151
|
From in vitro culture to in vivo models to study testis development and spermatogenesis. Cell Tissue Res 2012; 349:691-702. [DOI: 10.1007/s00441-012-1457-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 05/30/2012] [Indexed: 12/24/2022]
|
152
|
Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, Naderi MM, Behzadi B. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 2012; 29:1029-38. [PMID: 22782689 DOI: 10.1007/s10815-012-9828-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/28/2012] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Presently the techniques for making transgenic animals are cumbersome, required costly instruments and trained man-power. The ability of spermatogonial stem cells (SSCs) to integrate foreign genes has provided the opportunity for developing alternate methods for generation of transgenic animals. One of the big challenges in this field is development of the methods to identify and purify donor SSCs by antibody mediated cell sorting. PURPOSE The present study was aimed to identify goat subpopulations of SSCs using polyclonal antibodies against PGP9.5 and c-kit molecular markers as well as the growth characteristics of SSCs during short term culture. METHODS One month old goats' testicular samples were subjected for immunohistochemical and immunocytochemical evaluations. The enzymatically isolated SSCs were cultured in DMEM plus FCS supplemented with (treatment) or without (control) growth factors (GDNF, LIF, FGF, and EGF) for 2 weeks. At the end of culture the morphological characteristics of SSCs colonies and immunocytochemical staining were evaluated. RESULTS The number and size of colonies in treatment groups were significantly (P < 0.01) higher than corresponding values in controls. The presence of PGP 9.5 and c-kit antigens was confirmed in immunocytochemical evaluation. In immunocytochemical evaluation, the proportion of c-kit and PGP9.5 positive cells were significantly (P < 0.001) higher in control and treatment groups, respectively. CONCLUSIONS The presence of PGP9.5 and c-kit antigens was confirmed in goat SSCs. Moreover, culture medium supplementation with growth factors could effectively retain the undifferentiation status of SSCs, reflected as a higher population of PGP9.5 positive cells, after short term culture.
Collapse
Affiliation(s)
- Banafsheh Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, P O Box: 19615-1177, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Nagai R, Shinomura M, Kishi K, Aiyama Y, Harikae K, Sato T, Kanai-Azuma M, Kurohmaru M, Tsunekawa N, Kanai Y. Dynamics of GFRα1-positive spermatogonia at the early stages of colonization in the recipient testes of W/Wν male mice. Dev Dyn 2012; 241:1374-84. [PMID: 22745058 DOI: 10.1002/dvdy.23824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The spermatogonial transplantation experiment can be used as an unequivocal detection assay of spermatogenic stem cells (SSCs) in both a qualitative and quantitative manner, based on their regenerative capacity. In this study, the proliferative patterns and kinetics of donor-derived GFRα1-positive spermatogonia containing potential SSCs were examined during early colonization following spermatogonial transplantation. RESULTS Donor-derived GFRα1-positive cells frequently formed several aggregates of A(al(aligned)) /morula-like structures in a single spermatogenic cell patch before and on day 14 post-transplant, indicating a possible involvement in the formation of a stable spermatogenic colony at 21 days post-transplant. The appearance of these A(al) /morula-like aggregates is positively correlated with regional, high-level expression of immunoreactive GDNF signals, a ligand for GFRα1, associated with colony expansion. CONCLUSIONS These data raise the hypothesis that regional GDNF signals regulate the balance between donor-derived A(al) -like cell aggregates and their differentiation in each small patch, which subsequently leads to further selection of survival colonies at later stages.
Collapse
Affiliation(s)
- Ryohei Nagai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Koruji M, Shahverdi A, Janan A, Piryaei A, Lakpour MR, Gilani Sedighi MA. Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet 2012; 29:957-67. [PMID: 22735929 DOI: 10.1007/s10815-012-9817-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study aims to proliferate spermatogonial stem cells (SSCs) and compare the in-vitro effects of laminin and growth factors on the proliferation of adult human SSC. METHODS Isolated testicular cells were cultured in DMEM supplemented with 5 % fetal calf serum (FCS). During the culture, enriched spermatogonial cells were treated with a combination of glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and mouse leukemia inhibitory factor (LIF) in the presence or absence of human placental laminin-coated dishes. Cluster assay was performed during culture. Presence of spermatogonia was determined by an ultrastructural study of the cell clusters, reverse transcription polymerase chain reaction (RT-PCR) for spermatogonial markers and xenotransplantation to the testes of busulfan-treated recipient mice. Statistical significance between mean values was determined using statistical ANOVA tests. RESULTS The findings indicated that the addition of GDNF, bFGF, EGF and LIF on laminin-coated dishes significantly increased in-vitro spermatogonial cell cluster formation in comparison with the control group (p ≤ 0.001). The expression of spermatogonial markers was maintained throughout the culture period. Furthermore, a transplantation experiment showed the presence of SSC among the cultured cells. In addition, a transmission electron microscopy (TEM) study suggested the presence of spermatogonial cells of typical morphology among the cluster cells. CONCLUSIONS It can be concluded that human SSCs obtained from non-obstructive azoospermic (NOA) patients had the ability to self-renew in the culture system. This system can be used for the propagation of a small number of these cells from small biopsies.
Collapse
Affiliation(s)
- Morteza Koruji
- Cellular and Molecular Research Center and Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
155
|
Yoshida S. Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis. Reproduction 2012; 144:293-302. [PMID: 22733803 DOI: 10.1530/rep-11-0320] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spermatogenesis in mice and other mammalians is supported by a robust stem cell system. Stem cells maintain themselves and continue to produce progeny that will differentiate into sperm over a long period. The pioneering studies conducted from the 1950s to the 1970s, which were based largely on extensive morphological analyses, have established the fundamentals of mammalian spermatogenesis and its stem cells. The prevailing so-called A(single) (A(s)) model, which was originally established in 1971, proposes that singly isolated A(s) spermatogonia are in fact the stem cells. In 1994, the first functional stem cell assay was established based on the formation of repopulating colonies after transplantation in germ cell-depleted host testes, which substantially accelerated the understanding of spermatogenic stem cells. However, because testicular tissues are dissociated into single-cell suspension before transplantation, it was impossible to evaluate the A(s) and other classical models solely by this technique. From 2007 onwards, functional assessment of stem cells without destroying the tissue architecture has become feasible by means of pulse-labeling and live-imaging strategies. Results obtained from these experiments have been challenging the classical thought of stem cells, in which stem cells are a limited number of specialized cells undergoing asymmetric division to produce one self-renewing and one differentiating daughter cells. In contrast, the emerging data suggest that an extended and heterogeneous population of cells exhibiting different degrees of self-renewing and differentiating probabilities forms a reversible, flexible, and stochastic stem cell system as a population. These features may lead to establishment of a more universal principle on stem cells that is shared by other systems.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
156
|
Jin B, Guo B, Che G, Sun Y, Liu Y, Zhang X. Germline stem cell lineage tracing by free-floating immunofluorescent assay of mouse seminiferous tubule. Microsc Res Tech 2012; 75:1150-3. [DOI: 10.1002/jemt.22080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/03/2012] [Indexed: 01/15/2023]
|
157
|
Liu T, Huang Y, Huang Q, Jiang L, Guo L, Liu Z. Use of human amniotic epithelial cells as a feeder layer to support undifferentiated growth of mouse spermatogonial stem cells via epigenetic regulation of the Nanog and Oct-4 promoters. ACTA BIOLOGICA HUNGARICA 2012; 63:167-79. [PMID: 22695517 DOI: 10.1556/abiol.63.2012.2.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spermatogonial stem cells (SSCs) are defined by unique properties like other stem cells. However, there are two major challenges: long-term cultivation of normal SSCs into stable cell lines and maintaining the SSCs as undifferentiated and capable of self-renewal. Here, we compared different culture methods for mouse SSCs isolated and cultured from testicular tissue. We found that human amniotic epithelial cells (hAECs) can behave as feeder cells, allowing mouse SSCs to maintain a high level of alkaline phosphatase (AP) activity when cultured long-term. Also, we observed that expression of Nanog, Oct-4 and other important stem cells markers were higher in mouse SSCs cultured on hAECs compared to those cultured on MEF or without any feeder cells. Furthermore, we demonstrated that the CpG islands of the Nanog and Oct-4 promoters were hypomethylated in cells cultured on hAECs. In addition, mouse SSCs cultured on hAECs exhibited higher levels of H3AC and H3K4Me3 in the Nanog and Oct-4 promoters than those cultured on MEF or without feeder cells. Taken together, these results suggest that the hAEC-induced epigenetic modifications at the Nanog and Oct-4 locus could be a key mechanism for maintaining mouse SSCs in an undifferentiated state capable of self-renewal.
Collapse
Affiliation(s)
- Te Liu
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | |
Collapse
|
158
|
Campos-Junior PHA, Costa GMJ, Lacerda SMSN, Rezende-Neto JV, de Paula AM, Hofmann MC, de França LR. The spermatogonial stem cell niche in the collared peccary (Tayassu tajacu). Biol Reprod 2012; 86:155, 1-10. [PMID: 22262689 DOI: 10.1095/biolreprod.111.095430] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the seminiferous epithelium, spermatogonial stem cells (SSCs) are located in a particular environment called the "niche" that is controlled by the basement membrane, key testis somatic cells, and factors originating from the vascular network. However, the role of Leydig cells (LCs) as a niche component is not yet clearly elucidated. Recent studies showed that peccaries (Tayassu tajacu) present a peculiar LC cytoarchitecture in which these cells are located around the seminiferous tubule lobes, making the peccary a unique model for investigating the SSC niche. This peculiarity allowed us to subdivide the seminiferous tubule cross-sections in three different testis parenchyma regions (tubule-tubule, tubule-interstitium, and tubule-LC contact). Our aims were to characterize the different spermatogonial cell types and to determine the location and/or distribution of the SSCs along the seminiferous tubules. Compared to differentiating spermatogonia, undifferentiated spermatogonia (A(und)) presented a noticeably higher nuclear volume (P < 0.05), allowing an accurate evaluation of their distribution. Immunostaining analysis demonstrated that approximately 93% of A(und) were GDNF receptor alpha 1 positive (GFRA1(+)), and these cells were preferentially located adjacent to the interstitial compartment without LCs (P < 0.05). The expression of colony-stimulating factor 1 was observed in LCs and peritubular myoid cells (PMCs), whereas its receptor was present in LCs and in GFRA1(+) A(und). Taken together, our findings strongly suggest that LCs, different from PMCs, might play a minor role in the SSC niche and physiology and that these steroidogenic cells are probably involved in the differentiation of A(und) toward type A(1) spermatogonia.
Collapse
Affiliation(s)
- Paulo Henrique A Campos-Junior
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
159
|
Lucas BEG, Fields C, Joshi N, Hofmann MC. Mono-(2-ethylhexyl)-phthalate (MEHP) affects ERK-dependent GDNF signalling in mouse stem-progenitor spermatogonia. Toxicology 2012; 299:10-9. [PMID: 22564763 DOI: 10.1016/j.tox.2012.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/14/2012] [Accepted: 04/21/2012] [Indexed: 01/13/2023]
Abstract
Many commercial and household products such as lubricants, cosmetics, plastics, and paint contain phthalates, in particular bis-(2-ethyhexyl)-phthalate (DEHP). As a consequence, phthalates have been found in a number of locations and foods (streambeds, household dust, bottled water and dairy products). Epidemiological and animal studies analysing phthalate exposure in males provide evidence of degradation in sperm quality, associated to an increase in the incidence of genital birth defects and testicular cancers. In the testis, spermatogenesis is maintained throughout life by a small number of spermatogonial stem cells (SSCs) that self-renew or differentiate to produce adequate numbers of spermatozoa. Disruption or alteration of SSC self-renewal induce decreased sperm count and sperm quality, or may potentially lead to testicular cancer. GDNF, or glial cell-line-derived neurotrophic factor, is a growth factor that is essential for the self-renewal of SSCs and continuous spermatogenesis. In the present study, the SSC-derived cell line C18-4 was used as a model for preliminary assessment of the effects of mono-(2-ethylhexyl)-phthalate (MEHP, main metabolite of DEHP) on spermatogonial stem cells. Our data demonstrate that MEHP disrupts one of the known GDNF signalling pathways in these cells. MEHP induced a decrease of C18-4 cell viability in a time- and dose-dependent manner, as well as a disruption of ERK1/2 activation but not of SRC signalling. As a result, we observed a decrease of expression of the transcription factor FOS, which is downstream of the GDNF/ERK1/2 axis in these cells. Taken together, our data suggest that MEHP exposure affects SSC proliferation through inhibition of specific signalling molecules.
Collapse
Affiliation(s)
- Benjamin E G Lucas
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
160
|
Neonatal testicular gonocytes isolation and processing for immunocytochemical analysis. Methods Mol Biol 2012; 825:17-29. [PMID: 22144233 DOI: 10.1007/978-1-61779-436-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In recent years, an increasing interest has emerged at understanding how spermatogonial stem cells (SSCs) arise from their precursor cells, the gonocytes. The identification of factors acting directly on gonocytes rather than on the surrounding somatic cells and the study of genes and signaling pathways intrinsic to gonocytes require their isolation from Sertoli and peritubular cells. The present article describes a simple method developed to isolate rat neonatal gonocytes, allowing for the study of their proliferation and differentiation to SSCs. We also present immunocytochemical methods that can be used to study protein expression changes and proliferation in gonocytes.
Collapse
|
161
|
Kolasa A, Misiakiewicz K, Marchlewicz M, Wiszniewska B. The generation of spermatogonial stem cells and spermatogonia in mammals. Reprod Biol 2012; 12:5-23. [DOI: 10.1016/s1642-431x(12)60074-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
162
|
Zhang X, Chou W, Haig-Ladewig L, Zeng W, Cao W, Gerton G, Dobrinski I, Tseng H. BNC1 is required for maintaining mouse spermatogenesis. Genesis 2012; 50:517-24. [PMID: 22266914 DOI: 10.1002/dvg.22014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/06/2022]
Abstract
Basonuclin (BNC1) is a zinc finger protein expressed primarily in gametogenic cells and proliferative keratinocytes. Our previous work suggested that BNC1 is present in spermatogonia, spermatocytes, and spermatids, but absent in the Sertoli cells. BNC1's role in spermatogenesis is unknown. Here, we show that BNC1 is required for the maintenance of spermatogenesis. Bnc1-null male mice were sub-fertile, losing germ cells progressively with age. The Bnc1-null seminiferous epithelia began to degenerate before 8 weeks of age and eventually became Sertoli cell-only. Sperm count and motility also declined with age. Furthermore, Bnc1 heterozygotes, although fertile, showed a significant drop in sperm count and in testis weight by 24 weeks of age, suggesting a dosage effect of Bnc1 on testis development. In conclusion, our data demonstrate for the first time BNC1's essential role in maintaining mouse spermatogenesis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. ACTA ACUST UNITED AC 2012; 34:e296-305; discussion e305. [PMID: 21790653 DOI: 10.1111/j.1365-2605.2011.01199.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals, spermatogenesis is maintained throughout life by a small subpopulation of type A spermatogonia called spermatogonial stem cells (SSCs). In rodents, SSCs, or Asingle spermatogonia, form the self-renewing population. SSCs can also divide into Apaired (Apr) spermatogonia that are predestined to differentiate. Apaired spermatogonia produce chains of Aaligned (Aal) spermatogonia that divide to form A1 to A4, then type B spermatogonia. Type B spermatogonia will divide into primary spermatocytes that undergo meiosis. In human, there are only two different types of A spermatogonia, the Adark and Apale spermatogonia. The Adark spermatogonia are considered reserve stem cells, whereas the Apale spermatogonia are the self-renewing stem cells. There is only one generation of type B spermatogonia before differentiation into spermatocytes, which makes human spermatogenesis less efficient than in rodents. Although the biology of human SSCs is not well known, a panel of phenotypic markers has recently emerged that is remarkably similar to the list of markers expressed in mice. One such marker, the orphan receptor GPR125, is a plasma membrane protein that can be used to isolate human SSCs. Human SSCs proliferate in culture in response to growth factors such as GDNF, which is essential for SSC self-renewal in mice and triggers the same signalling pathways in both species. Therefore, despite differences in the spermatogonial differentiation scheme, both species use the same genes and proteins to maintain the pool of self-renewing SSCs within their niche. Spermatocytic seminomas are mainly found in the testes of older men, and they rarely metastasize. It is believed that these tumours originate from a post-natal germ cell. Because these lesions can express markers specific for meiotic prophase, they might originate from a primary spermatocyte. However, morphological appearance and overall immunohistochemical profile of these tumours indicate that the cell of origin could also be a spermatogonial stem cell.
Collapse
Affiliation(s)
- R Waheeb
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | |
Collapse
|
164
|
Sada A, Hasegawa K, Pin PH, Saga Y. NANOS2 Acts Downstream of Glial Cell Line-Derived Neurotrophic Factor Signaling to Suppress Differentiation of Spermatogonial Stem Cells. Stem Cells 2012; 30:280-91. [DOI: 10.1002/stem.790] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
165
|
Garcia T, Hofmann MC. Isolation of undifferentiated and early differentiating type A spermatogonia from Pou5f1-GFP reporter mice. Methods Mol Biol 2012; 825:31-44. [PMID: 22144234 PMCID: PMC3314309 DOI: 10.1007/978-1-61779-436-0_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Limited understanding of the mechanisms underlying self-renewal and differentiation of spermatogonial stem cells hampers our ability to develop new therapeutic and contraceptive approaches. Mouse models of spermatogonial stem cell development are key to developing new insights into the biology of both the normal and diseased testis. Advances in transgenic reporter mice have enabled the isolation, molecular characterization, and functional analysis of mouse Type A spermatogonia subpopulations from the normal testis, including populations enriched for spermatogonial stem cells. Application of these reporters both to the normal testis and to gene-deficient and over-expression models will promote a better understanding of the earliest steps of spermatogenesis, and the role of spermatogonial stem cells in germ cell tumor.
Collapse
Affiliation(s)
- Thomas Garcia
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Marie-Claude Hofmann
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
166
|
Kaul G, Kumar S, Kumari S. Enrichment of CD9<sup>+</sup> spermatogonial stem cells from goat (<i>Capra aegagrus hircus</i>) testis using magnetic microbeads. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/scd.2012.23014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
167
|
He Z, Kokkinaki M, Jiang J, Zeng W, Dobrinski I, Dym M. Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods Mol Biol 2012; 825:45-57. [PMID: 22144235 DOI: 10.1007/978-1-61779-436-0_4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian spermatogenesis is a process whereby male germ-line stem cells (spermatogonial stem cells) divide and differentiate into sperm. Although a great deal of progress has been made in the isolation and characterization of spermatogonial stem cells (SSCs) in rodents, little is known about human SSCs. We have recently isolated human G protein-coupled receptor 125 (GPR125)-positive spermatogonia and GDNF family receptor alpha 1 (GFRA1)-positive spermatogonia using a 2-step enzymatic digestion and magnetic-activated cell sorting (MACS) from adult human testes. Cell purities of isolated human GPR125- and GFRA1-positive spermatogonia after MACS are greater than 95%, and cell viability is over 96%. The isolated GPR125- and GFRA1-positive spermatogonia coexpress GPR125, integrin, alpha 6 (ITGA6), THY1 (also known as CD90), GFRA1, and ubiquitin carboxyl-terminal esterase L1 (UCHL1), markers for rodent or pig SSCs/progenitors, suggesting that GPR125- and GFRA1-positive spermatogonia are phenotypically the SSCs in human testis. Human GPR125-positive spermatogonia can be cultured for 2 weeks with a remarkable increase in cell number. Immunocytochemistry further reveals that GPR125-positive spermatogonia can be maintained in an undifferentiated state in vitro. Collectively, the methods using enzymatic digestion and MACS can efficiently isolate and purify SSCs from adult human testis with consistent and high quality. The ability of isolating and characterizing human SSCs could provide a population of stem cells with high purity for mechanistic studies on human SSC self-renewal and differentiation as well as potential applications of human SSCs in regenerative medicine.
Collapse
Affiliation(s)
- Zuping He
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
168
|
Sato T, Aiyama Y, Ishii-Inagaki M, Hara K, Tsunekawa N, Harikae K, Uemura-Kamata M, Shinomura M, Zhu XB, Maeda S, Kuwahara-Otani S, Kudo A, Kawakami H, Kanai-Azuma M, Fujiwara M, Miyamae Y, Yoshida S, Seki M, Kurohmaru M, Kanai Y. Cyclical and patch-like GDNF distribution along the basal surface of Sertoli cells in mouse and hamster testes. PLoS One 2011; 6:e28367. [PMID: 22174794 PMCID: PMC3235125 DOI: 10.1371/journal.pone.0028367] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022] Open
Abstract
Background and Aims In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. Methodology and Principal Findings Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. Conclusion/Significance Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.
Collapse
Affiliation(s)
- Takeshi Sato
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
- Drug Safety Research Labs, Astellas Pharma Inc., Osaka, Japan
| | - Yoshimi Aiyama
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | - Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Kyoko Harikae
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Mami Uemura-Kamata
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
- Center for Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Shinomura
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Xiao Bo Zhu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Seishi Maeda
- Division of Cell Biology, Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Sachi Kuwahara-Otani
- Division of Cell Biology, Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Osaka, Japan
| | - Yoichi Miyamae
- Drug Safety Research Labs, Astellas Pharma Inc., Osaka, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Makoto Seki
- Division of Cell Biology, Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
169
|
Grasso M, Fuso A, Dovere L, de Rooij DG, Stefanini M, Boitani C, Vicini E. Distribution of GFRA1-expressing spermatogonia in adult mouse testis. Reproduction 2011; 143:325-32. [PMID: 22143971 DOI: 10.1530/rep-11-0385] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mice and other mammals, spermatogenesis is maintained by spermatogonial stem cells (SSCs), a cell population belonging to undifferentiated type A spermatogonia. In the accepted model of SSC self-renewal, Asingle (As) spermatogonia are the stem cells, whereas paired (Apaired (Apr)) and chained (Aaligned (Aal)) undifferentiated spermatogonia are committed to differentiation. This model has been recently challenged by evidence that As and chained (Apr and Aal), undifferentiated spermatogonia are heterogeneous in terms of gene expression and function. The expression profile of several markers, such as GFRA1 (the GDNF co-receptor), is heterogeneous among As, Apr and Aal spermatogonia. In this study, we have analysed and quantified the distribution of GFRA1-expressing cells within the different stages of the seminiferous epithelial cycle. We show that in all stages, GFRA1+ chained spermatogonia (Apr to Aal) are more numerous than GFRA1+ As spermatogonia. Numbers of chained GFRA1+ spermatogonia are sharply reduced in stages VII-VIII when Aal differentiate into A1 spermatogonia. GFRA1 expression is regulated by GDNF and in cultures of isolated seminiferous tubules, we found that GDNF expression and secretion by Sertoli cells is stage-dependent, being maximal in stages II-VI and decreasing thereafter. Using qRT-PCR analysis, we found that GDNF regulates the expression of genes such as Tex14, Sohlh1 and Kit (c-Kit) known to be involved in spermatogonial differentiation. Expression of Kit was upregulated by GDNF in a stage-specific manner. Our data indicate that GDNF, besides its crucial role in the self-renewal of stem cells also functions in the differentiation of chained undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Margherita Grasso
- Fondazione Pasteur Cenci Bolognetti, Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, La Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
170
|
Lim JM, Lee M, Lee EJ, Gong SP, Lee ST. Stem cell engineering: limitation, alternatives, and insight. Ann N Y Acad Sci 2011; 1229:89-98. [PMID: 21793843 DOI: 10.1111/j.1749-6632.2011.06093.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 21st century will see improvements in the quality of human life. The development of new therapeutic technologies will prevent prevalent diseases and enable recovery from currently incurable diseases. The development of cell and tissue replacement therapies using stem cells and their progenitors will accelerate the development of causative treatments. The effort expended thus far in developing cell therapies has revealed many technical limitations. Thus, we must explore conceptual changes in the feasibility of stem cell therapy. This paper introduces the current limitations to stem cell engineering and ways to overcome these limitations, which will provide new insight into their clinical application.
Collapse
Affiliation(s)
- Jeong Mook Lim
- WCU Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
| | | | | | | | | |
Collapse
|
171
|
Au PCK, Frankenberg S, Selwood L, Familari M. A novel marsupial pri-miRNA transcript has a putative role in gamete maintenance and defines a vertebrate miRNA cluster paralogous to the miR-15a/miR-16-1 cluster. Reproduction 2011; 142:539-50. [DOI: 10.1530/rep-11-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful maintenance, survival and maturation of gametes rely on bidirectional communication between the gamete and its supporting cells. Before puberty, factors from the gamete and its supporting cells are necessary for spermatogonial stem cell and primordial follicle oocyte maintenance. Following gametogenesis, gametes rely on factors and nutrients secreted by cells of the reproductive tracts, the epididymis and/or oviduct, to complete maturation. Despite extensive studies on female and male reproduction, many of the molecular mechanisms of germ cell maintenance remain relatively unknown, particularly in marsupial species. We present the first study and characterisation of a novel primary miRNA transcript, pri-miR-16c, in the marsupial, the stripe-faced dunnart. Bioinformatic analysis showed that its predicted processed miRNA – miR-16c – is present in a wide range of vertebrates, but not eutherians. In situ hybridisation revealed dunnart pri-miR-16c expression in day 4 (primordial germ cells) and day 7 (oogonia) pouch young, in primary oocytes and follicle cells of primordial follicles but then only in follicle cells of primary, secondary and antral follicles in adult ovaries. In the adult testis, pri-miR-16c transcripts were present in the cytoplasm of spermatogonial cells. The oviduct and the epididymis both showed expression, but not any other somatic tissues examined or conceptuses during early embryonic development. This pattern of expression suggests that pri-miR-16c function may be associated with gamete maintenance, possibly through mechanisms involving RNA transfer, until the zygote enters the uterus at the pronuclear stage.
Collapse
|
172
|
Mohamadi SM, Movahedin M, Koruji SM, Jafarabadi MA, Makoolati Z. Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems. Andrologia 2011; 44 Suppl 1:431-7. [PMID: 21762195 DOI: 10.1111/j.1439-0272.2011.01201.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study aimed to compare the in vitro effects of coculture with Sertoli and SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) feeder layer cells on the efficiency of adult mouse spermatogonial stem cells (SSCs) colony formation. Sertoli and SSCs were isolated from testes, and their identity was confirmed using immunocytochemistry against Oct4, CDH1, PLZF and C-kit for SSCs and vimentin for Sertoli cells. SSCs were cultured in a simple culture system (control group) and on top of the Sertoli and STO feeder layers for 2 weeks. The number and diameter of colonies were evaluated during third, 7th, 10th and 14th day of culture, and the expression of the Oct-4, α6 and β1 integrins was assessed using quantitative RT-PCR. Significant differences were observed between the three groups, separately for each time (P < 0.05), with higher mean in number and diameter for Sertoli cells (P < 0.05). The results of RT-PCR showed higher gene expression of β1 integrin in Sertoli group, but no significant differences were observed in Oct-4 and α6 integrin gene expression among the three groups. Based the on the optimal effect of Seroli cells on the colony formation of SSCs, it is suggested to use these cells for better colonisation of SSCs.
Collapse
Affiliation(s)
- S M Mohamadi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
173
|
Liu T, Guo L, Liu Z, Cheng W. Human amniotic epithelial cells maintain mouse spermatogonial stem cells in an undifferentiated state due to high leukemia inhibitor factor (LIF) expression. In Vitro Cell Dev Biol Anim 2011; 47:318-26. [PMID: 21424242 DOI: 10.1007/s11626-011-9396-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/18/2011] [Indexed: 01/06/2023]
Abstract
Spermatogonial stem cells (SSCs), like other stem cells, have unique properties: prolonged proliferation, self-renewal, generation of differentiated progeny, and maintenance of developmental potential. Long-term cultivation of normal SSCs into stable cell lines, and maintaining SSCs in an undifferentiated state capable of self-renewal, is a major challenge. Here, we compare the effect of leukemia inhibitory factor (LIF) expression on mouse SSCs isolated from testicular tissue cultured under different conditions. We found that human amniotic epithelial cells (hAECs) with high LIF expression (LIF(high)) feeder cells allowed mouse SSCs to maintain a high level of AP activity when cultured long term. Expression of some important stem cell markers was higher in mouse SSCs cultured on hAECs (LIF(high)) compared to those cultured on hAECs (LIF(low)). Taken together, these results suggest that LIF expression could be a crucial component for feeder cells to maintain mouse SSCs in an undifferentiated, proliferative state capable of self-renewal.
Collapse
Affiliation(s)
- Te Liu
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | | | | | | |
Collapse
|
174
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/04/2010] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
175
|
Condic ML, Rao M. Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 2011; 19:1121-9. [PMID: 20397928 DOI: 10.1089/scd.2009.0482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cell researchers in the United States continue to face an uncertain future, because of the changing federal guidelines governing this research, the restrictive patent situation surrounding the generation of new human embryonic stem cell lines, and the ethical divide over the use of embryos for research. In this commentary, we describe how recent advances in the derivation of induced pluripotent stem cells and the isolation of germ-line-derived pluripotent stem cells resolve a number of these uncertainties. The availability of patient-matched, pluripotent stem cells that can be obtained by ethically acceptable means provides important advantages for stem cell researchers, by both avoiding protracted ethical debates and giving U.S. researchers full access to federal funding. Thus, ethically uncompromised stem cells, such as those derived by direct reprogramming or from germ-cell precursors, are likely to yield important advances in stem cell research and move the field rapidly toward clinical applications.
Collapse
Affiliation(s)
- Maureen L Condic
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132-3401, USA.
| | | |
Collapse
|
176
|
Kokkinaki M, Djourabtchi A, Golestaneh N. Long-term Culture of Human SSEA-4 Positive Spermatogonial Stem Cells (SSCs). ACTA ACUST UNITED AC 2011; 2. [PMID: 24466499 DOI: 10.4172/2157-7633.s2-003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently we and two other groups have shown that human spermatogonial stem cells (SSCs) have the potential to become pluripotent in vitro in defined culture conditions and to differentiate into cells of the three embryonic germ layers. This discovery could open new avenues for autologous cell-based therapy in degenerative diseases, bypassing the ethical and immunological problems related to the human embryonic stem cells. In addition, human SSCs could be used to treat infertility in cancer survival children. However, in order to reprogram SSCs into pluripotency, or to preserve them for repopulation of infertile testes, the first and limiting step is to have access to a highly purified human SSC population that could be multiplied and efficiently cultured in vitro maintaining their molecular and cellular characteristics. Although various studies have attempted to identify molecular markers of human SSCs, to date there is still limited information related to the specific markers that could be used for their isolation and optimized purification that allows long-term in vitro culture of isolated human SSCs. Here using SSEA-4 as an optimal marker for isolation of a subpopulation of SSCs, we show that SSEA-4 positive cells express the highest level of SSC genes compared to other subpopulations isolated with different markers, and can be maintained in culture for over 14 passages which we were unable to obtain with other SSCs markers including GPR125 and ITGA6. In addition, we have established a new technology for cell sorting and long-term culture of human SSC-SSEA-4 positive cells that maximizes the purity and viability of the sorted cells. Our findings are crucial and could be used for the most efficient isolation, purification and long-term culture of SSCs for clinical applications in regenerative medicine, or for preparation of human SSCs for autologous treatment of infertility in cancer survival children.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| | - Ardalan Djourabtchi
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology
| | - Nady Golestaneh
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| |
Collapse
|
177
|
Nagrani SR, Levens ED, Baxendale V, Boucheron C, Chan WY, Rennert OM. Methylation patterns of Brahma during spermatogenesis and oogenesis: potential implications. Fertil Steril 2011; 95:382-4. [PMID: 20719309 PMCID: PMC2995817 DOI: 10.1016/j.fertnstert.2010.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 11/25/2022]
Abstract
To compare methylation profiles and expression levels of Brahma at different stages of spermatogenesis, and to identify the methylation pattern during oogenesis, we analyzed gene expression and methylation patterns in murine germ cells at various developmental stages. The methylation levels of CpG islands within Brahma increased during spermatogenesis and decreased during oogenesis. This change in methylation pattern correlates with the change in expression of Brahma during spermatogenesis. As the degree of methylation increases, the expression decreases. The change in methylation is opposite during oogenesis, which suggests opposite expression levels.
Collapse
Affiliation(s)
- Sohan R Nagrani
- Laboratory of Clinical and Developmental Genomics, Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | |
Collapse
|
178
|
Bhartiya D, Kasiviswanathan S, Unni SK, Pethe P, Dhabalia JV, Patwardhan S, Tongaonkar HB. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem 2010; 58:1093-1106. [PMID: 20805580 PMCID: PMC2989246 DOI: 10.1369/jhc.2010.956870] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/11/2010] [Indexed: 02/07/2023] Open
Abstract
The transcription factor octamer-binding transforming factor 4 (Oct-4) is central to the gene regulatory network responsible for self-renewal, pluripotency, and lineage commitment in embryonic stem (ES) cells and induced pluripotent stem cells (PSCs). This study was undertaken to evaluate differential localization and expression of two major transcripts of Oct-4, viz. Oct-4A and Oct-4B, in adult human testis. A novel population of 5- to 10-μm PSCs with nuclear Oct-4A was identified by ISH and immunolocalization studies. Besides Oct-4, other pluripotent markers like Nanog and TERT were also detected by RT-PCR. A(dark) spermatogonial stem cells (SSCs) were visualized in pairs and chains undergoing clonal expansion and stained positive for cytoplasmic Oct-4B. Quantitative PCR and Western blotting revealed both the transcripts, with higher expression of Oct-4B. It is proposed that PSCs undergo asymmetric cell division and give rise to A(dark) SSCs, which proliferate and initiate lineage-specific differentiation. The darkly stained nuclei in A(dark) SSCs may represent extensive nuclear reprogramming by epigenetic changes when a PSC becomes committed. Oct-4B eventually disappeared in mature germ cells, viz. spermatocytes, spermatids, and sperm. Besides maintaining normal testicular homeostasis, PSCs may also be implicated in germ cell tumors and ES-like colonies that have recently been derived from adult human testicular tissue.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Dept. of Stem Cell Biology, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai 400012, India.
| | | | | | | | | | | | | |
Collapse
|
179
|
Snyder EM, Small C, Griswold MD. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse. Biol Reprod 2010; 83:783-90. [PMID: 20650878 PMCID: PMC2959108 DOI: 10.1095/biolreprod.110.085811] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 01/24/2023] Open
Abstract
Throughout the reproductive lifespan of most male mammals, sperm production is constant because of the regulated differentiation of spermatogonia. Retinoic acid (RA) and a downstream target, Stra8, are required for complete spermatogenesis. To examine the role of RA in initiating spermatogonial differentiation, a transgenic mouse model expressing beta-galactosidase under the control of an RA response element was used. Cells in the neonatal testis undergoing active RA signaling were visualized by beta-galactosidase activity, the relationship between RA and differentiation determined, and the role of RA-degrading enzymes in regulating RA demonstrated. Beta-galactosidase activity was found to be predominantly associated with differentiating, premeiotic germ cells and to be distributed nonuniformly throughout the seminiferous tubules. Additionally, beta-galactosidase activity in premeiotic germ cells colocalized with STRA8 protein and was induced in germ cells with exogenous RA treatment. The RA-degrading enzyme, CYP26B1, was found to have germ cell localization and nonuniform distribution between tubules via immunohistochemistry. Treatment with a CYP26 enzyme inhibitor resulted in an increased number of germ cells with both beta-galactosidase activity and STRA8 protein and an increase in the expression of genes associated with differentiation and reduced expression of a gene associated with undifferentiated germ cells. These results show the action of RA in a subset of spermatogonia leads to nonuniform initiation of differentiation throughout the neonatal testis, potentially mediated through the action of CYP26 enzymes. Thus, the presence of RA is a likely driving factor in the initiation of spermatogonial differentiation and may result in asynchronous spermatogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Snyder
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Christopher Small
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Michael D. Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| |
Collapse
|
180
|
Yang Y, Han C. GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell Biol 2010; 11:78. [PMID: 20955573 PMCID: PMC2967512 DOI: 10.1186/1471-2121-11-78] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/18/2010] [Indexed: 01/15/2023] Open
Abstract
Background The proliferation and final density of Sertoli cells in the testis are regulated by hormones and local factors. Glial cell line-derived neurotrophic factor (GDNF), a distantly related member of the transforming growth factor-β superfamily, and its receptor subunits GDNF family receptor alpha 1 (GFRα1), RET tyrosine kinase, and neural cell adhesion molecule (NCAM) have been reported to be expressed in the testis and involved in the regulation of proliferation of immature Sertoli cells (ISCs). However, the expression patterns of these receptor subunits and the downstream signaling pathways have not been addressed in ISCs. Results In the present study, we have reported that the proliferation of cultured ISCs was significantly enhanced by GDNF. The receptor subunits GFRα1 and NCAM but not RET were expressed in ISCs, and the stimulatory effect of GDNF on the proliferation of ISCs was significantly reduced by anti-NCAM antibody blocking or siRNA that specifically targets NCAM mRNA. Additionally, the ERK1/2 inhibitor, PD98059, completely abolished the mitogenic effect of GDNF on ISCs. Conclusions GDNF stimulates the proliferation of ISCs via its receptor subunit NCAM and the consequent activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yongguang Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
181
|
Simon L, Ekman GC, Garcia T, Carnes K, Zhang Z, Murphy T, Murphy KM, Hess RA, Cooke PS, Hofmann M. ETV5 regulates sertoli cell chemokines involved in mouse stem/progenitor spermatogonia maintenance. Stem Cells 2010; 28:1882-92. [PMID: 20799334 PMCID: PMC3109872 DOI: 10.1002/stem.508] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to offspring. Although growth factors responsible for self-renewal of these cells are known, the factors and mechanisms that attract and physically maintain these cells within their microenvironment are poorly understood. Mice with targeted disruption of Ets variant gene 5 (Etv5) show total loss of stem/progenitor spermatogonia following the first wave of spermatogenesis, resulting in a Sertoli cell-only phenotype and aspermia. Microarray analysis of primary Sertoli cells from Etv5 knockout (Etv5(-/-)) versus wild-type (WT) mice revealed significant decreases in expression of several chemokines. Chemotaxis assays demonstrated that migration of stem/progenitor spermatogonia toward Etv5(-/-) Sertoli cells was significantly decreased compared to migration toward WT Sertoli cells. Interestingly, differentiating spermatogonia, spermatocytes, and round spermatids were not chemoattracted by WT Sertoli cells, whereas stem/progenitor spermatogonia showed a high and significant chemotactic index. Rescue assays using recombinant chemokines indicated that C-C-motif ligand 9 (CCL9) facilitates Sertoli cell chemoattraction of stem/progenitor spermatogonia, which express C-C-receptor type 1 (CCR1). In addition, there is protein-DNA interaction between ETV5 and Ccl9, suggesting that ETV5 might be a direct regulator of Ccl9 expression. Taken together, our data show for the first time that Sertoli cells are chemoattractive for stem/progenitor spermatogonia, and that production of specific chemokines is regulated by ETV5. Therefore, changes in chemokine production and consequent decreases in chemoattraction by Etv5(-/-) Sertoli cells helps to explain stem/progenitor spermatogonia loss in Etv5(-/-) mice.
Collapse
Affiliation(s)
- Liz Simon
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
| | - Gail C Ekman
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
| | - Thomas Garcia
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
| | - Kay Carnes
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
| | - Zhen Zhang
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
| | - Theresa Murphy
- Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, Missouri, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, Missouri, USA
- Howard Hughes Medical InstituteUSA
| | - Rex A Hess
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
| | - Paul S Cooke
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
- Divison of Nutritional Sciences and University of IllinoisUrbana, Illinois, USA
| | - Marie–Claude Hofmann
- Department of Veterinary Biosciences, University of IllinoisUrbana, Illinois, USA
- Divison of Nutritional Sciences and University of IllinoisUrbana, Illinois, USA
| |
Collapse
|
182
|
Calvel P, Rolland AD, Jégou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1481-500. [PMID: 20403865 DOI: 10.1098/rstb.2009.0294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sperm are, arguably, the most differentiated cells produced within the body of any given species. This is owing to the fact that spermatogenesis is an intricate and highly specialized process evolved to suit the individual particularities of each sexual species. Despite a vast diversity in method, the aim of spermatogenesis is always the same, the idealized transmission of genetic patrimony. Towards this goal certain requirements must always be met, such as a relative twofold reduction in ploidy, repackaging of the chromatin for transport and specialized enhancements for cell motility, recognition and fusion. In the past 20 years, the study of molecular networks coordinating male germ cell development, particularly in mammals, has become more and more facilitated thanks to large-scale analyses of genome expression. Such postgenomic endeavors have generated landscapes of data for both fundamental and clinical reproductive biology. Continuous, large-scale integration analyses of these datasets are undertaken which provide access to very precise information on a myriad of biomolecules. This review presents commonly used transcriptomic and proteomic workflows applied to various testicular germ cell studies. We will also provide a general overview of the technical possibilities available to reproductive genomic biologists, noting the advantages and drawbacks of each technique.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, IFR 140, University of Rennes I, Campus de Beaulieu, Rennes 35042, France
| | | | | | | |
Collapse
|
183
|
Abstract
Mammalian testes continually produce a huge number of sperm over a long reproductive period. This constant spermatogenesis is supported by a highly robust stem cell system. Morphological analyses in the 1960s and 70s established the basis of mammalian spermatogenesis and the associated stem cell research. Subsequently, from the 1990s on, functional analyses, which have included post-transplantation colony formation, in vitro spermatogonial culture with persisting stem cell activity, in vivo lineage tracing, and live imaging, and also lines of molecular-genetic analyses, have contributed greatly to our understanding of mammalian spermatogenic stem cells. This review will provide a brief overview of the history of this field and then go on to describe in detail the progress made in recent years.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| |
Collapse
|
184
|
Kokkinaki M, Lee TL, He Z, Jiang J, Golestaneh N, Hofmann MC, Chan WY, Dym M. Age affects gene expression in mouse spermatogonial stem/progenitor cells. Reproduction 2010; 139:1011-20. [PMID: 20371641 PMCID: PMC2906712 DOI: 10.1530/rep-09-0566] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
This article will provide an updated review of spermatogonial stem cells and their role in maintaining the spermatogenic lineage. Experimental tools used to study spermatogonial stem cells (SSCs) will be described, along with research using these tools to enhance our understanding of stem cell biology and spermatogenesis. Increased knowledge about the biology of SSCs improves our capacity to manipulate these cells for practical application. The chapter concludes with a discussion of future directions for fundamental investigation and practical applications of SSCs.
Collapse
Affiliation(s)
| | | | - Kyle E. Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, USA
| |
Collapse
|
186
|
Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 2010; 116:577-89. [PMID: 20488942 DOI: 10.1093/toxsci/kfq148] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Silver nanoparticles (Ag-NPs) are being utilized in an increasing number of fields and are components of antibacterial coatings, antistatic materials, superconductors, and biosensors. A number of reports have now described the toxic effects of silver nanoparticles on somatic cells; however, no study has examined their effects on the germ line at the molecular level. Spermatogenesis is a complex biological process that is particularly sensitive to environmental insults. Many chemicals, including ultrafine particles, have a negative effect on the germ line, either by directly affecting the germ cells or by indirectly acting on the somatic cells of the testis. In the present study, we have assessed the impact of different doses of Ag-NPs, as well as their size and biocompatible coating, on the proliferation of mouse spermatogonial stem cells (SSCs), which are at the origin of the germ line in the adult testis. At concentrations >OR= 10 microg/ml, Ag-NPs induced a significant decline in SSCs proliferation, which was also dependent on their size and coating. At the concentration of 10 microg/ml, reactive oxygen species production and/or apoptosis did not seem to play a major role; therefore, we explored other mechanisms to explain the decrease in cell proliferation. Because glial cell line-derived neurotrophic factor (GDNF) is vital for SSC self-renewal in vitro and in vivo, we evaluated the effects of Ag-NPs on GDNF-mediated signaling in these cells. Although the nanoparticles did not reduce GDNF binding or Ret receptor activity, our data revealed that already at a concentration of 10 microg/ml, silver nanoparticles specifically interact with Fyn kinase downstream of Ret and impair SSC proliferation in vitro. In addition, we demonstrated that the particle coating was degraded upon interaction with the intracellular microenvironment, reducing biocompatibility.
Collapse
Affiliation(s)
- Laura K Braydich-Stolle
- Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory/RHPB, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Nakagawa T, Sharma M, Nabeshima YI, Braun RE, Yoshida S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 2010; 328:62-7. [PMID: 20299552 PMCID: PMC2981100 DOI: 10.1126/science.1182868] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stem cells support tissue maintenance by balancing self-renewal and differentiation. In mice, it is believed that a homogeneous stem cell population of single spermatogonia supports spermatogenesis, and that differentiation, which is accompanied by the formation of connected cells (cysts) of increasing length, is linear and nonreversible. We evaluated this model with the use of lineage analysis and live imaging, and found that this putative stem cell population is not homogeneous. Instead, the stem cell pool that supports steady-state spermatogenesis is contained within a subpopulation of single spermatogonia. We also found that cysts are not committed to differentiation and appear to recover stem cell potential by fragmentation, and that the fate of individual spermatogonial populations was markedly altered during regeneration after damage. Thus, there are multiple and reversible paths from stem cells to differentiation, and these may also occur in other systems.
Collapse
Affiliation(s)
- Toshinori Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Manju Sharma
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
| | - Yo-ichi Nabeshima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Shosei Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes for Natural Sciences, Okazaki, 444-8787, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| |
Collapse
|
188
|
Grisanti L, Falciatori I, Grasso M, Dovere L, Fera S, Muciaccia B, Fuso A, Berno V, Boitani C, Stefanini M, Vicini E. Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 2010; 27:3043-52. [PMID: 19711452 DOI: 10.1002/stem.206] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spermatogenesis is maintained by a pool of spermatogonial stem cells (SSCs). Analyses of the molecular profile of SSCs have revealed the existence of subsets, indicating that the stem cell population is more heterogeneous than previously believed. However, SSC subsets are poorly characterized. In rodents, the first steps in spermatogenesis have been extensively investigated, both under physiological conditions and during the regenerative phase that follows germ cell damage. In the widely accepted model, the SSCs are type Asingle (As) spermatogonia. Here, we tested the hypothesis that As spermatogonia are phenotypically heterogeneous by analyzing glial cell line-derived neurotrophic factor (GDNF) family receptor alpha1 (GFRA1) expression in whole-mounted seminiferous tubules, via cytofluorimetric analysis and in vivo colonogenic assays. GFRA1 is a coreceptor for GDNF, a Sertoli cell-derived factor essential for SSC self-renewal and proliferation. Morphometric analysis demonstrated that 10% of As spermatogonia did not express GFRA1 but were colonogenic, as shown by germ cell transplantation assay. In contrast, cells selected for GFRA1 expression were not colonogenic in vivo. In human testes, GFRA1 was also heterogeneously expressed in Adark and in Apale spermatogonia, the earliest spermatogonia. In vivo 5-bromo-2'-deoxyuridine administration showed that both GFRA1(+) and GFRA1(-) As spermatogonia were engaged in the cell cycle, a finding supported by the lack of long-term label-retaining As spermatogonia. GFRA1 expression was asymmetric in 5% of paired cells, suggesting that As subsets may be generated by asymmetric cell division. Our data support the hypothesis of the existence of SSC subsets and reveal a previously unrecognized heterogeneity in the expression profile of As spermatogonia in vivo.
Collapse
Affiliation(s)
- Laura Grisanti
- Fondazione Pasteur Cenci Bolognetti, Department of Histology and Medical Embryology, and La Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Jung YH, Gupta MK, Oh SH, Uhm SJ, Lee HT. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Exp Cell Res 2010; 316:747-761. [DOI: 10.1016/j.yexcr.2009.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 01/05/2023]
|
190
|
He Z, Jiang J, Kokkinaki M, Dym M. Nodal signaling via an autocrine pathway promotes proliferation of mouse spermatogonial stem/progenitor cells through Smad2/3 and Oct-4 activation. Stem Cells 2010; 27:2580-90. [PMID: 19688838 DOI: 10.1002/stem.198] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells into spermatozoa. However, the autocrine molecules and signaling pathways controlling their fate remain unknown. This study was designed to identify novel growth factors and signaling pathways that regulate proliferation, differentiation, and survival of spermatogonial stem/progenitor cells. To this end, we have for the first time explored the expression, function, and signaling pathway of Nodal, a member of the transforming growth factor-beta superfamily, in mouse spermatogonial stem/progenitor cells. We demonstrate that both Nodal and its receptors are present in these cells and in a spermatogonial stem/progenitor cell line (C18-4 cells), whereas Nodal is undetected in Sertoli cells or differentiated germ cells, as assayed by reverse transcription-polymerase chain reaction, Western blots, and immunocytochemistry. Nodal promotes proliferation of spermatogonial stem/progenitor cells and C18-4 cells, whereas Nodal receptor inhibitor SB431542 blocks their propagation as shown by proliferation and bromodeoxyuridine incorporation assays. Nodal knockdown by RNA interference results in a marked increase of cell apoptosis and a reduction of cell division as indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling and proliferation assays. Conversely, overexpression of Nodal leads to an increase of cell proliferation. Nodal activates Smad2/3 phosphorylation, Oct-4 transcription, cyclin D1, and cyclin E expression, whereas SB431542 completely abolishes their increase. Together, Nodal was identified as the first autocrine signaling molecule that promotes proliferation of mouse spermatogonial stem/progenitor cells via Smad2/3 and Oct-4 activation. This study thus provides novel and important insights into molecular mechanisms regulating proliferation and survival of spermatogonial stem/progenitor cells.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
191
|
Reding SC, Stepnoski AL, Cloninger EW, Oatley JM. THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 2010; 139:893-903. [PMID: 20154176 DOI: 10.1530/rep-09-0513] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The undifferentiated spermatogonial population consists of stem and progenitor germ cells which function to provide the foundation for spermatogenesis. The stem cell component, termed spermatogonial stem cells (SSCs), is capable of self-renewal and differentiation. These unique attributes have made them a target for novel technologies to enhance reproductive function in males. With bulls, culture and transplantation of SSCs have the potential to enhance efficiency of cattle production and provide a novel avenue to generate transgenic animals. Isolation of SSCs is an essential component for the development of these techniques. In rodents and non-human primates, undifferentiated spermatogonia and SSCs express the surface marker THY1. The hypothesis tested in this study was that THY1 is a conserved marker of the undifferentiated spermatogonial population in bulls. Flow cytometric analyses showed that the THY1+ cell fraction comprises a rare sub-population in testes of pre-pubertal bulls. Immunocytochemical analyses of the isolated THY1+ fraction for expression of VASA showed that this cell population is comprised mostly of germ cells. Additionally, expression of the undifferentiated spermatogonial specific transcription factor promyelocytic leukemia zinc finger (PLZF, ZBTB16) protein was found to be enriched in the isolated THY1+ testis cell fraction. Lastly, xenogeneic transplantation of bull testis cells into seminiferous tubules of immunodeficient mice resulted in greater than sixfold more colonies from isolated THY1+ cells compared to the unselected total testis cell population indicating SSC enrichment. Collectively, these results demonstrate that THY1 is a marker of undifferentiated spermatogonia in testes of pre-pubertal bulls, and isolation of THY1+ cells results in their enrichment from the total testis cell population.
Collapse
Affiliation(s)
- Suzanne C Reding
- Department of Dairy and Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
192
|
Antonangeli F, Giampietri C, Petrungaro S, Filippini A, Ziparo E. Expression profile of a 400-bp Stra8 promoter region during spermatogenesis. Microsc Res Tech 2010; 72:816-22. [PMID: 19378319 DOI: 10.1002/jemt.20724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although numerous markers have been helpful in isolating and enriching spermatogonial stem cells (SSCs), such as Thy-1 and GFR alpha-1, no specific marker for this cell type has been identified so far. A 400-bp regulatory region of the stimulated by retinoic acid gene 8 (Stra8) promoter was reported to direct gene expression into SSCs and we have recently generated a new transgenic mouse model harboring the enhanced green fluorescent protein (EGFP) downstream of this Stra8 promoter. In this study, a detailed analysis of the EGFP expression pattern in the testis was carried out, showing that the transgene was expressed in meiotic and postmeiotic germ cells and not in undifferentiated germ cells. These findings were supported by confocal microscopy and flow cytometric analyses, and do not agree with the previous report concerning the 400-bp Stra8 promoter activity.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
193
|
Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update 2010; 16:312-28. [DOI: 10.1093/humupd/dmp054] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
194
|
Wyns C. Male fertility preservation before gonadotoxic therapies. Facts Views Vis Obgyn 2010; 2:88-108. [PMID: 25302103 PMCID: PMC4188022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recent advances in cancer therapy have resulted in an increased number of long-term cancer survivors. Unfortunately, aggressive chemotherapy, radiotherapy and preparative regimens for bone marrow transplantation can severely affect male germ cells, including spermatogonial stem cells (SSCs), and lead to permanent loss of fertility. Different options for fertility preservation are dependent on the pubertal state of the patient. METHODS Relevant studies were identified by an extensive Medline search of English and French language articles. RESULTS Sperm cryopreservation prior to gonadotoxic treatment is a well established method after puberty. In case of ejaculation failure by masturbation, assisted ejaculation methods or testicular tissue sampling should be considered. Although no effective gonadoprotective drug is yet available for in vivo spermatogonial stem cell (SSC) protection in humans, current evidence supports the feasibility of immature testicular tissue (ITT) cryopreservation. The different cryopreservation protocols and available fertility restoration options from frozen tissue, i.e. cell suspension transplantation, tissue grafting and in vitro maturation, are presented. RESULTS obtained in humans are discussed in the light of lessons learned from animal studies. CONCLUSION Advances in reproductive technology have made fertility preservation a real possibility in young patients whose gonadal function is threatened by gonadotoxic therapies. The putative indications for such techniques, as well as their limitations according to disease, are outlined.
Collapse
Affiliation(s)
- C. Wyns
- Université Catholique de Louvain, Dept. of Gynecology and Andrology, Av. Hippocrate, 10, B-1200 Brussels, Belgium
| |
Collapse
|
195
|
Borjigin U, Davey R, Hutton K, Herrid M. Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev 2010; 22:733-42. [DOI: 10.1071/rd09237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 11/05/2009] [Indexed: 01/26/2023] Open
Abstract
Identification and enrichment of spermatogonial stem cells (SSCs) are critical steps in testis germ cell transplantation. The present study shows that expression of the protein promyelocytic leukaemia zinc-finger (PLZF) does not occur in all cells, only in gonocytes in neonatal testis (Stage 1) and a subpopulation of Type A spermatogonia in peripubertal (Stage 2), prepubertal (Stage 3) and post-pubertal (Stage 4) ovine testes. Dolichos biflorus agglutinin (DBA) lectin binding does not occur at any stage of testis development. The numbers of putative undifferentiated spermatogonia, germ cells and Sertoli cells were assessed by PLZF, VASA and vimentin staining, respectively. In paraffin sections, the percentage of PLZF-positive cells per tubule in samples derived from Stage 2 testis (12.2 ± 2.8%) was twofold higher than that from Stage 1 testis (6.4 ± 0.4%), but the percentages decreased in Stage 3 and Stage 4 testes (4.6 ± 0.7% and 3.1 ± 0.6%, respectively). Single cell suspensions from Stage 1 and Stage 2 testis were generated by two-step enzymatic digestion. The spermatogonia were enriched by 2 h and 2 + 16 h (overnight) differential plating on 0.2% gelatin-coated coated flasks. For Stage 1 testes, a sixfold increase in PLZF-positive cells was observed in 2 h differential plating and an almost 10-fold increase was produced following 2 + 16 h enrichment. There was less than a twofold increase in PLZF-positive cells between the 2 h and 2 + 16 h differential plating. A similar level of enrichment efficiency was also obtained for Stage 2 testis, but the percentage of PLZF-positive cells in the final enrichment was approximately one-third of that Stage 1. The efficiency of isolation and/or enrichment of PLZF-positive cells appears to depend on the maturity of the testis and the neonatal testis is better suited for isolation of gonocytes and/or putative SSCs.
Collapse
|
196
|
Gassei K, Ehmcke J, Dhir R, Schlatt S. Magnetic activated cell sorting allows isolation of spermatogonia from adult primate testes and reveals distinct GFRa1-positive subpopulations in men. J Med Primatol 2009; 39:83-91. [PMID: 20015158 DOI: 10.1111/j.1600-0684.2009.00397.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Isolation of spermatogonial stem cells (SSCs) could enable in vitro approaches for exploration of spermatogonial physiology and therapeutic approaches for fertility preservation. SSC isolation from adult testes is difficult due to low cell numbers and lacking cell surface markers. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRalpha1) plays a crucial role for the maintenance of SSCs in rodents and is expressed in monkey spermatogonia. METHODS Magnetic activated cell sorting was employed for the enrichment of GFRalpha1+ spermatogonia from adult primate testes. RESULTS Magnetic activated cell sorting of monkey cells enriched GFRalpha1+ cells threefold. 11.4% of GFRalpha1+ cells were recovered. 42.9% of GFRalpha1+ cells were recovered in sorted fractions of human testicular cells, representing a fivefold enrichment. Interestingly, a high degree of morphological heterogeneity among the GFRalpha1+ cells from human testes was observed. CONCLUSIONS Magnetic activated cell sorting using anti-GFRalpha1 antibodies provides an enrichment strategy for spermatogonia from monkey and human testes.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
197
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
198
|
He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M. Isolation, characterization, and culture of human spermatogonia. Biol Reprod 2009; 82:363-72. [PMID: 19846602 DOI: 10.1095/biolreprod.109.078550] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study was designed to isolate, characterize, and culture human spermatogonia. Using immunohistochemistry on tubule sections, we localized GPR125 to the plasma membrane of a subset of the spermatogonia. Immunohistochemistry also showed that MAGEA4 was expressed in all spermatogonia (A(dark), A(pale), and type B) and possibly preleptotene spermatocytes. Notably, KIT was expressed in late spermatocytes and round spermatids, but apparently not in human spermatogonia. UCHL1 was found in the cytoplasm of spermatogonia, whereas POU5F1 was not detected in any of the human germ cells. GFRA1 and ITGA6 were localized to the plasma membrane of the spermatogonia. Next, we isolated GPR125-positive spermatogonia from adult human testes using a two-step enzymatic digestion followed by magnetic-activated cell sorting. The isolated GPR125-positive cells coexpressed GPR125, ITGA6, THY1, and GFRA1, and they could be cultured for short periods of time and exhibited a marked increase in cell numbers as shown by a proliferation assay. Immunocytochemistry of putative stem cell genes after 2 wk in culture revealed that the cells were maintained in an undifferentiated state. MAPK1/3 phosphorylation was increased after 2 wk of culture of the GPR125-positive spermatogonia compared to the freshly isolated cells. Taken together, these results indicate that human spermatogonia share some but not all phenotypes with spermatogonial stem cells (SSCs) and progenitors from other species. GPR125-positive spermatogonia are phenotypically putative human SSCs and retain an undifferentiated status in vitro. This study provides novel insights into the molecular characteristics, isolation, and culture of human SSCs and/or progenitors and suggests that the MAPK1/3 pathway is involved in their proliferation.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, USA
| | | | | | | | | |
Collapse
|
199
|
Yano A, von Schalburg K, Cooper G, Koop BF, Yoshizaki G. Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from pvasa-GFP transgenic rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 2009; 76:246-54. [PMID: 18646050 DOI: 10.1002/mrd.20947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The spermatogonia of fish can be classified as being either undifferentiated type A spermatogonia or differentiated type B spermatogonia. Although type A spermatogonia, which contain spermatogonial stem cells, have been demonstrated to be a suitable material for germ cell transplantation, no molecular markers for distinguishing between type A and type B spermatogonia in fish have been developed to date. We therefore sought to develop a molecular marker for type A spermatogonia in rainbow trout. Using GFP-dependent flow cytometry (FCM), enriched fractions of type A and type B spermatogonia, testicular somatic cells, and primordial germ cells were prepared from rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa regulatory regions (pvasa-GFP rainbow trout). The gene-expression profiles of each cell fraction were then compared with a microarray containing cDNAs representing 16,006 genes from several salmonid species. Genes exhibiting high expression for type A spermatogonia relative to above-mentioned other types of gonadal cells were identified and subjected to RT-PCR and quatitative PCR analysis. Since only the rainbow trout notch1 homologue showed significantly high expression in the type A spermatogonia-enriched fraction, we propose that notch1 may be a useful molecular marker for type A spermatogonia. The combination of GFP-dependent FCM and microarray analysis of pvasa-GFP rainbow trout can therefore be applied to the identification of potentially useful molecular markers of germ cells in fish.
Collapse
Affiliation(s)
- Ayaka Yano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
200
|
He Z, Kokkinaki M, Dym M. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech 2009; 72:586-95. [PMID: 19263492 PMCID: PMC2766659 DOI: 10.1002/jemt.20698] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells (SSCs) into mature spermatozoa. SSCs are a subpopulation of type A spermatogonia resting on the basement membrane in the mammalian testis. Self-renewal and differentiation of SSCs are the foundation of normal spermatogenesis, and thus a better understanding of molecular mechanisms and signaling pathways in the SSCs is of paramount importance for the regulation of spermatogenesis and may eventually lead to novel targets for male contraception as well as for gene therapy of male infertility and testicular cancer. Uncovering the molecular mechanisms is also of great interest to a better understanding of SSC aging and for developing novel therapeutic strategies for degenerative diseases in view of the recent work demonstrating the pluripotent potential of the SSC. Progress has recently been made in elucidating the signaling molecules and pathways that determine cell fate decisions of SSCs. In this review, we first address the morphological features, phenotypic characteristics, and the potential of SSCs, and then we focus on the recent advances in defining the key signaling molecules and crucial signaling pathways regulating self-renewal and differentiation of SSCs. The association of aberrant expression of signaling molecules and cascades with abnormal spermatogenesis and testicular cancer are also discussed. Finally, we point out potential future directions to pursue in research on signaling pathways of SSCs.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology 3900 Reservoir Road NW, Washington DC 20057 Georgetown University Medical Center, Washington, DC 20057, USA
| | - Maria Kokkinaki
- Department of Biochemistry and Molecular & Cellular Biology 3900 Reservoir Road NW, Washington DC 20057 Georgetown University Medical Center, Washington, DC 20057, USA
| | - Martin Dym
- Department of Biochemistry and Molecular & Cellular Biology 3900 Reservoir Road NW, Washington DC 20057 Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|