151
|
Pinheiro ÁDT, da Silva Pereira A, Barros EM, Antonini SRC, Cartaxo SJM, Rocha MVP, Gonçalves LRB. Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature. Bioprocess Biosyst Eng 2017; 40:1221-1235. [PMID: 28589216 DOI: 10.1007/s00449-017-1782-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L-1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L-1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol/V solution), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L-1 h-1, respectively.
Collapse
Affiliation(s)
- Álvaro Daniel Teles Pinheiro
- Departamento de Agrotecnologia e Ciências Sociais, Universidade Federal Rural do Semiárido, Mossoró, RN, Brazil.,Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil
| | - Andréa da Silva Pereira
- Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil
| | - Emanuel Meneses Barros
- Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil
| | - Sandra Regina Ceccato Antonini
- Departamento de Tecnologia Agro-Industrial e Sócio-Economia Rural, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Samuel Jorge Marques Cartaxo
- Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil
| | - Maria Valderez Ponte Rocha
- Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil.
| | - Luciana Rocha B Gonçalves
- Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, 60455-760, Brazil.
| |
Collapse
|
152
|
Hou J, Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 2017; 17:3861258. [DOI: 10.1093/femsyr/fox034] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jin Hou
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Hongxing Li
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, China
| |
Collapse
|
153
|
Cheng XQ, Konstas K, Doherty CM, Wood CD, Mulet X, Xie Z, Ng D, Hill MR, Lau CH, Shao L. Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels. CHEMSUSCHEM 2017; 10:1887-1891. [PMID: 28349608 DOI: 10.1002/cssc.201700362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/24/2017] [Indexed: 06/06/2023]
Abstract
To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes.
Collapse
Affiliation(s)
- Xi Quan Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, P.R. China
| | - Kristina Konstas
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Cara M Doherty
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Colin D Wood
- Australian Resources Research Centre, CSIRO, Kensington, WA6155, Australia
| | - Xavier Mulet
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Zongli Xie
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Derrick Ng
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
| | - Matthew R Hill
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Cher Hon Lau
- Manufacturing, CSIRO, Gate 3 Normanby Road, Clayton, VIC, 3169, Australia
- Department of Chemical Engineering, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| |
Collapse
|
154
|
Production and Quality Analysis of Wine from Honey and Coconut Milk Blend Using Saccharomyces cerevisiae. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
155
|
Gravelle S, Yoshida H, Joly L, Ybert C, Bocquet L. Carbon membranes for efficient water-ethanol separation. J Chem Phys 2017; 145:124708. [PMID: 27782663 DOI: 10.1063/1.4963098] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.
Collapse
Affiliation(s)
- Simon Gravelle
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Hiroaki Yoshida
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UMR CNRS 8550, PSL Research University, 24 rue Lhomond, 75005 Paris, France
| | - Laurent Joly
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Christophe Ybert
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Lydéric Bocquet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UMR CNRS 8550, PSL Research University, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
156
|
Gohel V, Ranganathan K, Duan G. Single temperature liquefaction process at different operating pHs to improve ethanol production from Indian rice and corn feedstock. Prep Biochem Biotechnol 2017; 47:342-348. [PMID: 27737626 DOI: 10.1080/10826068.2016.1244687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50-5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50-5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT-1 rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT-1 corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.
Collapse
Affiliation(s)
- V Gohel
- a DuPont Knowledge Center, E.I. DuPont India Pvt Ltd., DS-9, ICICI Knowledge Park , Hyderabad , India
| | - K Ranganathan
- b DuPont Industrial Sciences, Genencor (China) Bio-Products Co. Ltd, Wuxi , Peoples Republic of China
| | - G Duan
- b DuPont Industrial Sciences, Genencor (China) Bio-Products Co. Ltd, Wuxi , Peoples Republic of China
| |
Collapse
|
157
|
Santoro S, Galiano F, Jansen JC, Figoli A. Strategy for scale-up of SBS pervaporation membranes for ethanol recovery from diluted aqueous solutions. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
158
|
Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5318232. [PMID: 28459063 PMCID: PMC5385224 DOI: 10.1155/2017/5318232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/04/2017] [Accepted: 03/20/2017] [Indexed: 11/23/2022]
Abstract
Efficient and cost-effective fuel ethanol production from lignocellulosic materials requires simultaneous cofermentation of all hydrolyzed sugars, mainly including D-glucose, D-xylose, and L-arabinose. Saccharomyces cerevisiae is a traditional D-glucose fermenting strain and could utilize D-xylose and L-arabinose after introducing the initial metabolic pathways. The efficiency and simultaneous coutilization of the two pentoses and D-glucose for ethanol production in S. cerevisiae still need to be optimized. Previously, we constructed an L-arabinose-utilizing S. cerevisiae BSW3AP. In this study, we further introduced the XI and XR-XDH metabolic pathways of D-xylose into BSW3AP to obtain D-glucose, D-xylose, and L-arabinose cofermenting strain. Benefits of evolutionary engineering: the resulting strain BSW4XA3 displayed a simultaneous coutilization of D-xylose and L-arabinose with similar consumption rates, and the D-glucose metabolic capacity was not decreased. After 120 h of fermentation on mixed D-glucose, D-xylose, and L-arabinose, BSW4XA3 consumed 24% more amounts of pentoses and the ethanol yield of mixed sugars was increased by 30% than that of BSW3AP. The resulting strain BSW4XA3 was a useful chassis for further enhancing the coutilization efficiency of mixed sugars for bioethanol production.
Collapse
|
159
|
Hu BB, Zhu MJ. Enhanced hydrogen production and biological saccharification from spent mushroom compost by Clostridium thermocellum 27405 supplemented with recombinant β-glucosidases. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2017; 42:7866-7874. [DOI: 10.1016/j.ijhydene.2017.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
160
|
Ruchala J, Kurylenko OO, Soontorngun N, Dmytruk KV, Sibirny AA. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Microb Cell Fact 2017; 16:36. [PMID: 28245828 PMCID: PMC5331723 DOI: 10.1186/s12934-017-0652-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Background Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. Results Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive promoter GAP of glyceraldehyde-3-phosphate dehydrogenase. Corresponding strains showed drop in ethanol production in xylose medium whereas glucose alcoholic fermentation remained unchanged. Available data suggest on specific role of Cat8 in xylose alcoholic fermentation. Conclusions The CAT8 gene is one of the first identified genes specifically involved in regulation of xylose alcoholic fermentation in the natural xylose-fermenting yeast O. polymorpha. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | | | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland. .,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine.
| |
Collapse
|
161
|
Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Bioprocess Biosyst Eng 2017; 40:683-691. [DOI: 10.1007/s00449-016-1733-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/26/2016] [Indexed: 01/03/2023]
|
162
|
Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. Appl Biochem Biotechnol 2017; 182:1108-1120. [DOI: 10.1007/s12010-016-2385-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
163
|
Ben Taher I, Fickers P, Chniti S, Hassouna M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol Prog 2017; 33:397-406. [DOI: 10.1002/btpr.2427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 09/21/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Imen Ben Taher
- Unité de recherche Sciences des Aliments, Ecole Supérieure des Industries Alimentaires de Tunis; Av Alain Savary, 58 Tunis 1003 Tunisia
- Laboratoire de génies biologique et agroalimentaire, Université Libre de Tunis; Av Kheireddine Pacha, 30 Tunis 1002 Tunisia
| | - Patrick Fickers
- Microbial Processes and Interaction, Gembloux AgroBioTech-Université de Liège; Passage des déportés, 2 Gembloux 5030 Belgium
| | - Sofien Chniti
- Université de Rennes 1, ENSCR, CNRS, UMR 6226, avenue du Général Leclerc; CS 50837 Rennes Cedex 7 35708 France
| | - Mnasser Hassouna
- Unité de recherche Sciences des Aliments, Ecole Supérieure des Industries Alimentaires de Tunis; Av Alain Savary, 58 Tunis 1003 Tunisia
| |
Collapse
|
164
|
Gao M, Zhang M, Li Y. Investigation into 1,3-butadiene and other bulk chemicals' formation from bioethanol over Mg–Al catalysts. RSC Adv 2017. [DOI: 10.1039/c6ra27610e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mg–Al catalysts were adopted in the direct synthesis of 1,3-butadiene and other bulk chemicals from bioethanol.
Collapse
Affiliation(s)
- Meixiang Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- R&D Center for Petrochemical Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Minhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- R&D Center for Petrochemical Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Yonghui Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- R&D Center for Petrochemical Technology
- Tianjin University
- Tianjin 300072
- PR China
| |
Collapse
|
165
|
Gao M, Zhang M, Li Y. Transformation of bioethanol to 1,3-butadiene and other bulk chemicals over the surface of Mg–Al catalysts. RSC Adv 2017. [DOI: 10.1039/c7ra04146b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of bulk chemicals from bioethanol and analysis of the product distribution over Mg–Al catalysts were investigated.
Collapse
Affiliation(s)
- Meixiang Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- R&D Center for Petrochemical Technology
- Tianjin University
- Tianjin 300072
- P R China
| | - Minhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- R&D Center for Petrochemical Technology
- Tianjin University
- Tianjin 300072
- P R China
| | - Yonghui Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- R&D Center for Petrochemical Technology
- Tianjin University
- Tianjin 300072
- P R China
| |
Collapse
|
166
|
Moreno AD, Alvira P, Ibarra D, Tomás-Pejó E. Production of Ethanol from Lignocellulosic Biomass. PRODUCTION OF PLATFORM CHEMICALS FROM SUSTAINABLE RESOURCES 2017. [DOI: 10.1007/978-981-10-4172-3_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
167
|
Process Optimization of Ethanol Production from Cotton Stalk Hydrolysate using Co Culture of Saccharomyces cerevisiae and Pachysolen tannophilus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
168
|
Kobayashi R, Kanti A, Kawasaki H. Pichia chibodasensis sp. nov., isolated in Indonesia. Int J Syst Evol Microbiol 2016; 67:1024-1027. [PMID: 27974086 DOI: 10.1099/ijsem.0.001735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains (14Y260T, 14Y268 and 14Y276) of xylose-assimilating yeasts were isolated from decayed wood and soil collected in West Java in Indonesia. A phylogenetic analysis was performed based on the sequences of the D1/D2 domains of LSU, SSU and EF-1α, and the three strains were found to belong to the genus Pichia. The morphological, biochemical, physiological and chemotaxonomic characteristics indicated that these strains were distinct from other closely related species. Strains 14Y260T, 14Y268 and 14Y276 belonged to the Pichia clade and represent a novel species, named Pichia chibodasensis sp. nov. ; The type strain is 14Y260T (=NBRC 111569T=InaCC Y1042T).
Collapse
Affiliation(s)
- Ryuichi Kobayashi
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Atit Kanti
- Division of Microbiology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| |
Collapse
|
169
|
Ko JK, Um Y, Lee SM. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress. BIORESOURCE TECHNOLOGY 2016; 222:422-430. [PMID: 27744166 DOI: 10.1016/j.biortech.2016.09.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.
Collapse
Affiliation(s)
- Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
170
|
Abstract
Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits.
Collapse
|
171
|
Siedlarz P, Sroka M, Dyląg M, Nawrot U, Gonchar M, Kus-Liśkiewicz M. Preliminary physiological characteristics of thermotolerant Saccharomyces cerevisiae clinical isolates identified by molecular biology techniques. Lett Appl Microbiol 2016; 62:277-82. [PMID: 26693946 DOI: 10.1111/lam.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED The aim of the study was a molecular identification and physiological characteristic of the five Saccharomyces cerevisiae strains isolated from patients. The tested isolates were compared with control strains (which are of laboratory or commercial origin). The relation of the isolates to baker's yeast S. cerevisiae was studied using species-specific primers in PCR analysis of the ITS-26S region of DNA. Five isolates were genetically identified as the yeast belonging to the genus S. cerevisiae. The effects of temperature and carbon sources on the growth of the yeast strains were analysed. A quantitative characterization of growth kinetics approve that some tested isolates are thermotolerant and are able to grow at range 37-39°C. Among them, one representative is characterized by the highest specific growth rate (0·637 h(-1) ). In conclusions, some strains are defined as potential candidates to use in the biotechnology due to a higher growth rate at elevated temperatures. Screening for further evaluation of biotechnological significance of the tested isolates will be done (e.g. ethanol and trehalose production at higher temperatures). The physiological characterization and confirmation of species identification by molecular methods for yeasts important in the context of biotechnology industry were demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Thermotolerant microbial strains are required in various industrial applications, for improving productivity and for decreasing the risk of undesirable contaminations when higher temperatures are used. It is important to search for such strains in extreme environments or exotic niches. In this paper, new thermotolerant strains were identified belonging to the Saccharomyces cerevisiae, but differed from typical bakers' yeast, essentially by their growth rate at higher temperature. The described yeast strains are promising for using in biotechnological industry, especially, for production of ethanol and other products at higher temperatures.
Collapse
Affiliation(s)
- P Siedlarz
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| | - M Sroka
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| | - M Dyląg
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - U Nawrot
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - M Gonchar
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland.,Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - M Kus-Liśkiewicz
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
172
|
Gao M, Zhang M, Yu Y. Study on the Reaction Species of 1, 3-Butadiene Formation from Bio-ethanol on ZrO2. Catal Letters 2016. [DOI: 10.1007/s10562-016-1856-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
173
|
Maneffa A, Priecel P, Lopez-Sanchez JA. Biomass-Derived Renewable Aromatics: Selective Routes and Outlook for p-Xylene Commercialisation. CHEMSUSCHEM 2016; 9:2736-2748. [PMID: 27624185 DOI: 10.1002/cssc.201600605] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Methylbenzenes are among the most important organic chemicals today and, among them, p-xylene deserves particular attention because of its production volume and its application in the manufacture of polyethylene terephthalate (PET). There is great interest in producing this commodity chemical more sustainably from biomass sources, particularly driven by manufacturers willing to produce more sustainable synthetic fibres and PET bottles for beverages. A renewable source for p-xylene would allow achieving this goal with minimal disruption to existing processes for PET production. Despite the fact that recently some routes to renewable p-xylene have been identified, there is no clear consensus on their feasibility or implications. We have critically reviewed the current state-of-the-art with focus on catalytic routes and possible outlook for commercialisation. Pathways to obtain p-xylene from a biomass-derived route include methanol-to-aromatics (MTA), ethanol dehydration, ethylene dimerization, furan cycloaddition or catalytic fast pyrolysis and hydrotreating of lignin. Some of the processes identified suggest near-future possibilities, but also more speculative or longer-term sources for synthesis of p-xylene are highlighted.
Collapse
Affiliation(s)
- Andy Maneffa
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, United Kingdom
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, United Kingdom
| | - Peter Priecel
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, United Kingdom
| | - Jose A Lopez-Sanchez
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, United Kingdom.
| |
Collapse
|
174
|
Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 2016; 100:9439-9450. [DOI: 10.1007/s00253-016-7857-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/30/2023]
|
175
|
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 2016; 9:699-717. [PMID: 27629544 PMCID: PMC5072187 DOI: 10.1111/1751-7915.12408] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/04/2022] Open
Abstract
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.
Collapse
Affiliation(s)
- Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Qiang Fei
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA
| | - Sagar M Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37919, USA
| | - Steven D Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37919, USA.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
176
|
|
177
|
Bährle C, Custodis V, Jeschke G, van Bokhoven JA, Vogel F. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis. CHEMSUSCHEM 2016; 9:2397-2403. [PMID: 27486717 DOI: 10.1002/cssc.201600582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Lignin from lignocellulosic biomass is a promising source of energy, fuels, and chemicals. The conversion of the polymeric lignin to fuels and chemicals can be achieved by catalytic and noncatalytic pyrolysis. The influence of nonporous silica and zeolite catalysts, such as silicalite, HZSM5, and HUSY, on the radical and volatile product formation during lignin pyrolysis was studied by in situ high-temperature electron paramagnetic resonance spectroscopy (HTEPR) as well as GC-MS. Higher radical concentrations were observed in the samples containing zeolite compared to the sample containing only lignin, which suggests that there is a stabilizing effect by the inorganic surfaces on the formed radical fragments. This effect was observed for nonporous silica as well as for HUSY, HZSM5, and silicalite zeolite catalysts. However, the effect is far larger for the zeolites owing to their higher specific surface area. The zeolites also showed an effect on the volatile product yield and the product distribution within the volatile phase. Although silicalite showed no effect on the product selectivity, the acidic zeolites such as HZSM5 or HUSY increased the formation of deoxygenated products such as benzene, toluene, xylene (BTX), and naphthalene.
Collapse
Affiliation(s)
- Christian Bährle
- Research Dept. Energy and Environment, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | - Victoria Custodis
- D-CHAB, Institute for Chemical and Bioengineering, Wolfgang-Pauli-Str. 10, 8093, Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | - Gunnar Jeschke
- D-CHAB, EPR Research Group, Wolfgang-Pauli-Str. 10, 8093, Zürich, Switzerland
| | - Jeroen A van Bokhoven
- D-CHAB, Institute for Chemical and Bioengineering, Wolfgang-Pauli-Str. 10, 8093, Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | - Frédéric Vogel
- Research Dept. Energy and Environment, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland.
- Institut für Biomasse und Ressourceneffizienz, Fachhochschule Nordwestschweiz, Klosterzelgstrasse 2, 5210, Windisch, Switzerland.
| |
Collapse
|
178
|
Matsushika A, Negi K, Suzuki T, Goshima T, Hoshino T. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress. PLoS One 2016; 11:e0161888. [PMID: 27589271 PMCID: PMC5010203 DOI: 10.1371/journal.pone.0161888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023] Open
Abstract
The use of yeasts tolerant to acid (low pH) and salt stress is of industrial importance for several bioproduction processes. To identify new candidate genes having potential roles in low-pH tolerance, we screened an expression genomic DNA library of a multiple-stress-tolerant yeast, Issatchenkia orientalis (Pichia kudriavzevii), for clones that allowed Saccharomyces cerevisiae cells to grow under highly acidic conditions (pH 2.0). A genomic DNA clone containing two putative open reading frames was obtained, of which the putative protein-coding gene comprising 1629 bp was retransformed into the host. This transformant grew significantly at pH 2.0, and at pH 2.5 in the presence of 7.5% Na2SO4. The predicted amino acid sequence of this new gene, named I. orientalis GAS1 (IoGAS1), was 60% identical to the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity, and 58-59% identical to Candida albicans Phr1 and Phr2, pH-responsive proteins implicated in cell wall assembly and virulence. Northern hybridization analyses indicated that, as for the C. albicans homologs, IoGAS1 expression was pH-dependent, with expression increasing with decreasing pH (from 4.0 to 2.0) of the medium. These results suggest that IoGAS1 represents a novel pH-regulated system required for the adaptation of I. orientalis to environments of diverse pH. Heterologous expression of IoGAS1 complemented the growth and morphological defects of a S. cerevisiae gas1Δ mutant, demonstrating that IoGAS1 and the corresponding S. cerevisiae gene play similar roles in cell wall biosynthesis. Site-directed mutagenesis experiments revealed that two conserved glutamate residues (E161 and E262) in the IoGas1 protein play a crucial role in yeast morphogenesis and tolerance to low pH and salt stress. Furthermore, overexpression of IoGAS1 in S. cerevisiae remarkably improved the ethanol fermentation ability at pH 2.5, and at pH 2.0 in the presence of salt (5% Na2SO4), compared to that of a reference strain. Our results strongly suggest that constitutive expression of the IoGAS1 gene in S. cerevisiae could be advantageous for several fermentation processes under these stress conditions.
Collapse
Affiliation(s)
- Akinori Matsushika
- Research Institute for Sustainable Chemistry (ISC), National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Kanako Negi
- Research Institute for Sustainable Chemistry (ISC), National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Toshihiro Suzuki
- Research Institute for Sustainable Chemistry (ISC), National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing (NRIB), Hiroshima, Japan
| | - Tamotsu Hoshino
- Research Institute for Sustainable Chemistry (ISC), National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
179
|
Soares J, Demeke MM, Foulquié-Moreno MR, Van de Velde M, Verplaetse A, Fernandes AAR, Thevelein JM, Fernandes PMB. Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production. BIORESOURCE TECHNOLOGY 2016; 216:744-753. [PMID: 27295252 DOI: 10.1016/j.biortech.2016.05.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Cocos nucifera L., coconut, is a palm of high importance in the food industry, but a considerable part of the biomass is inedible. In this study, the pretreatment and saccharification parameters NaOH solution, pretreatment duration and enzyme load were evaluated for the production of hydrolysates from green coconut mesocarp using 18% (w/v) total solids (TS). Hydrolysates were not detoxified in order to preserve sugars solubilized during the pretreatment. Reduction of enzyme load from 15 to 7.5 filter paper cellulase unit (FPU)/g of biomass has little effect on the final ethanol titer. With optimized pretreatment and saccharification, hydrolysates with more than 7% (w/v) sugars were produced in 48h. Fermentation of the hydrolysate using industrial Saccharomyces cerevisiae strains produced 3.73% (v/v) ethanol. Our results showed a simple pretreatment condition with a high-solid load of biomass followed by saccharification and fermentation of undetoxified coconut mesocarp hydrolysates to produce ethanol with high titer.
Collapse
Affiliation(s)
- Jimmy Soares
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, 29040-090 Vitória, Espírito Santo, Brazil
| | - Mekonnen M Demeke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Miet Van de Velde
- Laboratory of Enzyme, Fermentation and Brewing Technology, KAHO Sint-Lieven University College, KU Leuven Association, Gebroeders De Smetstraat 1, 9000 Ghent, Flanders, Belgium
| | - Alex Verplaetse
- Laboratory of Enzyme, Fermentation and Brewing Technology, KAHO Sint-Lieven University College, KU Leuven Association, Gebroeders De Smetstraat 1, 9000 Ghent, Flanders, Belgium
| | - Antonio Alberto Ribeiro Fernandes
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, 29040-090 Vitória, Espírito Santo, Brazil
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Patricia Machado Bueno Fernandes
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, 29040-090 Vitória, Espírito Santo, Brazil.
| |
Collapse
|
180
|
Akbas MY, Stark BC. Recent trends in bioethanol production from food processing byproducts. J Ind Microbiol Biotechnol 2016; 43:1593-1609. [PMID: 27565674 DOI: 10.1007/s10295-016-1821-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022]
Abstract
The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.
Collapse
Affiliation(s)
- Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Kocaeli, 41400, Turkey. .,Institute of Biotechnology, Gebze Technical University, Gebze-Kocaeli, Kocaeli, 41400, Turkey.
| | - Benjamin C Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
181
|
Shiroma R, Li Y, Park JY, Wu L, Kaneko S, Takai T, Gau M, Ike M, Tokuyasu K. Evaluation of Two Sets of Sorghum Bagasse Samples as the Feedstock for Fermentable Sugar Recovery via the Calcium Capturing by Carbonation (CaCCO) Process. J Appl Glycosci (1999) 2016; 63:77-85. [PMID: 34354486 PMCID: PMC8056918 DOI: 10.5458/jag.jag.jag-2016_007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 11/02/2022] Open
Abstract
Sorghum bagasse samples from two sets (n6 and bmr6; n18 and bmr18) of wild-type and corresponding "brown midrib" (bmr) mutant strains of sweet sorghum were evaluated as the feedstock for fermentable sugar recovery via the calcium capturing by carbonation (CaCCO) process, which involves Ca(OH)2 pretreatment of bagasse with subsequent neutralization with CO2 for enzymatic saccharification. Saccharification tests under various pretreatment conditions of the CaCCO process at different Ca(OH)2 concentrations, temperatures or residence periods indicated that bmr strains are more sensitive to the pretreatment than their counterparts are. It is expected that variant bmr6 is more suitable for glucose recovery than its wild-type counterpart because of the higher glucan content and better glucose recovery with less severe pretreatment. Meanwhile, bmr18showed higher scores of glucose recovery than its counterpart did, only at low pretreatment severity, and did not yield higher sugar recovery under the more severe conditions. The trend was similar to that of xylose recovery data from the two bmr strains. The advantages of bmr strains were also proven by means of simultaneous saccharification and fermentation of CaCCO-pretreated bagasse samples by pentose-fermenting yeast strain Candida shehatae Cs 4R. The amounts needed for production of 1 L of ethanol from n6, bmr6, n18, and bmr18samples were estimated as 4.11, 3.46, 4.03, and 3.95 kg, respectively. The bmr strains seem to have excellent compatibility with the CaCCO process for ethanol production, and it is expected that integrated research from the feedstock to bioprocess may result in breakthroughs for commercialization.
Collapse
Affiliation(s)
- Riki Shiroma
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO).,2 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of Ryukyus
| | - Yuan Li
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Jeung-Yil Park
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Long Wu
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Satoshi Kaneko
- 2 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of Ryukyus
| | - Tomoyuki Takai
- 3 Forage Crop Breeding Unit, National Agricultural Research Center for Kyushu Okinawa Region, NARO
| | - Mitsuru Gau
- 3 Forage Crop Breeding Unit, National Agricultural Research Center for Kyushu Okinawa Region, NARO
| | - Masakazu Ike
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Carbohydrate Laboratory, Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
182
|
Wang J, Huang R, Feng Z, Liu H, Su D. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde. CHEMSUSCHEM 2016; 9:1820-1826. [PMID: 27282126 DOI: 10.1002/cssc.201600234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field.
Collapse
Affiliation(s)
- Jia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Rui Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Zhenbao Feng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
| | - Dangsheng Su
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Plank Society, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
183
|
Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. Int J Mol Sci 2016; 17:ijms17071157. [PMID: 27447619 PMCID: PMC4964529 DOI: 10.3390/ijms17071157] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.
Collapse
|
184
|
Avila-Gaxiola E, Avila-Gaxiola J, Velarde-Escobar O, Ramos-Brito F, Atondo-Rubio G, Yee-Rendon C. Effect of Drying Temperature on Agave tequilana
Leaves: A Pretreatment for Releasing Reducing Sugars for Biofuel Production. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evangelina Avila-Gaxiola
- Facultad de Ciencias Físico-Matemáticas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
- Facultad de Ciencias Químico-Biológicas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
| | - Jorge Avila-Gaxiola
- Facultad de Ciencias Físico-Matemáticas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
| | - Oscar Velarde-Escobar
- Facultad de Ciencias Físico-Matemáticas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
| | - Francisco Ramos-Brito
- Facultad de Ciencias Físico-Matemáticas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
| | - Gelacio Atondo-Rubio
- Facultad de Ciencias Físico-Matemáticas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
| | - Cristo Yee-Rendon
- Facultad de Ciencias Físico-Matemáticas. Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios, Cd. Universitaria; Culiacán Sinaloa México
| |
Collapse
|
185
|
Senatham S, Chamduang T, Kaewchingduang Y, Thammasittirong A, Srisodsuk M, Elliston A, Roberts IN, Waldron KW, Thammasittirong SNR. Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate. SPRINGERPLUS 2016; 5:1040. [PMID: 27462488 PMCID: PMC4940357 DOI: 10.1186/s40064-016-2713-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type. A maximum ethanol concentration of 29.04 g/L was produced from 71.31 g/L xylose, which was 58.95 % higher than that of the wild-type. This mutant also displayed significantly improved hydrolysate inhibitors tolerance and increased ethanol production from non-detoxified lignocellulosic hydrolysates. The ethanol yield, productivity and theoretical yield by TTC79 from sugarcane bagasse hydrolysate were 0.46 g/g, 0.20 g/L/h and 90.61 %, respectively, while the corresponding values for the wild-type were 0.20 g/g, 0.04 g/L/h and 39.20 %, respectively. These results demonstrate that S. shehatae TTC79 is a useful non-recombinant strain, combining efficient xylose consumption and high inhibitor tolerance, with potential for application in ethanol production from lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Srisuda Senatham
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Thada Chamduang
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Yotin Kaewchingduang
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Anon Thammasittirong
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand ; Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Malee Srisodsuk
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand ; Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Adam Elliston
- Biorefinery Center, Institute of Food Research, Norwich, NR4 7UA UK
| | - Ian N Roberts
- National Collection of Yeast Cultures, Institute of Food Research, Norwich, NR4 7UA UK
| | - Keith W Waldron
- Biorefinery Center, Institute of Food Research, Norwich, NR4 7UA UK
| | - Sutticha Na-Ranong Thammasittirong
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand ; Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| |
Collapse
|
186
|
Hong Y, Hensley A, McEwen JS, Wang Y. Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-Based Catalysts. Catal Letters 2016. [DOI: 10.1007/s10562-016-1770-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
187
|
Genetic Enhancement of Saccharomyces cerevisiae for First and Second Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
188
|
Güven O, Monteiro SN, Moura EAB, Drelich JW. Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in their Formulation. POLYM REV 2016. [DOI: 10.1080/15583724.2016.1176037] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
189
|
Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added. World J Microbiol Biotechnol 2016; 32:86. [DOI: 10.1007/s11274-016-2043-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
|
190
|
Zhao J, Zhou C, He C, Dai Y, Jia X, Yang Y. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
191
|
Du SK, Su X, Yang W, Wang Y, Kuang M, Ma L, Fang D, Zhou D. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydr Polym 2016; 140:279-86. [DOI: 10.1016/j.carbpol.2015.12.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
|
192
|
Production, Partial Purification and Characterization of Enzyme Cocktail from Trichoderma citrinoviride AUKAR04 Through Solid-State Fermentation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2110-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
193
|
Engineering titania nanostructure to tune and improve its photocatalytic activity. Proc Natl Acad Sci U S A 2016; 113:3966-71. [PMID: 27035977 DOI: 10.1073/pnas.1524806113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems.
Collapse
|
194
|
Sheikh RA, Al-Bar OA, Soliman YMA. Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by Saccharomyces cerevisiae: effects of fermentation periods and nitrogen source concentration. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1159527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ryan A. Sheikh
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar A. Al-Bar
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssri M. Ahmed Soliman
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Center, Cairo, Egypt
| |
Collapse
|
195
|
Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, Li BZ, Yuan YJ. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Front Microbiol 2016; 7:241. [PMID: 26973619 PMCID: PMC4776165 DOI: 10.3389/fmicb.2016.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
Cellobiose accumulation and the compromised temperature for yeast fermentation are the main limiting factors of enzymatic hydrolysis process during simultaneous saccharification and fermentation (SSF). In this study, genes encoding cellobiose transporter and β-glucosidase were introduced into an industrial Saccharomyces cerevisiae strain, and evolution engineering was carried out to improve the cellobiose utilization of the engineered yeast strain. The evolved strain exhibited significantly higher cellobiose consumption rate (2.8-fold) and ethanol productivity (4.9-fold) compared with its parent strain. Besides, the evolved strain showed a high cellobiose consumption rate of 3.67 g/L/h at 34°C and 3.04 g/L/h at 38°C. Moreover, little cellobiose was accumulated during SSF of Avicel using the evolved strain at 38°C, and the ethanol yield from Avicel increased by 23% from 0.34 to 0.42 g ethanol/g cellulose. Overexpression of the genes encoding cellobiose transporter and β-glucosidase accelerated cellobiose utilization, and the improvement depended on the strain background. The results proved that fast cellobiose utilization enhanced ethanol production by reducing cellobiose accumulation during SSF at high temperature.
Collapse
Affiliation(s)
- Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Jian Zha
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Lin-Wei He
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ya-Jin Lv
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology Tianjin, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| |
Collapse
|
196
|
Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 2016; 17:207. [PMID: 26927067 PMCID: PMC4813126 DOI: 10.3390/ijms17030207] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
- Petrobras Research and Development Center, Biotechnology Management, Rio de Janeiro, RJ 21941-915, Brazil.
| | | | - João Ricardo Moreira de Almeida
- Embrapa Agroenergia, Laboratório de Genética e Biotecnologia, Parque Estação Biológica s/n, Av. W3 Norte, Brasília, DF 70770-901, Brazil.
| | | | | |
Collapse
|
197
|
Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Appl Environ Microbiol 2016; 82:2156-2166. [PMID: 26826231 DOI: 10.1128/aem.03718-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.
Collapse
|
198
|
Shi A, Zheng H, Yomano LP, York SW, Shanmugam KT, Ingram LO. Plasmidic Expression of nemA and yafC* Increased Resistance of Ethanologenic Escherichia coli LY180 to Nonvolatile Side Products from Dilute Acid Treatment of Sugarcane Bagasse and Artificial Hydrolysate. Appl Environ Microbiol 2016; 82:2137-2145. [PMID: 26826228 PMCID: PMC4807516 DOI: 10.1128/aem.03488-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate.
Collapse
Affiliation(s)
- Aiqin Shi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Huabao Zheng
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Lorraine P Yomano
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Sean W York
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Keelnatham T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
199
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
200
|
Singh RP, Reddy CRK. Unraveling the Functions of the Macroalgal Microbiome. Front Microbiol 2016; 6:1488. [PMID: 26779144 PMCID: PMC4700259 DOI: 10.3389/fmicb.2015.01488] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Macroalgae are a diverse group of photosynthetic eukaryotic lower organisms and offer indispensable ecosystem services toward sustainable productivity of rocky coastal areas. The earlier studies have mainly focused on elucidation of the roles of the epiphytic bacterial communities in the ecophysiology of the host macroalga. However, mutualistic interactions have become topic of current interest. It is evident from recent studies that a fraction of epiphytic bacterial communities can be categorized as “core microbial species”, suggesting an obligate association. Epiphytic bacterial communities have also been reported to protect macroalgal surfaces from biofouling microorganisms through production of biologically active metabolites. Because of their intrinsic roles in the host life cycle, the host in turn may provide necessary organic nutrients in order to woo pelagic microbial communities to settle on the host surfaces. However, the precise composition of microbiomes and their functional partnership with hosts are hardly understood. In contrast, the microbial studies associated with human skin and gut and plants have significantly advanced our knowledge on microbiome and their functional interactions with the host. This has led to manipulation of the microbial flora of the human gut and of agricultural plants for improving health and performance. Therefore, it is highly imperative to investigate the functional microbiome that is closely involved in the life cycles of the host macroalgae using high-throughput techniques (metagenomics and metatranscriptomics). The findings from such investigations would help in promoting health and productivity in macroalgal species through regulation of functionally active microbiome.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu UniversityFukuoka, Japan; Seaweed Biology and Cultivation, Division of Marine Biotechnology and Ecology, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - C R K Reddy
- Seaweed Biology and Cultivation, Division of Marine Biotechnology and Ecology, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|