151
|
Li W, Chen X, Li M, Cai Z, Gong H, Yan M. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127094. [PMID: 34530278 DOI: 10.1016/j.jhazmat.2021.127094] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
152
|
Ain Bhutto SU, You X. Spatial distribution of microplastics in Chinese freshwater ecosystem and impacts on food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118494. [PMID: 34780753 DOI: 10.1016/j.envpol.2021.118494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Over the past two decades, there has been a lot of discussion about the rapid increase of microplastics (MPs) due to their persistence, ubiquity, and toxicity. The widespread distribution of MPs in various freshwater ecosystems makes them available for different trophic levels biota. The ingestion and trophic transfer of MPs may induce potential impacts on freshwater food webs. Therefore, this systematic review is an in-depth review of 51 recent studies to confirm the spatial distribution of MPs in the Chinese freshwater ecosystem including water, sediment and biota, exposure pathways, and impacts on freshwater food webs. The result suggested the white, transparent and colored, Polypropylene (PP) and Polyethylene (PE) of <1 mm fibers were dominant in Chinese freshwaters. The uptake of MPs by various freshwater organisms as well as physiological, biological and chemical impacts on food webs were also elucidated. At last, some limitations were discussed for future studies to better understand the effects of MPs on food webs.
Collapse
Affiliation(s)
- Seerat Ul Ain Bhutto
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Xueyi You
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
153
|
Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150141. [PMID: 34509832 DOI: 10.1016/j.scitotenv.2021.150141] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been detected in atmosphere, soil, and water and have been characterized as contaminants of emerging concern. When exposed to these environments, MPs interact with the chemical compounds as well as the (micro)organisms inhabiting these ecosystems. This paper overviews the interactions and significant factors influencing the sorption process of antibiotics on MPs since distinct interactions are developed between MPs and antibiotics. The interplay between the MPs and the antibiotic resistant genes (ARGs) microbial hosts is presented and the important factors that may shape the plastisphere resistome are discussed. The interactions of MPs, antibiotics and antibiotic resistant bacteria (ARB) and ARGs in wastewater treatment plants (WWTPs) were discussed with the aim to provide a perspective for better understanding of the role of WWTPs in bringing together MPs, antibiotics and ARB/ARGs and further as release points of MPs carrying antibiotics, and ARB/ARGs.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
154
|
Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep 2022; 12:528. [PMID: 35017590 PMCID: PMC8752627 DOI: 10.1038/s41598-021-04489-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Microplastics (MPs) are a widely recognized global problem due to their prevalence in natural environments and the food chain. However, the impact of microplastics on human microbiota and their possible biotransformation in the gastrointestinal tract have not been well reported. To evaluate the potential risks of microplastics at the digestive level, completely passing a single dose of polyethylene terephthalate (PET) through the gastrointestinal tract was simulated by combining a harmonized static model and the dynamic gastrointestinal simgi model, which recreates the different regions of the digestive tract in physiological conditions. PET MPs started several biotransformations in the gastrointestinal tract and, at the colon, appeared to be structurally different from the original particles. We report that the feeding with microplastics alters human microbial colonic community composition and hypothesize that some members of the colonic microbiota could adhere to MPs surface promoting the formation of biofilms. The work presented here indicates that microplastics are indeed capable of digestive-level health effects. Considering this evidence and the increasing exposure to microplastics in consumer foods and beverages, the impact of plastics on the functionality of the gut microbiome and their potential biodegradation through digestion and intestinal bacteria merits critical investigation.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Julián J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
- Encapsulae S.L, c/Lituania 10, 12006, Castellón de la Plana, Spain
| | | | - Raquel Portela
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Miguel A Bañares
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Jose F Fernández
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
| | | |
Collapse
|
155
|
Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14020737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a rapidly spreading pandemic and is severely threatening public health globally. The human-to-human transmission route of SARS-CoV-2 is now well established. The reported clinical observations and symptoms of this infection in humans appear in the range between being asymptomatic and severe pneumonia. The virus can be transmitted through aerosols and droplets that are released into the air by a carrier, especially when the person coughs, sneezes, or talks forcefully in a closed environment. As the disease progresses, the use and handling of contaminated personal protective equipment and facemasks have become major issues with significant environmental risks. Therefore, providing an effective method for treating used/contaminated facemasks is crucial. In this paper, we review the environmental challenges and risks associated with the surge in facemask production. We also discuss facemasks and their materials as sources of microplastics and how disposal procedures can potentially lead to the contamination of water resources. We herein review the potential of developing nanomaterial-based antiviral and self-cleaning facemasks. This review discusses these challenges and concludes that the use of sustainable and alternative facemask materials is a promising and viable solution. In this context, it has become essential to address the emerging challenges by developing a new class of facemasks that are effective against the virus, while being biodegradable and sustainable. This paper represents the potentials of natural and/or biodegradable polymers for manufacturing facemasks, such as wood-based polymers, chitosan, and other biodegradable synthetic polymers for achieving sustainability goals during and after pandemics.
Collapse
|
156
|
Amobonye A, Bhagwat P, Raveendran S, Singh S, Pillai S. Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Front Microbiol 2022; 12:768297. [PMID: 34975796 PMCID: PMC8714882 DOI: 10.3389/fmicb.2021.768297] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/12/2023] Open
Abstract
The increasing distribution of miniaturized plastic particles, viz. microplastics (100 nm–5 mm) and nanoplastics (less than 100 nm), across the various ecosystems is currently a subject of major environmental concern. Exacerbating these concerns is the fact that microplastics and nanoplastics (MNPs) display different properties from their corresponding bulk materials; thus, not much is understood about their full biological and ecological implications. Currently, there is evidence to prove that these miniaturized plastic particles release toxic plastic additives and can adsorb various chemicals, thereby serving as sinks for various poisonous compounds, enhancing their bioavailability, toxicity, and transportation. Furthermore, there is a potential danger for the trophic transfer of MNPs to humans and other higher animals, after being ingested by lower organisms. Thus, this paper critically analyzes our current knowledge with regard to the environmental impacts of MNPs. In this regard, the properties, sources, and damaging effects of MNPs on different habitats, particularly on the biotic components, were elucidated. Similarly, the consequent detrimental effects of these particles on humans as well as the current and future efforts at mitigating these detrimental effects were discussed. Finally, the self-cleaning efforts of the planet via a range of saprophytic organisms on these synthetic particles were also highlighted.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Sindhu Raveendran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
157
|
Zhao L, Ru S, He J, Zhang Z, Song X, Wang D, Li X, Wang J. Eelgrass (Zostera marina) and its epiphytic bacteria facilitate the sinking of microplastics in the seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118337. [PMID: 34644624 DOI: 10.1016/j.envpol.2021.118337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Marine microplastics have received considerable attention as a global environmental issue. However, despite the constant accumulation of microplastics in the ocean, their transport processes and mechanisms remain poorly understood. This study investigated microplastics in the sediments of seagrass meadows and nearby regions without seagrass along the Shandong coast and found that the sediment in the seagrass meadows was a sink for microplastics. Subsequently, we evaluated the influence of eelgrass (Zostera marina), a common coastal seagrass, on the sedimentation of suspended polystyrene microplastics. The results showed that 0.5, 1.0, and 2.0 g/L eelgrass leaves decreased the abundance of microplastics in seawater in a dose-dependent manner over a period of 3-48 h under shaking conditions at 120 rpm at 22 °C. After 48 h of shaking, microplastic abundances in the 0.5, 1.0, and 2.0 g/L eelgrass groups significantly decreased by 46.9%, 53.1%, and 88.4%, respectively. Microplastics can adhere to eelgrass leaves and form biofilms, which promoted the formation of white floc that traps the suspended microplastics, causing them to sink. Furthermore, two epiphytic bacteria (Vibrio and Exiguobacterium) isolated from the eelgrass leaves decreased the abundances of suspended microplastics by 95.7% and 94.5%, respectively, in 48 h by accelerating the formation of biofilms on the microplastics. Therefore, eelgrass and its epiphytic bacteria facilitated the sinking of microplastics and increased the accumulation of microplastics in the sediments of seagrass meadows in coastal regions.
Collapse
Affiliation(s)
- Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianlong He
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiukai Song
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, China
| | - Dong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
158
|
Amato-Lourenço LF, de Souza Xavier Costa N, Dantas KC, Dos Santos Galvão L, Moralles FN, Lombardi SCFS, Júnior AM, Lindoso JAL, Ando RA, Lima FG, Carvalho-Oliveira R, Mauad T. Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118299. [PMID: 34626707 PMCID: PMC8494494 DOI: 10.1016/j.envpol.2021.118299] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.
Collapse
Affiliation(s)
- Luís Fernando Amato-Lourenço
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil.
| | | | - Kátia Cristina Dantas
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alfredo Mendroni Júnior
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in OncoImmuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas -HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - José Angelo Lauletta Lindoso
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Infectiology Emilio Ribas, Sao Paulo, Brazil
| | - Rômulo Augusto Ando
- Chemical Analyses Laboratory, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Felipe Gallego Lima
- Heart Institute (InCor), School of Medicine at Sao Paulo University, Sao Paulo, Brazil
| | | | - Thais Mauad
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
159
|
Samandra S, Johnston JM, Jaeger JE, Symons B, Xie S, Currell M, Ellis AV, Clarke BO. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149727. [PMID: 34461481 DOI: 10.1016/j.scitotenv.2021.149727] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
This is the first study to show microplastics contamination in an alluvial sedimentary aquifer that has been capped from the atmosphere. Microplastics are often reported in biotic and abiotic environments, but little is known about their occurrence in groundwater systems. In this study, eight of the most commonly found microplastics in the environment (polyethylene, PE; polystyrene, PS; polypropylene, PP; polyvinyl chloride, PVC; polyethylene terephthalate, PET; polycarbonate, PC; polymethylmethacrylate, PMMA; and polyamide, PA) were analysed in triplicate groundwater samples (n = 21) from five sampling sites across seven capped groundwater monitoring bores from Bacchus Marsh (Victoria, Australia) using Agilent's novel Laser Direct Infra-Red (LDIR) imaging system. Microplastics were detected in all samples, with PE, PP, PS and PVC detected in all seven bores. The average size of the microplastics identified was 89 ± 55 μm (St.Dev.), ranging from 18 to 491 μm. The average number of microplastics detected across all sites was 38 ± 8 microplastics/L, ranging from 16 to 97 particles/L. PE and PVC in total contributed to 59% of the total sum of microplastics detected. PE was consistently detected in all seven bores (average: 11 particles/L), while PVC was more pronounced in a bore adjacent to a meat processor (52 particles/L) compared to that of its overall average of 12 particles/L. A statistically significant positive correlation was observed between PVC and PS (R = 0.934, p ≤0.001). As this study collected samples from capped groundwater bores, the most probable avenue for microplastics was permeation through soil. Therefore, to further understand the fate and transport of microplastics within a groundwater system, it is necessary to analyse a greater range of groundwater bores not only from Australia but throughout the world.
Collapse
Affiliation(s)
- Subharthe Samandra
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Victoria 3010, Australia; Eurofins Environment Testing Australia & New Zealand, Australia
| | - Julia M Johnston
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Victoria 3010, Australia
| | - Julia E Jaeger
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Bob Symons
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Matthew Currell
- School of Engineering, RMIT University, Victoria 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
160
|
Zhou Y, Kumar M, Sarsaiya S, Sirohi R, Awasthi SK, Sindhu R, Binod P, Pandey A, Bolan NS, Zhang Z, Singh L, Kumar S, Awasthi MK. Challenges and opportunities in bioremediation of micro-nano plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149823. [PMID: 34454140 DOI: 10.1016/j.scitotenv.2021.149823] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Rising level of micro-nano plastics (MNPs) in the natural ecosystem adversely impact the health of the environment and living organisms globally. MNPs enter in to the agro-ecosystem, flora and fauna, and human body via trophic transfer, ingestion and inhalation, resulting impediment in blood vessel, infertility, and abnormal behaviors. Therefore, it becomes indispensable to apply a novel approach to remediate MNPs from natural environment. Amongst the several prevailing technologies of MNPs remediation, microbial remediation is considered as greener technology. Microbial degradation of plastics is typically influenced by several biotic as well as abiotic factors, such as enzymatic mechanisms, substrates and co-substrates concentration, temperature, pH, oxidative stress, etc. Therefore, it is pivotal to recognize the key pathways adopted by microbes to utilize plastic fragments as a sole carbon source for the growth and development. In this context, this review critically discussed the role of various microbes and their enzymatic mechanisms involved in biodegradation of MNPs in wastewater (WW) stream, municipal sludge, municipal solid waste (MSW), and composting starting with biological and toxicological impacts of MNPs. Moreover, this review comprehensively discussed the deployment of various MNPs remediation technologies, such as enzymatic, advanced molecular, and bio-membrane technologies in fostering the bioremediation of MNPs from various environmental compartments along with their pros and cons and prospects for future research.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
161
|
Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. SUSTAINABILITY 2021. [DOI: 10.3390/su14010020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rural areas are exposed to severe environmental pollution issues fed by industrial and agricultural activities combined with poor waste and sanitation management practices, struggling to achieve the United Nations’ Sustainable Development Goals (SDGs) in line with Agenda 2030. Rural communities are examined through a “dual approach” as both contributors and receivers of plastic pollution leakage into the natural environment (through the air–water–soil–biota nexus). Despite the emerging trend of plastic pollution research, in this paper, we identify few studies investigating rural communities. Therefore, proxy analysis of peer-reviewed literature is required to outline the significant gaps related to plastic pollution and plastic waste management issues in rural regions. This work focuses on key stages such as (i) plastic pollution effects on rural communities, (ii) plastic pollution generated by rural communities, (iii) the development of a rural waste management sector in low- and middle-income countries in line with the SDGs, and (iv) circular economy opportunities to reduce plastic pollution in rural areas. We conclude that rural communities must be involved in both future plastic pollution and circular economy research to help decision makers reduce environmental and public health threats, and to catalyze circular initiatives in rural areas around the world, including less developed communities.
Collapse
|
162
|
Microplastics in the Food Chain. Life (Basel) 2021; 11:life11121349. [PMID: 34947879 PMCID: PMC8704590 DOI: 10.3390/life11121349] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Currently, microplastics represent a widespread contamination found in almost every part of the environment. The plastic industry has generated waste since the 1950s, which unfortunately now counts in the millions. The largest share of plastic consumption is used to produce packaging materials, including those applied in the food industry. The versatility of plastic materials is mainly due to their lightness, flexibility, strength, and persistence. Although plastic materials are widely used due to their beneficial properties, contamination of the environment with microplastics and nanoplastics is an emerging problem worldwide. This type of contamination is endangering animal life and thus also the food chain and public health. This review summarizes the knowledge about microplastics in the food chain. The effect of microplastics on the food chain has been particularly studied in marine organisms, and research deals less with other food commodities. Therefore, based on the studied literature, we can conclude that the issue is still not sufficiently examined, and should be paid more attention to maintain the health of the population.
Collapse
|
163
|
Yu Y, Mo WY, Luukkonen T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149140. [PMID: 34303986 DOI: 10.1016/j.scitotenv.2021.149140] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Nano/microplastics (NPs/MPs) and organic micropollutants are contaminants exerting serious threats to aquatic ecosystems, which are further aggravated through their interactions. Organic micropollutants can adsorb on the surface of NPs/MPs, enter to the digestive systems of aquatic organisms with NPs/MPs, and desorb from the surface inside the organism. Consequently, the migration behaviour of organic micropollutants is significantly affected increasing their risk to accumulate in the food chain. Therefore, understanding the adsorption interactions between NPs/MPs and organic micropollutants is critical for evaluating the fate and impact of NPs/MPs in the environment. This review article provides an overview about the role of NPs/MPs as (temporary) sinks for organic micropollutants but also as primary sources of organic micropollutants through the leaching of plastic additives. Specifically, the following aspects are discussed: adsorption/desorption mechanisms (e.g., hydrophobic partitioning interaction, surface adsorption by van der Waals forces or hydrogen bonding, and pore filling), influencing environmental factors (e.g., pH, salinity, and dissolved organic matter), leaching of plastic additives from NPs/MPs, and potential ecotoxicological effects arising from the interactions of NPs/MPs and organic micropollutants.
Collapse
Affiliation(s)
- Yangmei Yu
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, Oulu 90014, Finland; Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Yin Mo
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, People's Republic of China
| | - Tero Luukkonen
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, Oulu 90014, Finland.
| |
Collapse
|
164
|
Maity S, Guchhait R, Chatterjee A, Pramanick K. Co-occurrence of co-contaminants: Cyanotoxins and microplastics, in soil system and their health impacts on plant - A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148752. [PMID: 34225156 DOI: 10.1016/j.scitotenv.2021.148752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins (CTX) and micro/nanoplastics (M/NP) are ubiquitously distributed in every environmental compartment. But the distribution, abundance and associated ecological risks of CTX are still poorly understood in soil system. On the other hand, M/NP could serve as vectors for persistent organic/inorganic pollutants in the natural environment through the sorption of pollutants onto them. Thus, co-occurrence of CTX and M/NP in soils suggests the sorption of CTX onto M/NP. So, major aim of this review is to understand the relevance of CTX and M/NP in soils as co-contaminants, possible interactions between them and ecological risks of CTX in terms of phytotoxicity. In this study, we comprehensively discuss different sources and fate of CTX and the sorption of CTX onto M/NP in soil system, considering the partition coefficient of different phases of soil and mass balance. Phytotoxicity of CTX, CTX mixture and co-contaminants has also been discussed with insights on the mechanism of action. This study indicates the need for the evaluation of sorption between co-contaminants, especially CTX and M/NP, and their phytotoxicity assessment using environmentally relevant concentrations.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India; Department of zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
165
|
Li HQ, Shen YJ, Wang WL, Wang HT, Li H, Su JQ. Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117339. [PMID: 34000668 DOI: 10.1016/j.envpol.2021.117339] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg-1). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.
Collapse
Affiliation(s)
- Huan-Qin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian, 361021, China
| | - Ying-Jia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wen-Lei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Tao Wang
- College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian, 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian, 361021, China.
| |
Collapse
|
166
|
Wang J, Guo X, Xue J. Biofilm-Developed Microplastics As Vectors of Pollutants in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12780-12790. [PMID: 34553907 DOI: 10.1021/acs.est.1c04466] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastics are a big and growing part of global pollution, which has aroused increasing concern in recent years because of their large amount, wide distribution, and adverse effects. Microplastics can sorb various pollutants from aquatic environments and act as vectors of pollutants. Most studies mainly focused on the virgin microplastics. However, microplastics in environments can be easily colonized by microorganisms, and form biofilm, which will influence the behaviors and potential risks of microplastics. The formation of biofilm on microplastics and its effects on their properties have been studied before, but their sorption and transport behaviors, and potential risks for pollutants' transfer have not been reviewed. In this paper, the role of biofilm-developed microplastics as vectors of pollutants was thoroughly analyzed and summarized. First, the formation of biofilm on microplastics, the compositions of microorganisms in biofilm, the influencing factors, and the property changes of microplastics after biofilm attachment are thoroughly reviewed. Second, the sorption of pollutants onto biofilm-developed microplastics is discussed. Third, the role of biofilm-developed microplastics as vector of pollutants are analyzed. We concluded that microplastics could provide unique substrates for microorganisms. Biofilm-developed microplastics can sorb more pollutants than the virgin ones, then act as vectors to introduce pollutants and attached microorganisms to aquatic environments and to organisms.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Private Bag 29237 Christchurch, New Zealand
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
167
|
Moradi Z, Madadkar Haghjou M, Zarei M, Colville L, Raza A. Synergy of production of value-added bioplastic, astaxanthin and phycobilin co-products and Direct Green 6 textile dye remediation in Spirulina platensis. CHEMOSPHERE 2021; 280:130920. [PMID: 34162106 DOI: 10.1016/j.chemosphere.2021.130920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Phyco-remediation of dyestuffs in textile wastewaters is of economic, industrial, and environmental importance. We evaluated the remediation of the textile dye, Direct Green 6 (DG6), by Spirulina platensis, and investigated the novel possibility that DG6 treatment enhances production of the biopolymer, polyhydroxybutyrate (PHB). We showed that both live and dead cells of Spirulina were capable of DG6 remediation, but live cells could be re-used with no loss of remediation efficiency. Furthermore, DG6 remediation by live cells resulted in increased algal biomass and trichome lengths, and stimulated production of valuable metabolites, including PHB, antioxidants, carbohydrates and pigments (phycobilins and astaxanthin). We determined the optimal conditions for DG6 remediation and an artificial neural network (ANN) accurately modeled the experimental data and predicted the concentration of dye as the most and algal turbidity as the least important parameters for DG6 removal efficiency. A DG6 concentration of 60 mg L-1 resulted in the highest simultaneous co-production of PHB (12.7 ± 1.7% DW) and increase of astaxanthin (194%), carotenoids (50%), phenol (51%), carbohydrates (27%) total phycobilin (43%), together with the enhancement of biomass and trichome lengths (95%). Oxidative stress indices and enzyme activities such as peroxidases and laccase (involved in dye removal/antioxidant functions) were also increased by dye dosage. On the basis of our results, we propose that S. platensis may use DG6 dye as a nitrogen/carbon source for co-accumulation of valuable bioplastic and metabolites.
Collapse
Affiliation(s)
- Zahra Moradi
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khoramabad-Tehran Road (5th K), Iran.
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khoramabad-Tehran Road (5th K), Iran.
| | - Mahmoud Zarei
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Iran.
| | - Louise Colville
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
168
|
Jiang Y, Xia W, Zhao R, Wang M, Tang J, Wei Y. Insight into the Interaction Between Microplastics and Microorganisms Based on a Bibliometric and Visualized Analysis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:585-596. [PMID: 33779775 DOI: 10.1007/s00128-021-03201-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are abundant in the environment and have been proven to affect ecosystems and human health. Microorganisms play essential roles in the ecological fate of microplastics pollution, potentially yielding positive and negative effects. This study reviews the research progress of interaction between microplastics and microorganisms based on a bibliometric and visualized analysis. Publication numbers, subjects, countries, institutions, highly cited papers, and keywords were investigated by statistical analysis. VOSviewer software was applied to visualize the co-occurrence and aggregation of national collaboration, subjects, and keywords. Results revealed trends of rapidly increasing publication output that involved multiple disciplines. Contributing countries and their institutions were also identified in this study. Keywords, co-occurrence network visualization, highly cited papers analysis, and knowledge-based mining were all used to give insight into microorganisms or microbiota related to microplastics pollution, and the potential impacts that microplastics biodegradation may cause. In the future, research efforts need to focus on the following areas: microbial degradation processes and mechanisms, assessment of ecological microplastics risks, and potential effects of microplastics bioaccumulation and human exposure. This study provides a holistic view of ongoing microplastics and related microbial research, which may be useful for future microplastics biodegradation studies.
Collapse
Affiliation(s)
- Yanping Jiang
- Library, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China.
| | - Wanjun Xia
- Library, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Rui Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinfeng Tang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
169
|
Sanchez-Hernandez JC. A toxicological perspective of plastic biodegradation by insect larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109117. [PMID: 34186180 DOI: 10.1016/j.cbpc.2021.109117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Larvae of some insect species (Coleoptera and Lepidoptera) can consume and biodegrade synthetic polymers, including polyethylene, polystyrene, polyvinyl chloride, and polypropylene. Multiple chemical (polymer mass loss and shift of the molecular weight, alterations in chemical functionality, formation of biodegraded intermediates, CO2 production), physical (surface hydrophobicity, thermal analysis), and biological approaches (antibiotic treatment, gut dysbiosis, isolation of plastic microbial degraders) have provided evidence for polymer biodegradation in the larva digestive tract. However, the extent and rate of biodegradation largely depend on the physicochemical structure of the polymer as well as the presence of additives. Additionally, toxicology associated with plastic biodegradation has not been investigated. This knowledge gap is critical to understand the gut symbiont-host interaction in the biodegradation process, its viability in the long term, the effects of plastic additives and their metabolites, and the phenotypic traits linked to a plastic-rich diet might be transferred in successive generations. Likewise, plastic-eating larvae represent a unique case study for elucidating the mechanisms of toxic action by micro- and nanoplastics because of the high concentration of plastics these organisms may be intentionally exposed to. This perspective review graphically summarizes the current knowledge on plastic biodegradation by insect larvae and describes the physiological processes (digestive and immune systems) that may be disrupted by micro- and nanoplastics. It also provides an outlook to advance current knowledge on the toxicity assessment of plastic-rich diets and the environmental risks of plastic-containing by-products (e.g., insect manure used as fertilizer).
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain.
| |
Collapse
|
170
|
Assessing the Risks of Potential Bacterial Pathogens Attaching to Different Microplastics during the Summer-Autumn Period in a Mariculture Cage. Microorganisms 2021; 9:microorganisms9091909. [PMID: 34576804 PMCID: PMC8469625 DOI: 10.3390/microorganisms9091909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
As microplastic pollution continues to increase, an emerging threat is the potential for microplastics to act as novel substrates and/or carriers for pathogens. This is of particular concern for aquatic product safety given the growing evidence of microplastic ingestion by aquaculture species. However, the potential risks of pathogens associated with microplastics in mariculture remain poorly understood. Here, an in situ incubation experiment involving three typical microplastics including polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) was conducted during the summer–autumn period in a mariculture cage. The identification of potential pathogens based on the 16S rRNA gene amplicon sequencing and a custom-made database for pathogenic bacteria involved in aquatic environments, was performed to assess the risks of different microplastics attaching potential pathogens. The enrichment of pathogens was not observed in microplastic-associated communities when compared with free-living and particle-attached communities in surrounding seawater. Despite the lower relative abundance, pathogens showed different preferences for three microplastic substrates, of which PET was the most favored by pathogens, especially potentially pathogenic members of Vibrio, Tenacibaculum, and Escherichia. Moreover, the colonization of these pathogens on microplastics was strongly affected by environmental factors (e.g., temperature, nitrite). Our results provide insights into the ecological risks of microplastics in mariculture industry.
Collapse
|
171
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Ecological risks in a 'plastic' world: A threat to biological diversity? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126035. [PMID: 33992919 DOI: 10.1016/j.jhazmat.2021.126035] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastics pollution is predicted to increase in the coming decades, raising concerns about its effects on living organisms. Although the effects of microplastics on individual organisms have been extensively studied, the effects on communities, biological diversity, and ecosystems remain underexplored. This paper reviews the published literature concerning how microplastics affect communities, biological diversity, and ecosystem processes. Microplastics increase the abundance of some taxa but decrease the abundance of some other taxa, indicating trade-offs among taxa and altered microbial community composition in both the natural environment and animals' gut. The alteration of community composition by microplastics is highly conserved across taxonomic ranks, while the alpha diversity of microbiota is often reduced or increased, depending on the microplastics dose and environmental conditions, suggesting potential threats to biodiversity. Biogeochemical cycles, greenhouse gas fluxes, and atmospheric chemistry, can also be altered by microplastics pollution. These findings suggest that microplastics may impact the U.N. Sustainability Development Goals (SDGs) to improve atmospheric, soil, and water quality and sustaining biodiversity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
172
|
Akan OD, Udofia GE, Okeke ES, Mgbechidinma CL, Okoye CO, Zoclanclounon YAB, Atakpa EO, Adebanjo OO. Plastic waste: Status, degradation and microbial management options for Africa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112758. [PMID: 34030015 DOI: 10.1016/j.jenvman.2021.112758] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.
Collapse
Affiliation(s)
- Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China; Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Uyo P.M.B., 1167, Akwa-Ibom State, Nigeria.
| | - Godwin Evans Udofia
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo PMB, 1017, Nigeria
| | - Emmanuel Sunday Okeke
- Environmental Chemistry and Toxicology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies University of Nigeria, Nsukka, 410001, Nigeria.
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Yedomon Ange Bovys Zoclanclounon
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea; Department of Management of Environment, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 POB 2009, Cotonou, Benin
| | | | | |
Collapse
|
173
|
Hadibarata T, Sathishkumar P, Prasetia H, Pusfitasari ED, Tasfiyati AN, Muzdalifah D, Waluyo J, Randy A, Ramadhaningtyas DP, Zuas O, Sari AA. Microplastic contamination in the Skipjack Tuna (Euthynnus affinis) collected from Southern Coast of Java, Indonesia. CHEMOSPHERE 2021; 276:130185. [PMID: 33743420 DOI: 10.1016/j.chemosphere.2021.130185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Indonesia is the second-largest contributor of microplastics (MPs) pollution in the marine ecosystem. Most MPs pollution-related studies in Indonesia focus on seawater, sediment, with less information found on the commercially important fish species used for human consumption. Skipjack Tuna (Euthynnus affinis) is one of the major exporting fishery commodities from Indonesia. This exploratory study aimed to determine MPs presence in the digestive tract of Skipjack Tuna from the Southern Coast of Java, Indonesia. The fish samples were collected from five different fish traditional auction market along the Southern Coast of Java, Indonesia, namely Pangandaran, Pamayang Sari, Ciletuh, Santolo, and Palabuhan Ratu. The gastrointestinal tract of Skipjack tuna was pretreated using alkaline destruction and filtered. The presence of MPs in the treated samples was visually identified using an optical microscope, while Polybrominated diphenyl ethers (PBDEs) contaminants were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). A total of 19 suspected MPs particles were found in the form of filament (84%), angular (11%), and round (5%). This result would provide a better indication of the MPs contamination in marine life species in the Southern Coast of Java, Indonesia, as useful information for marine environmental monitoring program in the future.
Collapse
Affiliation(s)
- Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Hafiizh Prasetia
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Eka Dian Pusfitasari
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Aprilia Nur Tasfiyati
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Dian Muzdalifah
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Joko Waluyo
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Ahmad Randy
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Dillani Putri Ramadhaningtyas
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Oman Zuas
- Center for Research and Human Resource Development, National Standardization Agency of Indonesia (BSN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Ajeng Arum Sari
- Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Komplek LIPI Bandung, Bandung, Jawa Barat, Indonesia
| |
Collapse
|
174
|
Pambianchi E, Pecorelli A, Valacchi G. Gastrointestinal tissue as a "new" target of pollution exposure. IUBMB Life 2021; 74:62-73. [PMID: 34289226 DOI: 10.1002/iub.2530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Alessandra Pecorelli
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA.,Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
175
|
Cappello S, Caruso G, Bergami E, Macrì A, Venuti V, Majolino D, Corsi I. New insights into the structure and function of the prokaryotic communities colonizing plastic debris collected in King George Island (Antarctica): Preliminary observations from two plastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125586. [PMID: 34030422 DOI: 10.1016/j.jhazmat.2021.125586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.
Collapse
Affiliation(s)
- Simone Cappello
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy.
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| | - Angela Macrì
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Domenico Majolino
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| |
Collapse
|
176
|
Bhagwat G, O'Connor W, Grainge I, Palanisami T. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front Microbiol 2021; 12:687118. [PMID: 34248907 PMCID: PMC8267902 DOI: 10.3389/fmicb.2021.687118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
Conditioning films (CFs) are surface coatings formed by the adsorption of biomolecules from the surrounding environment that can modify the material-specific surface properties and precedes the attachment of microorganisms. Hence, CFs are a biologically relevant identity that could govern the behavior and fate of microplastics in the aquatic environment. In the present study, polyethylene terephthalate (PET) and polylactic acid (PLA) plastic cards were immersed in natural seawater to allow the formation of CFs. The changes in the surface roughness after 24 h were investigated by atomic force microscopy (AFM), and the surface changes were visualized by scanning electron microscopy (SEM). The global elemental composition of the conditioned surface was investigated by energy dispersive spectroscopy (EDS). Results indicated that marine conditioning of PET and PLA samples for 24 h resulted in an increase of ∼11 and 31% in the average surface roughness, respectively. SEM images revealed the attachment of coccoid-shaped bacterial cells on the conditioned surfaces, and the accumulation of salts of sodium and phosphate-containing precipitates was revealed through the EDS analysis. The results indicate that the increase in surface roughness due to conditioning is linked to a material’s hydrophilicity leading to a rapid attachment of bacteria on the surfaces. Further investigations into the CFs can unfold crucial knowledge surrounding the plastic-microbe interaction that has implications for medical, industrial, and environmental research.
Collapse
Affiliation(s)
- Geetika Bhagwat
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
177
|
Sathicq MB, Sabatino R, Corno G, Di Cesare A. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116896. [PMID: 33744628 DOI: 10.1016/j.envpol.2021.116896] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 05/27/2023]
Abstract
In the last decade, the study of the origin and fate of plastic debris received great attention, leading to a new and broad awareness of the hazard represented by these particles for the environment and the biota. At the same time, the scientific consideration on the leading role of the environment regarding the spread of antibiotic resistant bacteria (ARB) increased. Both, microplastic particles (MPs) and ARB share pollution sources and, in aquatic systems, MPs could act as a novel ecological niche, favouring the survival of pathogens and ARB. MPs can host a specific microbial biofilm, referred to as plastisphere, phylogenetically different from the surrounding planktonic microbial community and from the biofilm growing on other suspended particles. The plastisphere can influence the overall microbiome of a specific habitat, by introducing and supporting different species and by increasing horizontal gene transfer. In this review we collect and analyse the available studies coupling MPs and antibiotic resistance in water, highlighting knowledge gaps to be filled in order to understand if MPs could effectively act as a carrier of ARB and antibiotic resistance genes, and pose a real threat to human health.
Collapse
Affiliation(s)
- María Belén Sathicq
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
178
|
Bhagwat G, Carbery M, Anh Tran TK, Grainge I, O'Connor W, Palanisami T. Fingerprinting Plastic-Associated Inorganic and Organic Matter on Plastic Aged in the Marine Environment for a Decade. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7407-7417. [PMID: 34009962 DOI: 10.1021/acs.est.1c00262] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The long-term aging of plastic leads to weathering and biofouling that can influence the behavior and fate of plastic in the marine environment. This is the first study to fingerprint the contaminant profiles and bacterial communities present in plastic-associated inorganic and organic matter (PIOM) isolated from 10 year-aged plastic. Plastic sleeves were sampled from an oyster aquaculture farm and the PIOM was isolated from the intertidal, subtidal, and sediment-buried segments to investigate the levels of metal(loid)s, polyaromatic hydrocarbons (PAHs), per-fluoroalkyl substances (PFAS) and explore the microbial community composition. Results indicated that the PIOM present on long-term aged high-density polyethylene plastic harbored high concentrations of metal(loid)s, PAHs, and PFAS. Metagenomic analysis revealed that the bacterial composition in the PIOM differed by habitat type, which consisted of potentially pathogenic taxa including Vibrio, Shewanella, and Psychrobacter. This study provides new insights into PIOM as a potential sink for hazardous environmental contaminants and its role in enhancing the vector potential of plastic. Therefore, we recommend the inclusion of PIOM analysis in current biomonitoring regimes and that plastics be used with caution in aquaculture settings to safeguard valuable food resources, particularly in areas of point-source contamination.
Collapse
Affiliation(s)
- Geetika Bhagwat
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Maddison Carbery
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, Taylors Beach 2316, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
179
|
Al Naggar Y, Brinkmann M, Sayes CM, AL-Kahtani SN, Dar SA, El-Seedi HR, Grünewald B, Giesy JP. Are Honey Bees at Risk from Microplastics? TOXICS 2021; 9:toxics9050109. [PMID: 34063384 PMCID: PMC8156821 DOI: 10.3390/toxics9050109] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022]
Abstract
Microplastics (MPs) are ubiquitous and persistent pollutants, and have been detected in a wide variety of media, from soils to aquatic systems. MPs, consisting primarily of polyethylene, polypropylene, and polyacrylamide polymers, have recently been found in 12% of samples of honey collected in Ecuador. Recently, MPs have also been identified in honey bees collected from apiaries in Copenhagen, Denmark, as well as nearby semiurban and rural areas. Given these documented exposures, assessment of their effects is critical for understanding the risks of MP exposure to honey bees. Exposure to polystyrene (PS)-MPs decreased diversity of the honey bee gut microbiota, followed by changes in gene expression related to oxidative damage, detoxification, and immunity. As a result, the aim of this perspective was to investigate whether wide-spread prevalence of MPs might have unintended negative effects on health and fitness of honey bees, as well as to draw the scientific community’s attention to the possible risks of MPs to the fitness of honey bees. Several research questions must be answered before MPs can be considered a potential threat to bees.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Correspondence: ; Tel.: +49-152-2676-3431
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada;
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
| | - Christie M. Sayes
- Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA;
| | - Saad N. AL-Kahtani
- Laboratory of Bio-Control and Molecular Biology, Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Showket A. Dar
- Division of Agricultural Entomology, KVK-Kargil II, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 191111, India;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, 751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft Frankfurt am Main, Goethe-Universität, 61440 Oberursel, Germany;
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
- Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA;
- Center for Integrative Toxicology, Department of Zoology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
180
|
Caponetti V, Mavridi-Printezi A, Cingolani M, Rampazzo E, Genovese D, Prodi L, Fabbri D, Montalti M. A Selective Ratiometric Fluorescent Probe for No-Wash Detection of PVC Microplastic. Polymers (Basel) 2021; 13:1588. [PMID: 34069160 PMCID: PMC8156183 DOI: 10.3390/polym13101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/24/2023] Open
Abstract
Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence-based detection exploits the use of specific probes to label the MP particles. This method can be environmentally friendly, low-cost, easily scalable but also very sensitive and specific. Here, we present the synthesis and application of a new probe based on perylene-diimide (PDI), which can be prepared in a few minutes by a one-pot reaction using a conventional microwave oven and can be used for the direct detection of MP in water without any further treatment of the sample. The green fluorescence is strongly quenched in water at neutral pH because of the formation dimers. The ability of the probe to label MP was tested for polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), poly methyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE). The probe showed considerable selectivity to PVC MP, which presented an intense red emission after staining. Interestingly, the fluorescence of the MP after labeling could be detected, under excitation with a blue diode, with a conventional CMOS color camera. Good selectivity was achieved analyzing the red to green fluorescence intensity ratio. UV-Vis absorption, steady-state and time-resolved fluorescence spectroscopy, fluorescence anisotropy, fluorescence wide-field and confocal laser scanning microscopy allowed elucidating the mechanism of the staining in detail.
Collapse
Affiliation(s)
- Valeria Caponetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| | - Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
| | - Matteo Cingolani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
| | - Daniele Fabbri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (V.C.); (A.M.-P.); (M.C.); (E.R.); (D.G.); (L.P.); (D.F.)
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| |
Collapse
|
181
|
Submicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria. Sci Rep 2021; 11:7424. [PMID: 33795746 PMCID: PMC8016889 DOI: 10.1038/s41598-021-86672-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/11/2021] [Indexed: 11/08/2022] Open
Abstract
Microplastics are ubiquitous in aquatic systems and break down into submicron particles that can interact with aquatic toxic chemicals. These interactions may affect the detection of toxicants when using bacteria as a biomonitoring tool. This study examined the effects of model polystyrene (PS)-based submicron particles on the detection of aqueous geno- and cytotoxicity by genetically modified bioluminescent (GMB) bacteria. The toxicities were tested in three treated wastewater (TWW) effluents before and after chlorination. The PS plastics included negatively charged sulfate-coated (S-PS) and pristine (P-PS) particles of different sizes (0.1, 0.5, and 1.0 µm) that were present at different concentrations. Chlorinated or not, the S-PS and P-PS particles per se were not toxic to the GMB bacteria. However, exposure of PS particles to TWW effluents can significantly reduce the measured geno- and cytotoxicity. Adsorption of toxic compounds to polymer particles can limit the ability of the bacteria to detect those compounds. This masking effect may be mitigated by TWW chlorination, possibly due to the formation of new toxic material. Due to interactions between toxic TWW constituents and the plastics particles, water samples containing particle-associated contaminants and/or their transformation products may be declared non-toxic, based on bacterial tests as a biomonitoring tool.
Collapse
|
182
|
Joo SH, Liang Y, Kim M, Byun J, Choi H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 3:100042. [PMID: 37521158 PMCID: PMC9767417 DOI: 10.1016/j.envc.2021.100042] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 05/02/2023]
Abstract
Plastic pollution has been a significant and widespread global issue, and the recent COVID-19 pandemic has been attributed to its worsening effect as plastics have been contaminated with the deadly infectious virus. Microplastics (MPs) may have played a role as a vector that carries hazardous microbes such as emerging bacterial threats (i.e. antibiotic resistant bacteria) and deadly viruses (e.g., coronavirus); this causes great concern over microplastics contaminated with emerging contaminants. Mitigation and treatment of MPs are challenging because of a range of factors including but not limited to physicochemical properties and composition of MPs and pH and salinity of the solution. Despite the heterogeneous nature of aquatic systems, research has overlooked interactions between contaminants and MPs under environmental conditions, degradation pathways of MPs with adsorbed contaminants, and, especially, the role of adsorbed contaminants in the efficiency of MP treatment through membrane filtration, in comparison with other treatment methods. This review aims to (1) analyze an assortment of factors that could influence the removal of MPs and mechanisms of contaminant adsorption on MPs, (2) identify mechanisms influencing membrane filtration of MPs, (3) examine the fate and transport of MPs with adsorbed contaminants, (4) evaluate membrane filtration of contaminant-adsorbing MPs in comparison to other treatment methods, and (5) draw conclusions and the future outlook based on a literature analysis.
Collapse
Key Words
- Adsorption mechanisms
- Contaminants
- DDT, dichloro-diphenyl-trichloroethane
- DM, dynamic membrane
- EDCs, endocrine-disrupting compounds
- FOSA or PFOSA, perfluorooctane sulfonamide
- GAC, granular activated carbon
- HDPE, high-density polyethylene
- LDPE, low-density PE
- MBR, membrane bioreactor
- MF, microfiltration
- MPs, microplastics
- Membrane filtration
- Microplastics
- NF, nanofiltration
- NOM, natural organic matter
- NPs, nanoplastics
- OM, organic matter
- PA, polyamide (nylon)
- PAHs, polycyclic aromatic hydrocarbons
- PAs, polyacrylates
- PBDEs, polybrominated diphenyl ethers
- PCBs, polychlorinated biphenyls
- PE, polyethylene
- PET, polyethylene terephthalate
- PFAS, per-/poly-fluoroalkyl substances
- PFCAs, perfluorinated carboxylates
- PFCs, perfluorinated compounds
- PFHxA, perfluorohexanoic acid
- PFOA, perfluorooctanoic acid
- PFOS, perfluorooctanesulfonic acid
- POPs, persistent organic pollutants
- PP, polypropylene
- PPCPs, pharmaceuticals and personal care products
- PS, polystyrene
- PVC, polyvinyl chloride
- PVDF, polyvinylidene fluoride
- RO, reverse osmosis
- SR, synthetic rubber
- TMP, trans membrane pressure
- UF, ultrafiltration
Collapse
Affiliation(s)
- Sung Hee Joo
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Yejin Liang
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Minbeom Kim
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Jaehyun Byun
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Heechul Choi
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| |
Collapse
|
183
|
Zhang L, Xie Y, Zhong S, Liu J, Qin Y, Gao P. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142428. [PMID: 33032132 DOI: 10.1016/j.scitotenv.2020.142428] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous contaminants of emerging concern that have gained great attention recently due to their widespread appearance in the environment and potential adverse effects on living biota. Lijiang in Guangxi in China is a world-famous place of tourist attraction and attracted thousands of visitors every year. However, little is known regarding occurrence and distribution of MPs in freshwater and wild fishes in the Lijiang River. In this study, we used stereoscopy and micro Fourier transform infrared spectrometry (μ-FTIR) methods to investigate the abundance, morphotype, size distribution, and polymer type of MPs in freshwater collected by plankton nets and bulk sampling by pumping and filtration. Results showed that abundance of MPs in freshwater with bulk sampling by pumping (67.5 ± 65.6 items/m3) was significantly higher than those using plankton nets (0.67 ± 0.41 items/m3 and 0.15 ± 0.15 items/m3 for mesh sizes of 75 μm and 300 μm, respectively). An average abundance of MPs detected in wild fishes was 0.6 ± 0.6 items/individual, of which, a majority was found in the gastrointestinal tracts. Large-sized (>0.3 mm) and colored MPs in morphotypes of flakes and fibers dominated in both freshwater and wild fishes. Polypropylene-polyethylene copolymer and polyethylene were the top two abundant polymer types of MPs in freshwater, while polyethylene terephthalate dominated in wild fishes. This study provides evidences for our better understanding of pollution status of MPs in the Lijiang River.
Collapse
Affiliation(s)
- Lishan Zhang
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, China
| | - Yuanshan Xie
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, China
| | - Shan Zhong
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, China
| | - Junyong Liu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
184
|
De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Santillán L. New plastic formations in the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142216. [PMID: 33254855 DOI: 10.1016/j.scitotenv.2020.142216] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Plastic pollution is one of the major challenges in the Anthropocene. Upon reaching the marine environment, plastic debris is subject to anthropogenic and environmental conditions that result in novel items that vary in composition, physical and chemical characteristics. Here, we reviewed and discussed the potential fate and threat to the environment of four recently described plastic formations: Plastiglomerates, pyroplastics, plasticrusts, and anthropoquinas. The threats identified were mostly related to the release of toxic chemicals and plastic ingestion. Transportation of alien invasive species or microbial pathogens and fragmentation of larger plastics into microplastics (<5 mm), potentially reaching marine trophic webs, are suspected as potential impacts based on the characteristics of these plastic formations. Some plastic forms may persist in the environment and voyage across the ocean, while others are denser and less likely to enter the plastic cycle or interact with biota. In the latter case, plastics are expected to become buried in the sediment and incorporate into the geological record. It is necessary to establish sampling protocols or standards that are specific to each plastic formation and start reporting the occurrence of these new plastic categories as such to avoid underestimating plastic pollution in marine environments. It is suggested that monitoring plans include these categories and identify potential sources. Further research must focus on investigating whether the suspected impacts are a matter of concern. In this sense, we have suggested research questions to address the knowledge gaps and have a better understanding of the impacts and distribution of the new plastic forms.
Collapse
Affiliation(s)
| | | | | | - Luis Santillán
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Peru; Peruvian Centre for Cetacean Research (CEPEC), Pucusana, Peru.
| |
Collapse
|
185
|
Du S, Zhu R, Cai Y, Xu N, Yap PS, Zhang Y, He Y, Zhang Y. Environmental fate and impacts of microplastics in aquatic ecosystems: a review. RSC Adv 2021; 11:15762-15784. [PMID: 35481192 PMCID: PMC9031200 DOI: 10.1039/d1ra00880c] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022] Open
Abstract
Wide usage of plastic products leads to the global occurrence of microplastics (MPs) in the aquatic environment. Due to the small size, they can be bio-ingested, which may cause certain health effects. The present review starts with summarizing the main sources of various types of MPs and their occurrences in the aquatic environment, as well as their transportation and degradation pathways. The analysis of migration of MPs in water environments shows that the ultimate fate of most MPs in water environments is cracked into small fragments and sinking into the bottom of the ocean. The advantages and disadvantages of existing methods for detection and analysis of MPs are summarized. In addition, based on recent researches, the present review discusses MPs as carriers of organic pollutants and microorganisms, and explores the specific effects of MPs on aquatic organisms in the case of single and combined pollutants. Finally, by analysing the causes and influencing factors of their trophic transfer, the impact of MPs on high-level trophic organisms is explored. The sources, fate and impacts of microplastics in aquatic ecosystems.![]()
Collapse
Affiliation(s)
- Sen Du
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Rongwen Zhu
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Yujie Cai
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Ning Xu
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Pow-Seng Yap
- Department of Civil Engineering
- Xi'an Jiaotong-Liverpool University
- Suzhou
- China
| | - Yunhai Zhang
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Yide He
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| | - Yongjun Zhang
- School of Environmental Science and Engineering
- Nanjing Tech University
- P. R. China
| |
Collapse
|
186
|
Bhagwat G, O'Connor W, Grainge I, Palanisami T. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front Microbiol 2021. [PMID: 34248907 DOI: 10.3389/fmicb.2021.687118/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Conditioning films (CFs) are surface coatings formed by the adsorption of biomolecules from the surrounding environment that can modify the material-specific surface properties and precedes the attachment of microorganisms. Hence, CFs are a biologically relevant identity that could govern the behavior and fate of microplastics in the aquatic environment. In the present study, polyethylene terephthalate (PET) and polylactic acid (PLA) plastic cards were immersed in natural seawater to allow the formation of CFs. The changes in the surface roughness after 24 h were investigated by atomic force microscopy (AFM), and the surface changes were visualized by scanning electron microscopy (SEM). The global elemental composition of the conditioned surface was investigated by energy dispersive spectroscopy (EDS). Results indicated that marine conditioning of PET and PLA samples for 24 h resulted in an increase of ∼11 and 31% in the average surface roughness, respectively. SEM images revealed the attachment of coccoid-shaped bacterial cells on the conditioned surfaces, and the accumulation of salts of sodium and phosphate-containing precipitates was revealed through the EDS analysis. The results indicate that the increase in surface roughness due to conditioning is linked to a material's hydrophilicity leading to a rapid attachment of bacteria on the surfaces. Further investigations into the CFs can unfold crucial knowledge surrounding the plastic-microbe interaction that has implications for medical, industrial, and environmental research.
Collapse
Affiliation(s)
- Geetika Bhagwat
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
187
|
Brachner A, Fragouli D, Duarte IF, Farias PMA, Dembski S, Ghosh M, Barisic I, Zdzieblo D, Vanoirbeek J, Schwabl P, Neuhaus W. Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8832. [PMID: 33261100 PMCID: PMC7730001 DOI: 10.3390/ijerph17238832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs.
Collapse
Affiliation(s)
- Andreas Brachner
- Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy;
| | - Iola F. Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Patricia M. A. Farias
- PHORNANO Holding GmbH, 2100 Korneuburg, Austria;
- Programa de Pos-graduacao em Ciencia de Materiais, Departamento de Biofisica e Radiobiologia, Universidade Federal de Pernambuco-UFPE, Recife 50670-901, Brazil
| | - Sofia Dembski
- Fraunhofer Translational Center Regenerative Therapies TLC-RT, 97070 Würzburg, Germany; (S.D.); (D.Z.)
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital, 97070 Würzburg, Germany
| | - Manosij Ghosh
- Department of Public Health and Primary Care Centre for Environment and Health Herestraat 49 (O&N 706), KU Leuven, B-3000 Leuven, Belgium; (M.G.); (J.V.)
| | - Ivan Barisic
- Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| | - Daniela Zdzieblo
- Fraunhofer Translational Center Regenerative Therapies TLC-RT, 97070 Würzburg, Germany; (S.D.); (D.Z.)
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital, 97070 Würzburg, Germany
| | - Jeroen Vanoirbeek
- Department of Public Health and Primary Care Centre for Environment and Health Herestraat 49 (O&N 706), KU Leuven, B-3000 Leuven, Belgium; (M.G.); (J.V.)
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| |
Collapse
|