzed by enzymes that generate carbanionic intermediates: implications for ROS production, cancer etiology, and neurodegenerative diseases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:307-60. [PMID: 21692372 DOI: 10.1002/9780470920541.ch7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Victoria I Bunik
- School of Bioinformatics and Bioengineering, and Belozersky Institute of Physico-Chemical Biology, Moscow Lomonosov State University, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
193
|
Délye C, Pernin F, Scarabel L. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:333-342. [PMID: 21421378 DOI: 10.1016/j.plantsci.2010.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 05/27/2023]
Abstract
We investigated the diversity of mechanisms conferring resistance to herbicides inhibiting acetolactate synthase (ALS) in corn poppy (Papaver rhoeas L.) and the processes underlying the selection for resistance. Six mutant ALS alleles, Arg₁₉₇, His₁₉₇, Leu₁₉₇, Ser₁₉₇, Thr₁₉₇ and Leu₅₇₄ were identified in five Italian populations. Different alleles were found in a same population or a same plant. Comparison of individual plant phenotype (herbicide sensitivity) and genotype (amino-acid substitution(s) at codon 197) showed that all mutant ALS alleles conferred dominant resistance to the field rate of the sulfonylurea tribenuron and moderate or no resistance to the field rate of the triazolopyrimidine florasulam. Depending on the allele, dominant or partially dominant resistance to the field rate of the imidazolinone imazamox was observed. Putative non-target-site resistance mechanisms were also likely present in the populations investigated. The derived Cleaved Amplified Polymorphic Sequence assays targeting ALS codons crucial for herbicide sensitivity developed in this work will facilitate the detection of resistance due to mutant ALS alleles. Nucleotide variation around codon 197 indicated that mutant ALS alleles evolved by multiple, independent appearances. Resistance to ALS inhibitors in P. rhoeas clearly evolved by redundant evolution of a set of mutant ALS alleles and likely of non-target-site mechanisms.
Collapse
Affiliation(s)
- Christophe Délye
- INRA, UMR1210 Biologie et Gestion des Adventices, 17 rue Sully, F-21000 Dijon, France.
| | | | | |
Collapse
|
194
|
Yu Q, Han H, Vila-Aiub MM, Powles SB. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3925-34. [PMID: 20627897 PMCID: PMC2935867 DOI: 10.1093/jxb/erq205] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Twenty-two amino acid substitutions at seven conserved amino acid residues in the acetohydroxyacid synthase (AHAS) gene have been identified to date that confer target-site resistance to AHAS-inhibiting herbicides in biotypes of field-evolved resistant weed species. However, the effect of resistance mutations on AHAS functionality and plant growth has been investigated for only a very few mutations. This research investigates the effect of various AHAS resistance mutations in Lolium rigidum on AHAS functionality and plant growth. The enzyme kinetics of AHAS from five purified L. rigidum populations, each homozygous for the resistance mutations Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-197-Ser or Trp-574-Leu, were characterized and the pleiotropic effect of three mutations on plant growth was assessed via relative growth rate analysis. All these resistance mutations endowed a herbicide-resistant AHAS and most resulted in higher extractable AHAS activity, with no-to-minor changes in AHAS kinetics. The Pro-197-Arg mutation slightly (but significantly) increased the K(m) for pyruvate and remarkably increased sensitivity to feedback inhibition by branched chain amino acids. Whereas the Pro-197-Ser and Trp-574-Leu mutations exhibited no significant effects on plant growth, the Pro-197-Arg mutation resulted in lower growth rates. It is clear that, at least in L. rigidum, these five AHAS resistance mutations have no major impact on AHAS functionality and hence probably no plant resistance costs. These results, in part, explain why so many Pro-197 AHAS resistance mutations in AHAS have evolved and why the Pro-197-Ser and the Trp-574-Leu AHAS resistance mutations are frequently found in many weed species.
Collapse
|
195
|
Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:573-83. [PMID: 20374526 DOI: 10.1111/j.1365-313x.2010.04261.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation/dephosphorylation is a central post-translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324,000 precursor ions from 54 LC-Orbitrap-MS analyses quantified and aligned in a data matrix with the dimension of 6000 x 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the G alpha subunit appeared to be a common response for multiple hormones, demonstrating global cross-talk among hormone signaling pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
196
|
Choi JD, Gedi V, Pham CN, Ryu KH, Lee HS, Kim GH, Yoon MY. Site-directed mutagenesis of catalytic and regulatory subunits of Mycobacterium tuberculosis acetohydroxyacid synthase. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
197
|
Abstract
Modern herbicides make major contributions to global food production by easily removing weeds and substituting for destructive soil cultivation. However, persistent herbicide selection of huge weed numbers across vast areas can result in the rapid evolution of herbicide resistance. Herbicides target specific enzymes, and mutations are selected that confer resistance-endowing amino acid substitutions, decreasing herbicide binding. Where herbicides bind within an enzyme catalytic site very few mutations give resistance while conserving enzyme functionality. Where herbicides bind away from a catalytic site many resistance-endowing mutations may evolve. Increasingly, resistance evolves due to mechanisms limiting herbicide reaching target sites. Especially threatening are herbicide-degrading cytochrome P450 enzymes able to detoxify existing, new, and even herbicides yet to be discovered. Global weed species are accumulating resistance mechanisms, displaying multiple resistance across many herbicides and posing a great challenge to herbicide sustainability in world agriculture. Fascinating genetic issues associated with resistance evolution remain to be investigated, especially the possibility of herbicide stress unleashing epigenetic gene expression. Understanding resistance and building sustainable solutions to herbicide resistance evolution are necessary and worthy challenges.
Collapse
Affiliation(s)
- Stephen B Powles
- Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|
198
|
Binder S. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2010; 8:e0137. [PMID: 22303262 PMCID: PMC3244963 DOI: 10.1199/tab.0137] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Stefan Binder
- Institute Molecular Botany, Ulm University, Albert-Einstein-Allee 11, 89060 Ulm, Germany Address correspondence to
| |
Collapse
|
199
|
Yasuor H, Osuna MD, Ortiz A, Saldaín NE, Eckert JW, Fischer AJ. Mechanism of resistance to penoxsulam in late watergrass [ Echinochloa phyllopogon (Stapf) Koss.]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3653-3660. [PMID: 19323496 DOI: 10.1021/jf8039999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Late watergrass [ Echinochloa phyllopogon (Stapf.) Koss.] is a major weed of California rice that has evolved P450-mediated metabolic resistance to multiple herbicides. Resistant (R) populations are also poorly controlled by the recently introduced herbicide penoxsulam. Ratios (R/S) of the R to susceptible (S) GR(50) (herbicide rate for 50% growth reduction) ranged from 5 to 9. Although specific acetolactate synthase (ALS) activity was 1.7 higher in R than in S plants, the enzyme in R plants was about 6 times more susceptible to the herbicide. R plants exhibited faster (2.8 times) oxidative [(14)C]-penoxsulam metabolism than S plants 24 h after treatment. Addition of malathion (P450 inhibitor) enhanced herbicide phytotoxicity and reduced penoxsulam metabolism in R plants. Tank mixtures with thiobencarb (can induce P450) antagonized penoxsulam toxicity in R plants, suggesting penoxsulam may be broken down by a thiobencarb-inducible enzyme. These results suggest E. phyllopogon resistance to penoxsulam is mostly due to enhanced herbicide metabolism, possibly via P450 monooxidation.
Collapse
Affiliation(s)
- Hagai Yasuor
- Weed Science Program, Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Shaanan B, Chipman DM. Reaction mechanisms of thiamin diphosphate enzymes: new insights into the role of a conserved glutamate residue. FEBS J 2009; 276:2447-53. [DOI: 10.1111/j.1742-4658.2009.06965.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|