151
|
Garavello M, Cuenca J, Dreissig S, Fuchs J, Navarro L, Houben A, Aleza P. Analysis of Crossover Events and Allele Segregation Distortion in Interspecific Citrus Hybrids by Single Pollen Genotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:615. [PMID: 32523591 PMCID: PMC7261893 DOI: 10.3389/fpls.2020.00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/17/2023]
Abstract
In citrus, a classical method of studying crossovers and segregation distortion (SD) is the genetic analysis of progenies. A new strategy combining fluorescence-activated cell sorting and whole genome amplification of haploid pollen nuclei with a large set of molecular markers, offers the opportunity to efficiently determine the frequency of crossovers and the identification of SD without the need to generate segregating populations. Here we have analyzed meiotic crossover events in a pollen nuclei population from "Eureka" lemon and the allelic SD was evaluated in a pollen nuclei population from a clementine × sweet orange hybrid ("CSO"). Data obtained from the "CSO" pollen nuclei population were compared to those obtained from genotyping of a segregating population ("RTSO") arising from a hand-made sexual hybridization between diploid non apomictic selected tangor (mandarin × sweet orange; "RTO" tangor) as female parent pollinated with "CSO" tangor as male parent. The analysis of crossovers rates on chromosome 1 revealed the presence of up to five crossovers events on one arm and four on the corresponding other arm, with an average of 1.97 crossovers per chromosome while no crossover events were observed in five "Eureka" lemon pollen nuclei. The rate of SD observed in "CSO" pollen nuclei (13.8%) was slightly lower than that recovered in the "RTSO" population (20.7%). In the pollen nuclei population, SD was found on linkage group (LG) 2, while the "RTSO" population showed SD on LGs 2 and 7. Potential male gametic selection mechanisms were distinguished in pollen grains, while in the population, mechanisms of gametophytic selection and/or zygotic selection were observed. This methodology is a very useful tool to facilitate research focused on the reproductive biology of citrus and study the mechanisms that affect crossovers and SD.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- Concordia Agricultural Experiment Station, National Agricultural Technology Institute, Entre Ríos, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Pablo Aleza,
| |
Collapse
|
152
|
Clark FE, Kocher TD. Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Sci Rep 2019; 9:20213. [PMID: 31882583 PMCID: PMC6934658 DOI: 10.1038/s41598-019-55774-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/02/2019] [Indexed: 01/16/2023] Open
Abstract
B chromosomes are extra, non-essential chromosomes present in addition to the normal complement of A chromosomes. Many species of cichlid fish in Lake Malawi carry a haploid, female-restricted B chromosome. Here we show that this B chromosome exhibits drive, with an average transmission rate of 70%. The offspring of B-transmitting females exhibit a strongly female-biased sex ratio. Genotyping of these offspring reveals the B chromosome carries a female sex determiner that is epistatically dominant to an XY system on linkage group 7. We suggest that this sex determiner evolved to enhance the meiotic drive of the B chromosome. This is some of the first evidence that female meiotic drive can lead to the invasion of new sex chromosomes solely to benefit the driver, and not to compensate for skewed sex ratios.
Collapse
Affiliation(s)
- Frances E Clark
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|
153
|
Price TAR, Verspoor R, Wedell N. Ancient gene drives: an evolutionary paradox. Proc Biol Sci 2019; 286:20192267. [PMID: 31847767 PMCID: PMC6939918 DOI: 10.1098/rspb.2019.2267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Selfish genetic elements such as selfish chromosomes increase their transmission rate relative to the rest of the genome and can generate substantial cost to the organisms that carry them. Such segregation distorters are predicted to either reach fixation (potentially causing population extinction) or, more commonly, promote the evolution of genetic suppression to restore transmission to equality. Many populations show rapid spread of segregation distorters, followed by the rapid evolution of suppression. However, not all drivers display such flux, some instead persisting at stable frequencies in natural populations for decades, perhaps hundreds of thousands of years, with no sign of suppression evolving or the driver spreading to fixation. This represents a major evolutionary paradox. How can drivers be maintained in the long term at stable frequencies? And why has suppression not evolved as in many other gene drive systems? Here, we explore potential factors that may explain the persistence of drive systems, focusing on the ancient sex-ratio driver in the fly Drosophila pseudoobscura. We discuss potential solutions to the evolutionary mystery of why suppression does not appear to have evolved in this system, and address how long-term stable frequencies of gene drive can be maintained. Finally, we speculate whether ancient drivers may be functionally and evolutionarily distinct to young drive systems.
Collapse
Affiliation(s)
- T. A. R. Price
- Institution for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - R. Verspoor
- Institution for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - N. Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, Cornwall, UK
| |
Collapse
|
154
|
Dyer KA, Hall DW. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc Biol Sci 2019; 286:20192529. [PMID: 31847762 DOI: 10.1098/rspb.2019.2529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the pleiotropic consequences of gene drive systems on host fitness is essential to predict their spread through a host population. Here, we study sex-ratio (SR) X-chromosome drive in the fly Drosophila recens, where SR causes the death of Y-bearing sperm in male carriers. SR males only sire daughters, which all carry SR, thus giving the chromosome a transmission advantage. The prevalence of the SR chromosome appears stable, suggesting pleiotropic costs. It was previously shown that females homozygous for SR are sterile, and here, we test for additional fitness costs of SR. We found that females heterozygous for SR have reduced fecundity and that male SR carriers have reduced fertility in conditions of sperm competition. We then use our fitness estimates to parametrize theoretical models of SR drive and show that the decrease in fecundity and sperm competition performance can account for the observed prevalence of SR in natural populations. In addition, we found that the expected equilibrium frequency of the SR chromosome is particularly sensitive to the degree of multiple mating and performance in sperm competition. Together, our data suggest that the mating system of the organism should be carefully considered during the development of gene drive systems.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
155
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
156
|
Larner W, Price T, Holman L, Wedell N. An X-linked meiotic drive allele has strong, recessive fitness costs in female Drosophila pseudoobscura. Proc Biol Sci 2019; 286:20192038. [PMID: 31771473 DOI: 10.1098/rspb.2019.2038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selfish 'meiotic drive' alleles are transmitted to more than 50% of offspring, allowing them to rapidly invade populations even if they reduce the fitness of individuals carrying them. Theory predicts that drivers should either fix or go extinct, yet some drivers defy these predictions by persisting at low, stable frequencies for decades. One possible explanation for this discrepancy is that drivers are especially costly when homozygous, although empirical tests of this idea are rare and equivocal. Here, we measure the fitness of female Drosophila pseudoobscura carrying zero, one or two copies of the X-linked driver sex ratio (SR). SR had strong negative effects on female offspring production and the probability of reproductive failure, and these effects were largely similar across four genetic backgrounds. SR was especially costly when homozygous. We used our fitness measurements to parametrize a population genetic model, and found that the female fitness costs observed here can explain the puzzlingly low allele frequency of SR in nature. We also use the model to show how spatial variation in female mating behaviour, fitness costs of SR and the reduced siring success of SR males can jointly explain the north-south cline in SR frequencies across North America.
Collapse
Affiliation(s)
- William Larner
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Tom Price
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Luke Holman
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nina Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
157
|
Abstract
Fields such as behavioural and evolutionary ecology are built on the assumption that natural selection leads to organisms that behave as if they are trying to maximise their fitness. However, there is considerable evidence for selfish genetic elements that change the behaviour of individuals to increase their own transmission. How can we reconcile this contradiction? Here we show that: (1) when selfish genetic elements have a greater impact at the individual level, they are more likely to be suppressed, and suppression spreads more quickly; (2) selection on selfish genetic elements leads them towards a greater impact at the individual level, making them more likely to be suppressed; (3) the majority interest within the genome generally prevails over 'cabals' of a few genes, irrespective of genome size, mutation rate and the sophistication of trait distorters. Overall, our results suggest that even when there is the potential for considerable genetic conflict, this will often have negligible impact at the individual level.
Collapse
Affiliation(s)
- Thomas W Scott
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
158
|
Godwin J, Serr M, Barnhill-Dilling SK, Blondel DV, Brown PR, Campbell K, Delborne J, Lloyd AL, Oh KP, Prowse TAA, Saah R, Thomas P. Rodent gene drives for conservation: opportunities and data needs. Proc Biol Sci 2019; 286:20191606. [PMID: 31690240 PMCID: PMC6842857 DOI: 10.1098/rspb.2019.1606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Invasive rodents impact biodiversity, human health and food security worldwide. The biodiversity impacts are particularly significant on islands, which are the primary sites of vertebrate extinctions and where we are reaching the limits of current control technologies. Gene drives may represent an effective approach to this challenge, but knowledge gaps remain in a number of areas. This paper is focused on what is currently known about natural and developing synthetic gene drive systems in mice, some key areas where key knowledge gaps exist, findings in a variety of disciplines relevant to those gaps and a brief consideration of how engagement at the regulatory, stakeholder and community levels can accompany and contribute to this effort. Our primary species focus is the house mouse, Mus musculus, as a genetic model system that is also an important invasive pest. Our primary application focus is the development of gene drive systems intended to reduce reproduction and potentially eliminate invasive rodents from islands. Gene drive technologies in rodents have the potential to produce significant benefits for biodiversity conservation, human health and food security. A broad-based, multidisciplinary approach is necessary to assess this potential in a transparent, effective and responsible manner.
Collapse
Affiliation(s)
- John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Dimitri V. Blondel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Peter R. Brown
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Karl Campbell
- Island Conservation, Charles Darwin Avenue, Puerto Ayora, Galapagos Islands, Ecuador
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Jason Delborne
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Alun L. Lloyd
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin P. Oh
- National Wildlife Research Center, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Thomas A. A. Prowse
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Royden Saah
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- Island Conservation, Charles Darwin Avenue, Puerto Ayora, Galapagos Islands, Ecuador
| | - Paul Thomas
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
159
|
Bird A. The Selfishness of Law-Abiding Genes. Trends Genet 2019; 36:8-13. [PMID: 31662191 DOI: 10.1016/j.tig.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
Selfish genes were once controversial, but it is now accepted that the genome contains parasitic elements in addition to a complement of conventional genes. This opinion article argues that 'law-abiding' genes also indulge in game playing to ensure their propagation, so that initially nonessential processes secure a genetic heritage. A gene-centered view of this kind can help to explain otherwise puzzling aspects of biology, including the complexity and stability of living systems.
Collapse
Affiliation(s)
- Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
160
|
Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 2019; 286:20191430. [PMID: 31640520 DOI: 10.1098/rspb.2019.1430] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.
Collapse
Affiliation(s)
- Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkley, CA, USA
| | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | | |
Collapse
|
161
|
Finnegan SR, Nitsche L, Mondani M, Camus MF, Fowler K, Pomiankowski A. Does meiotic drive alter male mate preference? Behav Ecol 2019. [DOI: 10.1093/beheco/arz176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractMale mate preferences have been demonstrated across a range of species, including the Malaysian stalk-eyed fly, Teleopsis dalmanni. This species is subject to sex-ratio (SR), an X-linked male meiotic driver, which causes the dysfunction of Y-sperm and the production of all-female broods. While there has been work considering female avoidance of meiotic drive males, the mating decisions of drive-bearing males have not been considered previously. Drive males may be less able to bear the cost of choice as SR is associated with a low-frequency inversion that causes reduced organismal fitness. Drive males may also experience weaker selection for preference maintenance if they are avoided by females. Using binary choice trials, across two experiments, we confirmed male preference for large (fecund) females but found no evidence that the strength of male preference differs between drive and standard males. We showed that large eyespan males displayed strong preference for large females, whereas small eyespan males showed no preference. Taken together, these results suggest that, even though meiotic drive is associated with lower genetic quality, it does not directly interfere with male mate preference among available females. However, as drive males tend to have smaller eyespan (albeit only ~5% on average), this will to a minor extent weaken their strength of preference.
Collapse
Affiliation(s)
- Sam Ronan Finnegan
- Department of Genetics, Evolution and Environment, University College London, London, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Leslie Nitsche
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Matteo Mondani
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kevin Fowler
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, London, UK
- CoMPLEX, University College London, London, UK
| |
Collapse
|
162
|
Wong HWS, Holman L. Fitness consequences of the selfish supergene Segregation Distorter. J Evol Biol 2019; 33:89-100. [PMID: 31605400 DOI: 10.1111/jeb.13549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/04/2019] [Indexed: 12/01/2022]
Abstract
Segregation distorters are selfish genetic elements that subvert Mendelian inheritance, often by destroying gametes that do not carry the distorter. Simple theoretical models predict that distorter alleles will either spread to fixation or stabilize at some high intermediate frequency. However, many distorters have substantially lower allele frequencies than predicted by simple models, suggesting that key sources of selection remain to be discovered. Here, we measured the fitness of Drosophila melanogaster adults and juveniles carrying zero, one or two copies of three different variants of the naturally occurring supergene Segregation Distorter (SD), in order to investigate why SD alleles remain relatively rare within populations despite being preferentially inherited. First, we show that the three SD variants differ in the severity and dominance of the fitness costs they impose on individuals carrying them. Second, SD-carrying parents produced less fit offspring in some crosses, independent of offspring genotype, indicating that SD alleles can have nongenetic, transgenerational costs in addition to their direct costs. Third, we found that SD carriers sometimes produce a biased offspring sex ratio, perhaps due to off-target effects of SD on the sex chromosomes. Finally, we used a theoretical model to investigate how sex ratio and transgenerational effects alter the population genetics of distorter alleles; accounting for these additional costs helps to explain why real-world segregation distorter alleles are rarer than predicted.
Collapse
Affiliation(s)
- Heidi W S Wong
- School of Biosciences, University of Melbourne, Parkville, Vic., Australia
| | - Luke Holman
- School of Biosciences, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
163
|
Abstract
Synthetic gene drives may soon be used to suppress or eliminate populations of disease vectors, pathogens, invasive species, and agricultural pests. Recent proposals have focused on using Z-linked gene drives to control species with ZW sex determination, which include Lepidopteran pests, parasitic trematodes, and cane toads. These proposals include Z-linked 'W-shredders', which would suppress populations by cleaving the W chromosome and causing females to produce only sons, as well as Z-linked female-sterilizing gene drives. Here, I use eco-evolutionary simulations to evaluate the potential of some proposed Z-linked gene drives, and to produce recommendations regarding their design and use. The simulations show that W-shredders are likely to be highly effective at eradicating populations provided that resistance to W-shredding cannot evolve. However, W-shredder alleles can invade populations from very low frequencies, making it difficult to eliminate specific populations while leaving nearby populations untouched; this issue may restrict their possible uses.
Collapse
Affiliation(s)
- Luke Holman
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
164
|
Reynolds LA, Hornett EA, Jiggins CD, Hurst GDD. Suppression of Wolbachia-mediated male-killing in the butterfly Hypolimnas bolina involves a single genomic region. PeerJ 2019; 7:e7677. [PMID: 31592190 PMCID: PMC6777490 DOI: 10.7717/peerj.7677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Sex ratio distorting agents (maternally inherited symbionts and meiotically-driving sex chromosomes) are common in insects. When these agents rise to high frequencies they create strong population sex ratio bias and selection then favours mutations that act to restore the rare sex. Despite this strong selection pressure, the evolution of mutations that suppress sex ratio distorting elements appears to be constrained in many cases, where sex-biased populations persist for many generations. This scenario has been observed in the butterfly Hypolimnas bolina, where Wolbachia-mediated male killing endured for 800–1,000 generations across multiple populations before the evolution of suppression. Here we test the hypothesis that this evolutionary lag is the result of suppression being a multilocus trait requiring multiple mutations. Methods We developed genetic markers, based on conservation of synteny, for each H. bolina chromosome and verified coverage using recombinational mapping. We then used a Wolbachia-infected mapping family to assess each chromosome for the presence of loci required for male survival, as determined by the presence of markers in all surviving sons. Results Informative markers were obtained for each of the 31 chromosomes in H. bolina. The only marker that cosegregated with suppression was located on chromosome 25. A genomic region necessary for suppression has previously been located on this chromosome. We therefore conclude that a single genomic region of the H. bolina genome is necessary for male-killing suppression. Discussion The evolutionary lag observed in our system is not caused by a need for changes at multiple genomic locations. The findings favour hypotheses in which either multiple mutations are required within a single genomic region, or the suppressor mutation is a singularly rare event.
Collapse
Affiliation(s)
- Louise A Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emily A Hornett
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
165
|
Lea JK, Unckless RL. An assessment of the immune costs associated with meiotic drive elements in Drosophila. Proc Biol Sci 2019; 286:20191534. [PMID: 31530140 PMCID: PMC6784720 DOI: 10.1098/rspb.2019.1534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Most organisms are constantly adapting to pathogens and parasites that exploit their host for their own benefit. Less studied, but perhaps more ubiquitous, are intragenomic parasites or selfish genetic elements. These include transposable elements, selfish B chromosomes and meiotic drivers that promote their own replication without regard to fitness effects on hosts. Therefore, intragenomic parasites are also a constant evolutionary pressure on hosts. Gamete-killing meiotic drive elements are often associated with large chromosomal inversions that reduce recombination between the drive and wild-type chromosomes. This reduced recombination is thought to reduce the efficacy of selection on the drive chromosome and allow for the accumulation of deleterious mutations. We tested whether gamete-killing meiotic drive chromosomes were associated with reduced immune defence against two bacterial pathogens in three species of Drosophila. We found little evidence of reduced immune defence in lines with meiotic drive. One line carrying the Drosophila melanogaster autosomal Segregation Distorter did show reduced defence, but we were unable to attribute that reduced defence to either genotype or immune gene expression differences. Our results suggest that though gamete-killing meiotic drive chromosomes probably accumulate deleterious mutations, those mutations do not result in reduced capacity for immune defence.
Collapse
Affiliation(s)
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
166
|
Barrett LG, Legros M, Kumaran N, Glassop D, Raghu S, Gardiner DM. Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proc Biol Sci 2019; 286:20191515. [PMID: 31551052 PMCID: PMC6784734 DOI: 10.1098/rspb.2019.1515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Plant species, populations and communities are under threat from climate change, invasive pathogens, weeds and habitat fragmentation. Despite considerable research effort invested in genome engineering for crop improvement, the development of genetic tools for the management of wild plant populations has rarely been given detailed consideration. Gene drive systems that allow direct genetic management of plant populations via the spread of fitness-altering genetic modifications could be of great utility. However, despite the rapid development of synthetic tools and their enormous promise, little explicit consideration has been given to their application in plants and, to date, they remain untested. This article considers the potential utility of gene drives for the management of wild plant populations, and examines the factors that might influence the design, spread and efficacy of synthetic drives. To gain insight into optimal ways to design and deploy synthetic drive systems, we investigate the diversity of mechanisms underlying natural gene drives and their dynamics within plant populations and species. We also review potential approaches for engineering gene drives and discuss their potential application to plant genomes. We highlight the importance of considering the impact of plant life-history and genetic architecture on the dynamics of drive, investigate the potential for different types of resistance evolution, and touch on the ethical, regulatory and social challenges ahead.
Collapse
Affiliation(s)
- Luke G. Barrett
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, Australia
| | - Mathieu Legros
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - S. Raghu
- CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
167
|
Finnegan SR, White NJ, Koh D, Camus MF, Fowler K, Pomiankowski A. Meiotic drive reduces egg-to-adult viability in stalk-eyed flies. Proc Biol Sci 2019; 286:20191414. [PMID: 31480972 PMCID: PMC6742991 DOI: 10.1098/rspb.2019.1414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 11/12/2022] Open
Abstract
A number of species are affected by Sex-Ratio (SR) meiotic drive, a selfish genetic element located on the X-chromosome that causes dysfunction of Y-bearing sperm. SR is transmitted to up to 100% of offspring, causing extreme sex ratio bias. SR in several species is found in a stable polymorphism at a moderate frequency, suggesting there must be strong frequency-dependent selection resisting its spread. We investigate the effect of SR on female and male egg-to-adult viability in the Malaysian stalk-eyed fly, Teleopsis dalmanni. SR meiotic drive in this species is old, and appears to be broadly stable at a moderate (approx. 20%) frequency. We use large-scale controlled crosses to estimate the strength of selection acting against SR in female and male carriers. We find that SR reduces the egg-to-adult viability of both sexes. In females, homozygous females experience greater reduction in viability (sf = 0.242) and the deleterious effects of SR are additive (h = 0.511). The male deficit in viability (sm = 0.214) is not different from that in homozygous females. The evidence does not support the expectation that deleterious side effects of SR are recessive or sex-limited. We discuss how these reductions in egg-to-adult survival, as well as other forms of selection acting on SR, may maintain the SR polymorphism in this species.
Collapse
Affiliation(s)
- Sam Ronan Finnegan
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nathan Joseph White
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| | - Dixon Koh
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - M. Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Kevin Fowler
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
168
|
A natural gene drive system influences bovine tuberculosis susceptibility in African buffalo: Possible implications for disease management. PLoS One 2019; 14:e0221168. [PMID: 31483802 PMCID: PMC6726202 DOI: 10.1371/journal.pone.0221168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022] Open
Abstract
Bovine tuberculosis (BTB) is endemic to the African buffalo (Syncerus caffer) of Hluhluwe-iMfolozi Park (HiP) and Kruger National Park, South Africa. In HiP, the disease has been actively managed since 1999 through a test-and-cull procedure targeting BTB-positive buffalo. Prior studies in Kruger showed associations between microsatellite alleles, BTB and body condition. A sex chromosomal meiotic drive, a form of natural gene drive, was hypothesized to be ultimately responsible. These associations indicate high-frequency occurrence of two types of male-deleterious alleles (or multiple-allele haplotypes). One type negatively affects body condition and BTB resistance in both sexes. The other type has sexually antagonistic effects: negative in males but positive in females. Here, we investigate whether a similar gene drive system is present in HiP buffalo, using 17 autosomal microsatellites and microsatellite-derived Y-chromosomal haplotypes from 401 individuals, culled in 2002–2004. We show that the association between autosomal microsatellite alleles and BTB susceptibility detected in Kruger, is also present in HiP. Further, Y-haplotype frequency dynamics indicated that a sex chromosomal meiotic drive also occurred in HiP. BTB was associated with negative selection of male-deleterious alleles in HiP, unlike positive selection in Kruger. Birth sex ratios were female-biased. We attribute negative selection and female-biased sex ratios in HiP to the absence of a Y-chromosomal sex-ratio distorter. This distorter has been hypothesized to contribute to positive selection of male-deleterious alleles and male-biased birth sex ratios in Kruger. As previously shown in Kruger, microsatellite alleles were only associated with male-deleterious effects in individuals born after wet pre-birth years; a phenomenon attributed to epigenetic modification. We identified two additional allele types: male-specific deleterious and beneficial alleles, with no discernible effect on females. Finally, we discuss how our findings may be used for breeding disease-free buffalo and implementing BTB test-and-cull programs.
Collapse
|
169
|
Xue W, Anderson SN, Wang X, Yang L, Crisp PA, Li Q, Noshay J, Albert PS, Birchler JA, Bilinski P, Stitzer MC, Ross-Ibarra J, Flint-Garcia S, Chen X, Springer NM, Doebley JF. Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics 2019; 213:143-160. [PMID: 31320409 PMCID: PMC6727801 DOI: 10.1534/genetics.119.302378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it.
Collapse
Affiliation(s)
- Wei Xue
- College of Agronomy, Shenyang Agricultural University, 110866 Liaoning Province, China
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
| | - Liyan Yang
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Life Science College, Shanxi Normal University, 041004 Shanxi Province, China
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Qing Li
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Paul Bilinski
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Michelle C Stitzer
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
170
|
Manser A, Cornell SJ, Sutter A, Blondel DV, Serr M, Godwin J, Price TAR. Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc Biol Sci 2019; 286:20190852. [PMID: 31431159 PMCID: PMC6732378 DOI: 10.1098/rspb.2019.0852] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
House mice are a major ecosystem pest, particularly threatening island ecosystems as a non-native invasive species. Rapid advances in synthetic biology offer new avenues to control pest species for biodiversity conservation. Recently, a synthetic sperm-killing gene drive construct called t-Sry has been proposed as a means to eradicate target mouse populations owing to a lack of females. A factor that has received little attention in the discussion surrounding such drive applications is polyandry. Previous research has demonstrated that sperm-killing drivers are extremely damaging to a male's sperm competitive ability. Here, we examine the importance of this effect on the t-Sry system using a theoretical model. We find that polyandry substantially hampers the spread of t-Sry such that release efforts have to be increased three- to sixfold for successful eradication. We discuss the implications of our finding for potential pest control programmes, the risk of drive spread beyond the target population, and the emergence of drive resistance. Our work highlights that a solid understanding of the forces that determine drive dynamics in a natural setting is key for successful drive application, and that exploring the natural diversity of gene drives may inform effective gene drive design.
Collapse
Affiliation(s)
- Andri Manser
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Stephen J. Cornell
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Andreas Sutter
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich, UK
| | - Dimitri V. Blondel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Tom A. R. Price
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| |
Collapse
|
171
|
Brady SP, Bolnick DI, Barrett RDH, Chapman L, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Gonzalez A, Guichard F, Lamy T, Lane J, McAdam AG, Newman AEM, Paccard A, Robertson B, Rolshausen G, Schulte PM, Simons AM, Vellend M, Hendry A. Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. Am Nat 2019; 194:495-515. [PMID: 31490718 DOI: 10.1086/705020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Collapse
|
172
|
Daugherty MD, Zanders SE. Gene conversion generates evolutionary novelty that fuels genetic conflicts. Curr Opin Genet Dev 2019; 58-59:49-54. [PMID: 31466040 DOI: 10.1016/j.gde.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022]
Abstract
Genetic conflicts arise when the evolutionary interests of two genetic elements are not aligned. Conflicts between genomes (e.g. pathogen versus host) or within the same genome (e.g. internal parasitic DNA sequences versus the rest of the host genome) can both foster 'molecular arms races', in which genes on both sides of the conflict rapidly evolve due to bouts of adaptation and counter-adaptation. Importantly, a source of genetic novelty is needed to fuel these arms races. In this review, we highlight gene conversion as a major force in generating the novel alleles on which selection can act. Using examples from both intergenomic and intragenomic conflicts, we feature the mechanisms by which gene conversion facilitates the rapid evolution of genes in conflict.
Collapse
Affiliation(s)
- Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
173
|
Vogan AA, Ament-Velásquez SL, Granger-Farbos A, Svedberg J, Bastiaans E, Debets AJ, Coustou V, Yvanne H, Clavé C, Saupe SJ, Johannesson H. Combinations of Spok genes create multiple meiotic drivers in Podospora. eLife 2019; 8:46454. [PMID: 31347500 PMCID: PMC6660238 DOI: 10.7554/elife.46454] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/09/2019] [Indexed: 11/13/2022] Open
Abstract
Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within a population. We identify two novel Spok homologs located within a large (74–167 kbp) region (the Spok block) that resides in different chromosomal locations in different strains. We confirm that the SPOK protein performs both killing and resistance functions and show that these activities are dependent on distinct domains, a predicted nuclease and kinase domain. Genomic and phylogenetic analyses across ascomycetes suggest that the Spok genes disperse through cross-species transfer, and evolve by duplication and diversification within lineages. In many organisms, most cells carry two versions of a given gene, one coming from the mother and the other from the father. An exception is sexual cells such as eggs, sperm, pollen or spores, which should only contain one variant of a gene. During their formation, these cells usually have an equal chance of inheriting one of the two gene versions. However, a certain class of gene variants called meiotic drivers can cheat this process and end up in more than half of the sexual cells; often, the cells that contain the drivers can kill sibling cells that do not carry these variants. This results in the selfish genetic elements spreading through populations at a higher rate, sometimes with severe consequences such as shifting the ratio of males to females. Meiotic drivers have been discovered in a wide range of organisms, from corn to mice to fruit flies and bread mold. They also exist in the fungus Podospora anserina, where they are called ‘spore killers’. Fungi are often used to study complex genetic processes, yet the identity and mode of action of spore killers in P. anserina were still unknown. Vogan, Ament-Velásquez et al. used a combination of genetic methods to identify three genes from the Spok family which are responsible for certain spores being able to kill their siblings. Two of these were previously unknown, and they could be found in different locations throughout the genome as part of a larger genetic region. Depending on the combination of Spok genes it carries, a spore can kill or be protected against other spores that contain different permutations of the genes. Copies of these genes were also shown to be present in other fungi, including species that are a threat to crops. Scientists have already started to create synthetic meiotic drivers to manipulate how certain traits are inherited within a population. This could be useful to control or eradicate pests and insects that transmit dangerous diseases. The results by Vogan, Ament-Velásquez et al. shine a light on the complex ways that natural meiotic drivers work, including how they can be shared between species; this knowledge could inform how to safely deploy synthetic drivers in the wild.
Collapse
Affiliation(s)
- Aaron A Vogan
- Organismal biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
De Carvalho M, Zanders SE. A family of killers. eLife 2019; 8:49211. [PMID: 31347501 PMCID: PMC6660213 DOI: 10.7554/elife.49211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022] Open
Abstract
Spok genes are meiotic drivers that increase their own chances of transmission by killing gametes that do not inherit them.
Collapse
Affiliation(s)
- Mickaël De Carvalho
- Stowers Institute for Medical Research, Kansas City, United States.,Open University, Milton Keynes, United Kingdom
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
175
|
Abstract
Conflict between groups of individuals is a prevalent feature in human societies. A common theoretical explanation for intergroup conflict is that it provides benefits to individuals within groups in the form of reproduction-enhancing resources, such as food, territory, or mates. However, it is not always the case that conflict results from resource scarcity. Here, we show that intergroup conflict can evolve, despite not providing any benefits to individuals or their groups. The mechanism underlying this process is acculturation: the adoption, through coercion or imitation, of the victor's cultural traits. Acculturation acts as a cultural driver (in analogy to meiotic drivers) favoring the transmission of conflict, despite a potential cost to both the host group as a whole and to individuals in that group. We illustrate this process with a two-level model incorporating state-dependent event rates and evolving traits for both individuals and groups. Individuals can become "warriors" who specialize in intergroup conflicts, but are costly otherwise. Additionally, groups are characterized by cultural traits, such as their tendency to engage in conflict with other groups and their tendency for acculturation. We show that, if groups engage in conflicts, group selection will favor the production of warriors. Then, we show that group engagement can evolve if it is associated with acculturation. Finally, we study the coevolution of engagement and acculturation. Our model shows that horizontal transmission of culture between interacting groups can act as a cultural driver and lead to the maintenance of costly behaviors by both individuals and groups.
Collapse
|
176
|
Enforcement is central to the evolution of cooperation. Nat Ecol Evol 2019; 3:1018-1029. [PMID: 31239554 DOI: 10.1038/s41559-019-0907-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/26/2019] [Indexed: 01/21/2023]
Abstract
Cooperation occurs at all levels of life, from genomes, complex cells and multicellular organisms to societies and mutualisms between species. A major question for evolutionary biology is what these diverse systems have in common. Here, we review the full breadth of cooperative systems and find that they frequently rely on enforcement mechanisms that suppress selfish behaviour. We discuss many examples, including the suppression of transposable elements, uniparental inheritance of mitochondria and plastids, anti-cancer mechanisms, reciprocation and punishment in humans and other vertebrates, policing in eusocial insects and partner choice in mutualisms between species. To address a lack of accompanying theory, we develop a series of evolutionary models that show that the enforcement of cooperation is widely predicted. We argue that enforcement is an underappreciated, and often critical, ingredient for cooperation across all scales of biological organization.
Collapse
|
177
|
Dixon G, Kitano J, Kirkpatrick M. The Origin of a New Sex Chromosome by Introgression between Two Stickleback Fishes. Mol Biol Evol 2019; 36:28-38. [PMID: 30272243 PMCID: PMC6340465 DOI: 10.1093/molbev/msy181] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introgression is increasingly recognized as a source of genetic diversity that fuels adaptation. Its role in the evolution of sex chromosomes, however, is not well known. Here, we confirm the hypothesis that the Y chromosome in the ninespine stickleback, Pungitius pungitius, was established by introgression from the Amur stickleback, P. sinensis. Using whole genome resequencing, we identified a large region of Chr 12 in P. pungitius that is diverged between males and females. Within but not outside of this region, several lines of evidence show that the Y chromosome of P. pungitius shares a most recent common ancestor not with the X chromosome, but with the homologous chromosome in P. sinensis. Accumulation of repetitive elements and gene expression changes on the new Y are consistent with a young sex chromosome in early stages of degeneration, but other hallmarks of Y chromosomes have not yet appeared. Our findings indicate that porous species boundaries can trigger rapid sex chromosome evolution.
Collapse
Affiliation(s)
- Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX
| |
Collapse
|
178
|
Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O’Brien PC, Serdyukova NA, Ferguson-Smith MA, Matveevsky S, Bogdanov AS. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 (Mammalia, Rodentia). COMPARATIVE CYTOGENETICS 2019; 13:147-177. [PMID: 31275526 PMCID: PMC6597615 DOI: 10.3897/compcytogen.v13i2.34224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 06/01/2023]
Abstract
Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Elena A. Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Abdusattor S. Saidov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, TajikistanPavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of TajikistanDushanbeTajikistan
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State University, Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| | - Patricia C.M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Natalia A. Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, RussiaVavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexey S. Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
179
|
Vanthournout B, Busck MM, Bechsgaard J, Hendrickx F, Schramm A, Bilde T. Male spiders control offspring sex ratio through greater production of female-determining sperm. Proc Biol Sci 2019; 285:rspb.2017.2887. [PMID: 29563266 DOI: 10.1098/rspb.2017.2887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Sex allocation theory predicts that when sons and daughters have different reproductive values, parents should adjust offspring sex ratio towards the sex with the higher fitness return. Haplo-diploid species directly control offspring sex ratio, but species with chromosomal sex determination (CSD) were presumed to be constrained by Mendelian segregation. There is now increasing evidence that CSD species can adjust sex ratio strategically, but the underlying mechanism is not well understood. One hypothesis states that adaptive control is more likely to evolve in the heterogametic sex through a bias in gamete production. We investigated this hypothesis in males as the heterogametic sex in two social spider species that consistently show adaptive female-biased sex ratio and in one subsocial species that is characterized by equal sex ratio. We quantified the production of male (0) and female (X) determining sperm cells using flow cytometry, and show that males of social species produce significantly more X-carrying sperm than 0-sperm, on average 70%. This is consistent with the production of more daughters. Males of the subsocial species produced a significantly lower bias of 54% X-carrying sperm. We also investigated whether inter-genomic conflict between hosts and their endosymbionts may explain female bias. Next generation sequencing showed that five common genera of bacterial endosymbionts known to affect sex ratio are largely absent, ruling out that endosymbiont bacteria bias sex ratio in social spiders. Our study provides evidence for paternal control over sex allocation through biased gamete production as a mechanism by which the heterogametic sex in CSD species adaptively adjust offspring sex ratio.
Collapse
Affiliation(s)
- Bram Vanthournout
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark.,Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Mette Marie Busck
- Department of Bioscience, Section for Microbiology, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| | - Jesper Bechsgaard
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| | - Frederik Hendrickx
- Biology Department, Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.,Entomology Department, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Andreas Schramm
- Department of Bioscience, Section for Microbiology, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, Building 1540, 8000 Aarhus C, Denmark
| |
Collapse
|
180
|
Abstract
In sexual reproduction, opportunities are limited and the stakes are high. This inevitably leads to conflict. One pervasive conflict occurs within genomes between alternative alleles at heterozygous loci. Each gamete and thus each offspring will inherit only one of the two alleles from a heterozygous parent. Most alleles 'play fair' and have a 50% chance of being included in any given gamete. However, alleles can gain an enormous advantage if they act selfishly to force their own transmission into more than half, sometimes even all, of the functional gametes. These selfish alleles are known as 'meiotic drivers', and their cheating often incurs a high cost on the fertility of eukaryotes ranging from plants to mammals. Here, we review how several types of meiotic drivers directly and indirectly contribute to infertility, and argue that a complete picture of the genetics of infertility will require focusing on both the standard alleles - those that play fair - as well as selfish alleles involved in genetic conflict.
Collapse
Affiliation(s)
- Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
181
|
Abstract
Natural selection works best when the two alleles in a diploid organism are transmitted to offspring at equal frequencies. Despite this, selfish loci known as meiotic drivers that bias their own transmission into gametes are found throughout eukaryotes. Drive is thought to be a powerful evolutionary force, but empirical evolutionary analyses of drive systems are limited by low numbers of identified meiotic drive genes. Here, we analyze the evolution of the wtf gene family of Schizosaccharomyces pombe that contains both killer meiotic drive genes and suppressors of drive. We completed assemblies of all wtf genes for two S. pombe isolates, as well as a subset of wtf genes from over 50 isolates. We find that wtf copy number can vary greatly between isolates and that amino acid substitutions, expansions and contractions of DNA sequence repeats, and nonallelic gene conversion between family members all contribute to dynamic wtf gene evolution. This work demonstrates the power of meiotic drive to foster rapid evolution and identifies a recombination mechanism through which transposons can indirectly mobilize meiotic drivers.
Collapse
Affiliation(s)
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
182
|
Meade LC, Dinneen D, Kad R, Lynch DM, Fowler K, Pomiankowski A. Ejaculate sperm number compensation in stalk-eyed flies carrying a selfish meiotic drive element. Heredity (Edinb) 2019; 122:916-926. [PMID: 30467401 PMCID: PMC6781104 DOI: 10.1038/s41437-018-0166-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 11/08/2022] Open
Abstract
Meiotic drive genes cause the degeneration of non-carrier sperm to bias transmission in their favour. Males carrying meiotic drive are expected to suffer reduced fertility due to the loss of sperm and associated harmful side-effects of the mechanisms causing segregation distortion. However, sexual selection should promote adaptive compensation to overcome these deleterious effects. We investigate this using SR, an X-linked meiotic drive system in the stalk-eyed fly, Teleopsis dalmanni. Despite sperm destruction caused by drive, we find no evidence that SR males transfer fewer sperm to the female's spermathecae (long-term storage organs). Likewise, migration from the spermathecae to the ventral receptacle for fertilisation is similar for SR and wildtype male sperm, both over short and long time-frames. In addition, sperm number in storage is similar even after males have mated multiple times. Our study challenges conventional assumptions about the deleterious effects of drive on male fertility. This suggests that SR male ejaculate investment per ejaculate has been adjusted to match sperm delivery by wildtype males. We interpret these results in the light of recent theoretical models that predict how ejaculate strategies evolve when males vary in the resources allocated to reproduction or in sperm fertility. Adaptive compensation is likely in species where meiotic drive has persisted over many generations and predicts a higher stable frequency of drive maintained in wild populations. Future research must determine exactly how drive males compensate for failed spermatogenesis, and how such compensation may trade-off with investment in other fitness traits.
Collapse
Affiliation(s)
- Lara C Meade
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Deidre Dinneen
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ridhima Kad
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Dominic M Lynch
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin Fowler
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
- CoMPLEX, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
183
|
Bourgeois Y, Boissinot S. On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes (Basel) 2019; 10:genes10060419. [PMID: 31151307 PMCID: PMC6627506 DOI: 10.3390/genes10060419] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Stéphane Boissinot
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
184
|
Crysnanto D, Obbard DJ. Widespread gene duplication and adaptive evolution in the RNA interference pathways of the Drosophila obscura group. BMC Evol Biol 2019; 19:99. [PMID: 31068148 PMCID: PMC6505081 DOI: 10.1186/s12862-019-1425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) related pathways provide defense against viruses and transposable elements, and have been implicated in the suppression of meiotic drive elements. Genes in these pathways often exhibit high levels of adaptive substitution, and over longer timescales show gene duplication and loss-most likely as a consequence of their role in mediating conflict with these parasites. This is particularly striking for Argonaute 2 (Ago2), which is ancestrally the key effector of antiviral RNAi in insects, but has repeatedly formed new testis-specific duplicates in the recent history of the obscura species-group of Drosophila. RESULTS Here we take advantage of publicly available genomic and transcriptomic data to identify six further RNAi-pathway genes that have duplicated in this clade of Drosophila, and examine their evolutionary history. As seen for Ago2, we observe high levels of adaptive amino-acid substitution and changes in sex-biased expression in many of the paralogs. However, our phylogenetic analysis suggests that co-duplications of the RNAi machinery were not synchronous, and our expression analysis fails to identify consistent male-specific expression. CONCLUSIONS These results confirm that RNAi genes, including genes of the antiviral and piRNA pathways, have undergone multiple independent duplications and that their history has been particularly labile within the obscura group. However, they also suggest that the selective pressures driving these changes have not been consistent, implying that more than one selective agent may be responsible.
Collapse
Affiliation(s)
- Danang Crysnanto
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, UK
- Animal Genomics, ETH Zurich, Zurich, Switzerland
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, UK
- Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
185
|
Frieß JL, von Gleich A, Giese B. Gene drives as a new quality in GMO releases-a comparative technology characterization. PeerJ 2019; 7:e6793. [PMID: 31110918 PMCID: PMC6501761 DOI: 10.7717/peerj.6793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/15/2019] [Indexed: 01/10/2023] Open
Abstract
Compared to previous releases of genetically modified organisms (GMOs) which were primarily plants, gene drives represent a paradigm shift in the handling of GMOs: Current regulation of the release of GMOs assumes that for specific periods of time a certain amount of GMOs will be released in a particular region. However, now a type of genetic technology arises whose innermost principle lies in exceeding these limits-the transformation or even eradication of wild populations. The invasive character of gene drives demands a thorough analysis of their functionalities, reliability and potential impact. But such investigations are hindered by the fact that an experimental field test would hardly be reversible. Therefore, an appropriate prospective assessment is of utmost importance for an estimation of the risk potential associated with the application of gene drives. This work is meant to support the inevitable characterization of gene drives by a comparative approach of prospective technology assessment with a focus on potential sources of risk. Therein, the hazard and exposure potential as well as uncertainties with regard to the performance of synthetic gene drives are addressed. Moreover, a quantitative analysis of their invasiveness should enable a differentiated evaluation of their power to transform wild populations.
Collapse
Affiliation(s)
- Johannes L. Frieß
- Institute for Safety/Security and Risk Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Arnim von Gleich
- Department of Technology Design and Development, Faculty of Production Engineering, University of Bremen, Germany
| | - Bernd Giese
- Institute for Safety/Security and Risk Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| |
Collapse
|
186
|
Identification of rfk-1, a Meiotic Driver Undergoing RNA Editing in Neurospora. Genetics 2019; 212:93-110. [PMID: 30918007 DOI: 10.1534/genetics.119.302122] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Sk-2 is a meiotic drive element that was discovered in wild populations of Neurospora fungi over 40 years ago. While early studies quickly determined that Sk-2 transmits itself through sexual reproduction in a biased manner via spore killing, the genetic factors responsible for this phenomenon have remained mostly unknown. Here, we identify and characterize rfk-1, a gene required for Sk-2-based spore killing. The rfk-1 gene contains four exons, three introns, and two stop codons, the first of which undergoes RNA editing to a tryptophan codon during sexual development. Translation of an unedited rfk-1 transcript in vegetative tissue is expected to produce a 102-amino acid protein, whereas translation of an edited rfk-1 transcript in sexual tissue is expected to produce a protein with 130 amino acids. These findings indicate that unedited and edited rfk-1 transcripts exist and that these transcripts could have different roles with respect to the mechanism of meiotic drive by spore killing. Regardless of RNA editing, spore killing only succeeds if rfk-1 transcripts avoid silencing caused by a genome defense process called meiotic silencing by unpaired DNA (MSUD). We show that rfk-1's MSUD avoidance mechanism is linked to the genomic landscape surrounding the rfk-1 gene, which is located near the Sk-2 border on the right arm of chromosome III. In addition to demonstrating that the location of rfk-1 is critical to spore-killing success, our results add to accumulating evidence that MSUD helps protect Neurospora genomes from complex meiotic drive elements.
Collapse
|
187
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|
188
|
Fuller ZL, Koury SA, Phadnis N, Schaeffer SW. How chromosomal rearrangements shape adaptation and speciation: Case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol 2019; 28:1283-1301. [PMID: 30402909 PMCID: PMC6475473 DOI: 10.1111/mec.14923] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
The gene arrangements of Drosophila have played a prominent role in the history of evolutionary biology from the original quantification of genetic diversity to current studies of the mechanisms for the origin and establishment of new inversion mutations within populations and their subsequent fixation between species supporting reproductive barriers. This review examines the genetic causes and consequences of inversions as recombination suppressors and the role that recombination suppression plays in establishing inversions in populations as they are involved in adaptation within heterogeneous environments. This often results in the formation of clines of gene arrangement frequencies among populations. Recombination suppression leads to the differentiation of the gene arrangements which may accelerate the accumulation of fixed genetic differences among populations. If these fixed mutations cause incompatibilities, then inversions pose important reproductive barriers between species. This review uses the evolution of inversions in Drosophila pseudoobscura and D. persimilis as a case study for how inversions originate, establish and contribute to the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Zachary L. Fuller
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301
| | - Spencer A. Koury
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Nitin Phadnis
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Stephen W. Schaeffer
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301
| |
Collapse
|
189
|
Seymour DK, Chae E, Arioz BI, Koenig D, Weigel D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity (Edinb) 2019; 122:294-304. [PMID: 29955170 PMCID: PMC6169738 DOI: 10.1038/s41437-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
The equal probability of transmission of alleles from either parent during sexual reproduction is a central tenet of genetics and evolutionary biology. Yet, there are many cases where this rule is violated. The preferential transmission of alleles or genotypes is termed transmission ratio distortion (TRD). Examples of TRD have been identified in many species, implying that they are universal, but the resolution of species-wide studies of TRD are limited. We have performed a species-wide screen for TRD in over 500 segregating F2 populations of Arabidopsis thaliana using pooled reduced-representation genome sequencing. TRD was evident in up to a quarter of surveyed populations. Most populations exhibited distortion at only one genomic region, with some regions being repeatedly affected in multiple populations. Our results begin to elucidate the species-level architecture of biased transmission of genetic material in A. thaliana, and serve as a springboard for future studies into the biological basis of TRD in this species.
Collapse
Affiliation(s)
- Danelle K Seymour
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Burak I Arioz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
190
|
de la Filia AG, Fenn-Moltu G, Ross L. No evidence for an intragenomic arms race under paternal genome elimination in Planococcus mealybugs. J Evol Biol 2019; 32:491-504. [PMID: 30776169 DOI: 10.1111/jeb.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co-evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three-generation pedigree: microsatellite markers and sex-specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co-evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gyda Fenn-Moltu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
191
|
Abstract
The discovery of neocentromere activity by maize knobs heralded the field of meiotic drive, in which selfish genetic elements exploit meiotic asymmetry to enhance their propagation. A new study reveals the long-awaited basis of this meiotic drive: cytoskeletal motors enable neocentromeric knobs to achieve favorable meiotic positioning and preferential inheritance.
Collapse
Affiliation(s)
- Courtney M Schroeder
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
192
|
Corbett-Detig R, Medina P, Frérot H, Blassiau C, Castric V. Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. Evol Lett 2019; 3:93-103. [PMID: 30788145 PMCID: PMC6369960 DOI: 10.1002/evl3.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Genes that do not segregate in heterozygotes at Mendelian ratios are a potentially important evolutionary force in natural populations. Although the impacts of segregation distortion are widely appreciated, we have little quantitative understanding about how often these loci arise and fix within lineages. Here, we develop a statistical approach for detecting segregation distorting genes from the comprehensive comparison of whole genome sequence data obtained from bulk gamete versus somatic tissues. Our approach enables estimation of map positions and confidence intervals, and quantification of effect sizes of segregation distorters. We apply our method to the pollen of two interspecific F1 hybrids of Arabidopsis lyrata and A. halleri and we identify three loci across eight chromosomes showing significant evidence of segregation distortion in both pollen samples. Based on this, we estimate that novel segregation distortion elements evolve and achieve high frequencies within lineages at a rate of approximately one per 244,000 years. Furthermore, we estimate that haploid‐acting segregation distortion may contribute between 10% and 30% of reduced pollen viability in F1 individuals. Our results indicate haploid acting factors evolve rapidly and dramatically influence segregation in F1 hybrid individuals.
Collapse
Affiliation(s)
- Russell Corbett-Detig
- Genomics Institute and Department of Biomolecular Engineering UC Santa Cruz Santa Cruz California 95064
| | - Paloma Medina
- Genomics Institute and Department of Biomolecular Engineering UC Santa Cruz Santa Cruz California 95064
| | - Hélène Frérot
- Université de Lille CNRS UMR 8198-Evo-Eco-Paleo F-59000 Lille France
| | | | - Vincent Castric
- Université de Lille CNRS UMR 8198-Evo-Eco-Paleo F-59000 Lille France
| |
Collapse
|
193
|
Meiklejohn CD, Landeen EL, Gordon KE, Rzatkiewicz T, Kingan SB, Geneva AJ, Vedanayagam JP, Muirhead CA, Garrigan D, Stern DL, Presgraves DC. Gene flow mediates the role of sex chromosome meiotic drive during complex speciation. eLife 2018; 7:e35468. [PMID: 30543325 PMCID: PMC6292695 DOI: 10.7554/elife.35468] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
During speciation, sex chromosomes often accumulate interspecific genetic incompatibilities faster than the rest of the genome. The drive theory posits that sex chromosomes are susceptible to recurrent bouts of meiotic drive and suppression, causing the evolutionary build-up of divergent cryptic sex-linked drive systems and, incidentally, genetic incompatibilities. To assess the role of drive during speciation, we combine high-resolution genetic mapping of X-linked hybrid male sterility with population genomics analyses of divergence and recent gene flow between the fruitfly species, Drosophila mauritiana and D. simulans. Our findings reveal a high density of genetic incompatibilities and a corresponding dearth of gene flow on the X chromosome. Surprisingly, we find that a known drive element recently migrated between species and, rather than contributing to interspecific divergence, caused a strong reduction in local sequence divergence, undermining the evolution of hybrid sterility. Gene flow can therefore mediate the effects of selfish genetic elements during speciation.
Collapse
Affiliation(s)
| | - Emily L Landeen
- Department of BiologyUniversity of RochesterNew YorkUnited States
| | - Kathleen E Gordon
- School of Biological SciencesUniversity of NebraskaLincolnUnited States
| | | | - Sarah B Kingan
- Department of BiologyUniversity of RochesterNew YorkUnited States
| | - Anthony J Geneva
- Department of BiologyUniversity of RochesterNew YorkUnited States
| | | | | | - Daniel Garrigan
- Department of BiologyUniversity of RochesterNew YorkUnited States
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | | |
Collapse
|
194
|
Habig M, Kema GHJ, Holtgrewe Stukenbrock E. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. eLife 2018; 7:e40251. [PMID: 30543518 PMCID: PMC6331196 DOI: 10.7554/elife.40251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 01/03/2023] Open
Abstract
Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.
Collapse
Affiliation(s)
- Michael Habig
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Gert HJ Kema
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of PhytopathologyWageningen University and ResearchWageningenThe Netherlands
| | - Eva Holtgrewe Stukenbrock
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
195
|
Pieper KE, Unckless RL, Dyer KA. A fast-evolving X-linked duplicate of importin-α2 is overexpressed in sex-ratio drive in Drosophila neotestacea. Mol Ecol 2018; 27:5165-5179. [PMID: 30411843 DOI: 10.1111/mec.14928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 01/31/2023]
Abstract
Selfish genetic elements that manipulate gametogenesis to achieve a transmission advantage are known as meiotic drivers. Sex-ratio X chromosomes (SR) are meiotic drivers that prevent the maturation of Y-bearing sperm in male carriers to result in the production of mainly female progeny. The spread of an SR chromosome can affect host genetic diversity and genome evolution, and can even cause host extinction if it reaches sufficiently high prevalence. Meiotic drivers have evolved independently many times, though only in a few cases is the underlying genetic mechanism known. In this study we use a combination of transcriptomics and population genetics to identify widespread expression differences between the standard (ST) and sex-ratio (SR) X chromosomes of the fly Drosophila neotestacea. We found the X chromosome is enriched for differentially expressed transcripts and that many of these X-linked differentially expressed transcripts had elevated Ka /Ks values between ST and SR, indicative of potential functional differences. We identified a set of candidate transcripts, including a testis-specific, X-linked duplicate of the nuclear transport gene importin-α2 that is overexpressed in SR. We find suggestions of positive selection in the lineage leading to the duplicate and that its molecular evolutionary patterns are consistent with relaxed purifying selection in ST. As these patterns are consistent with involvement in the mechanism of drive in this species, this duplicate is a strong candidate worthy of further functional investigation. Nuclear transport may be a common target for genetic conflict, as the mechanism of the autosomal Segregation Distorter drive system in D. melanogaster involves the same pathway.
Collapse
Affiliation(s)
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, Georgia
| |
Collapse
|
196
|
Allen B, McAvoy A. A mathematical formalism for natural selection with arbitrary spatial and genetic structure. J Math Biol 2018; 78:1147-1210. [PMID: 30430219 DOI: 10.1007/s00285-018-1305-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/29/2018] [Indexed: 12/22/2022]
Abstract
We define a general class of models representing natural selection between two alleles. The population size and spatial structure are arbitrary, but fixed. Genetics can be haploid, diploid, or otherwise; reproduction can be asexual or sexual. Biological events (e.g. births, deaths, mating, dispersal) depend in arbitrary fashion on the current population state. Our formalism is based on the idea of genetic sites. Each genetic site resides at a particular locus and houses a single allele. Each individual contains a number of sites equal to its ploidy (one for haploids, two for diploids, etc.). Selection occurs via replacement events, in which alleles in some sites are replaced by copies of others. Replacement events depend stochastically on the population state, leading to a Markov chain representation of natural selection. Within this formalism, we define reproductive value, fitness, neutral drift, and fixation probability, and prove relationships among them. We identify four criteria for evaluating which allele is selected and show that these become equivalent in the limit of low mutation. We then formalize the method of weak selection. The power of our formalism is illustrated with applications to evolutionary games on graphs and to selection in a haplodiploid population.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, MA, 02115, USA. .,Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, 02138, USA.
| | - Alex McAvoy
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
197
|
Ross KG, Shoemaker D. Unexpected patterns of segregation distortion at a selfish supergene in the fire ant Solenopsis invicta. BMC Genet 2018; 19:101. [PMID: 30404617 PMCID: PMC6223060 DOI: 10.1186/s12863-018-0685-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Sb supergene in the fire ant Solenopsis invicta determines the form of colony social organization, with colonies whose inhabitants bear the element containing multiple reproductive queens and colonies lacking it containing only a single queen. Several features of this supergene - including suppressed recombination, presence of deleterious mutations, association with a large centromere, and "green-beard" behavior - suggest that it may be a selfish genetic element that engages in transmission ratio distortion (TRD), defined as significant departures in progeny allele frequencies from Mendelian inheritance ratios. We tested this possibility by surveying segregation ratios in embryo progenies of 101 queens of the "polygyne" social form (3512 embryos) using three supergene-linked markers and twelve markers outside the supergene. RESULTS Significant departures from Mendelian ratios were observed at the supergene loci in 3-5 times more progenies than expected in the absence of TRD and than found, on average, among non-supergene loci. Also, supergene loci displayed the greatest mean deviations from Mendelian ratios among all study loci, although these typically were modest. A surprising feature of the observed inter-progeny variation in TRD was that significant deviations involved not only excesses of supergene alleles but also similarly frequent excesses of the alternate alleles on the homologous chromosome. As expected given the common occurrence of such "drive reversal" in this system, alleles associated with the supergene gain no consistent transmission advantage over their alternate alleles at the population level. Finally, we observed low levels of recombination and incomplete gametic disequilibrium across the supergene, including between adjacent markers within a single inversion. CONCLUSIONS Our data confirm the prediction that the Sb supergene is a selfish genetic element capable of biasing its own transmission during reproduction, yet counterselection for suppressor loci evidently has produced an evolutionary stalemate in TRD between the variant homologous haplotypes on the "social chromosome". Evidence implicates prezygotic segregation distortion as responsible for the TRD we document, with "true" meiotic drive the most likely mechanism. Low levels of recombination and incomplete gametic disequilibrium across the supergene suggest that selection does not preserve a single uniform supergene haplotype responsible for inducing polygyny.
Collapse
Affiliation(s)
- Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA USA
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN USA
| |
Collapse
|
198
|
Bravo Núñez MA, Lange JJ, Zanders SE. A suppressor of a wtf poison-antidote meiotic driver acts via mimicry of the driver's antidote. PLoS Genet 2018; 14:e1007836. [PMID: 30475921 PMCID: PMC6283613 DOI: 10.1371/journal.pgen.1007836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/06/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
Meiotic drivers are selfish alleles that subvert gametogenesis to increase their transmission into progeny. Drivers impose a fitness cost, putting pressure on the genome to evolve suppressors. Here we investigate the wtf gene family from Schizosaccharomyces pombe, previously shown to contain meiotic drivers in wild isolates. We discovered that wtf13 found in lab stocks is a meiotic driver. wtf13 kills spores that do not inherit it by generating both a diffusible poison and a spore-specific antidote. Additionally, we demonstrate that wtf13 is suppressed by another wtf gene, wtf18-2, that arose spontaneously in the lab and makes only an antidote. Wtf18-2 does not act indiscriminately to prevent spore destruction. Instead, it rescues only the spores that inherit wtf18-2. In this way, wtf18-2 selfishly gains a transmission advantage of its own while dampening the drive of wtf13. This establishes a novel paradigm for meiotic drive suppressors and provides insight into the mechanisms and evolution of drive systems.
Collapse
Affiliation(s)
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO, United States of America
| | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, MO, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States of America
| |
Collapse
|
199
|
Svedberg J, Hosseini S, Chen J, Vogan AA, Mozgova I, Hennig L, Manitchotpisit P, Abusharekh A, Hammond TM, Lascoux M, Johannesson H. Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nat Commun 2018; 9:4242. [PMID: 30315196 PMCID: PMC6185902 DOI: 10.1038/s41467-018-06562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long evolutionary separation. We conclude that they have in a convergent manner accumulated similar patterns of tandem inversions and dense repeat clusters, presumably in response to similar needs to create linkage between genes causing drive and resistance.
Collapse
Affiliation(s)
- Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Sara Hosseini
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jun Chen
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Aaron A Vogan
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Iva Mozgova
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Lars Hennig
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | | | - Anna Abusharekh
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Martin Lascoux
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
200
|
Runge JN, Lindholm AK. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc Biol Sci 2018; 285:20181333. [PMID: 30282651 PMCID: PMC6191700 DOI: 10.1098/rspb.2018.1333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Life is built on cooperation between genes, which makes it vulnerable to parasitism. Selfish genetic elements that exploit this cooperation can achieve large fitness gains by increasing their transmission relative to the rest of the genome. This leads to counter-adaptations that generate unique selection pressures on the selfish genetic element. This arms race is similar to host-parasite coevolution, as some multi-host parasites alter the host's behaviour to increase the chance of transmission to the next host. Here, we ask if, similarly to these parasites, a selfish genetic element in house mice, the t haplotype, also manipulates host behaviour, specifically the host's migration propensity. Variants of the t that manipulate migration propensity could increase in fitness in a meta-population. We show that juvenile mice carrying the t haplotype were more likely to emigrate from and were more often found as migrants within a long-term free-living house mouse population. This result may have applied relevance as the t has been proposed as a basis for artificial gene drive systems for use in population control.
Collapse
Affiliation(s)
- Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|