151
|
Keppley LJW, Walker SJ, Gademsey AN, Smith JP, Keller SR, Kester M, Fox TE. Nervonic acid limits weight gain in a mouse model of diet-induced obesity. FASEB J 2020; 34:15314-15326. [PMID: 32959931 DOI: 10.1096/fj.202000525r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Lipid perturbations contribute to detrimental outcomes in obesity. We previously demonstrated that nervonic acid, a C24:1 ω-9 fatty acid, predominantly acylated to sphingolipids, including ceramides, are selectively reduced in a mouse model of obesity. It is currently unknown if deficiency of nervonic acid-sphingolipid metabolites contribute to complications of obesity. Mice were fed a standard diet, a high fat diet, or these diets supplemented isocalorically with nervonic acid. The primary objective was to determine if dietary nervonic acid content alters the metabolic phenotype in mice fed a high fat diet. Furthermore, we investigated if nervonic acid alters markers of impaired fatty acid oxidation in the liver. We observed that a nervonic acid-enriched isocaloric diet reduced weight gain and adiposity in mice fed a high fat diet. The nervonic acid enrichment led to increased C24:1-ceramides and improved several metabolic parameters including blood glucose levels, and insulin and glucose tolerance. Mechanistically, nervonic acid supplementation increased PPARα and PGC1α expression and improved the acylcarnitine profile in liver. These alterations indicate improved energy metabolism through increased β-oxidation of fatty acids. Taken together, increasing dietary nervonic acid improves metabolic parameters in mice fed a high fat diet. Strategies that prevent deficiency of, or restore, nervonic acid may represent an effective strategy to treat obesity and obesity-related complications.
Collapse
Affiliation(s)
- Laura J W Keppley
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Alexis N Gademsey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Jason P Smith
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Susanna R Keller
- Medicine: Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
152
|
Cao R, Fang Z, Li S, Xu M, Zhang J, Han D, Hu W, Yan L, Wang Y, Fan L, Cao F. Circulating Ceramide: A New Cardiometabolic Biomarker in Patients With Comorbid Acute Coronary Syndrome and Type 2 Diabetes Mellitus. Front Physiol 2020; 11:1104. [PMID: 33041846 PMCID: PMC7522524 DOI: 10.3389/fphys.2020.01104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023] Open
Abstract
Aims This study investigated the association of circulating ceramides in patients with comorbid acute coronary syndrome and type 2 diabetes mellitus (ACS-DM). Methods A total of 761 patients with coronary heart disease who were admitted to the Department of Cardiology at the Chinese PLA General Hospital from March to August 2018 were enrolled in this study. Of these 761 patients, 282 were diagnosed with acute coronary syndrome (ACS). We selected 65 patients with ACS-DM (ACS-DM group; mean age 64.88 years; 38 men) and 65 patients with ACS but without any comorbidities (ACS group; mean age 64.68 years; 38 men); the two groups were matched by age and sex. We determined four circulating ceramides in 130 plasma samples: Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:1), and Cer(d18:1/24:0). The ceramides in plasma samples from patients with ACS and those from patients with ACS-DM were compared. Pearson correlation coefficients between individual ceramides and traditional cardiovascular risk factors for the whole study population were calculated. Multiple logistic regression models were used to evaluate the relativity between the ceramide and ACS-DM. Results Compared with the ACS group, the levels of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) and their ratios to Cer(d18:1/24:0) were higher in the ACS-DM group and Cer(d18:1/24:0) was lower in the ACS-DM group (P < 0.05). Correlation analysis demonstrated mild-to-moderate correlations of ceramide and traditional cardiovascular risk factors. There were relatively strong correlations of Cer(d18:1/18:0) and Cer(d18:1/24:1) with C-reactive protein, blood lipids, fasting blood glucose, and glycated hemoglobin A1c. In multiple logistic regression models, Cer(d18:1/18:0) [odds ratio (OR) 2.396; 95% confidence interval (CI) 1.103–5.205; P = 0.027], Cer(d18:1/24:1) (OR 2.826; 95% CI 1.158–6.896; P = 0.023), Cer(d18:1/18:0)/Cer(d18:1/24:0) (OR 2.242; 95% CI 1.103–4.555; P = 0.026), and Cer(d18:1/24:1)/Cer(d18:1/24:0) (OR 2.673; 95% CI 1.225–5.836; P = 0.014) were positively correlated with ACS-DM, and Cer(d18:1/24:0) (OR 0.200; 95% CI 0.051–0.778; P = 0.020) was negatively correlated with ACS-DM. Conclusion Circulating ceramides are positively correlated with the risk of ACS-DM comorbidity. These results give a new insight into the pathogenesis of ACS-DM comorbidity and could provide new options for risk estimation.
Collapse
Affiliation(s)
- Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Zhiyi Fang
- The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Sulei Li
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Mengqi Xu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jibin Zhang
- The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wenchao Hu
- The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liqiu Yan
- The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yabin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Li Fan
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Feng Cao
- The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
153
|
Suzuki M, Cao K, Kato S, Mizutani N, Tanaka K, Arima C, Tai MC, Nakatani N, Yanagisawa K, Takeuchi T, Shi H, Mizutani Y, Niimi A, Taniguchi T, Fukui T, Yokoi K, Wakahara K, Hasegawa Y, Mizutani Y, Iwaki S, Fujii S, Satou A, Tamiya-Koizumi K, Murate T, Kyogashima M, Tomida S, Takahashi T. CERS6 required for cell migration and metastasis in lung cancer. J Cell Mol Med 2020; 24:11949-11959. [PMID: 32902157 PMCID: PMC7579715 DOI: 10.1111/jcmm.15817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids constitute a class of bio‐reactive molecules that transmit signals and exhibit a variety of physical properties in various cell types, though their functions in cancer pathogenesis have yet to be elucidated. Analyses of gene expression profiles of clinical specimens and a panel of cell lines revealed that the ceramide synthase gene CERS6 was overexpressed in non–small‐cell lung cancer (NSCLC) tissues, while elevated expression was shown to be associated with poor prognosis and lymph node metastasis. NSCLC profile and in vitro luciferase analysis results suggested that CERS6 overexpression is promoted, at least in part, by reduced miR‐101 expression. Under a reduced CERS6 expression condition, the ceramide profile became altered, which was determined to be associated with decreased cell migration and invasion activities in vitro. Furthermore, CERS6 knockdown suppressed RAC1‐positive lamellipodia/ruffling formation and attenuated lung metastasis efficiency in mice, while forced expression of CERS6 resulted in an opposite phenotype in examined cell lines. Based on these findings, we consider that ceramide synthesis by CERS6 has important roles in lung cancer migration and metastasis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Ke Cao
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Naoki Mizutani
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Kouji Tanaka
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Chinatsu Arima
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mei Chee Tai
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norie Nakatani
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Hanxiao Shi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Yasuyoshi Mizutani
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Atsuko Niimi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Tetsuo Taniguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko Mizutani
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoshi Fujii
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akira Satou
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Keiko Tamiya-Koizumi
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Murate
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Mamoru Kyogashima
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
154
|
Circulating Very-Long-Chain Saturated Fatty Acids Were Inversely Associated with Cardiovascular Health: A Prospective Cohort Study and Meta-Analysis. Nutrients 2020; 12:nu12092709. [PMID: 32899794 PMCID: PMC7551797 DOI: 10.3390/nu12092709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Saturated fatty acids with different chain lengths have different biological activities, but little is known about very-long-chain saturated fatty acids (VLCSFAs). This study investigated the associations between the circulating VLCSFAs and cardiovascular health. This community-based cohort study included 2198 adults without carotid artery plaques (CAPs) at baseline. The percentage of baseline erythrocyte VLCSFA (arachidic acid (C20:0), behenic acid (C22:0), and lignoceric acid (C24:0)) was measured by gas chromatography. The presence of CAPs was determined at baseline and every 3 years thereafter by ultrasound examination. A meta-analysis was conducted to summarize the pooled associations between circulating VLCSFAs and the risk of cardiovascular diseases (CVDs). During a median of 7.2 years of follow-up, 573 women (35.1%) and 281 men (49.6%) were identified as CAP incident cases. VLCSFAs were inversely related with CAP risk in women (all p-trend <0.05) but not in men. Multivariate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of CAPs for the highest (vs. lowest) quartile were 0.80 (0.63–1.01) for C20:0, 0.71 (0.56–0.89) for C22:0, 0.75 (0.59–0.94) for C24:0, and 0.69 (0.55–0.87) for total VLCSFAs in women. The pooled HRs (95% CIs) of CVDs for the highest (vs. lowest) circulating VLCSFAs from seven studies including 8592 participants and 3172 CVD events were 0.67 (0.57–0.79) for C20:0, 0.66 (0.48–0.90) for C22:0, and 0.57 (0.42–0.79) for C24:0, respectively. Our findings suggested that circulating VLCSFAs were inversely associated with cardiovascular health.
Collapse
|
155
|
Seah JYH, Chew WS, Torta F, Khoo CM, Wenk MR, Herr DR, Choi H, Tai ES, van Dam RM. Plasma sphingolipids and risk of cardiovascular diseases: a large-scale lipidomic analysis. Metabolomics 2020; 16:89. [PMID: 32816082 DOI: 10.1007/s11306-020-01709-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Sphingolipids are a diverse class of lipids with various roles in cell functions and subclasses such as ceramides have been associated with cardiovascular diseases (CVD) in previous studies. OBJECTIVES We aimed to measure molecularly-distinct sphingolipids via a large-scale lipidomic analysis and expand the literature to an Asian population. METHODS We performed a lipidomics evaluation of 79 molecularly distinct sphingolipids in the plasma of 2627 ethnically-Chinese Singaporeans. RESULTS During a mean follow-up of 12.9 years, we documented 152 cases of major CVD (non-fatal myocardial infarction, stroke and cardiovascular death). Total ceramide concentrations were not associated with CVD risk [hazard ratio (HR), 0.99; 95% CI 0.81-1.21], but higher circulating total monohexosylceramides (HR, 1.22; 95% CI 1.03, 1.45), total long-chain sphingolipids (C16-C18) (HR, 1.22; 95% CI 1.02, 1.45) and total 18:1 sphingolipids (HR, 1.21; 95% CI 1.01, 1.46) were associated with higher CVD risk after adjusting for conventional CVD risk factors. CONCLUSIONS Our results do not support the hypothesis that higher ceramide concentrations are linked to higher CVD risk, but suggest that other classes of sphingolipids may affect CVD risk.
Collapse
Affiliation(s)
- Jowy Yi Hoong Seah
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), 12 Science Drive 2, #10-01, Singapore, 117549, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, NUS, Singapore, 119077, Singapore.
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUS, Singapore, 117600, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Singapore, 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, NUS, Singapore, 117456, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, NUS and National University Health System, Singapore, 119228, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Singapore, 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, NUS, Singapore, 117456, Singapore
- Department of Biological Sciences, Faculty of Science, NUS, Singapore, 117558, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUS, Singapore, 117600, Singapore
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), 12 Science Drive 2, #10-01, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, NUS and National University Health System, Singapore, 119228, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, 138673, Singapore
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), 12 Science Drive 2, #10-01, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, NUS and National University Health System, Singapore, 119228, Singapore
- Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), 12 Science Drive 2, #10-01, Singapore, 117549, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, NUS, Singapore, 119077, Singapore.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
156
|
Wilson KA, MacDermott-Opeskin HI, Riley E, Lin Y, O'Mara ML. Understanding the Link between Lipid Diversity and the Biophysical Properties of the Neuronal Plasma Membrane. Biochemistry 2020; 59:3010-3018. [PMID: 32786397 DOI: 10.1021/acs.biochem.0c00524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell membranes contain incredible diversity in the chemical structures of their individual lipid species and the ratios in which these lipids are combined to make membranes. Nevertheless, our current understanding of how each of these components affects the properties of the cell membrane remains elusive, in part due to the difficulties in studying the dynamics of membranes at high spatiotemporal resolution. In this work, we use coarse-grained molecular dynamics simulations to investigate how individual lipid species contribute to the biophysical properties of the neuronal plasma membrane. We progress through eight membranes of increasing chemical complexity, ranging from a simple POPC/CHOL membrane to a previously published neuronal plasma membrane [Ingólfsson, H. I., et al. (2017) Biophys. J. 113 (10), 2271-2280] containing 49 distinct lipid species. Our results show how subtle chemical changes can affect the properties of the membrane and highlight the lipid species that give the neuronal plasma membrane its unique biophysical properties. This work has potential far-reaching implications for furthering our understanding of cell membranes.
Collapse
Affiliation(s)
- Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Hugo I MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Eden Riley
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Yiechang Lin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
157
|
Nguyen TD, Schulze PC. Lipid in the midst of metabolic remodeling - Therapeutic implications for the failing heart. Adv Drug Deliv Rev 2020; 159:120-132. [PMID: 32791076 DOI: 10.1016/j.addr.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
A healthy heart relies on an intact cardiac lipid metabolism. Fatty acids represent the major source for ATP production in the heart. Not less importantly, lipids are directly involved in critical processes such as cell growth, proliferation, and cell death by functioning as building blocks or signaling molecules. In the development of heart failure, perturbations in fatty acid utilization impair cardiac energetics. Furthermore, they may affect glucose and amino acid metabolism and induce the synthesis of several lipid intermediates, whose biological functions are still poorly understood. This work outlines the pivotal role of lipid metabolism in the heart and provides a lipocentric view of metabolic remodeling in heart failure. We will also critically revisit therapeutic attempts targeting cardiac lipid metabolism in heart failure and propose specific strategies for future investigations in this regard.
Collapse
|
158
|
Kim S, Jung H, Kim M, Moon J, Ban G, Kim SJ, Yoo H, Park H. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020; 75:1991-2004. [PMID: 32072647 DOI: 10.1111/all.14236] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is associated with inflammatory dysregulation, but the underlying metabolic signatures are unclear. This study aimed to classify asthma inflammatory phenotypes based on cellular and metabolic features. METHODS To determine cellular and metabolic profiles, we assessed inflammatory cell markers using flow cytometry, sphingolipid (SL) metabolites using LC-MS/MS, and serum cytokines using ELISA. Targeted gene polymorphisms were determined to identify genetic predispositions related to the asthma inflammatory phenotype. RESULTS In total, 137 patients with asthma and 20 healthy controls (HCs) were enrolled. Distinct cellular and metabolic profiles were found between them; patients with asthma showed increased expressions of inflammatory cell markers and higher levels of SL metabolites compared to HCs (P < .05 for all). Cellular markers (CD66+ neutrophils, platelet-adherent eosinophils) and SL metabolic markers (C16:0 and C24:0 ceramides) for uncontrolled asthma were also identified; higher levels were observed in uncontrolled asthma compared to controlled asthma (P < .05 for all). Asthmatics patients with higher levels of CD66+ neutrophils had lower FEV1(%), higher ACQ (but lower AQLO) scores, and higher sphingosine and C16:0 ceramide levels compared to those with low levels of CD66+ neutrophils. Asthmatics patients with higher levels of platelet-adherent eosinophils had higher S1P levels compared to those with lower levels of platelet-adherent eosinophils. Patients carrying TT genotype of ORMDL3 had more CD66+ neutrophils; those with AG/ GG genotypes of SGMS1 exhibited higher platelet-adherent eosinophils. CONCLUSION Patients with uncontrolled asthma possess distinct inflammatory phenotypes including increased CD66+ neutrophils and platelet-adherent eosinophils, with an imbalanced ceramide/S1P rheostat, potentially involving ORMDL3 and SGMS1 gene polymorphisms. Ceramide/S1P synthesis could be targeted to control airway inflammation.
Collapse
Affiliation(s)
- Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Hae‐Won Jung
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ji‐Young Moon
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ga‐Young Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Department of Pulmonary, Allergy, and Critical Care Medicine Kangdong Sacred Heart HospitalHallym University College of Medicine Institute for Life Sciences Seoul South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
159
|
Blanco-Sánchez B, Clément A, Stednitz SJ, Kyle J, Peirce JL, McFadden M, Wegner J, Phillips JB, Macnamara E, Huang Y, Adams DR, Toro C, Gahl WA, Malicdan MCV, Tifft CJ, Zink EM, Bloodsworth KJ, Stratton KG, Koeller DM, Metz TO, Washbourne P, Westerfield M. yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development. PLoS Genet 2020; 16:e1008841. [PMID: 32544203 PMCID: PMC7319359 DOI: 10.1371/journal.pgen.1008841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 06/26/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.
Collapse
Affiliation(s)
| | - Aurélie Clément
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sara J. Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jennifer Kyle
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Judy L. Peirce
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Marcie McFadden
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jennifer B. Phillips
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ellen Macnamara
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Huang
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. Adams
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Camilo Toro
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - May Christine V. Malicdan
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia J. Tifft
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erika M. Zink
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kent J. Bloodsworth
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kelly G. Stratton
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | | | - David M. Koeller
- Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Thomas O. Metz
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
160
|
Procházková J, Slavík J, Bouchal J, Levková M, Hušková Z, Ehrmann J, Ovesná P, Kolář Z, Skalický P, Straková N, Zapletal O, Kozubík A, Hofmanová J, Vondráček J, Machala M. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158742. [PMID: 32447053 DOI: 10.1016/j.bbalip.2020.158742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Monika Levková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Zlata Hušková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Jiří Ehrmann
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | | | | | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
161
|
Fretts AM, Jensen PN, Hoofnagle A, McKnight B, Howard BV, Umans J, Yu C, Sitlani C, Siscovick DS, King IB, Sotoodehnia N, Lemaitre RN. Plasma Ceramide Species Are Associated with Diabetes Risk in Participants of the Strong Heart Study. J Nutr 2020; 150:1214-1222. [PMID: 31665380 PMCID: PMC7198314 DOI: 10.1093/jn/nxz259] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Few studies have assessed the associations of ceramides and sphingomyelins (SMs) with diabetes in humans. OBJECTIVE We assessed associations of 15 circulating ceramides and SM species with incident diabetes in 2 studies. METHODS The analysis included 435 American-Indian participants from the Strong Heart Study (nested case-control design for analyses; mean age: 57 y; 34% male; median time until diabetes 4.3 y for cases) and 1902 participants from the Strong Heart Family Study (prospective design for analyses; mean age: 37 y; 39% male; median 12.5 y of follow-up). Sphingolipid species were measured using stored plasma samples by sequential LC and MS. Using logistic regression and parametric survival models within studies, and an inverse-variance-weighted meta-analysis across studies, we examined associations of 15 ceramides and SM species with incident diabetes. RESULTS There were 446 cases of incident diabetes across the studies. Higher circulating concentrations of ceramides containing stearic acid (Cer-18), arachidic acid (Cer-20), and behenic acid (Cer-22) were each associated with a higher risk of diabetes. The RRs for incident diabetes per 1 SD of each log ceramide species (μM) were 1.22 (95% CI: 1.09, 1.37) for Cer-18, 1.18 (95% CI: 1.06, 1.31) for Cer-20, and 1.20 (95% CI: 1.08, 1.32) for Cer-22. Although the magnitude of the risk estimates for the association of ceramides containing lignoceric acid (Cer-24) with diabetes was similar to those for Cer-18, Cer-20, and Cer-22 (RR = 1.13; 95% CI: 1.01, 1.26), the association was not statistically significant after correction for multiple testing (P = 0.007). Ceramides carrying palmitic acid (Cer-16), SMs, glucosyl-ceramides, or a lactosyl-ceramide were not associated with diabetes risk. CONCLUSIONS Higher concentrations of circulating Cer-18, Cer-20, and Cer-22 were associated with a higher risk of developing diabetes in 2 studies of American-Indian adults. This trial was registered at clinicaltrials.gov as NCT00005134.
Collapse
Affiliation(s)
- Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA,Address correspondence to AMF (e-mail: )
| | - Paul N Jensen
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Barbara McKnight
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA,Georgetown and Howard Universities Center for Translational Science, Washington, DC, USA
| | - Jason Umans
- MedStar Health Research Institute, Hyattsville, MD, USA
| | - Chaoyu Yu
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Colleen Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA,Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
162
|
Le Joncour V, Filppu P, Hyvönen M, Holopainen M, Turunen SP, Sihto H, Burghardt I, Joensuu H, Tynninen O, Jääskeläinen J, Weller M, Lehti K, Käkelä R, Laakkonen P. Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 2020; 11:emmm.201809034. [PMID: 31068339 PMCID: PMC6554674 DOI: 10.15252/emmm.201809034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The current clinical care of glioblastomas leaves behind invasive, radio‐ and chemo‐resistant cells. We recently identified mammary‐derived growth inhibitor (MDGI/FABP3) as a biomarker for invasive gliomas. Here, we demonstrate a novel function for MDGI in the maintenance of lysosomal membrane integrity, thus rendering invasive glioma cells unexpectedly vulnerable to lysosomal membrane destabilization. MDGI silencing impaired trafficking of polyunsaturated fatty acids into cells resulting in significant alterations in the lipid composition of lysosomal membranes, and subsequent death of the patient‐derived glioma cells via lysosomal membrane permeabilization (LMP). In a preclinical model, treatment of glioma‐bearing mice with an antihistaminergic LMP‐inducing drug efficiently eradicated invasive glioma cells and secondary tumours within the brain. This unexpected fragility of the aggressive infiltrating cells to LMP provides new opportunities for clinical interventions, such as re‐positioning of an established antihistamine drug, to eradicate the inoperable, invasive, and chemo‐resistant glioma cells from sustaining disease progression and recurrence.
Collapse
Affiliation(s)
- Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija Hyvönen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - S Pauliina Turunen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Harri Sihto
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Isabel Burghardt
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Heikki Joensuu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | | | - Michael Weller
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland .,Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
163
|
Markowski AR, Błachnio-Zabielska AU, Guzińska-Ustymowicz K, Markowska A, Pogodzińska K, Roszczyc K, Zińczuk J, Zabielski P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules 2020; 10:E632. [PMID: 32325909 PMCID: PMC7225954 DOI: 10.3390/biom10040632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Much attention is paid to different sphingolipid pathways because of their possible use in diagnostics and treatment. However, the activity status and significance of ceramide pathways in colorectal cancer are still unclear. We analyzed colorectal cancer patients to evaluate sphingolipid profiles in the blood, colorectal cancer (CRC) tissues, and healthy surrounding colorectal tissues of the same patient, simultaneously, using liquid chromatography coupled with triple quadrupole mass spectrometry. Furthermore, we measured protein expression of de novo ceramide synthesis enzymes and mitochondrial markers in tissues using western blot. We confirmed the different sphingolipid contents in colorectal cancer tissue compared to healthy surrounding tissues. Furthermore, we showed changed amounts of several ceramides in more advanced colorectal cancer tissue and found a prominently higher circulating level of several of them. Moreover, we observed a relationship between the amounts of some ceramide species in colorectal cancer tissue and plasma depending on the stage of colorectal cancer according to TNM (tumors, nodes, metastasis) classification. We think that the combined measurement of several ceramide concentrations in plasma can help distinguish early-stage lesions from advanced colorectal cancer and can help produce a screening test to detect early colorectal cancer.
Collapse
Affiliation(s)
- Adam R. Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Agnieszka U. Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, 13 Jerzy Waszyngton Street, 15-269 Bialystok, Poland
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, 2A Adam Mickiewicz Street, 15-222 Bialystok, Poland;
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Kamila Roszczyc
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzy Waszyngton Street, 15-269 Bialystok, Poland;
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| |
Collapse
|
164
|
Associations between specific plasma ceramides and severity of coronary-artery stenosis assessed by coronary angiography. DIABETES & METABOLISM 2020; 46:150-157. [DOI: 10.1016/j.diabet.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
|
165
|
Jensen PN, Fretts AM, Hoofnagle AN, Sitlani CM, McKnight B, King IB, Siscovick DS, Psaty BM, Heckbert SR, Mozaffarian D, Sotoodehnia N, Lemaitre RN. Plasma Ceramides and Sphingomyelins in Relation to Atrial Fibrillation Risk: The Cardiovascular Health Study. J Am Heart Assoc 2020; 9:e012853. [PMID: 32019406 PMCID: PMC7070192 DOI: 10.1161/jaha.119.012853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Ceramides exhibit multiple biological activities that may influence the pathophysiological characteristics of atrial fibrillation (AF). Whether the length of the saturated fatty acid carried by the ceramide or their sphingomyelin precursors are associated with AF risk is not known. Methods and Results Among 4206 CHS (Cardiovascular Health Study) participants (mean age, 76 years; 40% men) who were free of prevalent AF at baseline, we identified 1198 incident AF cases over a median 8.7 years of follow‐up. We examined 8 sphingolipid species: ceramide and sphingomyelin species with palmitic acid and species with very‐long‐chain saturated fatty acids: arachidic; behenic; and lignoceric. In adjusted Cox regression analyses, ceramides and sphingomyelins with very‐long‐chain saturated fatty acids were associated with reduced AF risk (ie, per 2‐fold higher ceramide with behenic acid hazard ratio, 0.71; 95% CI, 0.59–0.86; sphingomyelin with behenic acid hazard ratio, 0.60; 95% CI, 0.46–0.77). In contrast, ceramides and sphingomyelins with palmitic acid were associated with increased AF risk (ceramide with palmitic acid hazard ratio, 1.31; 95% CI, 1.03–1.66; sphingomyelin with palmitic acid hazard ratio, 1.73; 95% CI, 1.18–2.55). Associations were attenuated with adjustment for NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide), but did not differ significantly by age, sex, race, body mass index, or history of coronary heart disease. Conclusions Our findings suggest that several ceramide and sphingomyelin species are associated with incident AF, and that these associations differ on the basis of the fatty acid. Ceramides and sphingomyelins with palmitic acid were associated with increased AF risk, whereas ceramides and sphingomyelins with very‐long‐chain saturated fatty acids were associated with reduced AF risk.
Collapse
Affiliation(s)
- Paul N Jensen
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| | - Amanda M Fretts
- Department of Epidemiology University of Washington Seattle WA
| | | | - Colleen M Sitlani
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| | | | - Irena B King
- Department of Internal Medicine University of New Mexico Albuquerque NM
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA.,Department of Health Services University of Washington Seattle WA.,Kaiser Permanente Washington Health Research Institute Seattle WA
| | | | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA.,Department of Epidemiology University of Washington Seattle WA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| |
Collapse
|
166
|
Del Gaudio I, Sasset L, Di Lorenzo A, Wadsack C. Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia. Int J Mol Sci 2020; 21:ijms21031019. [PMID: 32033121 PMCID: PMC7037072 DOI: 10.3390/ijms21031019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Bioactive sphingolipids are emerging as key regulators of vascular function and homeostasis. While most of the clinical studies have been devoted to profile circulating sphingolipids in maternal plasma, little is known about the role of the sphingolipid at the feto-placental vasculature, which is in direct contact with the offspring circulation. Our study aims to compare the sphingolipid profile of normal with preeclamptic (PE) placental chorionic arteries and isolated endothelial cells, with the goal of unveiling potential underlying pathomechanisms in the vasculature. Dihydrosphingosine and sphingomyelin (SM) concentrations (C16:0-, C18:0-, and C24:0- sphingomyelin) were significantly increased in chorionic arteries of preeclamptic placentas, whereas total ceramide, although showing a downward trend, were not statistically different. Moreover, RNA and immunofluorescence analysis showed impaired sphingosine-1-phosphate (S1P) synthesis and signaling in PE vessels. Our data reveal that the exposure to a deranged maternal intrauterine environment during PE alters the sphingolipid signature and gene expression on the fetal side of the placental vasculature. This pathological remodeling consists in increased serine palmitoyltransferase (SPT) activity and SM accrual in PE chorionic arteries, with concomitance impairment endothelial S1P signaling in the endothelium of these vessels. The increase of endothelial S1P phosphatase, lyase and S1PR2, and blunted S1PR1 expression support the onset of the pathological phenotype in chorionic arteries.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Correspondence: (C.W.); (A.D.L.); Tel.: +43-316-385-81074 (C.W.); +1-212-746-6476 (A.D.L.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Correspondence: (C.W.); (A.D.L.); Tel.: +43-316-385-81074 (C.W.); +1-212-746-6476 (A.D.L.)
| |
Collapse
|
167
|
Ardisson Korat AV, Malik VS, Furtado JD, Sacks F, Rosner B, Rexrode KM, Willett WC, Mozaffarian D, Hu FB, Sun Q. Circulating Very-Long-Chain SFA Concentrations Are Inversely Associated with Incident Type 2 Diabetes in US Men and Women. J Nutr 2020; 150:340-349. [PMID: 31618417 PMCID: PMC7308624 DOI: 10.1093/jn/nxz240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Very-long-chain SFAs (VLCSFAs), such as arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0), have demonstrated inverse associations with cardiometabolic conditions, although more evidence is needed to characterize their relation with risk of type 2 diabetes (T2D). In addition, little is known regarding their potential dietary and lifestyle predictors. OBJECTIVE We aimed to examine the association of plasma and erythrocyte concentrations of VLCSFAs with incident T2D risk. METHODS We used existing measurements of fatty acid concentrations in plasma and erythrocytes among 2854 and 2831 participants in the Nurses' Health Study (NHS) and Health Professionals Follow-Up Study (HPFS), respectively. VLCSFAs were measured using GLC, and individual fatty acid concentrations were expressed as a percentage of total fatty acids. Incident T2D cases were identified by self-reports and confirmed by a validated supplementary questionnaire. Cox proportional hazards regression was used to evaluate the association between VLCSFAs and T2D, adjusting for demographic, lifestyle, and dietary variables. RESULTS During 39,941 person-years of follow-up, we documented 243 cases of T2D. Intakes of peanuts, peanut butter, vegetable fat, dairy fat, and palmitic/stearic (16:0-18:0) fatty acids were significantly, albeit weakly, correlated with plasma and erythrocyte VLCSFA concentrations (|rs| ≤ 0.19). Comparing the highest with the lowest quartiles of plasma concentrations, pooled HRs (95% CIs) were 0.51 (0.35, 0.75) for arachidic acid, 0.43 (0.28, 0.64) for behenic acid, 0.40 (0.27, 0.61) for lignoceric acid, and 0.41 (0.27, 0.61) for the sum of VLCSFAs, after multivariate adjustments for demographic, lifestyle, and dietary factors. For erythrocyte VLCSFAs, only arachidic acid and behenic acid concentrations were inversely associated with T2D risk. CONCLUSIONS Our findings suggest that, in US men and women, higher plasma concentrations of VLCSFAs are associated with lower risk of T2D. More research is needed to understand the mechanistic pathways underlying these associations.
Collapse
Affiliation(s)
- Andres V Ardisson Korat
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vasanti S Malik
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Frank Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Bernard Rosner
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dariush Mozaffarian
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
168
|
Abstract
The effect of dietary fats on cardiometabolic diseases, including cardiovascular diseases and type 2 diabetes mellitus, has generated tremendous interest. Many earlier investigations focused on total fat and conventional fat classes (such as saturated and unsaturated fats) and their influence on a limited number of risk factors. However, dietary fats comprise heterogeneous molecules with diverse structures, and growing research in the past two decades supports correspondingly complex health effects of individual dietary fats. Moreover, health effects of dietary fats might be modified by additional factors, such as accompanying nutrients and food-processing methods, emphasizing the importance of the food sources. Accordingly, the rapidly increasing scientific findings on dietary fats and cardiometabolic diseases have generated debate among scientists, caused confusion for the general public and present challenges for translation into dietary advice and policies. This Review summarizes the evidence on the effects of different dietary fats and their food sources on cell function and on risk factors and clinical events of cardiometabolic diseases. The aim is not to provide an exhaustive review but rather to focus on the most important evidence from randomized controlled trials and prospective cohort studies and to highlight current areas of controversy and the most relevant future research directions for understanding how to improve the prevention and management of cardiometabolic diseases through optimization of dietary fat intake.
Collapse
|
169
|
Li X, Huang Y, Zhang W, Yang C, Su W, Wu Y, Chen X, Zhou A, Huo X, Xia W, Xu S, Chen D, Li Y. Association of circulating saturated fatty acids with the risk of pregnancy-induced hypertension: a nested case-control study. Hypertens Res 2020; 43:412-421. [PMID: 31919480 DOI: 10.1038/s41440-019-0383-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022]
Abstract
Circulating saturated fatty acids (SFAs) have been associated with cardiovascular disease. However, little is known about the relationship of SFAs with the risk of pregnancy-induced hypertension (PIH). We conducted a nested case-control study to examine the associations between circulating SFAs and the risk of PIH. A total of 92 PIH cases were matched to 184 controls by age (±2 years) and infant sex from a birth cohort study conducted in Wuhan, China. Levels of circulating fatty acids in plasma were measured using gas chromatography-mass spectrometry. Conditional logistic regressions were conducted to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Even-chain SFAs, including myristic acid (14:0) and palmitic acid (16:0), were positively associated with the risk of PIH [ORs (95% CIs): 2.92 (1.27, 6.74) for 14:0 and 2.85 (1.18, 6.89) for 16:0, % by wt]. In contrast, higher levels of very-long-chain SFAs, including arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0), were associated with a lower risk of PIH [ORs (95% CIs): 0.40 (0.17, 0.92) for 20:0, 0.30 (0.12, 0.71) for 22:0 and 0.26 (0.11, 0.64) for 24:0, μg/mL]. For odd-chain SFAs, including pentadecanoic acid (15:0) and heptadecanoic acid (17:0), no significant difference was observed. Our results provided convincing evidence that different subclasses of SFAs showed diverse effects on the risk of PIH. This suggests that dietary very-long-chain SFAs may be a novel means by which to prevent hypertension. Future studies are required to confirm these associations and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xinping Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yichao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Weijie Su
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Aifen Zhou
- Wuhan Medical & Healthcare Center for Women and Children, Wuhan, Hubei, PR China
| | - Xia Huo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
170
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune responses and beta cell biology and their potential as targets for treatment of T1D.
Collapse
|
171
|
Efficacy of Optimized Treatment Protocol Using LAU-7b Formulation against Ovalbumin (OVA) and House Dust Mite (HDM) -Induced Allergic Asthma in Atopic Hyperresponsive A/J Mice. Pharm Res 2020; 37:31. [PMID: 31915990 DOI: 10.1007/s11095-019-2743-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE To assess the efficacy of the novel clinical formulation of fenretinide (LAU-7b) for the treatment of allergic asthma. To study the association between LAU-7b treatment in allergic asthma and the modulation of very long chain ceramides (VLCC). METHODS We used two allergens (OVA and HDM) to induce asthma in mouse models and we established a treatment protocol with LAU-7b. The severity of allergic asthma reaction was quantified by measuring the airway resistance, quantifying lung inflammatory cell infiltration (Haematoxylin and eosin stain) and mucus production (Periodic acid Schiff satin). IgE levels were measured by ELISA. Immunophenotyping of T cells was done using Fluorescence-activated cell sorting (FACS) analysis. The analysis of the specific species of lipids and markers of oxidation was performed using mass spectrometry. RESULTS Our data demonstrate that 10 mg/kg of LAU-7b was able to protect OVA- and HDM-challenged mice against increase in airway hyperresponsiveness, influx of inflammatory cells into the airways, and mucus production without affecting IgE levels. Treatment with LAU-7b significantly increased percentage of regulatory T cells and CD4+ IL-10-producing T cells and significantly decreased percentage of CD4+ IL-4-producing T cells. Our data also demonstrate a strong association between the improvement in the lung physiology and histology parameters and the drug-induced normalization of the aberrant distribution of ceramides in allergic mice. CONCLUSION 9 days of 10 mg/kg of LAU-7b daily treatment protects the mice against allergen-induced asthma and restores VLCC levels in the lungs and plasma.
Collapse
|
172
|
Kovilakath A, Cowart LA. Sphingolipid Mediators of Myocardial Pathology. J Lipid Atheroscler 2020; 9:23-49. [PMID: 32821720 PMCID: PMC7379069 DOI: 10.12997/jla.2020.9.1.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the leading cause of mortality worldwide. While the causes of cardiomyopathy continue to be elucidated, current evidence suggests that aberrant bioactive lipid signaling plays a crucial role as a component of cardiac pathophysiology. Sphingolipids have been implicated in the pathophysiology of cardiovascular disease, as they regulate numerous cellular processes that occur in primary and secondary cardiomyopathies. Experimental evidence gathered over the last few decades from both in vitro and in vivo model systems indicates that inhibitors of sphingolipid synthesis attenuate a variety of cardiomyopathic symptoms. In this review, we focus on various cardiomyopathies in which sphingolipids have been implicated and the potential therapeutic benefits that could be gained by targeting sphingolipid metabolism.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
173
|
Yaribeygi H, Bo S, Ruscica M, Sahebkar A. Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabet Med 2020; 37:11-19. [PMID: 30803019 DOI: 10.1111/dme.13943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that ceramides can play an important pathophysiological role in the development of diabetes. Ceramides are primarily recognized as lipid bilayer building blocks, but recent work has shown that these endogenous molecules are important intracellular signalling mediators and may exert some diabetogenic effects via molecular pathways involved in insulin resistance, β-cell apoptosis and inflammation. In the present review, we consider the available evidence on the possible roles of ceramides in diabetes mellitus and introduce eight different molecular mechanisms mediating the diabetogenic action of ceramides, categorized into those predominantly related to insulin resistance vs those mainly implicated in β-cell dysfunction. Specifically, the mechanistic evidence involves β-cell apoptosis, pancreatic inflammation, mitochondrial stress, endoplasmic reticulum stress, adipokine release, insulin receptor substrate 1 phosphorylation, oxidative stress and insulin synthesis. Collectively, the evidence suggests that therapeutic agents aimed at reducing ceramide synthesis and lowering circulating levels may be beneficial in the prevention and/or treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- H Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A Sahebkar
- Neurogenic Inflammation Research Center, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
174
|
Wilson KA, Wang L, MacDermott-Opeskin H, O'Mara ML. The Fats of Life: Using Computational Chemistry to Characterise the Eukaryotic Cell Membrane. Aust J Chem 2020. [DOI: 10.1071/ch19353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our current knowledge of the structural dynamics and complexity of lipid bilayers is still developing. Computational techniques, especially molecular dynamics simulations, have increased our understanding significantly as they allow us to model functions that cannot currently be experimentally resolved. Here we review available computational tools and techniques, the role of the major lipid species, insights gained into lipid bilayer structure and function from molecular dynamics simulations, and recent progress towards the computational modelling of the physiological complexity of eukaryotic lipid bilayers.
Collapse
|
175
|
Abstract
Lipidomics data generated using untargeted mass spectrometry techniques can offer great biological insight to metabolic status and disease diagnoses. As the community's ability to conduct large-scale studies with deep coverage of the lipidome expands, approaches to analyzing untargeted data and extracting biological insight are needed. Currently, the function of most individual lipids are not known; however, meaningful biological information can be extracted. Here, I will describe a step-by-step approach to identify patterns and trends in untargeted mass spectrometry lipidomics data to assist users in extracting information leading to a greater understanding of biological systems.
Collapse
|
176
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
177
|
Zhang T, Trauger SA, Vidoudez C, Doane KP, Pluimer BR, Peterson RT. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish. Sci Rep 2019; 9:19939. [PMID: 31882772 PMCID: PMC6934720 DOI: 10.1038/s41598-019-56466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Extensive characterisations of the zebrafish genome and proteome have established a foundation for the use of the zebrafish as a model organism; however, characterisation of the zebrafish lipidome has not been as comprehensive. In an effort to expand current knowledge of the zebrafish sphingolipidome, a Parallel Reaction Monitoring (PRM)-based liquid chromatography-mass spectrometry (LC-MS) method was developed to comprehensively quantify zebrafish ceramides. Comparison between zebrafish and a human cell line demonstrated remarkable overlap in ceramide composition, but also revealed a surprising lack of most sphingadiene-containing ceramides in the zebrafish. PRM analysis of zebrafish embryogenesis identified developmental stage-specific ceramide changes based on long chain base (LCB) length. A CRISPR-Cas9-generated zebrafish model of Farber disease exhibited reduced size, early mortality, and severe ceramide accumulation where the amplitude of ceramide change depended on both acyl chain and LCB lengths. Our method adds an additional level of detail to current understanding of the zebrafish lipidome, and could aid in the elucidation of structure-function associations in the context of lipid-related diseases.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Kim P Doane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Brock R Pluimer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
178
|
A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 2019; 77:101020. [PMID: 31870728 DOI: 10.1016/j.plipres.2019.101020] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations. The interaction between SFAs and TLR4 may be modulated through the myeloid differentiation primary response gene 88-dependent and independent signaling pathway. Greater understanding of the crosstalk between dietary SFAs and TLR4 signaling in the pathogenesis of metabolic imbalance may facilitate the design of a more efficient pharmacological strategy to alleviate the risk of developing chronic diseases elicited in part by fatty acid overload. The current review discusses recent advances in the impact of crosstalk between SFAs and TLR4 on inflammation and insulin resistance in multiple cell types, tissues and organs in the context of metabolic dysregulation.
Collapse
|
179
|
Lemaitre RN, McKnight B, Sotoodehnia N, Fretts AM, Qureshi WT, Song X, King IB, Sitlani CM, Siscovick DS, Psaty BM, Mozaffarian D. Circulating Very Long-Chain Saturated Fatty Acids and Heart Failure: The Cardiovascular Health Study. J Am Heart Assoc 2019; 7:e010019. [PMID: 30608197 PMCID: PMC6404213 DOI: 10.1161/jaha.118.010019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Circulating very‐long‐chain saturated fatty acids (VLSFAs) are integrated biomarkers of diet and metabolism that may point to new risk pathways and potential targets for heart failure (HF) prevention. The associations of VLSFA to HF in humans are not known. Methods and Results Using a cohort study design, we studied the associations of serially measured plasma phospholipid VLSFA with incident HF in the Cardiovascular Health Study. We investigated the associations of time‐varying levels of the 3 major circulating VLSFAs, lignoceric acid (24:0), behenic acid (22:0), and arachidic acid (20:0), with the risk of incident HF using Cox regression. During 45030 person‐years among 4249 participants, we identified 1304 cases of incident HF, including 489 with preserved and 310 with reduced ejection fraction. Adjusting for major HF risk factors and other circulating fatty acids, higher levels of each VLSFAs were associated with lower risk of incident HF (P trend≤0.0007 each). The hazard ratio comparing the highest quintile to the lowest quintile was 0.67 (95% confidence interval, 0.55–0.81) for 24:0, 0.72 (95% confidence interval, 0.60–0.87) for 22:0 and 0.72 (95% confidence interval, 0.59–0.88) for 20:0. The associations were similar in subgroups defined by sex, age, body mass index, coronary heart disease, and diabetes mellitus. Among those with ejection fraction data, the associations appeared similar for those with preserved and with reduced ejection fraction. Conclusions Higher levels of circulating VLSFAs are associated with lower risk of incident HF in older adults. These novel associations should prompt further research on the role of VLSFA in HF, including relevant new risk pathways. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00005133.
Collapse
Affiliation(s)
- Rozenn N Lemaitre
- 1 Department of Medicine Cardiovascular Health Research Unit University of Washington Seattle WA
| | - Barbara McKnight
- 2 Department of Biostatistics University of Washington Seattle WA
| | - Nona Sotoodehnia
- 1 Department of Medicine Cardiovascular Health Research Unit University of Washington Seattle WA
| | - Amanda M Fretts
- 3 Department of Epidemiology University of Washington Seattle WA
| | - Waqas T Qureshi
- 4 School of Medicine Wake Forest University Winston Salem NC
| | - Xiaoling Song
- 5 Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle WA
| | - Irena B King
- 6 Department of Internal Medicine University of New Mexico Albuquerque NM
| | - Colleen M Sitlani
- 1 Department of Medicine Cardiovascular Health Research Unit University of Washington Seattle WA
| | - David S Siscovick
- 7 Institute for Urban Health New York Academy of Medicine New York NY
| | - Bruce M Psaty
- 1 Department of Medicine Cardiovascular Health Research Unit University of Washington Seattle WA.,3 Department of Epidemiology University of Washington Seattle WA.,8 Department of Health Services University of Washington Seattle WA.,9 Kaiser Permanente Washington Health Research Institute Seattle WA
| | | |
Collapse
|
180
|
Holm LJ, Haupt-Jorgensen M, Giacobini JD, Hasselby JP, Bilgin M, Buschard K. Fenofibrate increases very-long-chain sphingolipids and improves blood glucose homeostasis in NOD mice. Diabetologia 2019; 62:2262-2272. [PMID: 31410530 PMCID: PMC6861358 DOI: 10.1007/s00125-019-04973-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Sphingolipid metabolism regulates beta cell biology and inflammation and is abnormal at the onset of type 1 diabetes. Fenofibrate, a regulator of sphingolipid metabolism, is known to prevent diabetes in NOD mice. Here, we aimed to investigate the effects of fenofibrate on the pancreatic lipidome, pancreas morphology, pancreatic sympathetic nerves and blood glucose homeostasis in NOD mice. METHODS We treated female NOD mice with fenofibrate from 3 weeks of age. The pancreatic lipidome was analysed using MS. Analysis of pancreas and islet volume was performed by stereology. Islet sympathetic nerve fibre volume was evaluated using tyrosine hydroxylase staining. The effect on blood glucose homeostasis was assessed by measuring non-fasting blood glucose from age 12 to 30 weeks. Furthermore, we measured glucose tolerance, fasting insulin and glucagon levels, and insulin tolerance. RESULTS We found that fenofibrate selectively increases the amount of very-long-chain sphingolipids in the pancreas of NOD mice. In addition, we found that fenofibrate causes a remodelling of the pancreatic lipidome with an increased amount of lysoglycerophospholipids. Fenofibrate did not affect islet or pancreas volume, but led to a higher volume of islet sympathetic nerve fibres and tyrosine hydroxylase-positive cells. Fenofibrate-treated NOD mice had a more stable blood glucose, which was associated with reduced non-fasting and increased fasting blood glucose. Furthermore, fenofibrate improved glucose tolerance, reduced fasting glucagon levels and prevented fasting hyperinsulinaemia. CONCLUSIONS/INTERPRETATION These data indicate that fenofibrate alters the pancreatic lipidome to a more anti-inflammatory and anti-apoptotic state. The beneficial effects on islet sympathetic nerve fibres and blood glucose homeostasis indicate that fenofibrate could be used as a therapeutic approach to improve blood glucose homeostasis and prevent diabetes-associated pathologies.
Collapse
Affiliation(s)
- Laurits J Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Haupt-Jorgensen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Jano D Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
181
|
Machala M, Procházková J, Hofmanová J, Králiková L, Slavík J, Tylichová Z, Ovesná P, Kozubík A, Vondráček J. Colon Cancer and Perturbations of the Sphingolipid Metabolism. Int J Mol Sci 2019; 20:E6051. [PMID: 31801289 PMCID: PMC6929044 DOI: 10.3390/ijms20236051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.
Collapse
Affiliation(s)
- Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Lucie Králiková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Poštovská 68/3, 60200 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| |
Collapse
|
182
|
Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J, Nakata T, Arthur TD, Fornelos N, Heim C, Franzosa EA, Watson N, Huttenhower C, Haiser HJ, Dillow G, Graham DB, Finlay BB, Kostic AD, Porter JA, Vlamakis H, Clish CB, Xavier RJ. Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host Microbe 2019; 25:668-680.e7. [PMID: 31071294 DOI: 10.1016/j.chom.2019.04.002] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
Abstract
Sphingolipids are structural membrane components and important eukaryotic signaling molecules. Sphingolipids regulate inflammation and immunity and were recently identified as the most differentially abundant metabolite in stool from inflammatory bowel disease (IBD) patients. Commensal bacteria from the Bacteroidetes phylum also produce sphingolipids, but the impact of these metabolites on host pathways is largely uncharacterized. To determine whether bacterial sphingolipids modulate intestinal health, we colonized germ-free mice with a sphingolipid-deficient Bacteroides thetaiotaomicron strain. A lack of Bacteroides-derived sphingolipids resulted in intestinal inflammation and altered host ceramide pools in mice. Using lipidomic analysis, we described a sphingolipid biosynthesis pathway and revealed a variety of Bacteroides-derived sphingolipids including ceramide phosphoinositol and deoxy-sphingolipids. Annotating Bacteroides sphingolipids in an IBD metabolomic dataset revealed lower abundances in IBD and negative correlations with inflammation and host sphingolipid production. These data highlight the role of bacterial sphingolipids in maintaining homeostasis and symbiosis in the gut.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaobo Ke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | | | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Toru Nakata
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Nadine Fornelos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cortney Heim
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicki Watson
- W. M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, MA 02142, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Henry J Haiser
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Glen Dillow
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandar D Kostic
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Porter
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
183
|
Kunz TC, Kozjak-Pavlovic V. Diverse Facets of Sphingolipid Involvement in Bacterial Infections. Front Cell Dev Biol 2019; 7:203. [PMID: 31608278 PMCID: PMC6761390 DOI: 10.3389/fcell.2019.00203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.
Collapse
Affiliation(s)
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
184
|
Sackmann V, Sinha MS, Sackmann C, Civitelli L, Bergström J, Ansell-Schultz A, Hallbeck M. Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Front Mol Neurosci 2019; 12:200. [PMID: 31555088 PMCID: PMC6724746 DOI: 10.3389/fnmol.2019.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson’s disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.
Collapse
Affiliation(s)
- Valerie Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maitrayee Sardar Sinha
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Livia Civitelli
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Ansell-Schultz
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
185
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019:100998. [PMID: 31445070 DOI: 10.1016/j.plipres.2019.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/18/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
186
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
187
|
Blaess M, Deigner HP. Derailed Ceramide Metabolism in Atopic Dermatitis (AD): A Causal Starting Point for a Personalized (Basic) Therapy. Int J Mol Sci 2019; 20:E3967. [PMID: 31443157 PMCID: PMC6720956 DOI: 10.3390/ijms20163967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023] Open
Abstract
Active rebuilding, stabilizing, and maintaining the lipid barrier of the skin is an encouraging disease management and care concept for dry skin, atopic dermatitis (eczema, neurodermatitis), and psoriasis. For decades, corticosteroids have been the mainstay of topical therapy for atopic dermatitis; however, innovations within the scope of basic therapy are rare. In (extremely) dry, irritated, or inflammatory skin, as well as in lesions, an altered (sphingo)lipid profile is present. Recovery of a balanced (sphingo)lipid profile is a promising target for topical and personalized treatment and prophylaxis. New approaches for adults and small children are still lacking. With an ingenious combination of commonly used active ingredients, it is possible to restore and reinforce the dermal lipid barrier and maintain refractivity. Lysosomes and ceramide de novo synthesis play a key role in attenuation of the dermal lipid barrier. Linoleic acid in combination with amitriptyline in topical medication offers the possibility to relieve patients affected by dry and itchy skin, mild to moderate atopic dermatitis lesions, and eczemas without the commonly occurring serious adverse effects of topical corticosteroids or systemic antibody administration.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI Leipzig, Schillingallee 68, 18057 Rostock, Germany.
| |
Collapse
|
188
|
Alrbyawi H, Poudel I, Dash RP, Srinivas NR, Tiwari AK, Arnold RD, Babu RJ. Role of Ceramides in Drug Delivery. AAPS PharmSciTech 2019; 20:287. [PMID: 31410612 DOI: 10.1208/s12249-019-1497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Ceramides belong to the sphingolipid group of lipids, which serve as both intracellular and intercellular messengers and as regulatory molecules that play essential roles in signal transduction, inflammation, angiogenesis, and metabolic disorders such as diabetes, neurodegenerative diseases, and cancer cell degeneration. Ceramides also play an important structural role in cell membranes by increasing their rigidity, creating micro-domains (rafts and caveolae), and altering membrane permeability; all these events are involved in the cell signaling. Ceramides constitute approximately half of the lipid composition in the human skin contributing to barrier function as well as epidermal signaling as they affect both proliferation and apoptosis of keratinocytes. Incorporation of ceramides in topical preparations as functional lipids appears to alter skin barrier functions. Ceramides also appear to enhance the bioavailability of drugs by acting as lipid delivery systems. They appear to regulate the ocular inflammation signaling, and external ceramides have shown relief in the anterior and posterior eye disorders. Ceramides play a structural role in liposome formulations and enhance the cellular uptake of amphiphilic drugs, such as chemotherapies. This review presents an overview of the various biological functions of ceramides, and their utility in topical, oral, ocular, and chemotherapeutic drug delivery.
Collapse
|
189
|
Chaves-Filho AB, Pinto IFD, Dantas LS, Xavier AM, Inague A, Faria RL, Medeiros MHG, Glezer I, Yoshinaga MY, Miyamoto S. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci Rep 2019; 9:11642. [PMID: 31406145 PMCID: PMC6691112 DOI: 10.1038/s41598-019-48059-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons leading to muscle paralysis and death. While a link between dysregulated lipid metabolism and ALS has been proposed, lipidome alterations involved in disease progression are still understudied. Using a rodent model of ALS overexpressing mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A), we performed a comparative lipidomic analysis in motor cortex and spinal cord tissues of SOD1-G93A and WT rats at asymptomatic (~70 days) and symptomatic stages (~120 days). Interestingly, lipidome alterations in motor cortex were mostly related to age than ALS. In contrast, drastic changes were observed in spinal cord of SOD1-G93A 120d group, including decreased levels of cardiolipin and a 6-fold increase in several cholesteryl esters linked to polyunsaturated fatty acids. Consistent with previous studies, our findings suggest abnormal mitochondria in motor neurons and lipid droplets accumulation in aberrant astrocytes. Although the mechanism leading to cholesteryl esters accumulation remains to be established, we postulate a hypothetical model based on neuroprotection of polyunsaturated fatty acids into lipid droplets in response to increased oxidative stress. Implicated in the pathology of other neurodegenerative diseases, cholesteryl esters appear as attractive targets for further investigations.
Collapse
Affiliation(s)
| | | | - Lucas Souza Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Andre Machado Xavier
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Lucas Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Yukio Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
190
|
Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci (Lond) 2019; 133:1745-1758. [PMID: 31358595 DOI: 10.1042/cs20190587] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
Tumor cells rely on aerobic glycolysis as their main energy resource (Warburg effect). Recent research has highlighted the importance of lipid metabolism in tumor progression, and certain cancers even turn to fatty acids as the main fuel. Related studies have identified alterations of fatty acid metabolism in human bladder cancer (BCa). Our microarray analysis showed that fatty acid metabolism was activated in BCa compared with normal bladder. The free fatty acid (FFA) level was also increased in BCa compared with paracancerous tissues. Inhibition of fatty acid oxidation (FAO) with etomoxir caused lipid accumulation, decreased adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) levels, suppressed BCa cell growth in vitro and in vivo, and reduced motility of BCa cells via affecting epithelial-mesenchymal transition (EMT)-related proteins. Furthermore, etomoxir induced BCa cell cycle arrest at G0/G1 phase through peroxisome proliferator-activated receptor (PPAR) γ-mediated pathway with alterations in fatty acid metabolism associated gene expression. The cell cycle arrest could be reversed by PPARγ antagonist GW9662. Taken together, our results suggest that inhibition of FAO with etomoxir may provide a novel avenue to investigate new therapeutic approaches to human BCa.
Collapse
|
191
|
The lipidome of primary murine white, brite, and brown adipocytes-Impact of beta-adrenergic stimulation. PLoS Biol 2019; 17:e3000412. [PMID: 31369546 PMCID: PMC6692052 DOI: 10.1371/journal.pbio.3000412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/13/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Lipid species patterns are conserved within cells to maintain physicochemical properties of membranes and cellular functions. We present the lipidome, including sterols, glycerolipids (GLs), glycerophospholipids (GPLs), and sphingolipids (SLs), of primary ex vivo differentiated (I) white, (II) brite, and (III) brown adipocytes derived from primary preadipocytes isolated from (I) epididymal white, (II) inguinal white, and (III) intrascapular brown adipose tissue. Quantitative lipidomics revealed significantly decreased fractions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), with longer (C > 36) and more polyunsaturated species, as well as lower levels of cardiolipin (CL) in white than in brite and brown adipocytes. Together, the brite and brown lipidome was comparable and indicates differences in membrane lipid packing density compared with white adipocytes. Changes in ceramide species profile could be related to the degree of browning. Beta-adrenergic stimulation of brown adipocytes led to generation of saturated lyso-PC (LPC) increasing uncoupling protein (UCP) 1-mediated leak respiration. Application of stable isotope labeling showed that LPC formation was balanced by an increased de novo synthesis of PC. Quantitative lipidomics reveal that the cell membrane lipidome of brite and brown adipocytes is comparable, but significantly different to that of white adipocytes. Beta-adrenergic stimulation of brown adipocytes induces generation of saturated lysophosphatidylcholine from phosphatidylcholine, increasing uncoupling protein (UCP) 1-mediated leak respiration.
Collapse
|
192
|
Chao HC, Lee TH, Chiang CS, Yang SY, Kuo CH, Tang SC. Sphingolipidomics Investigation of the Temporal Dynamics after Ischemic Brain Injury. J Proteome Res 2019; 18:3470-3478. [PMID: 31310127 DOI: 10.1021/acs.jproteome.9b00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingolipids (SPLs) have been proposed as potential therapeutic targets for strokes, but no reports have ever profiled the changes of the entire range of SPLs after a stroke. This study applied sphingolipidomic methods to investigate the temporal and individual changes in the sphingolipidome including the effect of atorvastatin after ischemic brain injury. We conducted sphingolipidomic profiling of mouse brain tissue by liquid chromatography-electrospray ionization tandem mass spectrometry at 3 h and 24 h after 1 h of middle cerebral artery occlusion (MCAO), and SPL levels were compared with those of the Sham control group. At 3 h post-MCAO, ceramides (Cers) exhibited an increase in levels of long-chain Cers but a decrease in very-long-chain Cers. Moreover, sphingosine, the precursor of sphingosine-1-phosphate (S1P), decreased and S1P increased at 3 h after MCAO. In contrast to 3 h, both long-chain and very-long-chain Cers showed an increased trend at 24 h post-MCAO. Most important, the administration of atorvastatin improved the neurological function of the mice and significantly reversed the SPL changes resulting from the ischemic injury. Furthermore, we used plasma samples from nonstroke control and stroke patients at time points of 72 h after a stroke, and found a similar trend of Cers as in the MCAO model. This study successfully elucidated the overall effect of ischemic injury on SPL metabolism with and without atorvastatin treatment. The network of SPL components that change upon ischemic damage may provide novel therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Tsung-Heng Lee
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Chien-Sung Chiang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Sin-Yu Yang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan.,Department of Pharmacy , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| |
Collapse
|
193
|
Mantovani A, Bonapace S, Lunardi G, Salgarello M, Dugo C, Gori S, Barbieri E, Verlato G, Laaksonen R, Byrne CD, Targher G. Association of Plasma Ceramides With Myocardial Perfusion in Patients With Coronary Artery Disease Undergoing Stress Myocardial Perfusion Scintigraphy. Arterioscler Thromb Vasc Biol 2019; 38:2854-2861. [PMID: 30571175 DOI: 10.1161/atvbaha.118.311927] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- It is known that specific plasma ceramides are associated with stress-induced reversible myocardial perfusion defects in patients with established or suspected coronary artery disease undergoing myocardial perfusion scintigraphy (MPS). However, it is currently uncertain whether plasma ceramides are also associated with reduced poststress myocardial perfusion in these patients. Approach and Results- We measured 6 previously identified high-risk plasma ceramide species (ceramide [d18:1/16:0], ceramide [d18:1/18:0], ceramide [d18:1/20:0], ceramide [d18:1/22:0], ceramide [d18:1/24:0], and ceramide [d18:1/24:1]) in 167 consecutive patients with established or suspected coronary artery disease undergoing stress MPS for clinical indications. Plasma ceramides were measured by a targeted liquid chromatography-tandem mass spectrometry assay both at baseline and after MPS. Multivariable linear regression analysis was undertaken to examine the associations (standardized B coefficients) between plasma ceramides and the percentage of poststress myocardial perfusion after adjustment for multiple cardiovascular risk factors. Seventy-eight patients had stress-induced myocardial ischemia on MPS (mainly located in the anteroapical wall). Of the 6 measured plasma ceramides, higher levels of basal ceramide (d18:1/18:0; B=-0.182; P=0.019), ceramide (d18:1/20:0; B=-0.224; P=0.004), ceramide (d18:1/22:0; B=-0.163; P=0.035), and ceramide (d18:1/24:1; B=-0.20; P=0.010) were associated with lower poststress anteroapical wall perfusion. Notably, these significant associations persisted even after adjustment for conventional cardiovascular risk factors, previous coronary artery disease, electrocardiographic left bundle branch block, left ventricular ejection fraction and type of stress testing. Similar results were observed for poststress plasma ceramides. Conclusions- Higher circulating levels of specific ceramides, both at baseline and after stress, were independently associated with lower poststress anteroapical wall perfusion in patients with suspected or established coronary artery disease referred for clinically indicated MPS.
Collapse
Affiliation(s)
- Alessandro Mantovani
- From the Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Italy (A.M., G.T.)
| | - Stefano Bonapace
- Division of Cardiology (S.B., C.D., E.B.), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore - Don Calabria Hospital, Negrar (VR), Italy
| | - Gianluigi Lunardi
- Division of Medical Oncology (G.L., S.G.), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore - Don Calabria Hospital, Negrar (VR), Italy
| | - Matteo Salgarello
- Division of Nuclear Medicine (M.S.), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore - Don Calabria Hospital, Negrar (VR), Italy
| | - Clementina Dugo
- Division of Cardiology (S.B., C.D., E.B.), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore - Don Calabria Hospital, Negrar (VR), Italy
| | - Stefania Gori
- Division of Medical Oncology (G.L., S.G.), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore - Don Calabria Hospital, Negrar (VR), Italy
| | - Enrico Barbieri
- Division of Cardiology (S.B., C.D., E.B.), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore - Don Calabria Hospital, Negrar (VR), Italy
| | - Giuseppe Verlato
- Unit of Epidemiology and Medical Statistics, Department of Medicine and Public Health, University of Verona, Italy (G.V.)
| | - Reijo Laaksonen
- Finnish Cardiovascular Research Center Tampere, University of Tampere, Faculty of Medicine and Life Sciences and Tampere University Hospital, Finland (R.L.).,Zora Biosciences Oy, Espoo, Finland (R.L.)
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, United Kingdom (C.D.B.).,Nutrition and Metabolism, University of Southampton, United Kingdom (C.D.B.)
| | - Giovanni Targher
- From the Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Italy (A.M., G.T.)
| |
Collapse
|
194
|
Duarte TT, Ellis CC, Grajeda BI, De Chatterjee A, Almeida IC, Das S. A Targeted Mass Spectrometric Analysis Reveals the Presence of a Reduced but Dynamic Sphingolipid Metabolic Pathway in an Ancient Protozoan, Giardia lamblia. Front Cell Infect Microbiol 2019; 9:245. [PMID: 31396488 PMCID: PMC6668603 DOI: 10.3389/fcimb.2019.00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Giardia lamblia, a single-celled eukaryote, colonizes and thrives in the small intestine of humans. Because of its compact and reduced genome, Giardia has adapted a “minimalistic” life style, as it becomes dependent on available resources of the small intestine. Because Giardia expresses fewer sphingolipid (SL) genes—and glycosphingolipids are critical for encystation—we investigated the SL metabolic cycle in this parasite. A tandem mass spectrometry (MS/MS) analysis reveals that major SLs in Giardia include sphingomyelins, sphingoid bases, ceramides, and glycosylceramides. Many of these lipids are obtained by Giardia from the growth medium, remodeled at their fatty acyl chains and end up in the spent medium. For instance, ceramide-1-phosphate, a proinflammatory molecule that is not present in the culture medium, is generated from sphingosine (abundant in the culture medium) possibly by remodeling reactions. It is then subsequently released into the spent medium. Thus, the secretion of ceramide-1-phospate and other SL derivatives by Giardia could be associated with inflammatory bowel disease observed in acute giardiasis. Additionally, we found that the levels of SLs increase in encysting Giardia and are differentially regulated throughout the encystation cycle. We propose that SL metabolism is important for this parasite and, could serve as potential targets for developing novel anti-giardial agents.
Collapse
Affiliation(s)
- Trevor T Duarte
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Siddhartha Das
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
195
|
Pujol-Lereis LM. Alteration of Sphingolipids in Biofluids: Implications for Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20143564. [PMID: 31330872 PMCID: PMC6678458 DOI: 10.3390/ijms20143564] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer's Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.
Collapse
Affiliation(s)
- Luciana M Pujol-Lereis
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE-CONICET), X5016DHK Córdoba, Argentina.
| |
Collapse
|
196
|
Lemaitre RN, Jensen PN, Hoofnagle A, McKnight B, Fretts AM, King IB, Siscovick DS, Psaty BM, Heckbert SR, Mozaffarian D, Sotoodehnia N. Plasma Ceramides and Sphingomyelins in Relation to Heart Failure Risk. Circ Heart Fail 2019; 12:e005708. [PMID: 31296099 DOI: 10.1161/circheartfailure.118.005708] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ceramides exhibit multiple biological activities that may influence the pathophysiology of heart failure. These activities may be influenced by the saturated fatty acid carried by the ceramide (Cer). However, the associations of different circulating Cer species, and their sphingomyelin (SM) precursors, with heart failure have received limited attention. METHODS AND RESULTS We studied the associations of plasma Cer and SM species with incident heart failure in the Cardiovascular Health Study. We examined 8 species: Cer and SM with palmitic acid (Cer-16 and SM-16), species with arachidic acid (Cer-20 and SM-20), species with behenic acid (Cer-22 and SM-22), and species with lignoceric acid (Cer-24 and SM-24). During a median follow-up of 9.4 years, we identified 1179 cases of incident heart failure among 4249 study participants. In Cox regression analyses adjusted for risk factors, higher levels of Cer-16 and SM-16 were associated with higher risk of incident heart failure (hazard ratio for one SD increase:1.25 [95% CI, 1.16-1.36] and 1.28 [1.18-1.40], respectively). In contrast, higher levels of Cer-22 were associated with lower risk of heart failure in multivariable analyses further adjusted for Cer-16 (hazard ratio, 0.85 [0.78-0.92]); and higher levels of SM-20, SM-22 and SM-24 were associated with lower risk of heart failure in analyses further adjusted for SM-16 (hazard ratios, 0.83 [0.77-0.90], 0.81 [0.75-0.88], and 0.83 [0.77-0.90], respectively). No statistically significant interactions with age, sex, black race, body mass index, or baseline coronary heart disease were detected. Similar associations were observed for heart failure with preserved (n=529) or reduced (n=348) ejection fraction. CONCLUSIONS This study shows associations of higher plasma levels of Cer-16 and SM-16 with increased risk of heart failure and higher levels of Cer-22, SM-20, SM-22, and SM-24 with decreased risk of heart failure. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov . Unique identifier: NCT00005133.
Collapse
Affiliation(s)
- Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., P.N.J., B.M.P., S.R.H., N.S.), University of Washington, Seattle
| | - Paul N Jensen
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., P.N.J., B.M.P., S.R.H., N.S.), University of Washington, Seattle
| | - Andrew Hoofnagle
- Department of Laboratory Medicine (A.H.), University of Washington, Seattle
| | - Barbara McKnight
- Department of Biostatistics (B.M.), University of Washington, Seattle
| | - Amanda M Fretts
- Department of Epidemiology (A.M.F., B.M.P., S.R.H.), University of Washington, Seattle
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque (I.B.K.)
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., P.N.J., B.M.P., S.R.H., N.S.), University of Washington, Seattle.,Department of Epidemiology (A.M.F., B.M.P., S.R.H.), University of Washington, Seattle.,Department of Health Services (B.M.P.), University of Washington, Seattle.,Kaiser Permanente Washington Health Research Institute, Seattle, WA (B.M.P.)
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., P.N.J., B.M.P., S.R.H., N.S.), University of Washington, Seattle.,Department of Epidemiology (A.M.F., B.M.P., S.R.H.), University of Washington, Seattle
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA (D.M.)
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., P.N.J., B.M.P., S.R.H., N.S.), University of Washington, Seattle
| |
Collapse
|
197
|
Wegner MS, Gruber L, Schömel N, Trautmann S, Brachtendorf S, Fuhrmann D, Schreiber Y, Olesch C, Brüne B, Geisslinger G, Grösch S. GPER1 influences cellular homeostasis and cytostatic drug resistance via influencing long chain ceramide synthesis in breast cancer cells. Int J Biochem Cell Biol 2019; 112:95-106. [DOI: 10.1016/j.biocel.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
|
198
|
Bennett MK, Wallington-Beddoe CT, Pitson SM. Sphingolipids and the unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1483-1494. [PMID: 31176037 DOI: 10.1016/j.bbalip.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
The unfolded protein response (UPR) is a response by the endoplasmic reticulum to stress, classically caused by any disruption to cell homeostasis that results in an accumulation in unfolded proteins. However, there is an increasing body of research demonstrating that the UPR can also be activated by changes in lipid homeostasis, including changes in sphingolipid metabolism. Sphingolipids are a family of bioactive lipids with important roles in both the formation and integrity of cellular membranes, and regulation of key cellular processes, including cell proliferation and apoptosis. Bi-directional interactions between sphingolipids and the UPR have now been observed in a range of diseases, including cancer, diabetes and liver disease. Determining how these two key cellular components influence each other could play an important role in deciphering the causes of these diseases and potentially reveal new therapeutic approaches.
Collapse
Affiliation(s)
- Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
199
|
Brunkhorst-Kanaan N, Klatt-Schreiner K, Hackel J, Schröter K, Trautmann S, Hahnefeld L, Wicker S, Reif A, Thomas D, Geisslinger G, Kittel-Schneider S, Tegeder I. Targeted lipidomics reveal derangement of ceramides in major depression and bipolar disorder. Metabolism 2019; 95:65-76. [PMID: 30954559 DOI: 10.1016/j.metabol.2019.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023]
Abstract
UNLABELLED Changes of sphingolipid metabolism were suggested to contribute to the patho-etiology of major depression (MD) and bipolar disorder (BD). In a pilot study we assessed if lipid allostasis manifested in pathological plasma concentrations of bioactive lipids i.e. endocannabinoids, sphingolipids, ceramides, and lysophosphatidic acids. METHODS Targeted and untargeted lipidomic analyses were performed according to GLP guidelines in 67 patients with unipolar or bipolar disorders (20-67 years, 36 male, 31 female) and 405 healthy controls (18-79 years, 142 m, 263 f), who were matched according to gender, age and body mass index. Multivariate analyses were used to identify major components, which accounted for the variance between groups and were able to predict group membership. RESULTS Differences between MD and BP patients versus controls mainly originated from ceramides and their hexosyl-metabolites (C16Cer, C18Cer, C20Cer, C22Cer, C24Cer and C24:1Cer; C24:1GluCer, C24LacCer), which were strongly increased, particularly in male patients. Ceramide levels were neither associated with the current episode, nor with the therapeutic improvement of the Montgomery Åsberg Depression Rating Scale (MARDS). However, long-chain ceramides were linearly associated with age, stronger in patients than controls, and with high plasma levels of diacyl- and triacylglycerols. Patients receiving antidepressants had higher ceramide levels than patients not taking these drugs. There was no such association with lithium or antipsychotics except for olanzapine. CONCLUSION Our data suggest that high plasma ceramides in patients with major depression and bipolar disorder are indicative of a high metabolic burden, likely aggravated by certain medications.
Collapse
Affiliation(s)
- Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | | | - Juliane Hackel
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Katrin Schröter
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Sabine Wicker
- Occupational Health Service, Goethe-University Hospital Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany.
| |
Collapse
|
200
|
Seessle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Compositional Changes Among Triglycerides and Phospholipids During FATP4 Sensitization with Palmitate Lead to ER Stress in Cultured Cells. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Wolfgang Stremmel
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Walee Chamulitrat
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| |
Collapse
|