151
|
Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, Mendoza-Cozatl DG. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. PLANT, CELL & ENVIRONMENT 2018; 41:2263-2276. [PMID: 29520929 DOI: 10.1111/pce.13192] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON-REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3-mediated shoot-to-root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue-specific localization of OPT3, together with other Fe-responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.
Collapse
Affiliation(s)
- Mather A Khan
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Samuel A McInturf
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Nga T Nguyen
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley N Dame
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jiaojiao Wang
- Department of Computer Science; C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Department of Computer Science; C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine; Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | | | - David G Mendoza-Cozatl
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
152
|
García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in Arabidopsis thaliana Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1325. [PMID: 30254659 PMCID: PMC6142016 DOI: 10.3389/fpls.2018.01325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/23/2018] [Indexed: 05/12/2023]
Abstract
Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.
Collapse
Affiliation(s)
- María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Carlos Lucena
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Petra Bauer
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
153
|
Qi X, Pleskot R, Irani NG, Van Damme D. Meeting report - Cellular gateways: expanding the role of endocytosis in plant development. J Cell Sci 2018; 131:131/17/jcs222604. [PMID: 30177507 DOI: 10.1242/jcs.222604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The occasion of The Company of Biologists' workshop 'Cellular gateways: expanding the role of endocytosis in plant development' on 22-25 April 2018, at Wiston House, an Elizabethan mansion in West Sussex, England, witnessed stimulating and lively discussions on the mechanism and functions of endocytosis in plant cells. The workshop was organized by Jenny Russinova, Daniël Van Damme (both VIB/University of Ghent, Belgium) and Takashi Ueda (National Institute for Basic Biology, Okazaki, Japan), and aimed to bridge the gap in knowledge about the endocytic machinery and its cargos in the plant field.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Niloufer G Irani
- Department of Plant Science, University of Oxford, OX1 3RB Oxford, UK
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
154
|
Meier SK, Adams N, Wolf M, Balkwill K, Muasya AM, Gehring CA, Bishop JM, Ingle RA. Comparative RNA-seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1023-1038. [PMID: 29952120 DOI: 10.1111/tpj.14008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Most metal hyperaccumulating plants accumulate nickel, yet the molecular basis of Ni hyperaccumulation is not well understood. We chose Senecio coronatus to investigate this phenomenon as this species displays marked variation in shoot Ni content across ultramafic outcrops in the Barberton Greenstone Belt (South Africa), thus allowing an intraspecific comparative approach to be employed. No correlation between soil and shoot Ni contents was observed, suggesting that this variation has a genetic rather than environmental basis. This was confirmed by our observation that the accumulation phenotype of plants from two hyperaccumulator and two non-accumulator populations was maintained when the plants were grown on a soil mix from these four sites for 12 months. We analysed the genetic variation among 12 serpentine populations of S. coronatus, and used RNA-seq for de novo transcriptome assembly and analysis of gene expression in hyperaccumulator versus non-accumulator populations. Genetic analysis revealed the presence of hyperaccumulators in two well supported evolutionary lineages, indicating that Ni hyperaccumulation may have evolved more than once in this species. RNA-Seq analysis indicated that putative homologues of transporters associated with root iron uptake in plants are expressed at elevated levels in roots and shoots of hyperaccumulating populations of S. coronatus from both evolutionary lineages. We hypothesise that Ni hyperaccumulation in S. coronatus may have evolved through recruitment of these transporters, which play a role in the iron-deficiency response in other plant species.
Collapse
Affiliation(s)
- Stuart K Meier
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicolette Adams
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Michael Wolf
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Kevin Balkwill
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Abraham Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Christoph A Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jacqueline M Bishop
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| |
Collapse
|
155
|
Abstract
This review deals with two essential plant mineral nutrients, iron (Fe) and phosphorus (P); the acquisition of both has important environmental and economic implications. Both elements are abundant in soils but are scarcely available to plants. To prevent deficiency, dicot plants develop physiological and morphological responses in their roots to specifically acquire Fe or P. Hormones and signalling substances, like ethylene, auxin and nitric oxide (NO), are involved in the activation of nutrient-deficiency responses. The existence of common inducers suggests that they must act in conjunction with nutrient-specific signals in order to develop nutrient-specific deficiency responses. There is evidence suggesting that P- or Fe-related phloem signals could interact with ethylene and NO to confer specificity to the responses to Fe- or P-deficiency, avoiding their induction when ethylene and NO increase due to other nutrient deficiency or stress. The mechanisms responsible for such interaction are not clearly determined, and thus, the regulatory networks that allow or prevent cross talk between P and Fe deficiency responses remain obscure. Here, fragmented information is drawn together to provide a clearer overview of the mechanisms and molecular players involved in the regulation of the responses to Fe or P deficiency and their interactions.
Collapse
|
156
|
Kurt F, Filiz E. Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis. Biometals 2018; 31:489-504. [PMID: 29546482 DOI: 10.1007/s10534-018-0095-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Iron (Fe) is an essential element for plant life. Its deficiency impedes growth and development and excessive iron can cause the toxic effect via the Fenton reaction. Thus, plants have developed various mechanisms to acquire, distribute and utilize Fe for the maintenance of their iron homeostasis at cellular and systemic levels. A basic helix-loop-helix (bHLH) transcription factor family plays essential roles in many regulatory and development processes in plants. In this study, we aimed to understand the roles of bHLH38, bHLH39, bHLH100 and bHLH101 genes for Fe homeostasis in Arabidopsis, tomato, rice, soybean and maize species by using bioinformatics approaches. The gene/protein sequence analyses of these genes demonstrated that all bHLH proteins comprised helix-loop-helix DNA binding domain (PF00010) with varied exon numbers between 2 and 13. The phylogenetic analysis did not reveal a clear distinction between monocot and dicot plants. A total of 61 cis-elements were found in promotor sequences, including biotic and abiotic stress responsiveness, hormone responsiveness, and tissue specific expressions. The some structural divergences were identified in predicted 3D structures of bHLH proteins with different channels numbers. The co-expression network analysis demonstrated that bHLH39 and bHLH101 played more important roles in Fe regulation in Arabidopsis. The digital expression analysis showed various expression profiles of bHLH genes which were identified in developmental stages, anatomical parts, and perturbations. Particularly, bHLH39 and bHLH101 genes were found to be more active genes in Fe homeostasis. As a result, our findings can contribute to understanding of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Fe homeostasis in plants.
Collapse
Affiliation(s)
- Fırat Kurt
- Department of Organic Agriculture, Mus Alparslan University Vocational School, Mus, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey.
| |
Collapse
|
157
|
Dai J, Qiu W, Wang N, Nakanishi H, Zuo Y. Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:516-524. [PMID: 29715682 DOI: 10.1016/j.plaphy.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 05/04/2023]
Abstract
Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. In this study, the transcriptome of peanut and maize roots was analyzed by suppression subtractive hybridization (SSH) and microarray analysis separately. We constructed four SSH libraries using the cDNA of peanut roots based on two cropping patterns: monocropping and intercropping, and two growth stages: vegetative stage and reproductive stage. Lib M1, I1, M2 and I2 comprised 53, 51, 37 and 54 genes, respectively. Six and four transporters were found in the two intercropping-specific SSH libraries, which may facilitate Fe acquisition and protoplasmic homeostasis of metal ions and anions. Specifically, AhNARMP1 and MTP may play a role in boosting Fe nutrition during the vegetative stage. The expression of MYC2 was also upregulated by intercropping, while an ethylene-responsive transcription factor was downregulated during two growth periods. Microarrays indicated that homocysteine S-methyltransferase and serine acetyltransferase 1 upregulated in intercropped maize roots, which directly associated with methionine biosynthesis. It may account for the enhanced phytosiderophore released capacity in intercropping, which benefited the Fe nutrition of intercropped peanut in reproductive stage. Two aminocyclopropane-1-carboxylic acid synthase oxidase genes, which are related to ethylene biosynthesis, were downregulated in maize root by intercropping. Taken together with our previous proteomic work, the results indicated that intercropping enhances jasmonate signaling and weakens ethylene signaling in peanut and maize roots, which may improve ecological adaptation of the peanut plant to intercropping systems.
Collapse
Affiliation(s)
- Jing Dai
- College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wei Qiu
- College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanqi Wang
- College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuanmei Zuo
- College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
158
|
Manishankar P, Wang N, Köster P, Alatar AA, Kudla J. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5003005. [PMID: 29800460 DOI: 10.1093/jxb/ery201] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Collapse
Affiliation(s)
- P Manishankar
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - N Wang
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
159
|
The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in Saccharomyces cerevisiae. Biochem J 2018; 475:1523-1534. [PMID: 29626156 DOI: 10.1042/bcj20170871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
In eukaryotic cells, amino acid biosynthesis is feedback-inhibited by amino acids through inhibition of the conserved protein kinase Gcn2. This decreases phosphorylation of initiation factor eIF2α, resulting in general activation of translation but inhibition of translation of mRNA for transcription factor (TF) Gcn4 in yeast or ATF4 in mammals. These TFs are positive regulators of amino acid biosynthetic genes. As several enzymes of amino acid biosynthesis contain iron-sulfur clusters (ISCs) and iron excess is toxic, iron and amino acid homeostasis should be co-ordinated. Working with the yeast Saccharomyces cerevisiae, we found that amino acid supplementation down-regulates expression of genes for iron uptake and decreases intracellular iron content. This cross-regulation requires Aft1, the major TF activated by iron scarcity, as well as Gcn2 and phosphorylatable eIF2α but not Gcn4. A mutant with constitutive activity of Gcn2 (GCN2c ) shows less repression of iron transport genes by amino acids and increased nuclear localization of Aft1 in an iron-poor medium, and increases iron content in this medium. As Aft1 is activated by depletion of mitochondrial ISCs, it is plausible that the Gcn2-eIF2α pathway inhibits the formation of these complexes. Accordingly, the GCN2c mutant has strongly reduced activity of succinate dehydrogenase, an iron-sulfur mitochondrial enzyme, and is unable to grow in media with very low iron or with galactose instead of glucose, conditions where formation of ISCs is specially needed. This mechanism adjusts the uptake of iron to the needs of amino acid biosynthesis and expands the list of Gcn4-independent activities of the Gcn2-eIF2α regulatory system.
Collapse
|
160
|
Schvartzman MS, Corso M, Fataftah N, Scheepers M, Nouet C, Bosman B, Carnol M, Motte P, Verbruggen N, Hanikenne M. Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri. THE NEW PHYTOLOGIST 2018; 218:269-282. [PMID: 29292833 DOI: 10.1111/nph.14949] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 05/06/2023]
Abstract
Zinc (Zn) hyperaccumulation and hypertolerance are highly variable traits in Arabidopsis halleri. Metallicolous populations have evolved from nearby nonmetallicolous populations in multiple independent adaptation events. To determine whether these events resulted in similar or divergent adaptive strategies to high soil Zn concentrations, we compared two A. halleri metallicolous populations from distant genetic units in Europe (Poland (PL22) and Italy (I16)). The ionomic (Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)) and transcriptomic (RNA sequencing (RNA-Seq)) responses to growth at 5 and 150 μM Zn were analyzed in root and shoot tissues to examine the contribution of the geographic origin and treatment to variation among populations. These analyses were enabled by the generation of a reference A. halleri transcriptome assembly. The genetic unit accounted for the largest variation in the gene expression profile, whereas the two populations had contrasting Zn accumulation phenotypes and shared little common response to the Zn treatment. The PL22 population displayed an iron deficiency response at high Zn in roots and shoots, which may account for higher Zn accumulation. By contrast, I16, originating from a highly Zn-contaminated soil, strongly responded to control conditions. Our data suggest that distinct mechanisms support adaptation to high Zn in soils among A. halleri metallicolous populations.
Collapse
Affiliation(s)
- M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Massimiliano Corso
- Physiology and Plant Molecular Genetics, Free University of Brussels, Brussels, 1050, Belgium
| | - Nazeer Fataftah
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Maxime Scheepers
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Cécile Nouet
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Bernard Bosman
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology and Evolution, University of Liège, Liège, B-4000, Belgium
| | - Monique Carnol
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology and Evolution, University of Liège, Liège, B-4000, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Physiology and Plant Molecular Genetics, Free University of Brussels, Brussels, 1050, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| |
Collapse
|
161
|
Kailasam S, Wang Y, Lo JC, Chang HF, Yeh KC. S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:157-168. [PMID: 29396986 DOI: 10.1111/tpj.13850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is essential for plant growth and development. Knowledge of Fe signaling, from the beginning of perception to activation of the uptake process, is critical for crop improvement. Here, by using chemical screening, we identified a small molecule 3-amino-N-(3-methylphenyl)thieno[2,3-b]pyridine-2-carboxamide named R7 ('R' denoting repressor of IRON-REGULATED TRANSPORTER 1), that modulates Fe homeostasis of Arabidopsis. R7 treatment led to reduced Fe levels in plants, thus causing severe chlorosis under Fe deficiency. Expression analysis of central transcription factors, FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT) and subgroup Ib basic helix-loop-helix (Ib bHLH) genes bHLH38/39/100/101, revealed that R7 targets the FIT-dependent transcriptional pathway. Exogenously supplying S-nitrosoglutathione (GSNO), but not other nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-dl-penicillamine (SANP), alleviated the inhibitory effects of R7 on Fe homeostasis. R7 did not inhibit cellular levels of NO or glutathione but decreased GSNO level in roots. We demonstrate that NO is involved in regulating not only the FIT transcriptional network but also the Ib bHLH networks. In addition, GSNO, from S-nitrosylation of glutathione, specifically mediates the Fe-starvation signal to FIT, which is distinct from the NO to Ib bHLH signal. Our work dissects the molecular connection between NO and the Fe-starvation response. We present a new signaling route whereby GSNO acts downstream of NO to trigger the Fe-deficiency response in Arabidopsis.
Collapse
Affiliation(s)
- Sakthivel Kailasam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
162
|
Siwinska J, Siatkowska K, Olry A, Grosjean J, Hehn A, Bourgaud F, Meharg AA, Carey M, Lojkowska E, Ihnatowicz A. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1735-1748. [PMID: 29361149 PMCID: PMC5888981 DOI: 10.1093/jxb/ery005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'-Hydroxylase1 (F6'H1), which belongs to a large enzyme family of the 2-oxoglutarate and Fe2+-dependent dioxygenases. We have functionally characterized another enzyme of this family, which is a close homologue of F6'H1 and is encoded by a strongly iron-responsive gene, At3g12900. We purified At3g12900 protein heterologously expressed in Escherichia coli and demonstrated that it is involved in the conversion of scopoletin into fraxetin, via hydroxylation at the C8 position, and that it thus functions as a scopoletin 8-hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of S8H protein in Nicotiana benthamiana leaves, followed by metabolite profiling and biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under various iron regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part of mechanisms used by plants to assimilate iron.
Collapse
Affiliation(s)
- Joanna Siwinska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| | - Kinga Siatkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| | - Alexandre Olry
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Jeremy Grosjean
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Frederic Bourgaud
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Andrew A Meharg
- Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone Road, Belfast, UK
| | - Manus Carey
- Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone Road, Belfast, UK
| | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| | - Anna Ihnatowicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| |
Collapse
|
163
|
Heucken N, Ivanov R. The retromer, sorting nexins and the plant endomembrane protein trafficking. J Cell Sci 2018; 131:jcs.203695. [PMID: 29061884 DOI: 10.1242/jcs.203695] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein sorting in the endomembrane system is responsible for the coordination of cellular functions. Plant intracellular trafficking has its own unique features, which include specific regulatory aspects of endosomal sorting and recycling of cargo proteins, mediated by the retromer complex. Recent work has led to significant progress in understanding the role of Arabidopsis retromer subunits in recycling vacuolar sorting receptors and plasma membrane proteins. As a consequence, members of the sorting nexin (SNX) protein family and their interaction partners have emerged as critical protein trafficking regulators, in particular with regard to adaptation to environmental change, such as temperature fluctuations and nutrient deficiency. In this Review, we discuss the known and proposed functions of the comparatively small Arabidopsis SNX protein family. We review the available information on the role of the three Bin-Amphiphysin-Rvs (BAR)-domain-containing Arabidopsis thaliana (At)SNX proteins and discuss their function in the context of their potential participation in the plant retromer complex. We also summarize the role of AtSNX1-interacting proteins in different aspects of SNX-dependent protein trafficking and comment on the potential function of three novel, as yet unexplored, Arabidopsis SNX proteins.
Collapse
Affiliation(s)
- Nicole Heucken
- Institute of Botany, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
164
|
Przybyla-Toscano J, Roland M, Gaymard F, Couturier J, Rouhier N. Roles and maturation of iron-sulfur proteins in plastids. J Biol Inorg Chem 2018; 23:545-566. [PMID: 29349662 PMCID: PMC6006212 DOI: 10.1007/s00775-018-1532-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron–sulfur (Fe–S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism in plants, chloroplast relies on many Fe–S proteins. This includes those present in the electron transfer chain which will be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these Fe–S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the preformed Fe–S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular details concerning the assembly and roles of Fe–S proteins in plastids.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Mélanie Roland
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université Montpellier 2, SupAgro Campus, 34060, Montpellier, France
| | - Jérémy Couturier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
165
|
Brumbarova T, Ivanov R. SNX1-mediated protein recycling: Piecing together the tissue-specific regulation of arabidopsis iron acquisition. PLANT SIGNALING & BEHAVIOR 2018; 13:e1411451. [PMID: 29219710 PMCID: PMC5790414 DOI: 10.1080/15592324.2017.1411451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endomembrane protein trafficking has emerged as important means of regulating stress responses in plants. The Arabidopsis SNX1 protein is involved in recycling the iron transporter IRT1, thus promoting its presence at the plasma membrane. SNX1 and its interacting partners undergo stress-related regulation at both transcriptional and posttranslational level, which may include differential regulation at tissue level. Based on this, we explore the tissue-specific regulation of iron import, specifically concentrating on the factors involved in the expression and recycling of IRT1 in root tissues. We propose that different processes affecting IRT1 regulation may lead to similar outcomes, allowing for fine-tuning iron acquisition and distribution.
Collapse
Affiliation(s)
- Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
- CONTACT Rumen Ivanov Institute of Botany Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
166
|
Ricachenevsky FK, de Araújo Junior AT, Fett JP, Sperotto RA. You Shall Not Pass: Root Vacuoles as a Symplastic Checkpoint for Metal Translocation to Shoots and Possible Application to Grain Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2018; 9:412. [PMID: 29666628 PMCID: PMC5891630 DOI: 10.3389/fpls.2018.00412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 05/10/2023]
Abstract
Plant nutrient uptake is performed mostly by roots, which have to acquire nutrients while avoiding excessive amounts of essential and toxic elements. Apoplastic barriers such as the casparian strip and suberin deposition block free diffusion from the rhizosphere into the xylem, making selective plasma membrane transporters able to control elemental influx into the root symplast, efflux into the xylem and therefore shoot translocation. Additionally, transporters localized to the tonoplast of root cells have been demonstrated to regulate the shoot ionome, and may be important for seed elemental translocation. Here we review the role of vacuolar transporters in the detoxification of elements such as zinc (Zn), manganese (Mn), cadmium (Cd), cobalt (Co) and nickel (Ni) that are co-transported with iron (Fe) during the Fe deficiency response in Arabidopsis thaliana, and the possible conservation of this mechanism in rice (Oryza sativa). We also discuss the evidence that vacuolar transporters are linked to natural variation in shoot ionome in Arabidopsis and rice, indicating that vacuolar storage might be amenable to genetic engineering without strong phenotypical changes. Finally, we discuss the possible use of root's vacuolar transporters to increase the nutritional quality of crop grains.
Collapse
Affiliation(s)
- Felipe K. Ricachenevsky
- Departamento de Biologia, Programa de Pós-Graduação em Agrobiologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Felipe K. Ricachenevsky,
| | - Artur T. de Araújo Junior
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Janette P. Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raul A. Sperotto
- Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| |
Collapse
|
167
|
Murgia I, Morandini P. Iron Deficiency Prolongs Seed Dormancy in Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2077. [PMID: 29276522 PMCID: PMC5727067 DOI: 10.3389/fpls.2017.02077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
The understanding of seed dormancy, germination and longevity are important goals in plant biology, with relevant applications for agriculture, food industry and also human nutrition. Reactive Oxygen Species (ROS) are key molecules involved in the release of dormancy, when their concentrations fall within the so called 'oxidative window.' The mechanisms of ROS distribution and sensing in seeds, from dormant to germinating ones, still need elucidation. Also, the impact of iron (Fe) deficiency on seed dormancy is still unexplored; this is surprising, given the known pro-oxidant role of Fe when in a free form. We provide evidence of a link between plant Fe nutrition and dormancy of progeny seeds by using different Arabidopsis ecotypes and mutants with different dormancy strengths grown in control soil or under severe Fe deficiency. The latter condition extends the dormancy in several genotypes. The focus on the mechanisms involved in the Fe deficiency-dependent alteration of dormancy and longevity promises to be a key issue in seed (redox) biology.
Collapse
Affiliation(s)
- Irene Murgia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
168
|
Martínez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. PLANT, CELL & ENVIRONMENT 2017; 40:2691-2705. [PMID: 28667819 DOI: 10.1111/pce.13016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 05/05/2023]
Abstract
Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are important elicitors of MYB72 in Arabidopsis roots. Here, we investigated the mode of action of VCs from Trichoderma fungi in the onset of ISR and Fe uptake responses. VCs from Trichoderma asperellum and Trichoderma harzianum were applied in an in vitro split-plate system with Arabidopsis or tomato seedlings. Locally, Trichoderma-VCs triggered MYB72 expression and molecular, physiological and morphological Fe uptake mechanisms in Arabidopsis roots. In leaves, Trichoderma-VCs primed jasmonic acid-dependent defences, leading to an enhanced resistance against Botrytis cinerea. By using Arabidopsis micrografts of VCs-exposed rootstocks and non-exposed scions, we demonstrated that perception of Trichoderma-VCs by the roots leads to a systemic signal that primes shoots for enhanced defences. Trichoderma-VCs also elicited Fe deficiency responses and shoot immunity in tomato, suggesting that this phenomenon is expressed in different plant species. Our results indicate that Trichoderma-VCs trigger locally a readjustment of Fe homeostasis in roots, which links to systemic elicitation of ISR by priming of jasmonic acid-dependent defences.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of Ecology, Friedrich Schiller University, Leipzig, 04103, Germany
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
169
|
Ibrahim MH, Chee Kong Y, Mohd Zain NA. Effect of Cadmium and Copper Exposure on Growth, Secondary Metabolites and Antioxidant Activity in the Medicinal Plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules 2017; 22:E1623. [PMID: 29023367 PMCID: PMC6151666 DOI: 10.3390/molecules22101623] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 02/01/2023] Open
Abstract
A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan 43400, Malaysia.
| | - Yap Chee Kong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan 43400, Malaysia.
| | - Nurul Amalina Mohd Zain
- Department of Biology, Institute of Biological Science, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
170
|
Abel S. Phosphate scouting by root tips. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:168-177. [PMID: 28527590 DOI: 10.1016/j.pbi.2017.04.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 05/21/2023]
Abstract
Chemistry assigns phosphate (Pi) dominant roles in metabolism; however, it also renders the macronutrient a genuinely limiting factor of plant productivity. Pi bioavailability is restricted by low Pi mobility in soil and antagonized by metallic toxicities, which force roots to actively seek and selectively acquire the vital element. During the past few years, a first conceptual outline has emerged of the sensory mechanisms at root tips, which monitor external Pi and transmit the edaphic cue to inform root development. This review highlights new aspects of the Pi acquisition strategy of Arabidopsis roots, as well as a framework of local Pi sensing in the context of antagonistic interactions between Pi and its major associated metallic cations, Fe3+ and Al3+.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany; Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
171
|
Chen YT, Wang Y, Yeh KC. Role of root exudates in metal acquisition and tolerance. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:66-72. [PMID: 28654805 DOI: 10.1016/j.pbi.2017.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Plants acquire mineral nutrients mostly through the rhizosphere; they secrete a large number of metabolites into the rhizosphere to regulate nutrient availability and to detoxify undesirable metal pollutants in soils. The secreted metabolites are inorganic ions, gaseous molecules, and mainly carbon-based compounds. This review focuses on the mechanisms and regulation of low-molecular-weight organic-compound exudation in terms of metal acquisition. We summarize findings on riboflavin/phenolic-facilitated and phytosiderophore-facilitated iron acquisition and discuss recent studies of the functions and secretion mechanisms of low-molecular-weight organic acids in heavy-metal detoxification.
Collapse
Affiliation(s)
- Yi-Tze Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
172
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
173
|
Naranjo-Arcos MA, Maurer F, Meiser J, Pateyron S, Fink-Straube C, Bauer P. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein. Sci Rep 2017; 7:10911. [PMID: 28883478 PMCID: PMC5589837 DOI: 10.1038/s41598-017-11171-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Iron is an essential growth determinant for plants, and plants acquire this micronutrient in amounts they need in their environment. Plants can increase iron uptake in response to a regulatory transcription factor cascade. Arabidopsis thaliana serves as model plant to identify and characterize iron regulation genes. Here, we show that overexpression of subgroup Ib bHLH transcription factor bHLH039 (39Ox) caused constitutive iron acquisition responses, which resulted in enhanced iron contents in leaves and seeds. Transcriptome analysis demonstrated that 39Ox plants displayed simultaneously gene expression patterns characteristic of iron deficiency and iron stress signaling. Thereby, we could dissect iron deficiency response regulation. The transcription factor FIT, which is required to regulate iron uptake, was essential for the 39Ox phenotype. We provide evidence that subgroup Ib transcription factors are involved in FIT transcriptional regulation. Our findings pose interesting questions to the feedback control of iron homeostasis.
Collapse
Affiliation(s)
- Maria Augusta Naranjo-Arcos
- Institute of Botany, Heinrich-Heine University, D-40225, Düsseldorf, Germany.,Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Felix Maurer
- Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Johannes Meiser
- Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Stephanie Pateyron
- Transcriptomic Platform, Institute of Plant Sciences - Paris-Saclay, Plateau du Moulon, 91190, Gif-sur-Yvette, France
| | - Claudia Fink-Straube
- Leibniz Institute for New Materials gGmbH, Campus D2.2, 66123, Saarbrücken, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225, Düsseldorf, Germany. .,Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225, Düsseldorf, Germany.
| |
Collapse
|
174
|
Nishida S, Kakei Y, Shimada Y, Fujiwara T. Genome-wide analysis of specific alterations in transcript structure and accumulation caused by nutrient deficiencies in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:741-753. [PMID: 28586097 DOI: 10.1111/tpj.13606] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/04/2023]
Abstract
The alteration of transcript structure contributes to transcriptome plasticity. In this study, we analyzed the genome-wide response of exon combination patterns to deficiencies in 12 different nutrients in Arabidopsis thaliana roots. RNA sequencing analysis and bioinformatics using a simulation survey revealed more than 600 genes showing varying exon combinations. The overlap between genes showing differential expression (DE) and genes showing differential exon combination (DC) was notably low. Additionally, gene ontology analysis showed that gene functions were not shared between the DE and DC genes, suggesting that the genes showing DC had different roles than those showing DE. Most of the DC genes were nutrient specific. For example, two homologs of the MYB transcription factor genes MYB48 and MYB59 showed differential alternative splicing only in response to low levels of potassium. Alternative splicing of those MYB genes modulated DNA-binding motifs, and MYB59 is reportedly involved in the inhibition of root elongation. Therefore, the increased abundance of MYB isoforms with an intact DNA-binding motif under low potassium may be involved in the active inhibition of root elongation. Overall, we provide global and comprehensive data for DC genes affected by nutritional deficiencies, which contribute to elucidating an unknown mechanism involved in adaptation to nutrient deficiency.
Collapse
Affiliation(s)
- Sho Nishida
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kakei
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
175
|
Eroglu S, Aksoy E. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis. Biometals 2017; 30:685-698. [PMID: 28744713 DOI: 10.1007/s10534-017-0036-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
In plant cells, either excess or insufficient iron (Fe) concentration triggers stress responses, therefore it is strictly controlled. Proteasome-mediated degradation through ubiquitination of Fe homeostasis proteins has just become the focus of research in recent years. Deactivating ubiquitin ligases, COP9 signalosome has a central importance in the translational control of various stress responses. The aim of the study was to investigate COP9 signalosome in Fe deficiency response of Strategy I plants. In silico analysis of a set of Fe-deficiency-responsive genes was conducted against the transcriptome of Arabidopsis csn mutant lines using Genevestigator software. Induced and suppressed genes were clustered in a hierarchical way and gene ontology enrichment categories were identified. In wild-type Arabidopsis, CSN genes did not respond to iron deficiency. In csn mutant lines, under Fe-sufficient conditions, hundreds of Fe-deficiency-responsive genes were misregulated. Among the ones previously characterized for their physiological roles under Fe deficiency IRT1, NAS4, BTS, NRAMP1 were down-regulated while AHA2, MTP8, FRD3 were up-regulated. Unexpectedly, from those which were regulated in opposite ways, some had been repeatedly shown to be tightly co-regulated by the same transcription factor, FIT. Two proteins from DELLA family, which were reported to interact with FIT to repress its downstream, were found to be strikingly repressed in csn mutants. Overall, the study underlined that the absence of a functional CSN greatly impacted the regulation of Fe homeostasis-related genes, in a manner which cannot be explained simply by the induction of the master transcription factor, FIT. Correct expression of Fe deficiency-responsive genes requires an intact COP9 signalosome in Arabidopsis.
Collapse
Affiliation(s)
- Seckin Eroglu
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, Sakarya Cad., No: 156, Balcova, 35330, İzmir, Turkey
| | - Emre Aksoy
- Department of Agricultural Genetic Engineering, Ayhan Sahenk Faculty of Agricultural Sciences and Technologies, Ömer Halisdemir University, Merkez, 51240, Nigde, Turkey.
| |
Collapse
|
176
|
Connorton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview. Metallomics 2017; 9:813-823. [PMID: 28686269 PMCID: PMC5708359 DOI: 10.1039/c7mt00136c] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Collapse
Affiliation(s)
- James M Connorton
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jorge Rodríguez-Celma
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
177
|
Alptekin B, Langridge P, Budak H. Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 2017; 17:145-170. [PMID: 27665284 PMCID: PMC5383695 DOI: 10.1007/s10142-016-0525-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
178
|
Gama F, Saavedra T, Dandlen S, de Varennes A, Correia PJ, Pestana M, Nolasco G. Silencing of the FRO1 gene and its effects on iron partition in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:111-118. [PMID: 28285085 DOI: 10.1016/j.plaphy.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 05/01/2023]
Abstract
To evaluate the dynamic role of the ferric-chelate reductase enzyme (FCR) and to identify possible pathways of regulation of its activity in different plant organs an investigation was conducted by virus-induced gene silencing (VIGS) using tobacco rattle virus (TRV) to silence the ferric reductase oxidase gene (FRO1) that encodes the FCR enzyme. Half of Nicotiana benthamiana plants received the VIGS vector and the rest remained as control. Four treatments were imposed: two levels of Fe in the nutrient solution (0 or 2.5 μM of Fe), each one with silenced or non-silenced (VIGS-0; VIGS-2.5) plants. Plants grown without iron (0; VIGS-0) developed typical symptoms of iron deficiency in the youngest leaves. To prove that FRO1 silencing had occurred, resupply of Fe (R) was done by adding 2.5 μM of Fe to the nutrient solution in a subset of chlorotic plants (0-R; VIGS-R). Twelve days after resupply, 0-R plants had recovered from Fe deficiency while plants containing the VIGS vector (VIGS-R) remained chlorotic and both FRO1 gene expression and FCR activity were considerably reduced, consequently preventing Fe uptake. With the VIGS technique we were able to silence the FRO1 gene in N. benthamiana and point out its importance in chlorophyll synthesis and Fe partition.
Collapse
Affiliation(s)
- Florinda Gama
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal.
| | - Teresa Saavedra
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Susana Dandlen
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Amarilis de Varennes
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Pedro J Correia
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Maribela Pestana
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Gustavo Nolasco
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
179
|
Abstract
Iron (Fe) and phosphorus (P), the latter taken up by plants as phosphate (Pi), are two essential nutrients that determine species distribution and often limit crop yield as a result of their low availability in most soils. Pi-deficient plants improve the interception of Pi by increasing the density of root hairs, thereby expanding the volume of soil to be explored. The increase in root-hair frequency results mainly from attenuated primary root growth, a process that was shown to be dependent on the availability of external Fe. Recent data support a hypothesis in which cell elongation during Pi starvation is tuned by depositing Fe in the apoplast of cortical cells in the root elongation zone. Uptake of Fe under Pi starvation appears to proceed via an alternative, as yet unidentified, route that bypasses the default Fe transporter. Fe deposits acquired through this noncanonical Fe-uptake pathway compromises cell-to-cell communication that is critical for proper morphogenesis of epidermal cells and leads to shorter cells and higher root-hair density. An auxiliary Fe-uptake system might not only be crucial for recalibrating cell elongation in Pi-deficient plants but may also have general importance for growth on Pi- or Fe-poor soils by balancing the Pi and Fe supply.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wolfgang Schmidt
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
180
|
Curie C, Mari S. New routes for plant iron mining. THE NEW PHYTOLOGIST 2017; 214:521-525. [PMID: 27918629 DOI: 10.1111/nph.14364] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/22/2016] [Indexed: 05/03/2023]
Abstract
Contents 521 I. 521 II. 522 III. 523 IV. 524 525 References 525 SUMMARY: Plant iron (Fe) uptake relies to a large extent on the capacity of cells to control and extract Fe pools safely conserved in extracytoplasmic environments such as the apoplast and vacuoles, at least as much as on the transport machinery nested in plasma membranes. Recent studies on root and embryo Fe nutrition support this assertion and show that the root Fe-deficiency response also includes the dynamic use of a large Fe reservoir bound to cell wall components in the root apoplast, secretion in the apoplast of phenolic compounds of the coumarin family, which solubilize Fe in calcareous soils, and inhibition of suberization of endodermal cells in order to allow apoplastic and transcellular radial transport of Fe. All of these responses are regulated by the stress hormones ethylene and abscisic acid (ABA), suggesting an integrated strategy within the root to adapt to Fe shortage. For its nutrition, the embryo has developed both an original uptake mechanism, in which ascorbate is effluxed to chemically reduce Fe3+ to the transport-competent Fe2+ form, and an efficient strategy to control utilization of a large Fe pool in vacuoles. This review will attempt to summarize exciting new insights into the diverse routes that Fe takes to feed plant tissues.
Collapse
Affiliation(s)
- Catherine Curie
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes CNRS UMR5004/INRA/Université Montpellier/SupAgro, Place Viala, 34060, Montpellier CEDEX 1, France
| | - Stéphane Mari
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes CNRS UMR5004/INRA/Université Montpellier/SupAgro, Place Viala, 34060, Montpellier CEDEX 1, France
| |
Collapse
|
181
|
Guo K, Tu L, Wang P, Du X, Ye S, Luo M, Zhang X. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton ( Gossypium hirsutum) by Modulating ABA Levels. FRONTIERS IN PLANT SCIENCE 2017; 7:1997. [PMID: 28101095 PMCID: PMC5209387 DOI: 10.3389/fpls.2016.01997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/16/2016] [Indexed: 05/30/2023]
Abstract
Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase-oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8'-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Shue Ye
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
182
|
Sperotto RA, Ricachenevsky FK. Common Bean Fe Biofortification Using Model Species' Lessons. FRONTIERS IN PLANT SCIENCE 2017; 8:2187. [PMID: 29312418 PMCID: PMC5743649 DOI: 10.3389/fpls.2017.02187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Affiliation(s)
- Raul A. Sperotto
- Biological Sciences and Health Center, Graduate Program in Biotechnology, University of Taquari Valley - UNIVATES, Lajeado, Brazil
- *Correspondence: Raul A. Sperotto
| | - Felipe K. Ricachenevsky
- Graduate Program in Agrobiology, Biology Department, Federal University of Santa Maria, Santa Maria, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Felipe K. Ricachenevsky
| |
Collapse
|
183
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
184
|
Forieri I, Sticht C, Reichelt M, Gretz N, Hawkesford MJ, Malagoli M, Wirtz M, Hell R. System analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency. PLANT, CELL & ENVIRONMENT 2017; 40:95-107. [PMID: 27726154 DOI: 10.1111/pce.12842] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 05/22/2023]
Abstract
Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient-specific and general stress-induced transcriptional responses. In this study, we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth. Nevertheless, limitation by individual nutrients resulted in specific morphological adaptations and distinct shifts within the root metabolite fingerprint. The metabolic shifts affected key metabolites of primary metabolism and the stress-related phytohormones, jasmonic, salicylic and abscisic acid. These phytohormone signatures contributed to specific nutrient deficiency-induced transcriptional regulation. Limitation by the micronutrient iron caused the strongest regulation and affected 18% of the root transcriptome. Only 130 genes were regulated by all nutrients. Specific co-regulation between the iron and sulfur metabolic routes upon iron or sulfur deficiency was observed. Interestingly, iron deficiency caused regulation of a different set of genes of the sulfur assimilation pathway compared with sulfur deficiency itself, which demonstrates the presence of specific signal-transduction systems for the cross-regulation of the pathways. Combined iron and sulfur starvation experiments demonstrated that a requirement for a specific nutrient can overrule this cross-regulation. The comparative metabolomics and transcriptomics approach used dissected general stress from nutrient-specific regulation in roots of Arabidopsis.
Collapse
Affiliation(s)
- Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Sticht
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Norbert Gretz
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
185
|
Tan GZH, Das Bhowmik SS, Hoang TML, Karbaschi MR, Johnson AAT, Williams B, Mundree SG. Finger on the Pulse: Pumping Iron into Chickpea. FRONTIERS IN PLANT SCIENCE 2017; 8:1755. [PMID: 29081785 PMCID: PMC5646179 DOI: 10.3389/fpls.2017.01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Iron deficiency is a major problem in both developing and developed countries, and much of this can be attributed to insufficient dietary intake. Over the past decades several measures, such as supplementation and food fortification, have helped to alleviate this problem. However, their associated costs limit their accessibility and effectiveness, particularly amongst the financially constrained. A more affordable and sustainable option that can be implemented alongside existing measures is biofortification. To date, much work has been invested into staples like cereals and root crops-this has culminated in the successful generation of high iron-accumulating lines in rice and pearl millet. More recently, pulses have gained attention as targets for biofortification. Being secondary staples rich in protein, they are a nutritional complement to the traditional starchy staples. Despite the relative youth of this interest, considerable advances have already been made concerning the biofortification of pulses. Several studies have been conducted in bean, chickpea, lentil, and pea to assess existing germplasm for high iron-accumulating traits. However, little is known about the molecular workings behind these traits, particularly in a leguminous context, and biofortification via genetic modification (GM) remains to be attempted. This review examines the current state of the iron biofortification in pulses, particularly chickpea. The challenges concerning biofortification in pulses are also discussed. Specifically, the potential application of transgenic technology is explored, with focus on the genes that have been successfully used in biofortification efforts in rice.
Collapse
Affiliation(s)
- Grace Z. H. Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta S. Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thi M. L. Hoang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mohammad R. Karbaschi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Sagadevan G. Mundree
| |
Collapse
|
186
|
Li Q, Yang A, Zhang WH. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6431-6444. [PMID: 27811002 PMCID: PMC5181582 DOI: 10.1093/jxb/erw407] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na2CO3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na+/K+ ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H+-ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
187
|
Sun C, Wu T, Zhai L, Li D, Zhang X, Xu X, Ma H, Wang Y, Han Z. Reactive Oxygen Species Function to Mediate the Fe Deficiency Response in an Fe-Efficient Apple Genotype: An Early Response Mechanism for Enhancing Reactive Oxygen Production. FRONTIERS IN PLANT SCIENCE 2016; 7:1726. [PMID: 27899933 PMCID: PMC5110569 DOI: 10.3389/fpls.2016.01726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 05/09/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules in plants that contribute to stress acclimation. This study demonstrated that ROS play a critical role in Fe deficiency-induced signaling at an early stage in Malus xiaojinensis. Once ROS production has been initiated, prolonged Fe starvation leads to activation of ROS scavenging mechanisms. Further, we demonstrated that ROS scavengers are involved in maintaining the cellular redox homeostasis during prolonged Fe deficiency treatment. Taken together, our results describe a feedback repression loop for ROS to preserve redox homeostasis and maintain a continuous Fe deficiency response in the Fe-efficient woody plant M. xiaojinensis. More broadly, this study reveals a new mechanism in which ROS mediate both positive and negative regulation of plant responses to Fe deficiency stress.
Collapse
Affiliation(s)
- Chaohua Sun
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Longmei Zhai
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Duyue Li
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Huiqin Ma
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
| |
Collapse
|
188
|
Bauer P. Regulation of iron acquisition responses in plant roots by a transcription factor. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:438-449. [PMID: 27027408 DOI: 10.1002/bmb.20967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/15/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant Arabidopsis thaliana. They design a flowchart summarizing the key steps of the experimental approach. Students are made familiar with current techniques such as qPCR. Following their experimental outline, students grow Arabidopsis seedlings up to the age of six days under sufficient and deficient iron supply. The Arabidopsis plants are of two different genotypes, namely wild type and fit loss of function mutants. fit mutants lack the essential transcription factor FIT, required for iron acquisition and plant growth. Students monitor growth phenotypes and root iron reductase activity in a quantitative and qualitative manner. Then, students determine gene expression regulation of FIT, FRO2, and a reference gene by reverse transcription-quantitative PCR (RT-qPCR). Finally, students interpet their results and build a model summarizing the connections between morphological, physiological and molecular iron deficiency responses. Learning outcomes and suggestions for integrating the course concept are explained. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):438-449, 2016.
Collapse
Affiliation(s)
- Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Building 26.13.02.36, 40225, Düsseldorf, Germany.
| |
Collapse
|
189
|
Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:162-173. [PMID: 27105423 DOI: 10.1016/j.plaphy.2016.04.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 05/19/2023]
Abstract
Despite the high abundance of iron (Fe) in most earth's soils, Fe is the major limiting factor for plant growth and development due to its low bioavailability. With an increasing recognition that soil microbes play important roles in plant growth, several strains of beneficial rhizobactria have been applied to improve plant nutrient absorption, biomass, and abiotic or biotic stress tolerance. In this study, we report the mechanisms of microbe-induced plant Fe assimilation, in which the plant growth promoting rhizobacteria (PGPR) Paenibacillus polymyxa BFKC01 stimulates plant's Fe acquisition machinery to enhance Fe uptake in Arabidopsis plants. Mechanistic studies show that BFKC01 transcriptionally activates the Fe-deficiency-induced transcription factor 1 (FIT1), thereby up-regulating the expression of IRT1 and FRO2. Furthermore, BFKC01 has been found to induce plant systemic responses with the increased transcription of MYB72, and the biosynthetic pathways of phenolic compounds are also activated. Our data reveal that abundant phenolic compounds are detected in root exudation of the BFKC01-inoculated plants, which efficiently facilitate Fe mobility under alkaline conditions. In addition, BFKC01 can secret auxin and further improved root systems, which enhances the ability of plants to acquire Fe from soils. As a result, BFKC01-inoculated plants have more endogenous Fe and increased photosynthetic capacity under alkaline conditions as compared to control plants. Our results demonstrate the potential roles of BFKC01 in promoting Fe acquisition in plants and underline the intricate integration of microbial signaling in controlling plant Fe acquisition.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Institute for Applied Microbiology, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiansheng Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- Department of Molecular and Cell Biology, Tongji University, Shanghai 200092, China
| | - Xin Xiao
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Institute for Applied Microbiology, Anhui Science and Technology University, Bengbu 233100, China
| | - Yue Xie
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Institute for Applied Microbiology, Anhui Science and Technology University, Bengbu 233100, China
| | - Jian Zhu
- Department of Molecular and Cell Biology, Tongji University, Shanghai 200092, China
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Institute for Applied Microbiology, Anhui Science and Technology University, Bengbu 233100, China.
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Institute for Applied Microbiology, Anhui Science and Technology University, Bengbu 233100, China.
| |
Collapse
|
190
|
Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 211:569-83. [PMID: 26948158 DOI: 10.1111/nph.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.
Collapse
Affiliation(s)
- Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chu Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shun-Chung Yang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
191
|
Meisrimler CN, Wienkoop S, Lyon D, Geilfus CM, Lüthje S. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars. J Proteomics 2016; 140:13-23. [PMID: 27012544 DOI: 10.1016/j.jprot.2016.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. SIGNIFICANCE Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements, was chosen to observe four different pea cultivars for 5 to 25days. Physiological and proteome data showed that cultivar Blauwschokker and Vroege were more susceptible to -Fe than cultivar Kelvedon (highly efficient) and GftR (semi-efficient). Proteomic data hint that the adaptation process to long-term -Fe takes place between days 19 and 25. Results show that adaptation processes of efficient cultivars are able to postpone secondary negative effects of long-term -Fe, possibly by stabilizing the protein metabolic processing and the mitochondrial electron transport components. This maintains the cellular energy proliferation, keeps ROS production low and postpones the mitochondrial cell death signal.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany; CEA, IBEB, Laboratoire de biologie du développement des plantes, Saint-Paul-lez-Durance F-13108, France; CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France; Aix Marseille Université, BVME UMR7265, Marseille F-13284, France.
| | - Stefanie Wienkoop
- University of Vienna, Dept. of Ecogenomics and Systems Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | - David Lyon
- University of Vienna, Dept. of Ecogenomics and Systems Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Christoph-Martin Geilfus
- University of Kiel, Institute for Plant Nutrition and Soil Science, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany.
| | - Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| |
Collapse
|
192
|
Lelandais G, Scheiber I, Paz-Yepes J, Lozano JC, Botebol H, Pilátová J, Žárský V, Léger T, Blaiseau PL, Bowler C, Bouget FY, Camadro JM, Sutak R, Lesuisse E. Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. BMC Genomics 2016; 17:319. [PMID: 27142620 PMCID: PMC4855317 DOI: 10.1186/s12864-016-2666-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Background Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. Results We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. Conclusions The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2666-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France
| | - Ivo Scheiber
- Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic
| | - Javier Paz-Yepes
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Jean-Claude Lozano
- Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Hugo Botebol
- Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Jana Pilátová
- Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic
| | - Thibaut Léger
- CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France
| | - Pierre-Louis Blaiseau
- Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - François-Yves Bouget
- Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Jean-Michel Camadro
- CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic.
| | - Emmanuel Lesuisse
- CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France.
| |
Collapse
|
193
|
Tan S, Liu F, Pan XX, Zang YP, Jin F, Zu WX, Qi XT, Xiao W, Yin LP. CSN6, a subunit of the COP9 signalosome, is involved in early response to iron deficiency in Oryza sativa. Sci Rep 2016; 6:25485. [PMID: 27137867 PMCID: PMC4853791 DOI: 10.1038/srep25485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/19/2016] [Indexed: 12/22/2022] Open
Abstract
The COP9 signalosome (CSN) plays an important role in proteasome-mediated degradation by regulating CUL1 rubylation of the SCF ligase and is involved in many crucial biological processes. Here, we demonstrate a link between IDEF1 accumulation and the decline in COP9 derubylation activity in response to iron deficiency (-Fe) in rice (Oryza sativa). CSN6 expression is rapidly down-regulated during Fe depletion, contributing to reduced CSN activity, as judged by CSN5 and CUL1 expression, indicating CSN6 is involved in the early stage response of -Fe. In contrast to CSN6, the IDEF1 protein and expression of several iron uptake/utilisation-related genes are increased in response to -Fe. Thus, we constructed CSN6 transgenic sense and antisense lines and found that experimental depletion of CSN6 results in accumulation of the IDEF1 protein and up-regulation of several iron uptake/utilisation-related genes. Furthermore, IDEF1 can be decorated with K48-linked polyubiquitin and degraded via the 26S proteasome. Accumulated IDEF1 in antisense lines led to increased chlorophyll and Fe content in seedlings during -Fe. Collectively, the cellular CSN6 level is decreased during early stages of -Fe to ensure the rapid accumulation of IDEF1, which in turn up-regulates several iron uptake/utilisation-related genes to help overcome -Fe stress in rice.
Collapse
Affiliation(s)
- Song Tan
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Fang Liu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiao-Xi Pan
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yue-Peng Zang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Fei Jin
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Wei-Xi Zu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiao-Ting Qi
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- College of Life Science, Capital Normal University, Beijing 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
194
|
Li G, Kronzucker HJ, Shi W. The Response of the Root Apex in Plant Adaptation to Iron Heterogeneity in Soil. FRONTIERS IN PLANT SCIENCE 2016; 7:344. [PMID: 27047521 PMCID: PMC4800179 DOI: 10.3389/fpls.2016.00344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 05/30/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, and is frequently limiting. By contrast, over-accumulation of Fe in plant tissues leads to toxicity. In soils, the distribution of Fe is highly heterogeneous. To cope with this heterogeneity, plant roots engage an array of adaptive responses to adjust their morphology and physiology. In this article, we review root morphological and physiological changes in response to low- and high-Fe conditions and highlight differences between these responses. We especially focus on the role of the root apex in dealing with the stresses resulting from Fe shortage and excess.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| |
Collapse
|
195
|
Fourcroy P, Tissot N, Gaymard F, Briat JF, Dubos C. Facilitated Fe Nutrition by Phenolic Compounds Excreted by the Arabidopsis ABCG37/PDR9 Transporter Requires the IRT1/FRO2 High-Affinity Root Fe(2+) Transport System. MOLECULAR PLANT 2016; 9:485-488. [PMID: 26415695 DOI: 10.1016/j.molp.2015.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/02/2015] [Accepted: 09/17/2015] [Indexed: 05/19/2023]
Affiliation(s)
- Pierre Fourcroy
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Nicolas Tissot
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Jean-Francois Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France.
| |
Collapse
|
196
|
Chen Y, Chen C, Tan Z, Liu J, Zhuang L, Yang Z, Huang B. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:102. [PMID: 26904068 PMCID: PMC4746305 DOI: 10.3389/fpls.2016.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Chuanming Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhiqun Tan
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Jun Liu
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Lili Zhuang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhimin Yang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
197
|
Satoh J, Koshino H, Sekino K, Ito S, Katsuta R, Takeda K, Yoshimura E, Shinmachi F, Kawasaki S, Niimura Y, Nukada T. Cucumis sativus secretes 4′-ketoriboflavin under iron-deficient conditions. Biosci Biotechnol Biochem 2016; 80:363-7. [DOI: 10.1080/09168451.2015.1095070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
A new compound in cucumber, Cucumis sativus, nutrient solution that appears under iron-deficient conditions, but not under ordinary culture conditions, has been revealed by HPLC analysis. The chemical structure of this compound was identified using LC-MS and NMR techniques as that of 4′-ketoriboflavin. This is the first report to show that 4′-ketoriboflavin can be found in metabolites from organisms.
Collapse
Affiliation(s)
- Junichi Satoh
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Kouta Sekino
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryo Katsuta
- Department of Fermentation Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Kouji Takeda
- Education Course, Tokyo University of Agriculture, Tokyo, Japan
| | - Etsuro Yoshimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumie Shinmachi
- Department of Bioresource Science, Junior College, Nihon University, Fujisawa, Japan
| | - Shinji Kawasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Youichi Niimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoo Nukada
- Department of Fermentation Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
198
|
Zamboni A, Zanin L, Tomasi N, Avesani L, Pinton R, Varanini Z, Cesco S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genomics 2016; 17:35. [PMID: 26742479 PMCID: PMC4705743 DOI: 10.1186/s12864-015-2331-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/17/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. RESULTS The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. CONCLUSIONS The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Laura Zanin
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Nicola Tomasi
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
199
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 DOI: 10.3389/fpls201600178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/22/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F López-Millán
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, Houston TX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
200
|
Ong GH, Wong LS, Tan AL, Yap CK. Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:40. [PMID: 26687083 DOI: 10.1007/s10661-015-5042-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.
Collapse
Affiliation(s)
- Ghim Hock Ong
- Faculty of Science, Technology, Engineering and Mathematics, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Ling Shing Wong
- Faculty of Science, Technology, Engineering and Mathematics, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ai Li Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43300 UPM, Serdang, Selangor, Malaysia
| | - Chee Kong Yap
- Faculty of Science, Universiti Putra Malaysia, 43300 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|