151
|
Silva A, Hodgson WC, Isbister GK. Cross-Neutralisation of In Vitro Neurotoxicity of Asian and Australian Snake Neurotoxins and Venoms by Different Antivenoms. Toxins (Basel) 2016; 8:toxins8100302. [PMID: 27763543 PMCID: PMC5086662 DOI: 10.3390/toxins8100302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/22/2016] [Accepted: 10/01/2016] [Indexed: 01/30/2023] Open
Abstract
There is limited information on the cross-neutralisation of neurotoxic venoms with antivenoms. Cross-neutralisation of the in vitro neurotoxicity of four Asian and four Australian snake venoms, four post-synaptic neurotoxins (α-bungarotoxin, α-elapitoxin-Nk2a, α-elapitoxin-Ppr1 and α-scutoxin; 100 nM) and one pre-synaptic neurotoxin (taipoxin; 100 nM) was studied with five antivenoms: Thai cobra antivenom (TCAV), death adder antivenom (DAAV), Thai neuro polyvalent antivenom (TNPAV), Indian Polyvalent antivenom (IPAV) and Australian polyvalent antivenom (APAV). The chick biventer cervicis nerve-muscle preparation was used for this study. Antivenom was added to the organ bath 20 min prior to venom. Pre- and post-synaptic neurotoxicity of Bungarus caeruleus and Bungarus fasciatus venoms was neutralised by all antivenoms except TCAV, which did not neutralise pre-synaptic activity. Post-synaptic neurotoxicity of Ophiophagus hannah was neutralised by all antivenoms, and Naja kaouthia by all antivenoms except IPAV. Pre- and post-synaptic neurotoxicity of Notechis scutatus was neutralised by all antivenoms, except TCAV, which only partially neutralised pre-synaptic activity. Pre- and post-synaptic neurotoxicity of Oxyuranus scutellatus was neutralised by TNPAV and APAV, but TCAV and IPAV only neutralised post-synaptic neurotoxicity. Post-synaptic neurotoxicity of Acanthophis antarcticus was neutralised by all antivenoms except IPAV. Pseudonaja textillis post-synaptic neurotoxicity was only neutralised by APAV. The α-neurotoxins were neutralised by TNPAV and APAV, and taipoxin by all antivenoms except IPAV. Antivenoms raised against venoms with post-synaptic neurotoxic activity (TCAV) cross-neutralised the post-synaptic activity of multiple snake venoms. Antivenoms raised against pre- and post-synaptic neurotoxic venoms (TNPAV, IPAV, APAV) cross-neutralised both activities of Asian and Australian venoms. While acknowledging the limitations of adding antivenom prior to venom in an in vitro preparation, cross-neutralization of neurotoxicity means that antivenoms from one region may be effective in other regions which do not have effective antivenoms. TCAV only neutralized post-synaptic neurotoxicity and is potentially useful in distinguishing pre-synaptic and post-synaptic effects in the chick biventer cervicis preparation.
Collapse
Affiliation(s)
- Anjana Silva
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura 50008, Sri Lanka.
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Geoffrey K Isbister
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia.
| |
Collapse
|
152
|
Garcia Denegri ME, Teibler GP, Maruñak SL, Hernández DR, Acosta OC, Leiva LC. Efficient muscle regeneration after highly haemorrhagic Bothrops alternatus venom injection. Toxicon 2016; 122:167-175. [PMID: 27720976 DOI: 10.1016/j.toxicon.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 11/28/2022]
Abstract
Bothrops alternatus snake venom is particularly characterized for inducing a prominent haemorrhage and affecting hemostasis as a consequence of 43.1% of metallo-proteinases and less than 10% of PLA2 (almost all non-myotoxic phospholipases) in its venomics. In addition, myonecrosis is the major local effect in viper envenoming which might lead to permanent sequela. Then, the rebuilding of the microvasculature at the local injured site acquires significance since represents one of the pivotal stages for subsequent skeletal muscle regeneration either at morphological or functional aspects. Due to the significance played by vasculature in this process, it is important to study by histology and immunohistochemical techniques, the muscular damage and the sequence of skeletal muscle reconstruction (degree of damage, reconstitution of muscle fibres and capillaries). In this work, we injected intramuscularly 50 or 100 μg per mouse of B. alternatus venom in gastrocnemius muscles. We provided a complete description and characterization of the different stages of myogenesis after mild (50 µg) and severe (100 µg) local injury induced by B. alternatus venom toxins. The regeneration was evaluated 24 h, 3, 7, 14 and 28 days after receiving venom injection. Finally, both doses induced an extended necrosis at the site of injection where, when critical steps in the regenerative process are taking place, an efficient tissue rebuilding is achieved. B. alternatus venom is characterized by the high percentage of exclusively class P-III metalloproteinases, and by the lack of class P-I metalloproteinases in its venom composition. This could explain the effectiveness of muscle regeneration after venom injection despite the severity of the initial phase of envenoming.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, UNNE, CONICET, FaCENA, Campus "Deodoro Roca" Av. Libertad N° 5460, Corrientes, Argentina; Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina.
| | - Gladys P Teibler
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Silvana L Maruñak
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - David R Hernández
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Ofelia C Acosta
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Laura C Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, UNNE, CONICET, FaCENA, Campus "Deodoro Roca" Av. Libertad N° 5460, Corrientes, Argentina
| |
Collapse
|
153
|
Muthusamy K, Chinnasamy S, Nagarajan S, Sivaraman T, Chinnasamy S. Isolation and characterization of bioactive compounds of Clematis gouriana Roxb. ex DC against snake venom phospholipase A 2 (PLA 2) computational and in vitro insights. J Biomol Struct Dyn 2016; 35:1936-1949. [PMID: 27355444 DOI: 10.1080/07391102.2016.1202862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bioactive compounds were isolated from Clematis gouriana Roxb. ex DC. The compounds were separated, characterized, the structures elucidated and submitted to the PubChem Database. The PubChem Ids SID 249494134 and SID 249494135 were tested against phospholipases A2 (PLA2) of Naja naja (Indian cobra) venom for PLA2 activity. Both the compounds showed promising inhibitory activity; computational data also substantiated the results. The two compounds underwent density functional theory calculation to observe the chemical stability and electrostatic potential profile. Molecular interactions between the compounds and PLA2 were observed at the binding pocket of the PLA2 protein. Further, this protein-ligand complexes were simulated for a timescale of 100 ns of molecular dynamics simulation. Experimental and computational results showed significant PLA2 inhibition activity.
Collapse
Affiliation(s)
- Karthikeyan Muthusamy
- a Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| | - Sathishkumar Chinnasamy
- a Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| | - Subbiah Nagarajan
- b Department of Chemistry , Sastra University , Thanjavur 613401 , Tamil Nadu , India
| | | | - Selvakumar Chinnasamy
- d Faculty of Medicine, Department of Microbiology and Immunology , Misurata University , Misrata , Libya
| |
Collapse
|
154
|
Price JA. An in vitro evaluation of the Native American ethnomedicinal plant Eryngium yuccifolium as a treatment for snakebite envenomation. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:219-25. [PMID: 27366346 PMCID: PMC4927125 DOI: 10.5455/jice.20160421070136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022]
Abstract
AIM At least seven North American tribes specifically mention the use of Eryngium (typically roots) as an anti-snake venom therapy. As snake envenomation is an endemic, life-threatening medical risk, is there a scientific basis for the Native American ethnomedicine? Could this be demonstrated in an assay amenable to mechanistic evaluation and high throughput screening for later isolation and possible evaluation as a source for a lead drug? MATERIALS AND METHODS Proteases, mainly metalloproteases, are thought to be the main pathological agents in most American snake venoms. Water extracts of four plant parts of Eryngium yuccifolium were tested for enzyme inhibition in three highly sensitive in vitro protease assays, with multiple venoms. RESULTS Interestingly, activity was found in all plant parts, not just the roots, in the general protease assay, also in the most specific assay for collagenases, but less so for elastases where enzymatic activity was low, and against five species of American snake venoms. Inhibition spared the activity of a mammalian elastase, suggesting it has some specificity. In dose response assays, inhibitory activity in extracts of Eryngium was noticeably more effective than randomly chosen plants and comparable to some others. CONCLUSIONS All data shown here are consistent with pharmacological inhibition of proteases in at least selected venoms of common venomous snakes by Eryngium extracts. Moreover, as the genus is widely distributed in America, the ethnological practice of using this plant as an anti-snake venom treatment is supportable, may have been common, and suggests further bioactivity and phytochemical studies are warranted.
Collapse
Affiliation(s)
- Joseph A Price
- Department of Pathology, OSU-COM, Tulsa, OK 74107-1898, USA
| |
Collapse
|
155
|
Franco ATB, Silva LMG, Costa MS, Zamuner SF, Vieira RP, de Fatima Pereira Teixeira C, Zamuner SR. Effect of photobiomodulation on endothelial cell exposed to Bothrops jararaca venom. Lasers Med Sci 2016; 31:1017-1025. [PMID: 27147074 DOI: 10.1007/s10103-016-1941-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
Abstract
Bleeding is a common feature in envenoming caused by Bothrops snake venom due to extensive damage to capillaries and venules, producing alterations in capillary endothelial cell morphology. It has been demonstrated, in vivo, that photobiomodulation (PBM) decreases hemorrhage after venom inoculation; however, the mechanism is unknown. Thus, the objective was to investigate the effects of PBM on a murine endothelial cell line (tEnd) exposed to Bothrops jararaca venom (BjV). Cells were exposed to BjV and irradiated once with either 660- or 780-nm wavelength laser light at energy densities of 4 and 5 J/cm(2), respectively, and irradiation time of 10 s. Cell integrity was analyzed by crystal violet and cell viability/mitochondrial metabolism by MTT assay. The release of lactic dehydrogenase (LDH) was quantified as a measure of cell damage. In addition, cytokine IL1-β levels were measured in the supernatant. PBM at 660 and 780 nm wavelength was able to increase cellular viability and decrease the release of LDH and the loss of cellular integrity. In addition, the concentration of pro-inflammatory cytokine IL1-β was reduced after PBM by both wavelengths. The data reported herein indicates that irradiation with red or near-infrared laser resulted in protection on endothelial cells after exposure to Bothrops venom and could be, at least in part, a reasonable explanation by the beneficial effects of PBM inhibiting the local effects induced by Bothrops venoms, in vivo.
Collapse
Affiliation(s)
- Ana Tereza Barufi Franco
- Universidade Nove de Julho-UNINOVE, R: Vergueiro, 235 Liberdade, CEP 01504001, São Paulo, SP, Brazil
| | | | - Marcília Silva Costa
- Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Silvia Fernanda Zamuner
- Universidade Nove de Julho-UNINOVE, R: Vergueiro, 235 Liberdade, CEP 01504001, São Paulo, SP, Brazil
| | - Rodolfo Paula Vieira
- Universidade Nove de Julho-UNINOVE, R: Vergueiro, 235 Liberdade, CEP 01504001, São Paulo, SP, Brazil
| | | | - Stella Regina Zamuner
- Universidade Nove de Julho-UNINOVE, R: Vergueiro, 235 Liberdade, CEP 01504001, São Paulo, SP, Brazil.
- , Rua Vergueiro, 234 Bairro Liberdade, São Paulo, CEP 01504-000, Brazil.
| |
Collapse
|
156
|
Ye F, Mi Q, Zhang N, Li X, Yu J, Gao Z, Zheng Y, Fan Q, Wang J, Wang J. Probing the Key Binding Sequence and Improvement of the Stability of a β-Bungarotoxin-binding Aptamer in Snake Venom. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengping Ye
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Beijing 100071 China
- Institute of Military Medicine; Chengdu Military Region's Center for Disease Control & Prevention; Kunming 650032 China
| | - Qili Mi
- Technology Center; China Tobacco Yunnan Industrial Co., Ltd; Kunming 650231 China
| | - Ning Zhang
- Institute of Military Medicine; Chengdu Military Region's Center for Disease Control & Prevention; Kunming 650032 China
- Hospital of Unit 77256, PLA; Kunming 650225 China
| | - Xuemei Li
- Technology Center; China Tobacco Yunnan Industrial Co., Ltd; Kunming 650231 China
| | - Jing Yu
- Institute of Military Medicine; Chengdu Military Region's Center for Disease Control & Prevention; Kunming 650032 China
| | - Zhongping Gao
- Medical Department; General Hospital of Qinghai Armed Police; Xining 810000 China
| | - Ying Zheng
- Institute of Military Medicine; Chengdu Military Region's Center for Disease Control & Prevention; Kunming 650032 China
| | - Quanshui Fan
- Institute of Military Medicine; Chengdu Military Region's Center for Disease Control & Prevention; Kunming 650032 China
| | - Jie Wang
- Institute of Military Medicine; Chengdu Military Region's Center for Disease Control & Prevention; Kunming 650032 China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Beijing 100071 China
| |
Collapse
|
157
|
Ratanabanangkoon K, Tan KY, Eursakun S, Tan CH, Simsiriwong P, Pamornsakda T, Wiriyarat W, Klinpayom C, Tan NH. A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia. PLoS Negl Trop Dis 2016; 10:e0004565. [PMID: 27058956 PMCID: PMC4825939 DOI: 10.1371/journal.pntd.0004565] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (polyspecific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a 'pan-specific' AV against many snakes over a wide geographical area in some countries/regions has not been possible. If a 'pan-specific' AV effective against a variety of snakes from many countries could be prepared, it could be produced economically in large volume for use in many countries and save many lives. The aim of this study was to produce a pan-specific antiserum effective against major medically important elapids in Asia. The strategy was to use toxin fractions (TFs) of the venoms in place of crude venoms in order to reduce the number of antigens the horses were exposed to. This enabled inclusion of a greater variety of elapid venoms in the immunogen mix, thus exposing the horse immune system to a diverse repertoire of toxin epitopes, and gave rise to antiserum with wide paraspecificity against elapid venoms. Twelve venom samples from six medically important elapid snakes (4 Naja spp. and 2 Bungarus spp.) were collected from 12 regions/countries in Asia. Nine of these 12 venoms were ultra-filtered to remove high molecular weight, non-toxic and highly immunogenic proteins. The remaining 3 venoms were not ultra-filtered due to limited amounts available. The 9 toxin fractions (TFs) together with the 3 crude venoms were emulsified in complete Freund's adjuvant and used to immunize 3 horses using a low dose, low volume, multisite immunization protocol. The horse antisera were assayed by ELISA and by in vivo lethality neutralization in mice. The findings were: a) The 9 TFs were shown to contain all of the venom toxins but were devoid of high MW proteins. When these TFs, together with the 3 crude venoms, were used as the immunogen, satisfactory ELISA antibody titers against homologous/heterologous venoms were obtained. b) The horse antiserum immunologically reacted with and neutralized the lethal effects of both the homologous and the 16 heterologous Asian/African elapid venoms tested. Thus, the use of TFs in place of crude venoms and the inclusion of a variety of elapid venoms in the immunogen mix resulted in antiserum with wide paraspecificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries. Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.
Collapse
Affiliation(s)
- Kavi Ratanabanangkoon
- Laboratory of Immunology, Chulabhorn Research Institute, Bangkok, Thailand
- Chulabhorn Graduate Institute, Bangkok, Thailand
- * E-mail:
| | - Kae Yi Tan
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sukanya Eursakun
- Laboratory of Immunology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Teeraporn Pamornsakda
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, NakornPrathom, Thailand
| | - Witthawat Wiriyarat
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, NakornPrathom, Thailand
| | - Chaiya Klinpayom
- The Veterinary and Remount Department, The Royal Thai Army, NakornPrathom, Thailand
| | - Nget Hong Tan
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
158
|
Dixit R, Herz J, Dalton R, Booy R. Benefits of using heterologous polyclonal antibodies and potential applications to new and undertreated infectious pathogens. Vaccine 2016; 34:1152-61. [PMID: 26802604 PMCID: PMC7131169 DOI: 10.1016/j.vaccine.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Passive immunotherapy using polyclonal antibodies (immunoglobulins) has been used for over a century in the treatment and post-exposure prophylaxis of various infections and toxins. Heterologous polyclonal antibodies are obtained from animals hyperimmunised with a pathogen or toxin. AIMS The aims of this review are to examine the history of animal polyclonal antibody therapy use, their development into safe and effective products and the potential application to humans for emerging and neglected infectious diseases. METHODS A literature search of OVID Medline and OVID Embase databases was undertaken to identify articles on the safety, efficacy and ongoing development of polyclonal antibodies. The search contained database-specific MeSH and EMTREE terms in combination with pertinent text-words: polyclonal antibodies and rare/neglected diseases, antivenins, immunoglobulins, serum sickness, anaphylaxis, drug safety, post marketing surveillance, rabies, human influenza, Dengue, West Nile, Nipah, Hendra, Marburg, MERS, Hemorrhagic Fever Virus, and Crimean-Congo. No language limits were applied. The final search was completed on 20.06.2015. Of 1960 articles, title searches excluded many irrelevant articles, yielding 303 articles read in full. Of these, 179 are referenced in this study. RESULTS Serum therapy was first used in the 1890s against diphtheria. Early preparation techniques yielded products contaminated with reactogenic animal proteins. The introduction of enzymatic digestion, and purification techniques substantially improved their safety profile. The removal of the Fc fragment of antibodies further reduces hypersensitivity reactions. Clinical studies have demonstrated the efficacy of polyclonal antibodies against various infections, toxins and venoms. Products are being developed against infections for which prophylactic and therapeutic options are currently limited, such as avian influenza, Ebola and other zoonotic viruses. CONCLUSIONS Polyclonal antibodies have been successfully applied to rabies, envenomation and intoxication. Polyclonal production provides an exciting opportunity to revolutionise the prognosis of both longstanding neglected tropical diseases as well as emerging infectious threats to humans.
Collapse
Affiliation(s)
- Rashmi Dixit
- The Children's Hospital, Westmead, Sydney, Australia.
| | | | | | - Robert Booy
- The Children's Hospital, Westmead, Sydney, Australia
| |
Collapse
|
159
|
Wood D, Sartorius B, Hift R. Snakebite in north-eastern South Africa: clinical characteristics and risks for severity. S Afr Fam Pract (2004) 2016. [DOI: 10.1080/20786190.2015.1120934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
160
|
Unveiling the complexities of Daboia russelii venom, a medically important snake of India, by tandem mass spectrometry. Toxicon 2015; 107:266-81. [DOI: 10.1016/j.toxicon.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
|
161
|
Cupo P. Bites and stings from venomous animals: a neglected Brazilian tropical disease. Rev Soc Bras Med Trop 2015; 48:639-41. [DOI: 10.1590/0037-8682-0387-2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 11/22/2022] Open
Affiliation(s)
- Palmira Cupo
- Universidade de São Paulo, Brazil; Faculdade de Medicina de Ribeirão Preto, Brazil
| |
Collapse
|
162
|
Bertolozzi MR, Scatena CMDC, França FODS. Vulnerabilities in snakebites in Sao Paulo, Brazil. Rev Saude Publica 2015; 49:S0034-89102015000100264. [PMID: 26603351 PMCID: PMC4641465 DOI: 10.1590/s0034-8910.2015049005839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/30/2015] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To describe elements of vulnerability of victims of snakebite. METHODS This qualitative, descriptive, cross-sectional study had, as theoretical framework, the concept of vulnerability in individual, social, and programmatic dimensions. We interviewed 21 patients admitted into a hospital specialized in the care of accidents caused by venomous animals. The interviews were analyzed according to a discourse analysis technique. RESULTS Patients were mainly young men, living in remote countryside areas, where health services frequently have limited resources. We found social and individual conditions of vulnerability, such as precarious schooling, low professional qualification, housing without access to piped water, no sewage treated, and no regular garbage collection, and lack of knowledge on this health problem. Regarding the programmatic dimension, we found limited accessibility to the health services that could affect the prognosis and the frequency of sequelae and deaths. CONCLUSIONS Considering such vulnerabilities evoke the need to improve the program for control the Accidents by Venomous Animals and the training of health workers, we highlight the potential use of the concept of vulnerability, which may amplify the understanding and the recommendations for the practice and education related to snakebites.
Collapse
Affiliation(s)
- Maria Rita Bertolozzi
- Departamento de Enfermagem em Saúde Coletiva, Escola de Enfermagem, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
163
|
Gutiérrez JM. Understanding and confronting snakebite envenoming: The harvest of cooperation. Toxicon 2015; 109:51-62. [PMID: 26615826 DOI: 10.1016/j.toxicon.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 01/14/2023]
Abstract
During 45 years, the Instituto Clodomiro Picado (ICP, University of Costa Rica) has developed an ambitious scientific, technological, productive, and social program aimed at providing a better understanding of snakes and their venoms, contributing to the development, production and distribution of antivenoms, improving the prevention and management of snakebite envenomings, and strengthening human resources in science and technology. Among other topics, its research agenda has focused on the local tissue alterations induced by viperid snake venoms, i.e. myonecrosis, hemorrhage, dermonecrosis, extracellular matrix degradation, lymphatic vessel damage, and inflammation. In addition, the preclinical efficacy of antivenoms has been thoroughly investigated, together with the technological development of novel antivenoms. ICP's project has been based on a philosophical frame characterized by: (a) An integrated approach for confronting the problem of snakebites, involving research, production, extension activities, and teaching; (b) a cooperative and team work perspective in the pursuit of scientific, technological, productive, and social goals; (c) a search for excellence and continuous improvement in the quality of its activities; and (d) a vision of solidarity and compassion, based on the realization that snakebite envenomings mostly affect impoverished vulnerable populations in the rural settings of developing countries. A key aspect in this program has been the consolidation of international partnerships with groups of all continents, within a frame of academic and social cooperation, some of which are described in this review.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
164
|
Chinnasamy S, Chinnasamy S, Muthusamy K. High-affinity selective inhibitor against phospholipase A2 (PLA2): a computational study. J Recept Signal Transduct Res 2015; 36:111-8. [PMID: 26422703 DOI: 10.3109/10799893.2015.1056306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phospholipase A2 (PLA2) is the most abundant protein found in snake venom. PLA2 induces a variety of pharmacological effects such as neurotoxicity, myotoxicity and cardiotoxicity as well as anticoagulant, hemolytic, anti-platelet, hypertensive, hemorrhagic and edema inducing effects. In this study, the three dimensional structure of PLA2 of Naja sputatrix (Malayan spitting cobra) was modeled by I-TASSER, SWISS-MODEL, PRIME and MODELLER programs. The best model was selected based on overall stereo-chemical quality. Further, molecular dynamics simulation was performed to know the stability of the modeled protein using Gromacs software. Average structure was generated during the simulation period of 10 ns. High throughput virtual screening was employed through different databases (Asinex, Hit finder, Maybridge, TOSLab and ZINC databases) against PLA2. The top seven compounds were selected based on the docking score and free energy binding calculations. These compounds were analyzed by quantum polarized ligand docking, induced fit docking and density functional theory calculation. Furthermore, the stability of lead molecules in the active site of PLA2 was employed by MD simulation. The results show that selected lead molecules were highly stable in the active site of PLA2.
Collapse
Affiliation(s)
| | - Selvakkumar Chinnasamy
- b Department of Microbiology , Faculty of Medicine, Misurata University , Misurata , Libya
| | - Karthikeyan Muthusamy
- a Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu , India and
| |
Collapse
|
165
|
Tan CH, Tan KY, Fung SY, Tan NH. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genomics 2015; 16:687. [PMID: 26358635 PMCID: PMC4566206 DOI: 10.1186/s12864-015-1828-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/07/2015] [Indexed: 02/01/2023] Open
Abstract
Background The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Results Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5’-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5’-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. Conclusion This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1828-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
166
|
Chaves LF, Chuang TW, Sasa M, Gutiérrez JM. Snakebites are associated with poverty, weather fluctuations, and El Niño. SCIENCE ADVANCES 2015; 1:e1500249. [PMID: 26601254 PMCID: PMC4643785 DOI: 10.1126/sciadv.1500249] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023]
Abstract
Snakebites are environmental and occupational health hazards that mainly affect rural populations worldwide. The ectothermic nature of snakes raises the issue of how climate change's impact on snake ecology could influence the incidence of snakebites in humans in ways that echo the increased predation pressure of snakes on their prey. We thus ask whether snakebites reported in Costa Rica from 2005 to 2013 were associated with meteorological fluctuations. We emphasize El Niño Southern Oscillation (ENSO), a climatic phenomenon associated with cycles of other neglected tropical diseases (NTDs) in the region and elsewhere. We ask how spatial heterogeneity in snakebites and poverty are associated, given the importance of the latter for NTDs. We found that periodicity in snakebites reflects snake reproductive phenology and is associated with ENSO. Snakebites are more likely to occur at high temperatures and may be significantly reduced after the rainy season. Nevertheless, snakebites cluster in Costa Rican areas with the heaviest rainfall, increase with poverty indicators, and decrease with altitude. Altogether, our results suggest that snakebites might vary as a result of climate change.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Nagasaki University Institute of Tropical Medicine (NEKKEN), Sakamoto 1-12-4, Nagasaki, Japan
- Program for Tropical Disease Research (PIET), School of Veterinary Medicine, National University of Costa Rica, P.O. Box 304-3000, Heredia, Costa Rica
| | - Ting-Wu Chuang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine and Center of International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mahmood Sasa
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, P.O. Box 2060, San Jose, Costa Rica
| | - José María Gutiérrez
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, P.O. Box 2060, San Jose, Costa Rica
| |
Collapse
|
167
|
Snakes and snakebite envenoming in Northern Tanzania: a neglected tropical health problem. J Venom Anim Toxins Incl Trop Dis 2015; 21:32. [PMID: 26309444 PMCID: PMC4548540 DOI: 10.1186/s40409-015-0033-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/13/2015] [Indexed: 12/02/2022] Open
Abstract
Background Snakebites cause considerable human and livestock injuries as well as deaths worldwide, and particularly have a high impact in sub-Saharan Africa. Generating a basic platform of information on the characteristics of snakes and snakebites in various countries is relevant for designing and implementing public health interventions. Methods This study was performed to identify types of snakes and some of the characteristics of snakebite cases in two communities, an agricultural and a pastoralist, in Arusha region, northern Tanzania. A total of 30 field visits were carried out in areas considered by local inhabitants to be potential microhabitats for snakes. Direct observation of snake types based on morphological features and a structured questionnaire were employed for data collection. Results A total of 25 live and 14 dead snakes were encountered. Among the dead ones, the following species were identified: two black-necked spitting cobras (Naja nigricollis); five puff adders (Bitis arietans), one common egg-eater (Dasypeltis scabra); two rufous-beaked snakes (Ramphiophis rostratus); two brown house snakes (Lamprophis fuliginosus); one Kenyan sand boa (Eryx colubrinus), and one black mamba (Dendroaspis polylepis). The frequency of snake encounters was significantly higher (χ2 = 4.6; p = 0.03) in the pastoral than in the agricultural area; there were more snakebite cases in the former, but the differences were not statistically significant (p = 0.7). A total of 242 snakebite victims attended at the Meserani Clinic, located in the study area, between the years 2007 to 2012. Of all cases, 146 (61.6 %) and 96 (38.4 %) were male and female patients, respectively. As for age distribution, 59.1 % of snakebite victims were from the economically active age groups between 15 and 55 years. Conclusion Snakebites are a threat to rural communities and public health in general. The burden of snakebites in Tanzania presents an epidemiologically similar picture to other tropical countries. Livestock keeping and agriculture are the major economic activities associated with snakebites. Community-based public education is required to create awareness on venomous snakes and predisposing factors to snakebites. These tasks demand integration of diverse stakeholders to achieve a common goal of reducing the impact of human suffering from these envenomings in Tanzania.
Collapse
|
168
|
Menaldo DL, Jacob-Ferreira AL, Bernardes CP, Cintra ACO, Sampaio SV. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:28. [PMID: 26273288 PMCID: PMC4535780 DOI: 10.1186/s40409-015-0027-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA2) from Bothrops atrox venom, and biochemically characterize these molecules to enable future functional studies. Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing. Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA2. Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.
Collapse
Affiliation(s)
- Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| |
Collapse
|
169
|
Saraiva RM, Caldas AS, Rodriguez TT, Casais-e-Silva LL. Influence of thyroid states on the local effects induced by Bothrops envenoming. Toxicon 2015; 102:25-31. [DOI: 10.1016/j.toxicon.2015.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/11/2015] [Accepted: 05/20/2015] [Indexed: 01/19/2023]
|
170
|
Price JA. Microplate fluorescence protease assays test the inhibition of select North American snake venoms' activities with an anti-proteinase library. Toxicon 2015; 103:145-54. [PMID: 26130521 DOI: 10.1016/j.toxicon.2015.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Snake envenomation is a relatively neglected significant world health problem, designated an orphan disease by the WHO. While often effective, antivenins are insufficient. Could another approach greatly aid inhibition of the venom toxins? New fluorescent substrates for measuring protease activity in microplate assays suitable for high throughput screening were tested and found reproducible with snake venom. Representative North American venoms showed relatively strong proteinase and collagenase, but weaker elastase activities. Caseinolytic activity is inhibited by the nonspecific proteinase inhibitor 1,10-phenanthroline and by EDTA, as is collagenase activity, consistent with the action of metalloproteinases. Both general protease and collagenase assays CV average 3%, and Km measured were above normal working conditions. Using a library of anti -proteinase compounds with multiple venoms revealed high inhibitor activity by three agents with known multiple metalloproteinase inhibitor activity (Actinonin, GM6001, and NNGH), which incidentally supports the concept that much of the degradative activity of certain venoms is due to metalloproteinases with collagenase activity. These results together support the use of microplate proteinase assays, particularly this collagenase assay, in future drug repurposing studies leading to the development of new treatments for those envenomations that have a major proteolytic component in their pathophysiology.
Collapse
Affiliation(s)
- Joseph A Price
- Department of Pathology, Oklahoma State University College of Osteopathic Medicine, 1111 W. 17th St. Tulsa, OK 74107, USA.
| |
Collapse
|
171
|
Gopi K, Renu K, Sannanaik Vishwanath B, Jayaraman G. Protective effect of Euphorbia hirta and its components against snake venom induced lethality. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:180-190. [PMID: 25727964 DOI: 10.1016/j.jep.2015.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/22/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Despite the use of snake anti-venom therapy, herbal medicine is still in practice to treat snakebites. Euphorbia hirta is traditionally used as antidote for snakebites and also for numerous other ailments. However, the scientific evidence for its anti-snake venom property is still lacking. MATERIALS AND METHODS Methanolic extract of E. hirta was evaluated for anti-venom activity under in vitro and ex vivo conditions. Histopathological changes in the vital organs of the mice were also monitored. UHPLC-SRM/MS was used to estimate the phenolic constituents whereas GC-MS analysis was performed to analyze the volatile metabolites present. The major compound was further evaluated for its contribution to the overall inhibitory potential of the extract. RESULTS Methanolic extract of E. hirta completely inhibited the venom enzymes under in vitro and reduced the edema ratio. The extract increased the survival time (>24h) of mice which was further evidenced by histopathological analysis of vital organs. Phytochemical analysis revealed higher content of phenolic (144 mg/g extract) compounds in the extract. UHPLC-SRM/MS demonstrated that ellagic acid, gallic acid and quinic acid are the major phenolics whereas GC-MS analysis revealed pyrogallol as the major constituent (60.07%) among the volatile components of the extract. It was also shown that pyrogallol has the ability to differentially inhibit venom protease but not phospholipase A2. CONCLUSION The present study confirmed that E. hirta methanolic extract was able to completely inhibit Naja naja venom induced toxicity under in vitro as well as ex vivo conditions, thus providing scientific evidence to its traditional use.
Collapse
Affiliation(s)
- Kadiyala Gopi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Kadali Renu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | | | - Gurunathan Jayaraman
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
172
|
Extracts of Renealmia alpinia (Rottb.) MAAS Protect against Lethality and Systemic Hemorrhage Induced by Bothrops asper Venom: Insights from a Model with Extract Administration before Venom Injection. Toxins (Basel) 2015; 7:1532-43. [PMID: 25941768 PMCID: PMC4448161 DOI: 10.3390/toxins7051532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/16/2022] Open
Abstract
Renealmia alpinia (Rottb.) MAAS, obtained by micropropagation (in vitro) and wild forms have previously been shown to inhibit some toxic activities of Bothrops asper snake venom if preincubated before injection. In this study, assays were performed in a murine model in which extracts were administered for three days before venom injection. R. alpinia extracts inhibited lethal activity of B. asper venom injected by intraperitoneal route. Median Effective Dose (ED50) values were 36.6 ± 3.2 mg/kg and 31.7 ± 5.4 mg/kg (p > 0.05) for R. alpinia wild and in vitro extracts, respectively. At a dose of 75 mg/kg, both extracts totally inhibited the lethal activity of the venom. Moreover, this dose prolonged survival time of mice receiving a lethal dose of venom by the intravenous route. At 75 mg/kg, both extracts of R. alpinia reduced the extent of venom-induced pulmonary hemorrhage by 48.0% (in vitro extract) and 34.7% (wild extract), in agreement with histological observations of lung tissue. R. alpinia extracts also inhibited hemorrhage in heart and kidneys, as evidenced by a decrease in mg of hemoglobin/g of organ. These results suggest the possibility of using R. alpinia as a prophylactic agent in snakebite, a hypothesis that needs to be further explored.
Collapse
|
173
|
Petras D, Heiss P, Süssmuth RD, Calvete JJ. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. J Proteome Res 2015; 14:2539-56. [DOI: 10.1021/acs.jproteome.5b00305] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Daniel Petras
- Institut
für Chemie, Technische Universität Berlin, Müller-Breslau-Straße
10, 10623 Berlin, Germany
| | - Paul Heiss
- Institut
für Chemie, Technische Universität Berlin, Müller-Breslau-Straße
10, 10623 Berlin, Germany
| | - Roderich D. Süssmuth
- Institut
für Chemie, Technische Universität Berlin, Müller-Breslau-Straße
10, 10623 Berlin, Germany
| | - Juan J. Calvete
- Laboratorio
de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain
| |
Collapse
|
174
|
Scheske L, Ruitenberg J, Bissumbhar B. Needs and availability of snake antivenoms: relevance and application of international guidelines. Int J Health Policy Manag 2015; 4:447-57. [PMID: 26188809 DOI: 10.15171/ijhpm.2015.75] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Snakebite has recently been declared a global public health emergency. Empirical data showing the true burden of snakebite is lacking. Treatment with specific antivenoms is considered the only cure. However, several factors have led to an ongoing antivenom crisis. This study offers recommendations concerning the improvement of antivenom access and control, by providing an overview of the factors limiting the successful implementation of international guidelines within the international industry and state institutions. It further investigates the reasons for the epidemiological knowledge gap regarding snakebites. METHODS Data for this study was collected using surveys with closed- and open-ended questions, which allowed for descriptive and thematic analysis, respectively. Participants for this study were selected as follows: 46 manufacturers were contacted from the open-access World Health Organization (WHO) Database for antivenom producers; 23 National Health Authorities (NHAs) of high-burden countries were contacted; and 11 poison centers or experts were randomly contacted. RESULTS In total, responses from 6/46 (13%) manufacturers, 10/23 (43%) NHAs, and 3/11 (27%) poison centers were received. The low response rates had a limiting effect on the coverage of this study, allowing only exploratory conclusions to be drawn. Based on the gathered information, a probable reason for the epidemiological knowledge gap is the low priority given to snakebites on public health agendas, driving interest and funding away from research in this field. As a consequence, the ensuing lack in funding is preventing state institutions and manufacturers from implementing international guidelines to the highest standards. Furthermore, manufacturers indicated that international guidelines were often not applicable in the field, lacking technical information and protocols. CONCLUSION Snakebite ranks low on international public health agendas, and partially due to this low priority, NHAs have shown limited efforts in conducting epidemiological studies, training health workers on snakebite management and creating national snakebite management strategies. The lack of NHA involvement is reflected in poor access to appropriate antivenoms as well as a lack of antivenom regulation. Manufacturers are taking positive steps toward full implementation of international guidelines and are improving quality control procedures. However, in order for international guidelines to become truly useful in the field, more technical guidance is required. This study reflects that there is a general lack of knowledge transfer amongst various actors: most producers, health authorities, and experts expect increased and improved communication and guidance from leading international bodies. Due to the low response rates observed in this study, conclusions drawn herein are not representative of the global situation; yet provide an exploratory insight on the difficulties facing antivenom management.
Collapse
Affiliation(s)
- Laura Scheske
- Athena Institute, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | - Joost Ruitenberg
- Athena Institute, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | - Balram Bissumbhar
- Athena Institute, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| |
Collapse
|
175
|
Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin. Nat Protoc 2015; 10:595-604. [DOI: 10.1038/nprot.2015.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
176
|
Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K. Effective equine immunization protocol for production of potent poly-specific antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis. PLoS Negl Trop Dis 2015; 9:e0003609. [PMID: 25774998 PMCID: PMC4361046 DOI: 10.1371/journal.pntd.0003609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/08/2015] [Indexed: 11/18/2022] Open
Abstract
Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
Collapse
Affiliation(s)
- Sompong Sapsutthipas
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Poh Kuan Leong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ronachai Pratanaphon
- Division of Biotechnology, Faculty of Agro-industry, Chiang Mai University, Chaing Mai, Thailand
| | - Nget Hong Tan
- Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Immunology, Chulabhorn Research Institute and Chulabhorn Graduate Institute, Thailand
- * E-mail: ,
| |
Collapse
|
177
|
Vargas M, Segura Á, Villalta M, Herrera M, Gutiérrez JM, León G. Purification of equine whole IgG snake antivenom by using an aqueous two phase system as a primary purification step. Biologicals 2015; 43:37-46. [DOI: 10.1016/j.biologicals.2014.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/12/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022] Open
|
178
|
Omics meets biology: application to the design and preclinical assessment of antivenoms. Toxins (Basel) 2014; 6:3388-405. [PMID: 25517863 PMCID: PMC4280540 DOI: 10.3390/toxins6123388] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022] Open
Abstract
Snakebite envenoming represents a neglected tropical disease that has a heavy public health impact worldwide, mostly affecting poor people involved in agricultural activities in Africa, Asia, Latin America and Oceania. A key issue that complicates the treatment of snakebite envenomings is the poor availability of the only validated treatment for this disease, antivenoms. Antivenoms can be an efficacious treatment for snakebite envenoming, provided they are safe, effective, affordable, accessible and administered appropriately. The shortage of antivenoms in various regions, particularly in Sub-Saharan Africa and some parts of Asia, can be significantly alleviated by optimizing the use of current antivenoms and by the generation of novel polyspecific antivenoms having a wide spectrum of efficacy. Complementing preclinical testing of antivenom efficacy using in vivo and in vitro functional neutralization assays, developments in venomics and antivenomics are likely to revolutionize the design and preclinical assessment of antivenoms by being able to test new antivenom preparations and to predict their paraspecific neutralization to the level of species-specific toxins.
Collapse
|
179
|
Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA. Proteomic investigation of Sri Lankan hump-nosed pit viper (Hypnale hypnale) venom. Toxicon 2014; 93:164-70. [PMID: 25451538 DOI: 10.1016/j.toxicon.2014.11.231] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
The hump-nosed pit viper, Hypanle hypnale, contributes to snakebite mortality and morbidity in Sri Lanka. Studies showed that the venom is hemotoxic and nephrotoxic, with some biochemical and antigenic properties similar to the venom of Calloselasma rhodostoma (Malayan pit viper). To further characterize the complexity composition of the venom, we investigated the proteome of a pooled venom sample from >10 Sri Lankan H. hypnale with reverse-phase high performance liquid chromatography (rp-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide sequencing (tandem mass-spectrometry and/or N-terminal sequencing). The findings ascertained that two phospholipase A2 subtypes (E6-PLA2, W6-PLA2) dominate the toxin composition by 40.1%, followed by snake venom metalloproteases (36.9%), l-amino acid oxidase (11.9%), C-type lectins (5.5%), serine proteases (3.3%) and others (2.3%). The presence of the major toxins correlates with the venom's major pathogenic effects, indicating these to be the principal target toxins for antivenom neutralization. This study supports the previous finding of PLA2 dominance in the venom but diverges from the view that H. hypnale venom has low expression of large enzymatic toxins. The knowledge of the composition and abundance of toxins is essential to elucidate the pathophysiology of H. hypnale envenomation and to optimize antivenom formulation in the future.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Proteomic Centre for Research (UMPCR), University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Proteomic Centre for Research (UMPCR), University of Malaya, Kuala Lumpur, Malaysia
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Proteomic Centre for Research (UMPCR), University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
180
|
Gómez-Betancur I, Benjumea D, Patiño A, Jiménez N, Osorio E. Inhibition of the toxic effects of Bothrops asper venom by pinostrobin, a flavanone isolated from Renealmia alpinia (Rottb.) MAAS. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1609-1615. [PMID: 25138354 DOI: 10.1016/j.jep.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renealmia alpinia has been traditionally used to treat snakebites by indigenous Embera-Katíos tribes belonging to the regions of Antioquia and Chocó, Colombia, and it has been shown to inhibit the enzymatic and biological activities of Bothrops venoms and their purified phospholipase A2 (PLA2) toxins. In addition to its common local usage against snakebites, Renealmia alpinia is commonly used to treat pain. To evaluate the inhibitory ability of pinostrobin, the main compound in the dichloromethane extract of Renealmia alpinia, on the toxic effects of Bothrops asper venom through in vitro and in vivo models and to evaluate its activity against pain and edema. MATERIALS AND METHODS Pinostrobin was isolated from the dichloromethane extract of Renealmia alpinia leaves. The protective properties of the extract and of pinostrobin against the indirect hemolytic, coagulant and proteolytic effects of Bothrops asper venom were evaluated in vitro, and the anti-hemorrhagic and anti-inflammatory activity were evaluated in vivo. RESULTS Renealmia alpinia extract significantly inhibited the proteolytic activity and indirect hemolytic activity of Bothrops asper venom at a venom:extract ratio of 1:20. Moreover, the present data demonstrate that pinostrobin may mitigate some venom-induced local tissue damage due to hemorrhagic effects, and the compound is also responsible for the analgesic and anti-inflammatory activity of the extract from Renealmia alpinia. This is the first report to describe pinostrobin in the species Renealmia alpinia and its properties in vitro against Bothrops asper venom. CONCLUSION Our studies of the activity of Renealmia alpinia against the venom of Bothrops asper have confirmed that this species possesses inhibitory effects against Bothrops asper venom in both in vitro and in vivo models and that these effects may be due to pinostrobin, supporting the traditional usage of the plant. Additionally, pinostrobin may be responsible for the anti-hemorrhagic and analgesic activity (peripheral analgesic activity) of Renealmia alpinia.
Collapse
Affiliation(s)
- Isabel Gómez-Betancur
- Programa de Ofidismo/Escorpionismo, Sede de Investigación Universitaria, Torre 2 Laboratorio 631, Facultad de Química Farmacéutica, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia.
| | - Dora Benjumea
- Programa de Ofidismo/Escorpionismo, Sede de Investigación Universitaria, Torre 2 Laboratorio 631, Facultad de Química Farmacéutica, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia.
| | - Arley Patiño
- Programa de Ofidismo/Escorpionismo, Sede de Investigación Universitaria, Torre 2 Laboratorio 631, Facultad de Química Farmacéutica, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia.
| | - Nora Jiménez
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
181
|
Gómez-Betancur I, Benjumea D. Traditional use of the genus Renealmia and Renealmia alpinia (Rottb.) Maas (Zingiberaceae)-a review in the treatment of snakebites. ASIAN PAC J TROP MED 2014; 7S1:S574-82. [DOI: 10.1016/s1995-7645(14)60292-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/09/2014] [Accepted: 06/03/2014] [Indexed: 10/24/2022] Open
|
182
|
Gopi K, Renu K, Jayaraman G. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicol Rep 2014; 1:667-673. [PMID: 28962280 PMCID: PMC5598287 DOI: 10.1016/j.toxrep.2014.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 01/05/2023] Open
Abstract
Purpose The present investigation was aimed at evaluating the anti-ophidian properties of ethnomedicinal herb Leucas aspera against Indian cobra, Naja naja venom enzymes. Methods Methanolic extract of Leucas aspera was evaluated, in vitro, for its ability to inhibit the major enzyme activities of Naja naja venom including protease, phospholipase A2, hyaluronidase and hemolytic factors. The type of phytochemicals present in the extract was analyzed. Also, the major phytoconstituents in the extract was determined by gas chromatography–mass spectrometry (GC–MS). Results Venom protease and hyaluronidase activities (two isoforms) were completely (100%) neutralized by the L. aspera methanolic extract at ratio of 1:50 w/w (venom: plant extract) and venom hemolytic activity was also completely neutralized at a ratio of 1:80 w/w by the plant extract. However, the extract failed to neutralize phospholipase A2 activity even at the highest concentration used. Phytochemical analysis revealed the presence of alkaloids, acidic compounds, flavonoids, steroids and cardiac glycosides in the extract. GC–MS analysis indicated that a total of 14 compounds were present in the extract. The major bioactive constituents were found to be 6-octadecenoic acid (32.47%), n-hexadecanoic acid (25.97%), and 17-octadecen-14-yn-1-ol (14.22%) along with the minor constituents, sitosterol (2.45%) and stigmasterol (2%), which was previously reported to exhibit antivenom activity. Conclusion The results obtained demonstrate for the first time that the methanolic extract of Leucas aspera possesses anti-venom activity and could be considered as a potential source for the anti-ophidian metabolites.
Collapse
|
183
|
Gutiérrez JM. Reducing the impact of snakebite envenoming in Latin America and the Caribbean: achievements and challenges ahead. Trans R Soc Trop Med Hyg 2014; 108:530-7. [PMID: 25096295 DOI: 10.1093/trstmh/tru102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Snakebite envenoming constitutes an important public health problem in Latin America and some countries of the Caribbean. The advances and pending tasks in the study and control of this neglected tropical disease in this region are reviewed in the light of a roadmap proposed in 2006. Significant progress has been achieved in the study of snake venoms, particularly regarding venom proteomics, i.e.'venomics', and the analysis of the mechanism of action of toxins. Likewise, a deeper understanding has been gained in the preclinical efficacy of antivenoms produced in the region. In contrast, despite advances made in the study of clinical manifestations of envenomings and safety and efficacy of antivenoms at the clinical level, much remains to be done in this subject. Improvements have occurred in antivenom manufacturing technologies and availability, although there are still countries where there is insufficient supply of antivenoms, or where manufacture has to be improved. In spite of considerable efforts in some countries in prevention, accessibility to treatment, and training of health staff in the management of envenomings, important challenges remain for the region as a whole, with the long term goal of reducing the impact of this disease in terms of personal and social suffering.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
184
|
The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLoS One 2014; 9:e100957. [PMID: 24963989 PMCID: PMC4071012 DOI: 10.1371/journal.pone.0100957] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/29/2014] [Indexed: 11/26/2022] Open
Abstract
Background Many authors have claimed that snakebite risk is associated with human population density, human activities, and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both environmental suitability and socioeconomic variables in Veracruz, Mexico. Methodology/Principal Findings Ecological niche modeling (ENM) was used to estimate potential geographic and ecological distributions of nine viper species' in Veracruz. We calculated the distance to the species' niche centroid (DNC); this distance may be associated with a prediction of abundance. We found significant inverse relationships between snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper), explaining respectively 15% and almost 35% of variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human populations, accounted for 76% of variation in incidence. Conclusions/Significance Our results suggest that niche modeling and niche-centroid distance approaches can be used to mapping distributions of environmental suitability for venomous snakes; combining this ecological information with socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased (especially when incidences are low).
Collapse
|
185
|
Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics 2014; 11:315-29. [PMID: 24678852 DOI: 10.1586/14789450.2014.900447] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Venom research has been continuously enhanced by technological advances. High-throughput technologies are changing the classical paradigm of hypothesis-driven research to technology-driven approaches. However, the thesis advocated in this paper is that full proteome coverage at locus-specific resolution requires integrating the best of both worlds into a protocol that includes decomplexation of the venom proteome prior to liquid chromatography-tandem mass spectrometry matching against a species-specific transcriptome. This approach offers the possibility of proof-checking the species-specific contig database using proteomics data. Immunoaffinity chromatography constitutes the basis of an antivenomics workflow designed to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venom toxins. In the author's view, snake venomics and antivenomics form part of a biology-driven conceptual framework to unveil the genesis and natural history of venoms, and their within- and between-species toxicological and immunological divergences and similarities. Understanding evolutionary trends across venoms represents the Rosetta Stone for generating broad-ranging polyspecific antivenoms.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain +34 963 391 778 +34 963 690 800
| |
Collapse
|
186
|
Gutiérrez JM, Burnouf T, Harrison RA, Calvete JJ, Kuch U, Warrell DA, Williams DJ. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bull World Health Organ 2014; 92:526-32. [PMID: 25110378 DOI: 10.2471/blt.13.132431] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/27/2022] Open
Abstract
Snakebite envenoming is a common but neglected public health problem, particularly in impoverished rural regions of sub-Saharan Africa, Asia and Latin America. The only validated treatment for this condition is passive immunotherapy with safe and effective animal-derived antivenoms. However, there is a long-lasting crisis in the availability of these life-saving medications, particularly in sub-Saharan Africa and parts of Asia. We herein advocate a multicomponent strategy to substantially improve the availability of safe and effective antivenoms at the global level. This strategy is based on: (i) preparing validated collections of representative venom pools from the most medically dangerous snakes in high-risk regions of the world; (ii) strengthening the capacity of national antivenom manufacturing and quality control laboratories and their regulatory authorities and establishing new facilities in developing countries through technology transfer, as an integral part of efforts to develop their biological products industry; (iii) getting established laboratories to generate antivenoms for various regions of the world; and (iv) getting governments and relevant organizations to give snakebite envenoming due recognition within national and international public health policy frameworks. These ways of making antivenom available should be complemented by actions to improve health information systems, the accessibility of antivenoms, the training of medical and nursing staff, and community-based education. Such a multicomponent strategy involving stakeholders on many levels could help consolidate sustainable improvements in antivenom availability worldwide.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan, China
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, England
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - David A Warrell
- John Radcliffe Hospital, University of Oxford, Oxford, England
| | - David J Williams
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
187
|
Mukherjee AK. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity. PLoS One 2014; 9:e86823. [PMID: 24520323 PMCID: PMC3919717 DOI: 10.1371/journal.pone.0086823] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis.
Collapse
Affiliation(s)
- Ashis K. Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| |
Collapse
|
188
|
Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 2014; 8:739-58. [DOI: 10.1586/epr.11.61] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
189
|
Nadur-Andrade N, Dale CS, Santos ASD, Soares AM, de Lima CJ, Zamuner SR. Photobiostimulation reduces edema formation induced in mice by Lys-49 phospholipases A2 isolated from Bothrops moojeni venom. Photochem Photobiol Sci 2014; 13:1561-7. [DOI: 10.1039/c4pp00111g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prominent local myotoxic effects induced by Bothrops snake venom are due, in part, to myotoxins.
Collapse
Affiliation(s)
| | - Camila Squarzone Dale
- Department of Anatomy
- Institute of Biomedical Sciences
- University of São Paulo
- São Paulo, Brazil
| | | | - Andreimar M. Soares
- Oswaldo Cruz Foundation
- Federal University of Rondonia
- 76812-245 Porto Velho, Brazil
| | - Carlos J. de Lima
- Laboratory of Biomedical Instrumentation
- Camilo Castelo Branco University
- São Jose dos Campos, Brazil
| | | |
Collapse
|
190
|
Nadur-Andrade N, Zamuner SR, Toniolo EF, de Lima CJ, Cogo JC, Dale CS. Analgesic Effect of Light-Emitting Diode (LED) Therapy at Wavelengths of 635 and 945 nm on Bothrops moojeni Venom-Induced Hyperalgesia. Photochem Photobiol 2013; 90:207-13. [PMID: 24131406 DOI: 10.1111/php.12189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022]
Abstract
Envenoming induced by Bothrops snakes is characterized by drastic local tissue damage involving hemorrhage, myonecrosis and proeminent inflammatory and hyperalgesic response. The most effective treatment is antivenom therapy, which is ineffective in neutralizing the local response. Herein, it was evaluated the effectiveness of light-emitting diode (LED) at wavelengths of 635 and 945 nm in reducing inflammatory hyperalgesia induced by Bothrops moojeni venom (BmV) in mice, produced by an subplantar injection of BmV (1 μg). Mechanical hyperalgesia and allodynia were assessed by von Frey filaments at 1, 3, 6 and 24 h after venom injection. The site of BmV injection (1.2 cm(2) ) was irradiated by LEDs at 30 min and 3 h after venom inoculation. Both 635 nm (110 mW, fluence of 3.76 J/cm(2) and 41 s of irradiation time) and 945 nm (120 mW, fluence of 3.8 J/cm(2) and 38 s of irradiation time) LED inhibited mechanical allodynia and hyperalgesia of mice alone or in combination with antivenom treatment, even when the symptoms were already present. The effect of phototherapy in reducing local pain induced by BmV should be considered as a novel therapeutic tool for the treatment of local symptoms induced after bothropic snake bites.
Collapse
Affiliation(s)
| | | | | | - Carlos J de Lima
- Laboratory of Biomedical Instrumentation, Camilo Castelo Branco University, São José dos Campos, Brazil
| | - José C Cogo
- Laboratory of Inflammation, Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP, Brazil
| | - Camila S Dale
- Sírio-Libanês Hospital, São Paulo, SP, Brazil.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
191
|
Vaiyapuri S, Vaiyapuri R, Ashokan R, Ramasamy K, Nattamaisundar K, Jeyaraj A, Chandran V, Gajjeraman P, Baksh MF, Gibbins JM, Hutchinson EG. Snakebite and its socio-economic impact on the rural population of Tamil Nadu, India. PLoS One 2013; 8:e80090. [PMID: 24278244 PMCID: PMC3836953 DOI: 10.1371/journal.pone.0080090] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Snakebite represents a significant health issue worldwide, affecting several million people each year with as many as 95,000 deaths. India is considered to be the country most affected, but much remains unknown about snakebite incidence in this country, its socio-economic impact and how snakebite management could be improved. METHODS/PRINCIPAL FINDINGS We conducted a study within rural villages in Tamil Nadu, India, which combines a household survey (28,494 people) of snakebite incidence with a more detailed survey of victims in order to understand the health and socio-economic effects of the bite, the treatments obtained and their views about future improvements. Our survey suggests that snakebite incidence is higher than previously reported. 3.9% of those surveyed had suffered from snakebite and the number of deaths corresponds to 0.45% of the population. The socio-economic impact of this is very considerable in terms of the treatment costs and the long-term effects on the health and ability of survivors to work. To reduce this, the victims recommended improvements to the accessibility and affordability of antivenom treatment. CONCLUSIONS Snakebite has a considerable and disproportionate impact on rural populations, particularly in South Asia. This study provides an incentive for researchers and the public to work together to reduce the incidence and improve the outcomes for snake bite victims and their families.
Collapse
Affiliation(s)
- Sakthivel Vaiyapuri
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- * E-mail:
| | - Rajendran Vaiyapuri
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Rajesh Ashokan
- Department of Biotechnology, Karpagam University, Coimbatore, Tamil Nadu, India
| | | | | | - Anburaj Jeyaraj
- Department of Biotechnology, Karpagam University, Coimbatore, Tamil Nadu, India
| | | | - Prabu Gajjeraman
- Department of Biotechnology, Karpagam University, Coimbatore, Tamil Nadu, India
| | - M. Fazil Baksh
- Department of Mathematics and Statistics, School of Mathematical and Physical Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - E. Gail Hutchinson
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
192
|
Bochner R. The international view of envenoming in Brazil: myths and realities. J Venom Anim Toxins Incl Trop Dis 2013; 19:29. [PMID: 24215797 PMCID: PMC3842768 DOI: 10.1186/1678-9199-19-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
Being distant from Brazil’s great natural diversity, from its long tradition in the study of snakebites and from the fact that it is one of the few countries which has a national information system for monitoring incidents involving venomous animals, non-Brazilian researchers face risks when estimating the incidence of these accidents in the country. The present work offers a critical review of the main estimates undertaken since 1954. It is interesting to note contradictions between textual and graphic information within the same article, variations over time in the work of a same researcher and differences among distinct authors, and that all these issues remain unmentioned or undiscussed. Comparison among such estimates and the data available at the Brazilian Information System on Diseases of Compulsory Declaration (Sistema de Informação de Agravos de Notificação – SINAN) creates an opportunity to identify the degree of imprecision present in those articles, and draws attention to the need for the production of studies at both the regional and national levels, based on concrete data collected at national, state and municipal levels, which has been available on the internet since 2001.
Collapse
Affiliation(s)
- Rosany Bochner
- Institute for Communication and Scientific and Technological Information on Health (ICICT), Oswaldo Cruz Foundation (Fiocruz), Av, Brasil, 4365 - Pavilhão Haity Moussatché, sala 206 - 21045-960 Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
193
|
Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms. Toxicon 2013; 69:55-64. [DOI: 10.1016/j.toxicon.2013.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/28/2012] [Accepted: 01/30/2013] [Indexed: 11/20/2022]
|
194
|
Gutiérrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, Harrison RA. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis 2013; 7:e2162. [PMID: 23785526 PMCID: PMC3681653 DOI: 10.1371/journal.pntd.0002162] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | | | |
Collapse
|
195
|
Pereañez JA, Patiño AC, Rey-Suarez P, Núñez V, Henao Castañeda IC, Rucavado A. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling. Toxicon 2013; 71:41-8. [PMID: 23726855 DOI: 10.1016/j.toxicon.2013.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/05/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
Abstract
Glycolic acid (GA) (2-Hydroxyethanoic acid) is widely used as chemical peeling agent in Dermatology and, more recently, as a therapeutic and cosmetic compound in the field of skin care and disease treatment. In this work we tested the inhibitory ability of glycolic acid on the enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper venom, which induces a variety of toxic actions. Glycolic acid inhibited the proteolytic activity of BaP1 on azocasein, with an IC₅₀ of 1.67 mM. The compound was also effective at inhibiting the hemorrhagic activity of BaP1 in skin and muscle in experiments involving preincubation of enzyme and inhibitor prior to injection. When BaP1 was injected i.m. and then, at the same site, different concentrations of glycolic acid were administered at either 0 or 5 min, 7 mM solutions of the inhibitor partially abrogated hemorrhagic activity when administered at 0 min. Moreover, glycolic acid inhibited, in a concentration-dependent manner, edema-forming activity of BaP1 in the footpad. In order to have insights on the mode of action of glycolic acid, UV-vis and intrinsic fluorescence studies were performed. Results of these assays suggest that glycolic acid interacts directly with BaP1 and chelates the Zn²⁺ ion at the active site. These findings were supported by molecular docking results, which suggested that glycolic acid forms hydrogen bonds with residues Glu143, Arg110 and Ala111 of the enzyme. Additionally, molecular modeling results suggest that the inhibitor chelates Zn²⁺, with a distance of 3.58 Å, and may occupy part of substrate binding cleft of BaP1. Our results suggest that glycolic acid is a candidate for the development of inhibitors to be used in snakebite envenomation.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, A.A. 1226 Medellín, Colombia.
| | | | | | | | | | | |
Collapse
|
196
|
Envenomation by Bothrops atrox in a traveler to Manaus, Brazil. Travel Med Infect Dis 2013; 11:194-6. [DOI: 10.1016/j.tmaid.2013.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 01/22/2023]
|
197
|
Abstract
Clinical toxinology is the medical discipline dealing with the diagnosis, treatment and prevention of toxin diseases caused by exposure to venomous animals and poisonous animals, plants and mushrooms. Currently there is no national or international organisation accrediting or training doctors in this discipline, but the role of the IST in this area is the subject of a recently approved revised Constitution. A few courses covering some aspects of clinical toxinology exist, either with limited curricula, or with only a minor clinical focus, or with a very regional, non-global focus. The only comprehensive clinical toxinology course is the one provided in Adelaide, Australia, running regularly since 1997. This course may form the nucleus from which IST can develop a global accredited training scheme in clinical toxinology. Such a scheme will require input from diverse global regions and will be far more comprehensive and over a much longer time than the current Short Course, though may incorporate the Short Course in some way, or a derivative of it. Accreditation of medical expertise in clinical toxinology will be required at the national level and this might be accomplished by the IST working with existing national medical specialty organisations and governments, with the IST supervising the training and accreditation requirements and the national organisations providing the framework for registration of medical expertise at the local level.
Collapse
Affiliation(s)
- Julian White
- Toxinology Dept., Women's & Children's Hospital, North Adelaide, SA 5006 Australia.
| |
Collapse
|
198
|
Hansson E, Sasa M, Mattisson K, Robles A, Gutiérrez JM. Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl Trop Dis 2013; 7:e2009. [PMID: 23383352 PMCID: PMC3561131 DOI: 10.1371/journal.pntd.0002009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 11/30/2022] Open
Abstract
Introduction Snakebite accidents are an important health problem in rural areas of tropical countries worldwide, including Costa Rica, where most bites are caused by the pit-viper Bothrops asper. The treatment of these potentially fatal accidents is based on the timely administration of specific antivenom. In many regions of the world, insufficient health care systems and lack of antivenom in remote and poor areas where snakebites are common, means that efficient treatment is unavailable for many snakebite victims, leading to unnecessary mortality and morbidity. In this study, geographical information systems (GIS) were used to identify populations in Costa Rica with a need of improved access to antivenom treatment: those living in areas with a high risk of snakebites and long time to reach antivenom treatment. Method/Principal Findings Populations living in areas with high risk of snakebites were identified using two approaches: one based on the district-level reported incidence, and another based on mapping environmental factors favoring B. asper presence. Time to reach treatment using ambulance was estimated using cost surface analysis, thereby enabling adjustment of transportation speed by road availability and quality, topography and land use. By mapping populations in high risk of snakebites and the estimated time to treatment, populations with need of improved treatment access were identified. Conclusion/Significance This study demonstrates the usefulness of GIS for improving treatment of snakebites. By mapping reported incidence, risk factors, location of existing treatment resources, and the time estimated to reach these for at-risk populations, rational allocation of treatment resources is facilitated. Snakebite accidents are a neglected cause of much death and suffering worldwide. The situation is especially severe in rural areas of low income tropical countries, where long distances to well-equipped health care facilities mean that the time needed to reach antivenom treatment is often long. Delays in receiving antivenom treatment of snakebites could lead to severe outcomes, such as death or permanent disability. In this study we demonstrate how Geographical Information Systems (GIS) could be used to allocate antivenom rationally and thereby decrease the impact of snakebite in a cost-effective manner. We map areas with a high risk of snakebite accidents, based on a high reported incidence and environmental conditions favoring snakebites. We then estimate the time needed to reach a facility in which antivenom treatment is available for the population in these high risk areas, thus identifying areas in need of improved treatment accessibility. Based on these maps of the unmet need of antivenom treatment, allocation of antivenom and other resources needed to treat snakebites can be made more efficiently.
Collapse
Affiliation(s)
- Erik Hansson
- Occupational and Environmental Medicine, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
199
|
Brown SA, Seifert SA, Rayburn WF. Management of envenomations during pregnancy. Clin Toxicol (Phila) 2013; 51:3-15. [DOI: 10.3109/15563650.2012.760127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
200
|
Caccin P, Pellegatti P, Fernandez J, Vono M, Cintra-Francischinelli M, Lomonte B, Gutiérrez JM, Di Virgilio F, Montecucco C. Why myotoxin-containing snake venoms possess powerful nucleotidases? Biochem Biophys Res Commun 2012; 430:1289-93. [PMID: 23261426 DOI: 10.1016/j.bbrc.2012.11.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 12/23/2022]
Abstract
The venom of the snake Bothrops asper causes muscle necrosis, pain and inflammation. This venom contains myotoxins which cause an increase in intracellular Ca(2+) concentration and release of K(+) and ATP from myotubes. ATP is a key danger molecule that triggers a variety of reactions, including activation of the innate immune response. Here, using ATP-luciferase bioluminescence imaging technique, we show for the first time in vivo, that the purified myotoxins induce rapid release of ATP, whilst the complete venom of B. asper does at a very small extent. This apparent contradiction is explained by the finding that the venom contains powerful nucleotidases that in vivo convert ATP into ADP, AMP and Adenosine. These findings indicate that high concentrations of adenosine are generated by the double action of the venom and provide the experimental basis to the suggestion that in situ generated adenosine plays an important role in envenomation via its hypotensive, paralyzing and anti-coagulant activities.
Collapse
Affiliation(s)
- Paola Caccin
- Dipartimento di Scienze Biomediche, Università di Padova, and Istituto di Neuroscienze-CNR Sezione di Padova, Padova 35121, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|