151
|
|
152
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
153
|
A method for the prediction of drug content of poly(lactic-co-glycolic)acid drug carrier nanoparticles obtained by nanoprecipitation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
154
|
Adena SKR, Upadhyay M, Vardhan H, Mishra B. Gold nanoparticles for sustained antileukemia drug release: development, optimization and evaluation by quality-by-design approach. Nanomedicine (Lond) 2019; 14:851-870. [PMID: 30901283 DOI: 10.2217/nnm-2018-0306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM To design, develop, optimize and evaluate sustained-release dasatinib-loaded gold nanoparticles (DSB-GNPs) to treat chronic myeloid leukemia (CML) by using quality by design. MATERIALS & METHODS In this study, we performed risk assessment, optimization, in vitro characterizations, stability study, drug release studies, cytotoxicity study and in vivo pharmacokinetic evaluation. RESULTS DSB-GNPs of desired size, entrapment, smooth, spherical, stable and sustained drug release for 48 h were achieved. DSB-GNPs exhibited significantly more percentage growth inhibition and enhanced systemic bioavailability compared with pure DSB. CONCLUSION The in vitro and in vivo evaluation exhibited that the DSB-GNPs have a potential cytotoxic effect, systemic bioavailability and sustained release making them a promising system of DSB delivery in the treatment of chronic myeloid leukemia.
Collapse
Affiliation(s)
- Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Mansi Upadhyay
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Harsh Vardhan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
155
|
Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, Camins A, Turowski P, García ML. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release 2019; 301:62-75. [PMID: 30876953 PMCID: PMC6510952 DOI: 10.1016/j.jconrel.2019.03.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate for treatment of Alzheimer's disease (AD) but its inherent instability limits bioavailability and effectiveness. We found that EGCG displayed increased stability when formulated as dual-drug loaded PEGylated PLGA nanoparticles (EGCG/AA NPs). Oral administration of EGCG/AA NPs in mice resulted in EGCG accumulation in all major organs, including the brain. Pharmacokinetic comparison of plasma and brain accumulation following oral administration of free or EGCG/AA NPs showed that, whilst in both cases initial EGCG concentrations were similar, long-term (5–25 h) concentrations were ca. 5 fold higher with EGCG/AA NPs. No evidence was found that EGCG/AA NPs utilised a specific pathway across the blood-brain barrier (BBB). However, EGCG, empty NPs and EGCG/AA NPs all induced tight junction disruption and opened the BBB in vitro and ex vivo. Oral treatment of APPswe/PS1dE9 (APP/PS1) mice, a familial model of AD, with EGCG/AA NPs resulted in a marked increase in synapses, as judged by synaptophysin (SYP) expression, and reduction of neuroinflammation as well as amyloid β (Aβ) plaque burden and cortical levels of soluble and insoluble Aβ(1-42) peptide. These morphological changes were accompanied by significantly enhanced spatial learning and memory. Mechanistically, we propose that stabilisation of EGCG in NPs complexes and a destabilized BBB led to higher therapeutic EGCG concentrations in the brain. Thus EGCG/AA NPs have the potential to be developed as a safe and strategy for the treatment of AD.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; UCL Institute of Ophthalmology, University College of London, United Kingdom
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Jui-Hsien Chang
- UCL Institute of Ophthalmology, University College of London, United Kingdom
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Health Institute Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, United Kingdom..
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
156
|
Yang X, Yang Y, Jia Q, Hao Y, Liu J, Huang G. Preparation and Evaluation of Irinotecan Poly(Lactic-co-Glycolic Acid) Nanoparticles for Enhanced Anti-tumor Therapy. AAPS PharmSciTech 2019; 20:133. [PMID: 30820689 DOI: 10.1208/s12249-019-1327-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Irinotecan (IRT), the pro-drug of SN-38, has exhibited potent cytotoxicity against various tumors. In order to enhance the anti-tumor effect of IRT, we prepared IRT-loaded PLGA nanoparticles (IRT-PLGA-NPs) by emulsion-solvent evaporation method. Firstly, IRT-PLGA-NPs were characterized through drug loading (DL), entrapment efficiency (EE), particle size, zeta potential, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). We next studied the in vitro release characteristics of IRT-PLGA-NPs. Finally, the pharmacokinetics and pharmacodynamics profiles of IRT-PLGA-NPs were investigated. The results revealed that IRT-PLGA-NPs were spherical with an average size of (169.97 ± 6.29) nm and its EE and DL were (52.22 ± 2.41)% and (4.75 ± 0.22)%, respectively. IRT-PLGA-NPs could continuously release drug for 14 days in vitro. In pharmacokinetics studies, for pro-drug IRT, the t1/2β of IRT-PLGA-NPs was extended from 0.483 to 3.327 h compared with irinotecan solution (IRT-Sol), and for its active metabolite SN-38, the t1/2β was extended from 1.889 to 4.811 h, which indicated that IRT-PLGA-NPs could prolong the retention times of both IRT and SN-38. The pharmacodynamics results revealed that the tumor doubling time, growth inhibition rate, and specific growth rate of IRT-PLGA-NPs were 2.13-, 1.30-, and 0.47-fold those of IRT-Sol, respectively, which demonstrated that IRT-PLGA-NPs could significantly inhibit the growth of tumor. In summary, IRT-PLGA-NPs, which exhibited excellent therapeutic effect against tumors, might be used as a potential carrier for tumor treatment in clinic.
Collapse
|
157
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
158
|
Qu N, Sun Y, Li Y, Hao F, Qiu P, Teng L, Xie J, Gao Y. Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online 2019; 18:11. [PMID: 30704488 PMCID: PMC6357434 DOI: 10.1186/s12938-019-0624-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background Docetaxel (DTX) is an anticancer drug that is currently formulated with polysorbate 80 and ethanol (50:50, v/v) in clinical use. Unfortunately, this formulation causes hypersensitivity reactions, leading to severe side-effects, which have been primarily attributed to polysorbate 80. Methods In this study, a DTX-loaded human serum albumin (HSA) nanoparticle (DTX-NP) was designed to overcome the hypersensitivity reactions that are induced by polysorbate 80. The methods of preparing the DTX-NPs have been optimized based on factors including the drug-to-HSA weight ratio, the duration of HSA incubation, and the choice of using a stabilizer. Synthesized DTX-NPs were characterized with regard to their particle diameters, drug loading capacities, and drug release kinetics. The morphology of the DTX-NPs was observed via scanning electron microscopy (SEM) and the successful preparation of DTX-NPs was confirmed via differential scanning calorimetry (DSC). The cytotoxicity and cellular uptake of DTX-NPs were investigated in the non-small cell lung cancer cell line A549 and the maximum tolerated dose (MTD) of DTX-NPs was evaluated via investigations with BALB/c mice. Results The study showed that the loading capacity and the encapsulation efficiency of DTX-NPs prepared under the optimal conditions was 11.2 wt% and 63.1 wt%, respectively and the mean diameter was less than 200 nm, resulting in higher permeability and controlled release. Similar cytotoxicity against A549 cells was exhibited by the DTX-NPs in comparison to DTX alone while higher maximum tolerated dose (MTD) with the DTX-NPs (75 mg/kg) than with DTX (30 mg/kg) was demonstrated in mice, suggesting that the DTX-NPs prepared with HSA yielded similar anti-tumor activity but were accompanied by less systemic toxicity than solvent formulated DTX. Conclusions DTX-NPs warrant further investigation and are promising candidates for clinical applications.![]()
Collapse
Affiliation(s)
- Na Qu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Yating Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Yujing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Fei Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Pengyu Qiu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China
| | - Lesheng Teng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China.,State Key Laboratory of Long-acting and Targeted Drug Delivery System, Yantai, China
| | - Jing Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China.
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
159
|
Design of epigallocatechin gallate loaded PLGA/PF127 nanoparticles and their effect upon an oxidative stress model. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
160
|
Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm 2018; 133:309-320. [DOI: 10.1016/j.ejpb.2018.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022]
|
161
|
Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol 2018; 9:1260. [PMID: 30450050 PMCID: PMC6224484 DOI: 10.3389/fphar.2018.01260] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy. Strategies are emphasized to target PLGA NPs to the tumor site passively and actively. Furthermore, combination therapies are introduced that enhance the accumulation of NPs and, thereby, their therapeutic efficacy. In this context, the huge number of reports on PLGA NPs used as drug delivery systems in cancer treatment highlight the potential of PLGA NPs as drug carriers for cancer therapeutics and encourage further translational research.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Natascha Ingrid Drude
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Department of Nuclear Medicine, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Emily Kate Koons
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yang Shi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
162
|
Vandghanooni S, Eskandani M, Barar J, Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine (Lond) 2018; 13:2729-2758. [PMID: 30394201 DOI: 10.2217/nnm-2018-0205] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM The overexpression of miRNA-21 correlates with the cisplatin (CIS) resistance in the ovarian cancers. METHODS AS1411 antinucleolin aptamer-decorated PEGylated poly(lactic-co-glycolic acid) nanoparticles containing CIS (Ap-CIS-NPs) and anti-miR-21 (Ap-anti-miR-21-NPs) were prepared, physicochemically investigated and their cancer-targeting ability was confirmed. CIS-resistant A2780 cells (A2780 R) were infected with anti-miR-21 using Ap-anti-miR-21-NPs to decrease the drug resistance and sensitize the cells to CIS. Afterward, miR-21-inhibited cells were exposed to the Ap-CIS-NPs. RESULTS Ap-anti-miR-21-NPs could infect the A2780 R cells mainly through nucleolin-mediated endocytosis and inhibit the endogenous miR-21. Targeted delivery of CIS using Ap-CIS-NPs into the miR-21-inhibited cells caused an enhanced mortality. CONCLUSION The targeted delivery of chemotherapeutics to the oncomiR-inhibited cells may find a robust application in cancer chemo/gene therapy.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
163
|
PLGA: From a classic drug carrier to a novel therapeutic activity contributor. J Control Release 2018; 289:10-13. [PMID: 30244137 DOI: 10.1016/j.jconrel.2018.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is well known for its biocompatibility and minimal toxicity. It is one of the most promising biodegradable polymeric drug delivery systems able to get endorsement from regulatory bodies to enter market. For many decades, PLGA has been functioning as an excipient, which by definition is pharmaceutically inert at a given dose of formulation. Lactate (one of the hydrolysis products of PLGA) has a key role in biochemical pathways and could improve physiological activities in certain illnesses by exerting therapeutic effects such as angiogenesis and promotion of healing. These activities, however, depend on the released amounts and metabolic clearance of lactate and route of formulation delivery. In the current commentary, along with several key notes on the lactate interactions, we would like to inform the PLGA research community that lactate (resulting from local delivery of physiologically significant amount of PLGA) may positively or negatively affect therapeutic efficacy of certain drugs. Hence, the excipient role of PLGA may be investigated for its potential pharmacological contributions in some biomedical applications.
Collapse
|
164
|
Ficai D, Grumezescu V, Fufă OM, Popescu RC, Holban AM, Ficai A, Grumezescu AM, Mogoanta L, Mogosanu GD, Andronescu E. Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite. NANOMATERIALS 2018; 8:nano8090633. [PMID: 30134515 PMCID: PMC6165491 DOI: 10.3390/nano8090633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The aim of our study was to obtain and evaluate the properties of polymeric coatings based on poly(lactic-co-glycolic) acid (PLGA) embedded with magnetite nanoparticles functionalized with commercial antimicrobial drugs. In this respect, we firstly synthesized the iron oxide particles functionalized (@) with the antibiotic Cefepime (Fe₃O₄@CEF). In terms of composition and microstructure, the as-obtained powdery sample was investigated by means of grazing incidence X-ray diffraction (GIXRD), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM, respectively). Crystalline and nanosized particles (~5 nm mean particle size) with spherical morphology, consisting in magnetite core and coated with a uniform and reduced amount of antibiotic shell, were thus obtained. In vivo biodistribution studies revealed the obtained nanoparticles have a very low affinity for innate immune-related vital organs. Composite uniform and thin coatings based on poly(lactide-co-glycolide) (PLGA) and antibiotic-functionalized magnetite nanoparticles (PLGA/Fe₃O₄@CEF) were subsequently obtained by using the matrix assisted pulsed laser evaporation (MAPLE) technique. Relevant compositional and structural features regarding the composite coatings were obtained by performing infrared microscopy (IRM) and SEM investigations. The efficiency of the biocompatible composite coatings against biofilm development was assessed for both Gram-negative and Gram-positive pathogens. The PLGA/Fe₃O₄@CEF materials proved significant and sustained anti-biofilm activity against staphylococcal and Escherichia coli colonisation.
Collapse
Affiliation(s)
- Denisa Ficai
- Inorganic Chemistry Department, University Politehnica of Bucharest, Bucharest 011061, Romania.
| | - Valentina Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
| | - Oana Mariana Fufă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
| | - Roxana Cristina Popescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute of Physics and Nuclear Engineering, Magurele RO-77125, Romania.
| | - Alina Maria Holban
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
| | - Laurentiu Mogoanta
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - George Dan Mogosanu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.
| |
Collapse
|
165
|
Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to colorectal cancer cells. Int J Pharm 2018; 549:397-403. [PMID: 30110619 DOI: 10.1016/j.ijpharm.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/06/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered functionalized nanoparticles have extensively been proposed in recent years to efficiently deliver anti-cancer drugs to the tumour site, by targeting the cancer cells and improving the therapeutic efficiency of active molecules. In this work, polymeric poly (lactic-co- glycolic)-polyethyleneglycol (PLGA-PEG) nanoparticles were produced by nanoprecipitation and loaded with paclitaxel, following surface-functionalized with a monoclonal antibody targeting the carcinoembryonic antigen (CEA) of intestinal epithelial cells. Physicochemical properties, cytotoxicity and targeting ability of the nanoparticles against two intestine epithelial carcinoma cell lines, CEA-expressing Caco-2 clone and non-CEA-expressing SW480, were assessed. Results showed successful production of nanoparticles around 200 nm, and close to charge neutrality, encapsulating up to 99% of paclitaxel. Functionalized nanoparticles were further constructed, demonstrating to be non-cytotoxic against intestinal cells. The targeting ability of functionalized nanoparticles to Caco-2 CEA expressing cells was confirmed by flow cytometry, in opposite to SW480 cells. Overall, the surface-modified PLGA-PEG nanoparticles with the CEA-targeting antibody were successfully developed as nanocarriers for paclitaxel and interacted with CEA expressing cells. This specific interaction provide these particles ability to be used as targeted systems for colorectal cancer therapeutics.
Collapse
|
166
|
Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547:593-601. [DOI: 10.1016/j.ijpharm.2018.05.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/19/2023]
|
167
|
Improvement of N-Acetylcysteine Loaded in PLGA Nanoparticles by Nanoprecipitation Method. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/3620373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-Acetylcysteine (NAC) is a hydrophilic compound with a low bioavailability. It has been used as an effective antioxidant agent. This research seeks to enhance the entrapment of NAC in PLGA nanoparticles for drug delivery systems. The nanoparticles were made using the nanoprecipitation method and changing the following parameters: the solvent/nonsolvent nature, its viscosity, pH, NAC addition to the nonsolvent, the polymer concentration and molecular weight, and NAC concentration in the solvent. The results showed that an increase in the nonsolvent viscosity produces NAC concentration in the solvent, and the nonsolvent rises its entrapment in the nanoparticles. Nanoparticles with 235.5 ± 11.4 nm size with an entrapment efficiency of 0.4 ± 0.04% and a specific load of 3.14 ± 0.33% were obtained. The results suggest that besides efficiently entrapping hydrophobic compounds, the nanoprecipitation method also has a high potential as an alternative entrapment method for hydrophilic compounds as well. However, its use in the pharmaceutical industry, as a proper specific load vehicle, still depends on the improvement of the load capacity.
Collapse
|
168
|
Choi SW, Kim J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1125. [PMID: 29966397 PMCID: PMC6073408 DOI: 10.3390/ma11071125] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The eye has many barriers with specific anatomies that make it difficult to deliver drugs to targeted ocular tissues, and topical administration using eye drops or ointments usually needs multiple instillations to maintain the drugs’ therapeutic concentration because of their low bioavailability. A drug-eluting contact lens is one of the more promising platforms for controllable ocular drug delivery, and, among various manufacturing methods for drug-eluting contact lenses, incorporation of novel polymeric vehicles with versatile features makes it possible to deliver the drugs in a sustained and extended manner. Using the diverse physicochemical properties of polymers for nanoparticles or implants that are selected according to the characteristics of drugs, enhancement of encapsulation efficiency and prolonged drug release are possible. Even though therapeutic contact lenses with polymeric vehicles allow us to achieve sustained ocular drug delivery, drug leaching during storage and distribution and the possibility of problems related to surface roughness due to the incorporated vehicles still need to be discussed before application in a real clinic. This review highlights the overall trends in methodology to develop therapeutic contact lenses with polymeric vehicles and discusses the limitations including comparison to cosmetically tinted soft contact lenses.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| |
Collapse
|
169
|
Ferreira MSV, Mousavi SH. Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:1707-1718. [PMID: 29753127 DOI: 10.1016/j.nano.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Umbilical cord blood (CB) can be used as an alternative source of hematopoietic stem cells (HSCs) for transplantation in hematological and non-hematological disorders. Despite several recognized advantages the limited cell number in CB one unit still restricts its clinical use. The success of transplantation greatly depends on the levels of total nucleated cell and CD34+ cell counts. Thus, many ex vivo strategies have been developed within the last decade in order to solve this obstacle, with more or less success, mainly determined by the degree of difficulty related with maintaining HSCs self-renewal and stemness properties after long-term expansion. Different research groups have developed very promising and diverse CB-derived HSC expansion strategies using nanofiber scaffolds. Here we review the state-of-the-art of nanofiber technology-based CB-derived HSC expansion.
Collapse
Affiliation(s)
- Mónica Sofia Ventura Ferreira
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
170
|
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 2018; 73:38-51. [PMID: 29653217 DOI: 10.1016/j.actbio.2018.04.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. STATEMENT OF SIGNIFICANCE Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
Collapse
|
171
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. CD44 targeted PLGA nanomedicines for cancer chemotherapy. Eur J Pharm Sci 2018; 121:47-58. [PMID: 29777858 DOI: 10.1016/j.ejps.2018.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Abstract
In recent years scientific community has drawn a great deal of attention towards understanding the enigma of cluster of differentiation-44 (CD44) in order to deliver therapeutic agents more selectively towards tumor tissues. Moreover, its over-expression in variety of solid tumors has attracted drug delivery researchers to target this receptor with nanomedicines. Conventional nanomedicines based on biodegradable polymers such as poly(lactide-co-glycolide) (PLGA) are often associated with insufficient cellular uptake by cancer cells, due to lack of active targeting moiety on their surface. Therefore, to address this limitation, CD44 targeted PLGA nanomedicines has gained considerable interest for enhancing the efficacy of chemotherapeutic agents. In this review, we have elaborately discussed the recent progress in the design and synthesis of CD44 targeted PLGA nanomedicines used to improve tumor-targeted drug delivery. We have also discussed strategies based on co-targeting of CD44 with other targeting moieties such as folic acid, human epidermal growth factor 2 (HER2), monoclonal antibodies using PLGA based nanomedicines.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
172
|
Chang SH, Lee HJ, Park S, Kim Y, Jeong B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules 2018; 19:2302-2307. [PMID: 29742350 DOI: 10.1021/acs.biomac.8b00266] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polycaprolactone (PCL) was reported a long time ago; however, its biomedical applications has not been extensively investigated in comparison with poly(lactide- co-glycolide) (PLGA) due to its too slow degradation profile. Here, we are reporting an oxalate-connected oligocaprolactone multiblock copolymer (PCL-OX) as a fast degradable PCL while maintaining its crystalline properties and low melting point of PCL. The in vivo application of the paclitaxel-loaded PCL-OX microspheres provided a steady plasma drug concentration of 6-9 μg/mL over 28 days, similar to that of the PLGA microspheres. Both PCL and PLGA microspheres were completely cleared two months after in vivo implantation. The PCL-OX microspheres showed a similar tissue compatibility to that of PLGA microspheres in the subcutaneous layer of rats. These findings suggest that PCL-OX is a useful biomaterial that solves the slow degradation problems of PCL and, thus, may find uses in other biomedical applications as an alternative to PLGA.
Collapse
Affiliation(s)
- Seo Hee Chang
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Yelin Kim
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| |
Collapse
|
173
|
Parmar A, Jain A, Uppal S, Mehta SK, Kaur K, Singh B, Sandhir R, Sharma S. Anti-proliferate and apoptosis triggering potential of methotrexate-transferrin conjugate encapsulated PLGA nanoparticles with enhanced cellular uptake by high-affinity folate receptors. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:704-719. [DOI: 10.1080/21691401.2018.1468768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ankush Parmar
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India
| | - Atul Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Shivani Uppal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - S. K. Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Khuswinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Bhupinder Singh
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Rajat Sandhir
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India
| |
Collapse
|
174
|
Al-Nemrawi NK, Okour AR, Dave RH. Surface modification of PLGA nanoparticles using chitosan: Effect of molecular weight, concentration, and degree of deacetylation. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Faculty of Pharmacy; Department of Pharmaceutical Technology; Jordan University of Science and Technology; Irbid Jordan
| | - Arren R. Okour
- Faculty of Pharmacy; Department of Pharmaceutical Technology; Jordan University of Science and Technology; Irbid Jordan
| | - Rutesh H. Dave
- Pharmaceutical Sciences; Long Island University; Brooklyn New York
| |
Collapse
|
175
|
Nabi A, Tasneem S, Jesudason CG, Lee VS, Zain SBM. Study of interaction between cationic surfactant (CTAB) and paracetamol by electrical conductivity, tensiometric and spectroscopic methods. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
176
|
Bee SL, Hamid ZAA, Mariatti M, Yahaya BH, Lim K, Bee ST, Sin LT. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1437547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Z. A. Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - M. Mariatti
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - B. H. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| |
Collapse
|
177
|
Ludwig DB, de Camargo LEA, Khalil NM, Auler ME, Mainardes RM. Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B. Mycopathologia 2018; 183:659-668. [PMID: 29497926 DOI: 10.1007/s11046-018-0253-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Amphotericin B (AmB) is one of the most used drugs for the treatment of systemic fungal infections; however, the treatment causes several toxic manifestations, including nephrotoxicity and hemolytic anemia. Chitosan-coated poly(lactide-co-glycolide) (PLGA) nanoparticles containing AmB were developed with the aim to decrease AmB toxicity and propose the oral route for AmB delivery. In this work, the antifungal efficacy of chitosan-coated PLGA nanoparticles containing AmB was evaluated in 20 strains of fungus isolates from patients with vulvovaginal candidiasis (01 Candida glabrata and 03 Candida albicans), bloodstream infections (04 C. albicans and 01 C. tropicalis) and patients with urinary tract infection (04 Candida albicans, 02 Trichosporon asahii, 01 C. guilhermondii, 03 C. glabrata) and 01 Candida albicans ATCC 90028. Moreover, the cytotoxicity over erythrocytes was evaluated. The single-emulsion solvent evaporation method was suitable for obtaining chitosan-coated PGLA nanoparticles containing AmB. Nanoparticles were spherical in shape, presented mean particle size about 460 nm, positive zeta potential and encapsulation efficiency of 42%. Moreover, nanoparticles prolonged the AmB release. All the strains were susceptible to plain AmB and nanostructured AmB, according to EUCAST breakpoint version 8.1 (resistant > 1 μg/mL), using broth microdilution method. In C. albicans (urine, blood, and vulvovaginal secretion isolates, and 1 ATCC), the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.5 μg/mL. In urine and vulvovaginal secretion isolates of C. glabrata, the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.015 μg/mL. In urine isolates of C. guilhermondii, the MIC value of AmB-loaded nanoparticles was 0.12 μg/mL and EUCAST was 0.06 μg/mL. In blood isolates of C. tropicalis, the MIC value of AmB-loaded nanoparticles was 0.5 μg/mL and EUCAST was 0.25 μg/mL. Finally, in urine isolates of T asahii, the MIC value of AmB-loaded nanoparticles was 1 μg/mL and EUCAST varied from 0.5 to 1 μg/mL. In the cytotoxicity assay, plain AmB was highly hemolytic (100% in 24 h) while AmB-loaded chitosan/PLGA nanoparticles presented negligible hemolysis.
Collapse
Affiliation(s)
- Daniel Brustolin Ludwig
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil.,Faculdade Guairacá, Rua XV de Novembro, 7050, Guarapuava, PR, 85010-000, Brazil
| | - Luciana Erzinger Alves de Camargo
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil.,Faculdade Guairacá, Rua XV de Novembro, 7050, Guarapuava, PR, 85010-000, Brazil
| | - Najeh Maissar Khalil
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil
| | - Marcos Ereno Auler
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil
| | - Rubiana Mara Mainardes
- Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, PR, 85040-080, Brazil.
| |
Collapse
|
178
|
Engineering design and mechanistic mathematical models: Standpoint on cutting edge drug delivery. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
179
|
Cano A, Ettcheto M, Espina M, Auladell C, Calpena AC, Folch J, Barenys M, Sánchez-López E, Camins A, García ML. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1073-1085. [PMID: 29454994 DOI: 10.1016/j.nano.2018.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/16/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022]
Abstract
Temporal lobe epilepsy is the most common type of pharmacoresistant epilepsy in adults. Epigallocatechin-3-gallate has aroused much interest because of its multiple therapeutic effects, but its instability compromises the potential effectiveness. PEGylated-PLGA nanoparticles of Epigallocatechin-3-gallate were designed to protect the drug and to increase the brain delivery. Nanoparticles were prepared by the double emulsion method and cytotoxicity, behavioral, Fluoro-Jade C, Iba1 and GFAP immunohistochemistry studies were carried out to determine their effectiveness. Nanoparticles showed an average size of 169 nm, monodisperse population, negative surface charge, encapsulation efficiency of 95% and sustained release profile. Cytotoxicity assays exhibited that these nanocarriers were non-toxic. Behavioral test showed that nanoparticles reduced most than free drug the number of epileptic episodes and their intensity. Neurotoxicity and immunohistochemistry studies confirmed a decrease in neuronal death and neuroinflammation. In conclusion, Epigallocatechin-3-gallate PEGylated-PLGA nanoparticles could be a suitable strategy for the treatment of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Jaume Folch
- Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nutrition Research and Food Safety (INSA-UB), University of Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
180
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
181
|
Chaves LL, Costa Lima SA, Vieira AC, Barreiros L, Segundo MA, Ferreira D, Sarmento B, Reis S. Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability. Eur J Pharm Sci 2018; 112:28-37. [DOI: 10.1016/j.ejps.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/26/2022]
|
182
|
Martínez-Pérez B, Quintanar-Guerrero D, Tapia-Tapia M, Cisneros-Tamayo R, Zambrano-Zaragoza ML, Alcalá-Alcalá S, Mendoza-Muñoz N, Piñón-Segundo E. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. Eur J Pharm Sci 2017; 115:185-195. [PMID: 29208486 DOI: 10.1016/j.ejps.2017.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to prepare poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with chitosan (CTS) surface modification to be used as a vaginal delivery system for antimycotic drugs. Clotrimazole was encapsulated with entrapment efficiencies of 86.1 and 68.9% into Clotrimazole-PLGA-NPs (CLT-PLGA-NPs) and PLGA-NPs with CTS-modified surface (CLT-PLGA-CTS-NPs), respectively. The later NPs exhibited a larger size and higher positive zeta potential (Z potential) in comparison to unmodified NPs. In vitro release kinetic studies indicated that Clotrimazole was released in percentages of >98% from both nanoparticulate systems after 18days. Antifungal activity and mucoadhesive properties of NPs were enhanced when CTS was added onto the surface. In summary, these results suggested that Clotrimazole loaded into PLGA-CTS-NPs has great potential for vaginal applications in treating vaginal infections generated by Candida albicans.
Collapse
Affiliation(s)
- Beatriz Martínez-Pérez
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FES-Cuautitlán), Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico
| | - David Quintanar-Guerrero
- UNAM, FES-Cuautitlán, Laboratorio de Posgrado en Tecnología Farmacéutica, Av. 1o de mayo s/n, C.P. 54740 Cuautitlán Izcalli, Edo. de México, Mexico
| | - Melina Tapia-Tapia
- Centro Conjunto de Investigación Química Sustentable UAEM-UNAM (CCIQS), Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano, C.P. 50200 Toluca, Edo. de México, Mexico
| | - Ricardo Cisneros-Tamayo
- Universidad Politécnica del Valle de México, División de Ingeniería en Nanotecnología, Av. Mexiquense s/n, esq. Universidad Politécnica, Col. Villa Esmeralda, C.P. 54910 Tultitlán, Edo. de México, Mexico
| | - María L Zambrano-Zaragoza
- UNAM, FES-Cuautitlán, Laboratorio de Procesos de Transformación y Tecnologías Emergentes en Alimentos, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico
| | - Sergio Alcalá-Alcalá
- Universidad Autónoma del Estado de Morelos, Facultad de Farmacia, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico
| | - Néstor Mendoza-Muñoz
- Universidad de Colima, Facultad de Ciencias Químicas, Laboratorio de Farmacia, Carretera Colima-Coquimatlán Km. 9, C.P. 28400 Coquimatlán, Colima, Mexico
| | - Elizabeth Piñón-Segundo
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FES-Cuautitlán), Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico.
| |
Collapse
|
183
|
Chevalier MT, Rescignano N, Martin-Saldaña S, González-Gómez Á, Kenny JM, San Román J, Mijangos C, Álvarez VA. Non-covalently coated biopolymeric nanoparticles for improved tamoxifen delivery. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
184
|
Parisi OI, Scrivano L, Sinicropi MS, Puoci F. Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr Opin Pharmacol 2017; 36:72-77. [DOI: 10.1016/j.coph.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
|
185
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
186
|
|
187
|
Saborano R, Wongpinyochit T, Totten JD, Johnston BF, Seib FP, Duarte IF. Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles. Adv Healthc Mater 2017; 6. [PMID: 28544603 DOI: 10.1002/adhm.201601240] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics.
Collapse
Affiliation(s)
- Raquel Saborano
- CICECO - Aveiro Institute of Materials; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE UK
| | - John D. Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE UK
| | - Blair F. Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE UK
| | - F. Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE UK
- Leibniz-Institut für Polymerforschung Dresden e.V.; Max Bergmann Centre of Biomaterials Dresden; Hohe Strasse 6 01069 Dresden Germany
| | - Iola F. Duarte
- CICECO - Aveiro Institute of Materials; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
188
|
Xiang Y, Li J, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wu S. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629062 DOI: 10.1016/j.msec.2017.05.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility.
Collapse
Affiliation(s)
- Yiming Xiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Jun Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - K W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
189
|
Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 2017; 115:257-267. [PMID: 28336368 DOI: 10.1016/j.ejpb.2017.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Abstract
As diabetes is a complex disorder being a major cause of mortality and morbidity in epidemic rates, continuous research has been done on new drug types and administration routes. Up to now, a large number of therapeutic peptides have been produced to treat diabetes including insulin, glucagon-like peptide-1 (GLP-1) and its analogs. The most common route of administration of these antidiabetic peptides is parenteral. Due to several drawbacks associated with this invasive route, delivery of these antidiabetic peptides by the oral route has been a goal of pharmaceutical technology for many decades. Dosage form development should focus on overcoming the limitations facing oral peptides delivery as degradation by proteolytic enzymes and poor absorption in the gastrointestinal tract (GIT). This review focuses on currently developed strategies to improve oral bioavailability of these peptide based drugs; evaluating their advantages and limitations in addition to discussing future perspectives on oral peptides delivery. Depending on the previous reports and papers, the area of nanocarriers systems including polymeric nanoparticles, solid lipid nanoparticles, liposomes and micelles seem to be the most promising strategy that could be applied for successful oral peptides delivery; but still further potential attempts are required to be able to achieve the FDA approved oral antidiabetic peptide delivery system.
Collapse
|
190
|
Fawzy AS, Priyadarshini BM, Selvan ST, Lu TB, Neo J. Proanthocyanidins-Loaded Nanoparticles Enhance Dentin Degradation Resistance. J Dent Res 2017; 96:780-789. [PMID: 28182862 DOI: 10.1177/0022034517691757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies reported that grapeseed extract (GSE), which is rich in proanthocyanidins (PAs), improves the biodegradation resistance of demineralized dentin. This study aimed to investigate the effect of a new GSE delivery strategy to demineralized dentin through loading into biodegradable polymer poly-[lactic-co-glycolic acid] (PLGA) nanoparticles on the biodegradation resistance in terms of structural stability and surface/bulk mechanical and biochemical properties with storage time in collagenase-containing solutions. GSE-loaded nanoparticles were synthetized by nanoprecipitation at PLGA/GSE (w/w) ratios of 100:75, 100:50, and 100:25 and characterized for their morphological/structural features, physicochemical characteristics, and drug loading, entrapment, and release. Nanoparticle suspensions in distilled water (12.5% w/v) were applied (1 min) to demineralized dentin specimens by simulating pulpal pressure. The nanoparticle delivery was investigated by scanning electron microscopy (SEM)/transmission electron microscopy (TEM), and the GSE release from the delivered nanoparticles was further characterized. The variations in surface and bulk mechanical properties were characterized in terms of reduced elastic-modulus, hardness, nanoindentation testing, and apparent elastic-modulus with a storage time up to 3 mo. Hydroxyproline release with exposure to collagenase up to 7 d was estimated. An etch-and-rinse dentin adhesive was applied to investigate the morphology of the resin-dentin interface after nanoparticle delivery. Treatment with the GSE-loaded nanoparticles enhanced the collagen fibril structural resistance, reflected from the TEM investigation, and improved the biomechanical and biochemical stability of demineralized dentin. Nanoparticles having PLGA/GSE of 100:75 (w/w) showed the highest cumulative GSE release and were associated with the best improvement in biodegradation resistance. TEM/SEM showed the ability of the nanoparticles to infiltrate dentinal tubules' main and lateral branches. SEM revealed the formation of a uniform hybrid layer and well-formed resin tags with the presence of numerous nanoparticles located within the dentinal tubules and/or attached to the resin tag. This study demonstrated the potential significance of delivering collagen crosslinkers loaded into biodegradable polymer nanoparticles through the dentinal tubules of demineralized dentin on the biodegradation resistance.
Collapse
Affiliation(s)
- A S Fawzy
- 1 Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - B M Priyadarshini
- 1 Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - S T Selvan
- 2 Institute of Materials Research and Engineering (IMRE), Innovis, Singapore
| | - T B Lu
- 3 Electron Microscopy Unit, YLLSOM, National University of Singapore, Singapore
| | - J Neo
- 4 Discipline of Prosthodontics, Operative Dentistry and Endodontics, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
191
|
Li J, Mao J, Tang J, Li G, Fang F, Tang Y, Ding J. Surface spermidine functionalized PEGylated poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery. RSC Adv 2017. [DOI: 10.1039/c7ra02447a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SPD functionalized nanoparticles could target the delivery of a drug into tumor cells by binding specifically with PTS.
Collapse
Affiliation(s)
- Jianming Li
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Juan Mao
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Jing Tang
- Department of Pharmaceutics
- Changsha Medical University
- Changsha 410219
- China
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Fengling Fang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Yana Tang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
192
|
dos Santos PP, Flôres SH, de Oliveira Rios A, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|