151
|
Germena G, Zelarayán LC, Hinkel R. Cellular Chitchatting: Exploring the Role of Exosomes as Cardiovascular Risk Factors. Front Cell Dev Biol 2022; 10:860005. [PMID: 35433670 PMCID: PMC9008366 DOI: 10.3389/fcell.2022.860005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes are small bi-lipid membranous vesicles (30–150 nm) containing different biological material such as proteins, lipids and nucleic acid. These small vesicles, inducing a cell to cell signaling pathway, are able to mediate multidirectional crosstalk to maintain homeostasis or modulate disease processes. With their various contents, exosomes sort and transfer specific information from their origin to a recipient cell, from a tissue or organ in the close proximity or at distance, generating an intra-inter tissue or organ communication. In the last decade exosomes have been identified in multiple organs and fluids under different pathological conditions. In particular, while the content and the abundance of exosome is now a diagnostic marker for cardiovascular diseases, their role in context-specific physiological and pathophysiological conditions in the cardiovascular system remains largely unknown. We summarize here the current knowledge on the role of exosomes as mediators of cardiovascular diseases in several pathophysiological conditions such as atherosclerosis and diabetes. In addition, we describe evidence of intercellular connection among multiple cell type (cardiac, vasculature, immune cells) as well as the challenge of their in vivo analysis.
Collapse
Affiliation(s)
- Giulia Germena
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- *Correspondence: Giulia Germena, ; Rabea Hinkel,
| | - Laura Cecilia Zelarayán
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hannover, Germany
- *Correspondence: Giulia Germena, ; Rabea Hinkel,
| |
Collapse
|
152
|
Liu K, Gao X, Kang B, Liu Y, Wang D, Wang Y. The Role of Tumor Stem Cell Exosomes in Cancer Invasion and Metastasis. Front Oncol 2022; 12:836548. [PMID: 35350566 PMCID: PMC8958025 DOI: 10.3389/fonc.2022.836548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are lipid membrane bilayer-encapsulated vesicles secreted by cells into the extracellular space. They carry abundant inclusions (such as nucleic acids, proteins, and lipids) that play pivotal roles in intercellular communication. Tumor stem cells are capable of self-renewal and are crucial for survival, proliferation, drug resistance, metastasis, and recurrence of tumors. The miRNAs (microRNAs) in exosomes have various functions, such as participating in inflammatory response, cell migration, proliferation, apoptosis, autophagy, and epithelial-mesenchymal transition. Tumor stem cells secrete exosomes that act as important messengers involved in various tumor processes and several studies provide increasing evidence supporting the importance of these exosomes in tumor recurrence and metastasis. This review primarily focuses on the production and secretion of exosomes from tumors and tumor stem cells and their effects on cancer progression. Cancer stem cancer derived exosome play an important massager in the tumor microenvironment. It also emphasizes on the study of tumor stem cell exosomes in the light of cancer metastasis and recurrence aiming to provide valuable insights and novel perspectives, which could be beneficial for developing effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xin Gao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Baoqiang Kang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dingding Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| |
Collapse
|
153
|
Chen Y, Dong B, Huang L, Zhou J, Huang H. Research progress on the role and mechanism of action of exosomes in autoimmune thyroid disease. Int Rev Immunol 2022; 42:334-346. [PMID: 35353670 DOI: 10.1080/08830185.2022.2057482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 11/09/2022]
Abstract
Exosomes are widely distributed extracellular vesicles (EVs), which are currently a major research hotspot for researchers based on their wide range of sources, stable membrane structure, low immunogenicity, and containing a variety of biomolecules. A large number of literatures have shown that exosomes and exosome cargoes (especially microRNAs) play an important role in the activation of inflammation, development of tumor, differentiation of cells, regulation of immunity and so on. Studies have found that exosomes can stimulate the immune response of the body and participate in the occurrence and development of various diseases, including autoimmune diseases. Furthermore, the potential of exosomes as therapeutic tools in various diseases has also attracted much attention. Autoimmune thyroid disease (AITD) is one of the most common autoimmune diseases, mainly composed of Graves' disease (GD) and Hashimoto's thyroiditis (HT), which affects the health of many people and has a genetic predisposition, but its pathogenesis is still being explored. Starting from the relevant biological characteristics of exosomes, this review summarizes the current research status of exosomes and the association between exosomes and some diseases, with a focus on the situation of AITD and the potential role of exosomes (including substances in their vesicles) in AITD in combination with the current published literature, aiming to provide new directions for the pathogenesis, diagnosis or therapy of AITD.Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Bingtian Dong
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lichun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jingxiong Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
154
|
Kosanović M, Milutinovic B, Glamočlija S, Morlans IM, Ortiz A, Bozic M. Extracellular Vesicles and Acute Kidney Injury: Potential Therapeutic Avenue for Renal Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073792. [PMID: 35409151 PMCID: PMC8998560 DOI: 10.3390/ijms23073792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Bojana Milutinovic
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Sofija Glamočlija
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Ingrid Mena Morlans
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain;
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
- Correspondence:
| |
Collapse
|
155
|
O'Grady T, Njock MS, Lion M, Bruyr J, Mariavelle E, Galvan B, Boeckx A, Struman I, Dequiedt F. Sorting and packaging of RNA into extracellular vesicles shape intracellular transcript levels. BMC Biol 2022; 20:72. [PMID: 35331218 PMCID: PMC8944098 DOI: 10.1186/s12915-022-01277-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are released by nearly every cell type and have attracted much attention for their ability to transfer protein and diverse RNA species from donor to recipient cells. Much attention has been given so far to the features of EV short RNAs such as miRNAs. However, while the presence of mRNA and long noncoding RNA (lncRNA) transcripts in EVs has also been reported by multiple different groups, the properties and function of these longer transcripts have been less thoroughly explored than EV miRNA. Additionally, the impact of EV export on the transcriptome of exporting cells has remained almost completely unexamined. Here, we globally investigate mRNA and lncRNA transcripts in endothelial EVs in multiple different conditions. RESULTS In basal conditions, long RNA transcripts enriched in EVs have longer than average half-lives and distinctive stability-related sequence and structure characteristics including shorter transcript length, higher exon density, and fewer 3' UTR A/U-rich elements. EV-enriched long RNA transcripts are also enriched in HNRNPA2B1 binding motifs and are impacted by HNRNPA2B1 depletion, implicating this RNA-binding protein in the sorting of long RNA to EVs. After signaling-dependent modification of the cellular transcriptome, we observed that, unexpectedly, the rate of EV enrichment relative to cells was altered for many mRNA and lncRNA transcripts. This change in EV enrichment was negatively correlated with intracellular abundance, with transcripts whose export to EVs increased showing decreased abundance in cells and vice versa. Correspondingly, after treatment with inhibitors of EV secretion, levels of mRNA and lncRNA transcripts that are normally highly exported to EVs increased in cells, indicating a measurable impact of EV export on the long RNA transcriptome of the exporting cells. Compounds with different mechanisms of inhibition of EV secretion affected the cellular transcriptome differently, suggesting the existence of multiple EV subtypes with different long RNA profiles. CONCLUSIONS We present evidence for an impact of EV physiology on the characteristics of EV-producing cell transcriptomes. Our work suggests a new paradigm in which the sorting and packaging of transcripts into EVs participate, together with transcription and RNA decay, in controlling RNA homeostasis and shape the cellular long RNA abundance profile.
Collapse
Affiliation(s)
- Tina O'Grady
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Makon-Sébastien Njock
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Michelle Lion
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Jonathan Bruyr
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Emeline Mariavelle
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Bartimée Galvan
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Amandine Boeckx
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
156
|
Soler-Botija C, Monguió-Tortajada M, Munizaga-Larroudé M, Gálvez-Montón C, Bayes-Genis A, Roura S. Mechanisms governing the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles: A scoping review of preclinical evidence. Biomed Pharmacother 2022; 147:112683. [PMID: 35144050 DOI: 10.1016/j.biopha.2022.112683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Compelling evidence supports the therapeutic benefit of extracellular vesicles (EVs). EVs are nanostructures with a lipid bilayer membrane that are secreted by multiple cells, including mesenchymal stromal cells (MSCs), as means of cellular communication. MSC-EVs, resembling their MSC origin, carry protected immunomodulatory and pro-regenerative cargoes to targeted neighboring or distant cells and tissues. Though treatments focused on MSC-EVs have emerged as greatly versatile approaches to modulate multiple inflammatory-related conditions, crucial concerns, including the possibility of increasing therapeutic outcomes by pre-conditioning parental MSCs or engineering derived EVs and clarification of the most relevant mechanisms of action, remain. Here, we summarize the large amount of preclinical research surrounding the modulation of beneficial effects by MSC-EVs.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Micaela Munizaga-Larroudé
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain; Department of Medicine, UAB, Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona 08500, Spain.
| |
Collapse
|
157
|
DiStefano TJ, Vaso K, Danias G, Chionuma HN, Weiser JR, Iatridis JC. Extracellular Vesicles as an Emerging Treatment Option for Intervertebral Disc Degeneration: Therapeutic Potential, Translational Pathways, and Regulatory Considerations. Adv Healthc Mater 2022; 11:e2100596. [PMID: 34297485 PMCID: PMC8783929 DOI: 10.1002/adhm.202100596] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Emergent approaches in regenerative medicine look toward the use of extracellular vesicles (EVs) as a next-generation treatment strategy for intervertebral disc (IVD) degeneration (IVDD) because of their ability to attenuate chronic inflammation, reduce apoptosis, and stimulate proliferation in a number of tissue systems. Yet, there are no Food and Drug Administration (FDA)-approved EV therapeutics in the market with an indication for IVDD, which motivates this article to review the current state of the field and provide an IVD-specific framework to assess its efficacy. In this systematic review, 29 preclinical studies that investigate EVs in relation to the IVD are identified, and additionally, the regulatory approval process is reviewed in an effort to accelerate emerging EV-based therapeutics toward FDA submission and timeline-to-market. The majority of studies focus on nucleus pulposus responses to EV treatment, where the main findings show that stem cell-derived EVs can decelerate the progression of IVDD on the molecular, cellular, and organ level. The findings also highlight the importance of the EV parent cell's pathophysiological and differentiation state, which affects downstream treatment responses and therapeutic outcomes. This systematic review substantiates the use of EVs as a promising cell-free strategy to treat IVDD and enhance endogenous repair.
Collapse
Affiliation(s)
- Tyler J. DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Keti Vaso
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Henry N. Chionuma
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
158
|
Hu K, McKay PF, Samnuan K, Najer A, Blakney AK, Che J, O'Driscoll G, Cihova M, Stevens MM, Shattock RJ. Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity. J Extracell Vesicles 2022; 11:e12199. [PMID: 35233930 PMCID: PMC8888812 DOI: 10.1002/jev2.12199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP-bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV-GFP-producing plasmids in mice demonstrated that antigen-specific IgG and IgA were significantly increased in EV-GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP-specific T cell response-related cytokines produced by antigen-stimulated splenocytes were also enhanced in mice immunized with EV-GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV-GFP in mice. In vitro uptake assays indicated that EV-GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV-bound antigen enhances both humoral and cell-mediated antigen-specific responses.
Collapse
Affiliation(s)
- Kai Hu
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Paul F. McKay
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Karnyart Samnuan
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Anna K. Blakney
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Junyi Che
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Gwen O'Driscoll
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK,Division of Radiotherapy and ImagingThe Institute of Cancer ResearchLondonUK
| | - Martina Cihova
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | | |
Collapse
|
159
|
Li Y, Huang L, Chen Y, Shi Y, Ze Y, Yao Y. Irradiated cell-derived exosomes transmit essential molecules inducing radiotherapy resistance. Int J Radiat Oncol Biol Phys 2022; 113:192-202. [PMID: 35217095 DOI: 10.1016/j.ijrobp.2022.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/11/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Radio-resistance has always been a major obstacle in radiation therapy (RT) progress. Radiotherapy (RT) leads to changes in the contents of released exosomes. The researches have shown that irradiated cell-derived exosomes influence recipient cell proliferation, migration, cell cycle arrest and apoptosis. All evidence indicates that exosomes play a significant role in radio-resistance. In this review, we describe the potential role of exosomes in cancer. We summarize that the irradiated cell-derived exosomes influence radio-resistance in recipient cells by three main mechanisms: 1) enhancing DNA repair, 2) regulating cell death signalling pathways, 3) inducing cancer cells to exhibit stem cell properties. We also discuss that the origin of the phenomenon might be the changes of molecular mechanisms of irradiated cell-derived exosomes formation affected by RT. Further, targeting exosomes as an adjuvant therapy might be a promising way for cancer treatments.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanchi Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
160
|
Pazzaglia S, Tanno B, De Stefano I, Giardullo P, Leonardi S, Merla C, Babini G, Tuncay Cagatay S, Mayah A, Kadhim M, Lyng FM, von Toerne C, Khan ZN, Subedi P, Tapio S, Saran A, Mancuso M. Micro-RNA and Proteomic Profiles of Plasma-Derived Exosomes from Irradiated Mice Reveal Molecular Changes Preventing Apoptosis in Neonatal Cerebellum. Int J Mol Sci 2022; 23:ijms23042169. [PMID: 35216284 PMCID: PMC8878539 DOI: 10.3390/ijms23042169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cell communication via exosomes is capable of influencing cell fate in stress situations such as exposure to ionizing radiation. In vitro and in vivo studies have shown that exosomes might play a role in out-of-target radiation effects by carrying molecular signaling mediators of radiation damage, as well as opposite protective functions resulting in resistance to radiotherapy. However, a global understanding of exosomes and their radiation-induced regulation, especially within the context of an intact mammalian organism, has been lacking. In this in vivo study, we demonstrate that, compared to sham-irradiated (SI) mice, a distinct pattern of proteins and miRNAs is found packaged into circulating plasma exosomes after whole-body and partial-body irradiation (WBI and PBI) with 2 Gy X-rays. A high number of deregulated proteins (59% of WBI and 67% of PBI) was found in the exosomes of irradiated mice. In total, 57 and 13 miRNAs were deregulated in WBI and PBI groups, respectively, suggesting that the miRNA cargo is influenced by the tissue volume exposed to radiation. In addition, five miRNAs (miR-99b-3p, miR-200a-3p, miR-200a, miR-182-5p, miR-182) were commonly overexpressed in the exosomes from the WBI and PBI groups. In this study, particular emphasis was also given to the determination of the in vivo effect of exosome transfer by intracranial injection in the highly radiosensitive neonatal cerebellum at postnatal day 3. In accordance with a major overall anti-apoptotic function of the commonly deregulated miRNAs, here, we report that exosomes from the plasma of irradiated mice, especially in the case of WBI, prevent radiation-induced apoptosis, thus holding promise for exosome-based future therapeutic applications against radiation injury.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
- Correspondence: (S.P.); (M.M.)
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Ilaria De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Caterina Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (S.T.C.); (A.M.); (M.K.)
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (S.T.C.); (A.M.); (M.K.)
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (S.T.C.); (A.M.); (M.K.)
| | - Fiona M. Lyng
- FOCAS Research Institute, Technological University Dublin (TU Dublin), D07 EWV4 Dublin, Ireland;
| | - Christine von Toerne
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Zohaib N. Khan
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Prabal Subedi
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
- Correspondence: (S.P.); (M.M.)
| |
Collapse
|
161
|
Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041303. [PMID: 35209095 PMCID: PMC8879284 DOI: 10.3390/molecules27041303] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Until thirty years ago, it was believed that extracellular vesicles (EVs) were used to remove unnecessary compounds from the cell. Today, we know about their enormous potential in diagnosing and treating various diseases. EVs are essential mediators of intercellular communication, enabling the functional transfer of bioactive molecules from one cell to another. Compared to laboratory-created drug nanocarriers, they are stable in physiological conditions. Furthermore, they are less immunogenic and cytotoxic compared to polymerized vectors. Finally, EVs can transfer cargo to particular cells due to their membrane proteins and lipids, which can implement them to specific receptors in the target cells. Recently, new strategies to produce ad hoc exosomes have been devised. Cells delivering exosomes have been genetically engineered to overexpress particular macromolecules, or transformed to release exosomes with appropriate targeting molecules. In this way, we can say tailor-made therapeutic EVs are created. Nevertheless, there are significant difficulties to solve during the application of EVs as drug-delivery agents in the clinic. This review explores the diversity of EVs and the potential therapeutic options for exosomes as natural drug-delivery vehicles in oncology, neurology, and dermatology. It also reflects future challenges in clinical translation.
Collapse
|
162
|
Markoutsa E, Mayilsamy K, Gulick D, Mohapatra SS, Mohapatra S. Extracellular vesicles derived from inflammatory-educated stem cells reverse brain inflammation-implication of miRNAs. Mol Ther 2022; 30:816-830. [PMID: 34371179 PMCID: PMC8821927 DOI: 10.1016/j.ymthe.2021.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation plays a key role in the development of age-related diseases. In Alzheimer's disease, neuronal cell death is attributed to amyloidbeta oligomers that trigger microglial activation. Stem cells have shown promise as therapies for inflammatory diseases- because of their paracrine activity combined with their ability to respond to the inflammatory environment. However, the mechanisms underlying stem cell-promoted neurological recovery are poorly understood. To elucidate these mechanisms, we first primed stem cells with the secretome of lipopolysaccharide- or amyloidbeta-activated microglia. Then, we compared the immunomodulatory effects of extracellular vesicles (EVs) secreted from primed and non-primed stem cells. Our results demonstrate that EVs from primed cells are more effective in inhibiting microglia and astrocyte activation, amyloid deposition, demyelination, memory loss and motor and anxiety-like behavioral dysfunction, compared to EVs from non-primed cells. MicroRNA (miRNA) profiling revealed the upregulation of at least 19 miRNAs on primed-stem cell EVs. The miRNA targets were identified, and KEGG pathway analysis showed that the overexpressed miRNAs target key genes on the toll-like receptor-4 (TLR4) signaling pathway. Overall, our results demonstrate that priming mesenchymal stem cells (MSCs) with the secretome of activated microglia results in the release of miRNAs from EVs with enhanced immune regulatory potential able to fight neuroinflammation.
Collapse
Affiliation(s)
- Eleni Markoutsa
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA,Corresponding author: Eleni Markoutsa, Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Karthick Mayilsamy
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Dannielle Gulick
- Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Shyam S. Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA,Corresponding author: Subhra Mohapatra, Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
163
|
Wang J, Du X, Wang X, Xiao H, Jing N, Xue W, Dong B, Gao WQ, Fang YX. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett 2022; 526:76-90. [PMID: 34801597 DOI: 10.1016/j.canlet.2021.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
Most prostate cancer (PCa)-related deaths are caused by progression to bone metastasis. Recently, the importance of extracellular vesicles (EVs) in pre-metastatic niche formation has been reported. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and induce pre-metastatic niche formation for PCa bone metastasis remain unclear. Our in vitro and in vivo functional and mechanistic assays revealed that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa, maintaining low intracellular miR-378a-3p concentration to promote proliferation and MAOA-mediated epithelial-to-mesenchymal transition. Moreover, miR-378a-3p enrichment in tumor-derived EVs was induced by hnRNPA2B1 (a transfer chaperone) overexpression. After tumor-derived EVs were taken in by BMMs, enriched miR-378a-3p promoted osteolytic progression by inhibiting Dyrk1a to improve Nfatc1 (an osteolysis-related transcription factor) nuclear translocation, to activate the expression of downstream target gene Angptl2. As a feedback, increased Angptl2 secretion into the tumor environment promoted PCa progression. In conclusion, tumor-derived miR-378a-3p-containing EVs play a significant role in PCa bone metastasis by activating the Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, making miR-378a-3p a potential predictor of metastatic PCa. Reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into EVs can be a therapeutic strategy against PCa metastasis.
Collapse
Affiliation(s)
- Jialin Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Nan Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
164
|
Nagao K, Maeda K, Hosomi K, Morioka K, Inuzuka T, Ohtsubo K. Sialyl-Tn antigen facilitates extracellular vesicle-mediated transfer of FAK and enhances motility of recipient cells. J Biochem 2022; 171:543-554. [PMID: 35106570 DOI: 10.1093/jb/mvac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/14/2022] Open
Abstract
Protein glycosylation plays a pivotal role in tumor development by modulating molecular interactions and cellular signals. Sialyl-Tn (sTn) antigen is a tumor associating carbohydrate epitope whose expression correlates with metastasis and poor prognosis of various cancers; however, its pathophysiological function is poorly understood. Extracellular vesicles (EVs) derived from cancer cells act as a signal mediator among tumor microenvironments by transferring cargo molecules. sTn antigen has been found in the glycans of EVs, thereby the functional relevance of sTn antigen to the regulation of tumor microenvironments could be expected. In the present study, we showed that sTn antigen induced TP53 and tumor suppressor activated pathway 6 (TSAP6), and consequently enhanced EV-production. Besides, the genetic attenuation of TSAP6 resulted in the reduction of the EV-production in the sTn antigen expressing cells. The enhanced EV-production in the sTn antigen expressing cells consequently augmented the delivery of EVs to recipient cells. The produced EVs selectively and abundantly encased focal adhesion kinase and transferred it to EV-recipient cells, and thus their cellular motility was enhanced. These findings would contribute to facilitate the elucidation of the pathophysiological significance of the sTn antigen in the tumor microenvironments and tumor development.
Collapse
Affiliation(s)
- Keisuke Nagao
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| | - Kento Maeda
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976.,Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan, 541-8567
| | - Kasumi Hosomi
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| | - Kaito Morioka
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| | | | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976.,Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| |
Collapse
|
165
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
166
|
Exosomes in cardiovascular diseases: a blessing or a sin for the mankind. Mol Cell Biochem 2022; 477:833-847. [PMID: 35064412 DOI: 10.1007/s11010-021-04328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) comprises disorders of blood vessels and heart. Multiple cells in the heart suggests that hetero-cellular communication, which is an important aspect in heart functioning and there is a need to elucidate the way in which this inter-cellular communication occurs. Now a days, exosomal research has gained much attention. Exosomes, nano-shuttles, are EVs with diameters ranging from 40 to 160 nm (average 100 nm), secreted by body cells. These vesicles act as cell-to-cell communicators and are carriers of important biomolecules such as RNAs, miRNAs, Proteins and lipids. Exosomes can change the gene expression of the recipient cells, thereby, changes the cellular characteristics. Exosomes have known to play an essential role in protection as well as progression of various cardiovascular diseases. In the present review, role of exosomes in various CVDs have been discussed.
Collapse
|
167
|
Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem 2022; 477:815-832. [PMID: 35059925 DOI: 10.1007/s11010-021-04326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Dinesh Kaul
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Anil Sachdev
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | | |
Collapse
|
168
|
Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 2022; 20:30. [PMID: 35033106 PMCID: PMC8760667 DOI: 10.1186/s12967-022-03231-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
169
|
Pecankova K, Pecherkova P, Gasova Z, Sovova Z, Riedel T, Jäger E, Cermak J, Majek P. Proteome changes of plasma-derived extracellular vesicles in patients with myelodysplastic syndrome. PLoS One 2022; 17:e0262484. [PMID: 35007303 PMCID: PMC8746746 DOI: 10.1371/journal.pone.0262484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. Objective Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. Methods Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. Results Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. Conclusions This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.
Collapse
Affiliation(s)
- Klara Pecankova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| | - Pavla Pecherkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gasova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zofie Sovova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Tomas Riedel
- Institute of Macromolecular Chemistry CAS, Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavel Majek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
170
|
Wang R, Wang X, Zhang Y, Zhao H, Cui J, Li J, Di L. Emerging prospects of extracellular vesicles for brain disease theranostics. J Control Release 2022; 341:844-868. [DOI: 10.1016/j.jconrel.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
|
171
|
Dubey A, Lobo CL, GS R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci 2022; 17:20-34. [PMID: 34630723 PMCID: PMC8487464 DOI: 10.1016/j.ajps.2021.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
The spread of SARS-CoV-2 as an emerging novel coronavirus disease (COVID-19) had progressed as a worldwide pandemic since the end of 2019. COVID-19 affects firstly lungs tissues which are known for their very slow regeneration. Afterwards, enormous cytokine stimulation occurs in the infected cells immediately after a lung infection which necessitates good management to save patients. Exosomes are extracellular vesicles of nanometric size released by reticulocytes on maturation and are known to mediate intercellular communications. The exosomal cargo serves as biomarkers in diagnosing various diseases; moreover, exosomes could be employed as nanocarriers in drug delivery systems. Exosomes look promising to combat the current pandemic since they contribute to the immune response against several viral pathogens. Many studies have proved the potential of using exosomes either as viral elements or host systems that acquire immune-stimulatory effects and could be used as a vaccine or drug delivery tool. It is essential to stop viral replication, prevent and reverse the massive storm of cytokine that worsens the infected patients' situations for the management of COVID-19. The main benefits of exosomes could be; no cells will be introduced, no chance of mutation, lack of immunogenicity and the damaged genetic material that could negatively affect the recipient is avoided. Additionally, it was found that exosomes are static with no ability for in vivo reproduction. The current review article discusses the possibilities of using exosomes for detecting novel coronavirus and summarizes state of the art concerning the clinical trials initiated for examining the use of COVID-19 specific T cells derived exosomes and mesenchymal stem cells derived exosomes in managing COVID-19.
Collapse
Affiliation(s)
- Akhilesh Dubey
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Cynthia Lizzie Lobo
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Ravi GS
- Formulation and Development, Viatris R&D Centre, Bengaluru 560105, India
| | - Amitha Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| |
Collapse
|
172
|
Tastan B, Tarakcioglu E, Birinci Y, Park Y, Genc S. Role of Exosomal MicroRNAs in Cell-to-Cell Communication. Methods Mol Biol 2022; 2257:269-292. [PMID: 34432284 DOI: 10.1007/978-1-0716-1170-8_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exosomes, a type of extracellular vesicle, are small vesicles (30-100 nm) secreted into extracellular space from almost all types of cells. Exosomes mediate cell-to-cell communication carrying various biologically active molecules including microRNAs. Studies have shown that exosomal microRNAs play fundamental roles in healthy and pathological conditions such as immunity, cancer, and inflammation. In this chapter, we introduce the current knowledge on exosome biogenesis, techniques used in exosome research, and exosomal miRNA and their functions in biological and pathological processes.
Collapse
Affiliation(s)
- Bora Tastan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Tarakcioglu
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Yelda Birinci
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey
| | - Yongsoo Park
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey
| | - Sermin Genc
- Department of Neuroscience, Institute of Health Science, University of Dokuz Eylul, Izmir, Turkey. .,Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
173
|
Dubey A, Lobo CL, GS R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci 2022. [DOI: https://doi.org/10.1016/j.ajps.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
174
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
175
|
Garcia-Martin R, Brandao BB, Thomou T, Altindis E, Kahn CR. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep 2022; 38:110277. [PMID: 35045290 PMCID: PMC8867597 DOI: 10.1016/j.celrep.2021.110277] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes/small extracellular vesicles (sEVs) can serve as multifactorial mediators of cell-to-cell communication through their miRNA and protein cargo. Quantitative proteomic analysis of five cell lines representing metabolically important tissues reveals that each cell type has a unique sEV proteome. While classical sEV markers such as CD9/CD63/CD81 vary markedly in abundance, we identify six sEV markers (ENO1, GPI, HSPA5, YWHAB, CSF1R, and CNTN1) that are similarly abundant in sEVs of all cell types. In addition, each cell type has specific sEV markers. Using fat-specific Dicer-knockout mice with decreased white adipose tissue and increased brown adipose tissue, we show that these cell-type-specific markers can predict the changing origin of the serum sEVs. These results provide a valuable resource for understanding the sEV proteome of the cells and tissues important in metabolic homeostasis, identify unique sEV markers, and demonstrate how these markers can help in predicting the tissue of origin of serum sEVs. By performing comparative proteomics, Garcia-Martin et al. identify markers common to exosomes/sEVs from multiple cell types, as well as markers unique to each cell type. Using a lipodystrophy mouse model, they demonstrate the use of this sEV proteome dataset to predict the tissue of origin of circulating exosomes/sEVs in vivo.
Collapse
Affiliation(s)
- Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Bruna Brasil Brandao
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Thomas Thomou
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Emrah Altindis
- Boston College Biology Department, Higgins Hall, 140 Commonwealth Avenue, Chestnut Hill, MA 02476, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
176
|
Sart S, Yuan X, Jeske R, Li Y. Engineering exosomal microRNAs in human pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:1-27. [DOI: 10.1016/b978-0-323-90059-1.00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
177
|
Wei H, Green E, Ball L, Fan H, Lee J, Strange C, Wang H. Proteomic Analysis of Exosomes Secreted from Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. BIOLOGY 2021; 11:biology11010009. [PMID: 35053007 PMCID: PMC8773149 DOI: 10.3390/biology11010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) mediate many therapeutic effects of stem cells during cellular therapies. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were manufactured to overexpress the human antiprotease alpha-1 antitrypsin (hAAT) and studied to compare the EV production compared to lentivirus treated control MSCs. The goal of this study was to compare protein profiles in the EVs/exosomes of control and hAAT-MSCs using unbiased, high resolution liquid chromatography and mass spectrometry to explore differences. Nanoparticle tracking analysis (NTA) showed that the particle size of the EVs from control MSCs or hAAT-MSCs ranged from 30 to 200 nm. Both MSCs and hAAT-MSCs expressed exosome-associated proteins, including CD63, CD81, and CD9. hAAT-MSCs also expressed high levels of hAAT. We next performed proteomic analysis of EVs from three healthy donor cell lines. Exosomes collected from cell supernatant were classified by GO analysis which showed proteins important to cell adhesion and extracellular matrix organization. However, there were differences between exosomes from control MSCs and hAAT-MSCs in cytokine signaling of the immune system, stem cell differentiation, and carbohydrate metabolism (p < 0.05). These results show that hAAT-MSC exosomes contain a different profile of paracrine effectors with altered immune function, impacts on MSC stemness, differentiation, and prevention of cell apoptosis and survival that could contribute to improved therapeutic functions.
Collapse
Affiliation(s)
- Hua Wei
- Departments of Surgery, Medical University of South Carolina, CRI 410, 173 Ashley Avenue, Charleston, SC 29425, USA; (H.W.); (E.G.)
| | - Erica Green
- Departments of Surgery, Medical University of South Carolina, CRI 410, 173 Ashley Avenue, Charleston, SC 29425, USA; (H.W.); (E.G.)
| | - Lauren Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, CRI 311, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Hongkuan Fan
- Pathology and Laboratory Medicine, Medical University of South Carolina, CRI 610, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, CSB 816, 96 Jonathan Lucas St., Charleston, SC 29425, USA;
| | - Hongjun Wang
- Departments of Surgery, Medical University of South Carolina, CRI 410, 173 Ashley Avenue, Charleston, SC 29425, USA; (H.W.); (E.G.)
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
- Correspondence: ; Tel.: +843-792-1800; Fax: 843-792-3315
| |
Collapse
|
178
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ferroni O, Ventura C. Protective effects of exosomes derived from lyophilized porcine liver against acetaminophen damage on HepG2 cells. BMC Complement Med Ther 2021; 21:299. [PMID: 34922514 PMCID: PMC8684611 DOI: 10.1186/s12906-021-03476-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, extracellular vesicles have come to the fore following their emerging role in cell communication, thanks to their ability to reach cells into the human body without dissipating their cargo, transferring biological active molecules, such as proteins, nucleic acids, lipids, etc. They appear as a promising tool in medicine, because of their capability to modulate cellular response in recipient cells. Moreover, a considerable number of publications suggests that exosome uptake is selective but not specific, and it can cross species and cell-type boundaries. This study aims to explore the potential role of porcine liver derived extracellular vesicles, exosomes in particular, to protect human cells from acute damage induced by acetaminophen. METHODS Extracellular vesicles were isolated from porcine lyophilized liver using polymer-based precipitation and a further enrichment was performed using affinity beads. The effects of obtained fractions, total extracellular vesicles and enriched extracellular vesicles, were assessed on human liver derived HepG2 cells. Cell growth and survival were tested, with MTT and area coverage analysis designed by us, as well as protein expression, with immunofluorescence and Western blot. Oxidative stress in live cells was also measured with fluorogenic probes. RESULTS After proving that porcine extracellular vesicles did not have a toxic effect on HepG2, quite the contrary total extracellular vesicle fraction improved cell growth, we investigated their protective capability with a preconditioning strategy in APAP-induced damage. EVs displayed not only the ability to strongly modulate cell survival responses, but they also were able to boost cell cycle progression. CONCLUSIONS Extracellular vesicles derived from farm animal food derivatives are able to modulate human hepatic cell metabolism, also improving cell survival in a damaged context.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | | | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
179
|
Santos A, Domingues C, Jarak I, Veiga F, Figueiras A. Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. Eur J Pharm Biopharm 2021; 170:91-111. [PMID: 34896571 DOI: 10.1016/j.ejpb.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
The most common primary malignant tumor of bone in children is osteosarcoma (OS). Nowadays, the prognosis and the introduction of chemotherapy in OS have improved survival rates of patients. Nevertheless, the results are still unsatisfactory, especially, in patients with recurrent disease or metastatic. OS chemotherapy has two main challenges related to treatment toxicity and multiple drug resistance. In this way, nanotechnology has developed nanosystems capable of releasing the drug directly at the OS cells and decreasing the drug's toxicity. Exosomes (Exo), a cell-derived nano-sized and a phospholipid vehicle, have been recognized as important drug delivery systems in several cancers. They are involved in a variety of biological processes and are an important mediator of long-distance intercellular communication. Exo can reduce inflammation and show low toxicity in healthy cells. Furthermore, the incorporation of specific proteins or peptides on the Exo surface improves their targeting capability in several clinical applications. Due to their unique structure and relevant characteristics, Exo is a promising nanocarrier for OS treatment. This review intends to describe the properties that turn Exo into an efficient, as well as safe nanovesicle for drug delivery and treatment of OS.
Collapse
Affiliation(s)
- Ana Santos
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal.
| |
Collapse
|
180
|
He J, Ren W, Wang W, Han W, Jiang L, Zhang D, Guo M. Exosomal targeting and its potential clinical application. Drug Deliv Transl Res 2021; 12:2385-2402. [PMID: 34973131 PMCID: PMC9458566 DOI: 10.1007/s13346-021-01087-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are extracellular vesicles secreted by a variety of living cells, which have a certain degree of natural targeting as nano-carriers. Almost all exosomes released by cells will eventually enter the blood circulation or be absorbed by other cells. Under the action of content sorting mechanism, some specific surface molecules can be expressed on the surface of exosomes, such as tetraspanins protein and integrin. To some extent, these specific surface molecules can fuse with specific cells, so that exosomes show specific cell natural targeting. In recent years, exosomes have become a drug delivery system with low immunogenicity, high biocompatibility and high efficacy. Nucleic acids, polypeptides, lipids, or small molecule drugs with therapeutic function are organically loaded into exosomes, and then transported to specific types of cells or tissues in vivo, especially tumor tissues, to achieve targeting drug delivery. The natural targeting of exosome has been found and recognized in some studies, but there are still many challenges in effective clinical treatments. The use of the natural targeting of exosomes alone is incapable of accurately transporting the goods loaded to specific sites. Besides, the natural targeting of exosomes is still an open question in disease targeting and efficient gene/chemotherapy combined therapy. Engineering transformation and modification on exosomes can optimize its natural targeting and deliver the goods to a specific location, providing wide use in clinical treatment. This review summarizes the research progress of exosomal natural targeting and transformation strategy of obtained targeting after transformation. The mechanism of natural targeting and obtained targeting after transformation are also reviewed. The potential value of exosomal targeting in clinical application is also discussed.
Collapse
Affiliation(s)
- Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Wenyan Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Lu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Mengqi Guo
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
181
|
Chen Y, Zhao Y, Yin Y, Jia X, Mao L. Mechanism of cargo sorting into small extracellular vesicles. Bioengineered 2021; 12:8186-8201. [PMID: 34661500 PMCID: PMC8806638 DOI: 10.1080/21655979.2021.1977767] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are special membranous structures released by almost every cell type that carry and protect some biomolecules from being degraded. They transport important signaling molecules involved in cell communication, migration, and numerous physiological processes. EVs can be categorized into two main types according to their size: i) small extracellular vesicles (sEVs), such as exosomes (30-150 nm), released from the fusion of multivesicular bodies (MVBs) with the plasma membrane, and ii) large EVs, such as microvesicles (100-1000 nm). These are no longer considered a waste product of cells, but regulators of intercellular communication, as they can transport specific repertoires of cargos, such as proteins, lipids, and nucleic acids to receptor cells to achieve cell-to-cell communication. This indicates the existence of different mechanisms, which controls the cargos sorting into EVs. This review mainly gives a description about the biological roles of the cargo and the sorting mechanisms of sEVs, especially exosomes.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuxue Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiqian Yin
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaonan Jia
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
182
|
Kwan HY, Chen M, Xu K, Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci 2021; 78:7275-7288. [PMID: 34677643 PMCID: PMC8531905 DOI: 10.1007/s00018-021-03973-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
Recently, the emerging roles of adipocyte-derived extracellular vesicles (EVs) linking obesity and its comorbidities have been recognized. In obese subjects, adipocytes are having hypertrophic growth and are under stressed. The dysfunction adipocytes dysregulate the assembly of the biological components in the EVs including exosomes. This article critically reviews the current findings on the impact of obesity on the exosomal cargo contents that induce the pathophysiological changes. Besides, this review also summarizes the understanding on how obesity affects the biogenesis of adipocyte-derived exosomes and the exosome secretion. Furthermore, the differences of the exosomal contents in different adipose depots, and the impact of obesity on the exosomes that are derived from the stromal vascular fraction such as the adipose tissue macrophages and adipocyte-derived stem cells will also be discussed. The current development and potential application of exosome-based therapy will be summarized. This review provides crucial information for the design of novel exosome-based therapy for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Baisen Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| |
Collapse
|
183
|
Tesfaye D, Menjivar N, Gebremedhn S. Current knowledge and the future potential of extracellular vesicles in mammalian reproduction. Reprod Fertil Dev 2021; 34:174-189. [PMID: 35231266 DOI: 10.1071/rd21277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), which contain various functional classes of vesicles, namely exosomes, microvesicles, and apoptotic bodies, represent the major nano-shuttle to transfer bioactive molecules from donor to recipient cells to facilitate cell-to-cell communication in the follicular, oviduct, and uterine microenvironments. In addition to transferring various molecular cargos in the form of miRNAs, mRNAs, proteins, lipids, and DNA molecules, the relative proportion of those molecular cargos in the reproductive fluids can be associated with the physiological and pathological condition of the host animal. Inside the follicle, EV-mediated circulation of miRNAs has been reported to be associated with the growth status of the enclosed oocytes, the metabolic status, and the advanced maternal aging of the animal. Importantly, EVs have the potential to protect their cargo molecules from extracellular degradation or modification while travelling to the recipient cells. This fact together with the enormous availability in almost all biological fluids and spent culture media make them attractive in the search for biomarkers of oocyte/embryo developmental competence, receptive maternal environment and a multitude of reproductive pathophysiological conditions. One of the key factors that have contributed to the lower efficiency of assisted reproductive technologies (ART) is the absence of several maternal in vivo factors in the ART procedures. For this, several studies have been conducted to supplement various components present in the follicular and oviductal fluids into the existing ART procedures and significant positive impacts have been observed in terms of embryo cleavage rate, blastocyst rate, resistance to stress, and survival after cryopreservation. The potential of EVs in shuttling protective messages against environmental and physiological stressors has been evidenced. The effective use of the EV-coupled molecular signals against stress-associated conditions has the potential to pave the path for the application of these protective signals against oxidative stress-associated pathological conditions including PCOS, ageing, and endometritis. In this review, we provide current knowledge and potential future use of EVs as remedies in reproductive pathophysiological conditions, mainly in follicular and oviductal microenvironments.
Collapse
Affiliation(s)
- Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Road, Fort Collins, CO 80521, USA
| | - Nico Menjivar
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Road, Fort Collins, CO 80521, USA
| | | |
Collapse
|
184
|
Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol 2021; 15:101286. [PMID: 34839106 PMCID: PMC8636863 DOI: 10.1016/j.tranon.2021.101286] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles’ (EVs) role in breast tumor microenvironment and pre-metastatic niche development. Breast cancer EV-mediated transmission of pro-metastatic and drug-resistant phenotypes. Precision medicine with EVs as biomarkers and delivery vehicles for drug and anticancer genetic material.
Breast cancer metastatic progression to critical secondary sites is the second leading cause of cancer-related mortality in women. While existing therapies are highly effective in combating primary tumors, metastatic disease is generally deemed incurable with a median survival of only 2, 3 years. Extensive efforts have focused on identifying metastatic contributory targets for therapeutic antagonism and prevention to improve patient survivability. Excessive breast cancer release of extracellular vesicles (EVs), whose contents stimulate a metastatic phenotype, represents a promising target. Complex breast cancer intercellular communication networks are based on EV transport and transference of molecular information is in bulk resulting in complete reprogramming events within recipient cells. Other breast cancer cells can acquire aggressive phenotypes, endothelial cells can be induced to undergo tubule formation, and immune cells can be neutralized. Recent advancements continue to implicate the critical role EVs play in cultivating a tumor microenvironment tailored to cancer proliferation, metastasis, immune evasion, and conference of drug resistance. This literature review serves to frame the role of EV transport in breast cancer progression and metastasis. The following five sections will be addressed: (1) Intercellular communication in developing a tumor microenvironment & pre-metastatic niche. (2) Induction of the epithelial-to-mesenchymal transition (EMT). (3). Immune suppression & evasion. (4) Transmission of drug resistance mechanisms. (5) Precision medicine: clinical applications of EVs.
Collapse
Affiliation(s)
- Dara Brena
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| | - Vincent Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| |
Collapse
|
185
|
Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Front Cell Dev Biol 2021; 9:777462. [PMID: 34796180 PMCID: PMC8593217 DOI: 10.3389/fcell.2021.777462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis occurs in response to chronic liver injury and is characterized by an excessive deposition of extracellular matrix. Activated hepatic stellate cells are primarily responsible for this process. A possible strategy to counteract the development of hepatic fibrosis could be the reversion of the activated phenotype of hepatic stellate cells. Extracellular vesicles (EVs) are nanosized membrane vesicles involved in intercellular communication. Our previous studies have demonstrated that EVs derived from human liver stem cells (HLSCs), a multipotent population of adult stem cells of the liver with mesenchymal-like phenotype, exert in vivo anti-fibrotic activity in the liver. However, the mechanism of action of these EVs remains to be determined. We set up an in vitro model of hepatic fibrosis using a human hepatic stellate cell line (LX-2) activated by transforming growth factor-beta 1 (TGF-β1). Then, we investigated the effect of EVs obtained from HLSCs and from human bone marrow-derived mesenchymal stromal cells (MSCs) on activated LX-2. The incubation of activated LX-2 with HLSC-EVs reduced the expression level of alpha-smooth muscle actin (α-SMA). Conversely, MSC-derived EVs induced an increase in the expression of pro-fibrotic markers in activated LX-2. The analysis of the RNA cargo of HLSC-EVs revealed the presence of several miRNAs involved in the regulation of fibrosis and inflammation. Predictive target analysis indicated that several microRNAs (miRNAs) contained into HLSC-EVs could possibly target pro-fibrotic transcripts. In particular, we demonstrated that HLSC-EVs shuttled miR-146a-5p and that treatment with HLSC-EVs increased miR-146a-5p expression in LX-2. In conclusion, this study demonstrates that HLSC-EVs can attenuate the activated phenotype of hepatic stellate cells and that their biological effect may be mediated by the delivery of anti-fibrotic miRNAs, such as miR-146a-5p.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Elena Ceccotti
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
186
|
Role of Extracellular Vesicle-Based Cell-to-Cell Communication in Multiple Myeloma Progression. Cells 2021; 10:cells10113185. [PMID: 34831408 PMCID: PMC8625088 DOI: 10.3390/cells10113185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) progression closely depends on the bidirectional crosstalk between tumor cells and the surrounding microenvironment, which leads to the creation of a tumor supportive niche. Extracellular vesicles (EVs) have emerged as key players in the pathological interplay between the malignant clone and near/distal bone marrow (BM) cells through their biologically active cargo. Here, we describe the role of EVs derived from MM and BM cells in reprogramming the tumor microenvironment and in fostering bone disease, angiogenesis, immunosuppression, drug resistance, and, ultimately, tumor progression. We also examine the emerging role of EVs as new therapeutic agents for the treatment of MM, and their potential use as clinical biomarkers for early diagnosis, disease classification, and therapy monitoring.
Collapse
|
187
|
Chen W, Xie Y, Wang T, Wang L. New insights into Epstein‑Barr virus‑associated tumors: Exosomes (Review). Oncol Rep 2021; 47:13. [PMID: 34779497 PMCID: PMC8600424 DOI: 10.3892/or.2021.8224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) is endemic worldwide and is associated with a number of human tumors. EBV-associated tumors have unique mechanisms of tumorigenesis. EBV encodes multiple oncogenic molecules that can be loaded into exosomes released by EBV+ tumor cells to mediate intercellular communication. Moreover, different EBV+ tumor cells secrete exosomes that act on various target cells with various biological functions. In addition to oncogenicity, EBV+ exosomes have potential immunosuppressive effects. Investigating EBV+ exosomes could identify the role of EBV in tumorigenesis and progression. The present review summarized advances in studies focusing on exosomes and the functions of EBV+ exosomes derived from different EBV-associated tumors. EBV+ exosomes are expected to become a new biomarker for disease diagnosis and prognosis. Therefore, exosome-targeted therapy displays potential.
Collapse
Affiliation(s)
- Wei Chen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tingting Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
188
|
Mammes A, Pasquier J, Mammes O, Conti M, Douard R, Loric S. Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World J Gastrointest Oncol 2021; 13:1561-1598. [PMID: 34853637 PMCID: PMC8603448 DOI: 10.4251/wjgo.v13.i11.1561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
In the world, among all type of cancers, colorectal cancer (CRC) is the third most commonly diagnosed in males and the second in females. In most of cases, (RP1) patients’ prognosis limitation with malignant tumors can be attributed to delayed diagnosis of the disease. Identification of patients with early-stage disease leads to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches are mandatory as they may lead to an increase in progression-free and overall survival rates. For the last decade, the interest in extracellular vesicles (EVs) research has exponentially increased as EVs generation appears to be a universal feature of every cell that is strongly involved in many mechanisms of cell-cell communication either in physiological or pathological situations. EVs can cargo biomolecules, such as lipids, proteins, nucleic acids and generate transmission signal through the intercellular transfer of their content. By this mechanism, tumor cells can recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. This review intends to cover the most recent literature on the role of EVs production in colorectal normal and cancer tissues. Specific attention is paid to the use of EVs for early CRC diagnosis, follow-up, and prognosis as EVs have come into the spotlight of research as a high potential source of ‘liquid biopsies’. The use of EVs as new targets or nanovectors as drug delivery systems for CRC therapy is also summarized.
Collapse
Affiliation(s)
- Aurelien Mammes
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | - Jennifer Pasquier
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | | | - Marc Conti
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
- Metabolism Research Unit, Integracell SAS, Longjumeau 91160, France
| | - Richard Douard
- UCBM, Necker University Hospital, Paris 75015, France
- Gastrointestinal Surgery Department, Clinique Bizet, Paris 75016, France
| | - Sylvain Loric
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| |
Collapse
|
189
|
Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury. J Orthop Translat 2021; 31:33-40. [PMID: 34760623 PMCID: PMC8560648 DOI: 10.1016/j.jot.2021.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome's advantage is transporting the carried material to the target cells across the blood-brain barrier and exerting regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets, emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-specific therapeutic capabilities of exosomes.
Collapse
|
190
|
Chang W, Xiao D, Fang X, Wang J. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2021; 24:93-100. [PMID: 34742629 DOI: 10.1016/j.jcyt.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China.
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Xinyu Fang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
191
|
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front Cell Dev Biol 2021; 9:736022. [PMID: 34722517 PMCID: PMC8553038 DOI: 10.3389/fcell.2021.736022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dakai Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
192
|
Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers. Trends Genet 2021; 38:379-394. [PMID: 34728089 DOI: 10.1016/j.tig.2021.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action.
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
193
|
Li ZB, Li HZ, Guo CH, Cui HL. Role of exosomes in diagnosis and treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1186-1190. [DOI: 10.11569/wcjd.v29.i20.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system, which is insidious in origin and rapid in progression, and has a very poor prognosis. The incidence of pancreatic cancer is on the rise in recent years. Exosomes, an important vesicle in the human body, can reflect the physiological and pathological state of the source cells and play an important role in intercellular signal transduction. In recent years, the application of exosomes in tumor treatment has gained increasing attention from scholars. This article reviews the application of exosomes in the diagnosis and treatment of pancreatic cancer, to provide some reference for clinicians in the early diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Zong-Bei Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hua-Zhi Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Chun-Hai Guo
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hong-Li Cui
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| |
Collapse
|
194
|
Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells 2021; 10:2930. [PMID: 34831153 PMCID: PMC8616058 DOI: 10.3390/cells10112930] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Intercellular communication between neurons and their surrounding cells occurs through the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space, participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such as amyotrophic lateral sclerosis (ALS), Alzheimer's or Parkinson's disease, exosomes are suspected to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of the neuromotor system is then considered in the context of exosome-induced signaling. The review then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented. The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles, neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many plausible routes towards the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - Julie Dumonceaux
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - William John Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| |
Collapse
|
195
|
Scott-Fordsmand JJ, Amorim MJB. The Curious Case of Earthworms and COVID-19. BIOLOGY 2021; 10:biology10101043. [PMID: 34681142 PMCID: PMC8533077 DOI: 10.3390/biology10101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Earthworms have been used for centuries in traditional medicine, and more than a century ago were praised by Charles Darwin as one of the most important organisms in the history of the world. These worms are well-studied with a wealth of information available, for example on the genome, the gene expression, the immune system, the general biology, and ecology. These worms live in many habitats, and they had to find solutions for severe environmental challenges. The common compost worm, Eisenia fetida, has developed a unique mechanism to deal with intruding (nano)materials, bacteria, and viruses. It deals with the intruders by covering these with a defence toxin (lysenin) targeted to kill the intruder. We outline how this mechanism probably can be used as a therapeutic model for human COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) and other corona viruses. Abstract Earthworms have been used for centuries in traditional medicine and are used globally as an ecotoxicological standard test species. Studies of the earthworm Eisenia fetida have shown that exposure to nanomaterials activates a primary corona-response, which is covering the nanomaterial with native proteins, the same response as to biological invaders such as a virus. We outline that the earthworm Eisenia fetida is possibly immune to COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2), and we describe the likely mechanisms of highly receptor-specific pore-forming proteins (PFPs). A non-toxic version of this protein is available, and we hypothesize that it is possible to use the earthworm’s PFPs based anti-viral mechanism as a therapeutic model for human SARS-CoV-2 and other corona viruses. The proteins can be used as a drug, for example, delivered with a nanoparticle in a similar way to the current COVID-19 vaccines. Obviously, careful consideration should be given to the potential risk of toxicity elicited by lysenin for in vivo usage. We aim to share this view to activate its exploration by the wider scientific community while promoting a potential therapeutic development.
Collapse
Affiliation(s)
- Janeck J. Scott-Fordsmand
- Department of Biosciences, Aarhus University, 8600 Silkeborg, Denmark
- Correspondence: ; Tel.: +45-4025-6803
| | - Monica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
196
|
Ashour H, Rashed L, Elkordy MA, Abdelwahed OM. Remote liver injury following acute renal ischaemia-reperfusion: involvement of circulating exosomal miR-687 and regulation by thymoquinone. Exp Physiol 2021; 106:2262-2275. [PMID: 34633737 DOI: 10.1113/ep089765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of circulating exosomal miR-687 in remote hepatic injury following renal ischaemia-reperfusion injury (IRI) and does thymoquinone have a modulatory impact? What is the main finding and its importance? Exosomal miR-687 was expressed in renal IRI, entered the circulation and was deposited in the liver. Liver exosomal miR-687 was correlated with liver inflammation and apoptosis. Thymoquinone aborted the renal production of exosomal miR-687 and its further circulation to the liver. ABSTRACT The pathophysiology of remote hepatic injury following acute renal ischaemia-reperfusion injury (IRI) is of particular clinical interest. Secreted small non-coding microRNA (miRs) are thought to exist in exosome-encapsulated form. Thymoquinone (TQ) is the main bioactive ingredient of Nigella sativa and has several renoprotective actions. We expected exosomal miR-687 to be relevant as it could act as a humoral mediator, with possible modulation by TQ. Thirty adult male Wister albino rats were assigned to three groups (n = 10); (1) sham-operated, (2) renal ischaemia-reperfusion injury (IRI), and (3) renal IRI pre-treated with TQ 10 mg/kg/day i.v. (TQ-IRI) for 10 days in addition to a dose administered at reperfusion onset. Following 24 h of reperfusion, the IRI group showed renal tissue hypoxia-inducible factor upregulation (P < 0.001). Electron microscopy images of exosomes and analysis of miR-687 revealed elevated levels, which appeared in the circulation. Large amounts of exosomal miR-687 were transmitted to the liver tissue. In the IRI group, liver transaminases (alanine aminotransferase, aspartate aminotransferase) were markedly (P < 0.001) elevated. The hepatic tissue inflammatory markers (vascular cell adhesion molecule-1, myeloperoxidase, monocyte chemotactic protein-1 and nuclear factor-κB) were upregulated (P < 0.001) accompanied with elevated caspase-3. TQ suppressed (P < 0.001) the renal expression and release of exosomal miR-687 into the circulation and its further deposition in the liver tissue; consequently, TQ diminished (P < 0.001) liver tissue inflammation and cellular apoptosis. The results were confirmed by histological tissue assessment. In conclusion, exosomal miR-687 liberated from injured renal tissues into the circulation may be an important factor in inducing remote hepatic injury. Exosomal miR-687 inhibition by TQ protected both renal and hepatic tissues from injury.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Miran Atif Elkordy
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
197
|
Hariharan H, Kesavan Y, Raja NS. Impact of native and external factors on exosome release: understanding reactive exosome secretion and its biogenesis. Mol Biol Rep 2021; 48:7559-7573. [PMID: 34626311 DOI: 10.1007/s11033-021-06733-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
Exosomes are minuscule vesicles secreted in the endolytic region of most mammalian cells. The release of exosomes from the cell engenders cell-to-cell signaling between cellular-compartments. The trading of exosomes between tumor and yonder cells plays a hypercritical role in tumor growth and progression. The exosome released from each tumor cell sequestrates a unique biogenetic pathway reflecting its cellular origin depending on the tumor type. However, treatment of tumor cells with certain physiological factors like drugs, chemotherapy, radiation, etc., enhance the release of exosomes and alters its biogenetic pathway compared with untreated tumor cells. In this review, we will discuss how the non-native physiological factors influence the release of exosomes and how these reactive exosomes orchestrate a unique patterning of a cargo sorting mechanism. We will also discuss the role of reactively secreted exosomes in mediating tumor metastasis, angiogenesis, and tumor progression.
Collapse
Affiliation(s)
- Harini Hariharan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Yasodha Kesavan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Natesan Sella Raja
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India.
| |
Collapse
|
198
|
Mosbach ML, Pfafenrot C, von Strandmann EP, Bindereif A, Preußer C. Molecular Determinants for RNA Release into Extracellular Vesicles. Cells 2021; 10:2674. [PMID: 34685656 PMCID: PMC8534350 DOI: 10.3390/cells10102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are important for intercellular communication and act as vehicles for biological material, such as various classes of coding and non-coding RNAs, a few of which were shown to selectively target into vesicles. However, protein factors, mechanisms, and sequence elements contributing to this specificity remain largely elusive. Here, we use a reporter system that results in different types of modified transcripts to decipher the specificity determinants of RNAs released into EVs. First, we found that small RNAs are more efficiently packaged into EVs than large ones, and second, we determined absolute quantities for several endogenous RNA transcripts in EVs (U6 snRNA, U1 snRNA, Y1 RNA, and GAPDH mRNA). We show that RNA polymerase III (pol III) transcripts are more efficiently secreted into EVs compared to pol II-derived transcripts. Surprisingly, our quantitative analysis revealed no RNA accumulation in the vesicles relative to the total cellular levels, based on both overexpressed reporter transcripts and endogenous RNAs. RNA appears to be EV-associated only at low copy numbers, ranging between 0.02 and 1 molecule per EV. This RNA association may reflect internal EV encapsulation or a less tightly bound state at the vesicle surface.
Collapse
Affiliation(s)
- Marie-Luise Mosbach
- Institute of Biochemistry, Justus Liebig University of Gießen, 35392 Gießen, Germany; (M.-L.M.); (C.P.)
| | - Christina Pfafenrot
- Institute of Biochemistry, Justus Liebig University of Gießen, 35392 Gießen, Germany; (M.-L.M.); (C.P.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University of Marburg, 35043 Marburg, Germany;
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Gießen, 35392 Gießen, Germany; (M.-L.M.); (C.P.)
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University of Marburg, 35043 Marburg, Germany;
| |
Collapse
|
199
|
Zhu J, Zhang J, Ji X, Tan Z, Lubman DM. Column-based Technology for CD9-HPLC Immunoaffinity Isolation of Serum Extracellular Vesicles. J Proteome Res 2021; 20:4901-4911. [PMID: 34473505 DOI: 10.1021/acs.jproteome.1c00549] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serum-derived extracellular vesicles (EVs) are a promising source of biomarkers; however, major challenges in EV separation and proteomic profiling remain for isolating EVs from a small amount, that is, on the microliter scale, of human serum while minimizing the contamination of blood proteins and lipoprotein particles coeluting in EV preparations. Herein we have developed a column-based CD9-antibody-immobilized high-performance liquid chromatography immunoaffinity chromatography(CD9-HPLC-IAC) technology for EV isolation from a microliter scale of serum for downstream proteomic analysis. The CD9-HPLC-IAC method achieved EV isolation from 40 μL of serum in 30 min with a yield of 8.0 × 109 EVs, where EVs were further processed with a postcolumn cleaning step using the 50 kDa molecular weight cut-off filter for the buffer exchange, concentration, and reduction of potentially coeluting serum proteins. In total, 482 proteins were identified in EVs by using liquid chromatography tandem mass spectrometry, including the common exosomal markers such as CD63, CD81, CD82, Alix, and TSG101. The statistical analysis of EV protein content showed that the top 10 serum proteins in EVs were significantly decreased by using the CD9-HPLC-IAC method compared with the use of ultracentrifugation (p = 0.001) and size exclusion chromatography (p = 0.009), and apolipoproteins were significantly reduced 4.8-fold compared with the SEC method (p < 0.001). The result demonstrates the potential of the CD9-HPLC-IAC method for the efficient isolation and proteomic characterization of EVs from a microscale volume of serum.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Xiaohui Ji
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
200
|
da Costa VR, Araldi RP, Vigerelli H, D’Ámelio F, Mendes TB, Gonzaga V, Policíquio B, Colozza-Gama GA, Valverde CW, Kerkis I. Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells 2021; 10:2617. [PMID: 34685596 PMCID: PMC8533895 DOI: 10.3390/cells10102617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.
Collapse
Affiliation(s)
- Vitor Rodrigues da Costa
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Rodrigo Pinheiro Araldi
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Hugo Vigerelli
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Fernanda D’Ámelio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Thais Biude Mendes
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Vivian Gonzaga
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Bruna Policíquio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Gabriel Avelar Colozza-Gama
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Irina Kerkis
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| |
Collapse
|