151
|
Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell 2017; 165:1598-1608. [PMID: 27315477 DOI: 10.1016/j.cell.2016.05.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Recent advances in limb regeneration are revealing the molecular events that integrate growth control, cell fate programming, and positional information to yield the exquisite replacement of the amputated limb. Parallel progress in several invertebrate and vertebrate models has provided a broader context for understanding the mechanisms and the evolution of regeneration. Together, these discoveries provide a foundation for describing the principles underlying regeneration of complex, multi-tissue structures. As such these findings should provide a wealth of ideas for engineers seeking to reconstitute regeneration from constituent parts or to elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Elly M Tanaka
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden Fetscherstrasse 105, 01307 Dresden, GERMANY.
| |
Collapse
|
152
|
Abstract
Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.
Collapse
Affiliation(s)
- S Hughes
- Faculteit Techniek, Hogeschool van Arnhem en Nijmegen, Laan van Scheut 2, 6503 GL, Nijmegen, The Netherlands
| | - A Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
153
|
Simerman AA, Phan JD, Dumesic DA, Chazenbalk GD. Muse Cells: Nontumorigenic Pluripotent Stem Cells Present in Adult Tissues-A Paradigm Shift in Tissue Regeneration and Evolution. Stem Cells Int 2016; 2016:1463258. [PMID: 28070194 PMCID: PMC5192335 DOI: 10.1155/2016/1463258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
Muse cells are a novel population of nontumorigenic pluripotent stem cells, highly resistant to cellular stress. These cells are present in every connective tissue and intrinsically express pluripotent stem markers such as Nanog, Oct3/4, Sox2, and TRA1-60. Muse cells are able to differentiate into cells from all three embryonic germ layers both spontaneously and under media-specific induction. Unlike ESCs and iPSCs, Muse cells exhibit low telomerase activity and asymmetric division and do not undergo tumorigenesis or teratoma formation when transplanted into a host organism. Muse cells have a high capacity for homing into damaged tissue and spontaneous differentiation into cells of compatible tissue, leading to tissue repair and functional restoration. The ability of Muse cells to restore tissue function may demonstrate the role of Muse cells in a highly conserved cellular mechanism related to cell survival and regeneration, in response to cellular stress and acute injury. From an evolutionary standpoint, genes pertaining to the regenerative capacity of an organism have been lost in higher mammals from more primitive species. Therefore, Muse cells may offer insight into the molecular and evolutionary bases of autonomous tissue regeneration and elucidate the molecular and cellular mechanisms that prevent mammals from regenerating limbs and organs, as planarians, newts, zebrafish, and salamanders do.
Collapse
Affiliation(s)
- Ariel A. Simerman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia D. Phan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
154
|
Currie KW, Molinaro AM, Pearson BJ. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. eLife 2016; 5:19735. [PMID: 27864883 PMCID: PMC5153250 DOI: 10.7554/elife.19735] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022] Open
Abstract
The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS. DOI:http://dx.doi.org/10.7554/eLife.19735.001 Most animals can continue to generate and add new neurons in their nervous system into adulthood, though the process is often tightly regulated. In adult humans, only a small number of neurons are made or lost, such that the fewer than 2% of the neurons in the nervous will change over, or “turnover”, the course of a year. The turnover of neurons in some other animals is much higher than it is in humans. A freshwater flatworm, called Schmidtea mediterranea, is one example of such an animal that can even regenerate an entirely new brain if its head is decapitated. These flatworms have a large population of adult stem cells, which makes these high rates of neuron production and regeneration possible. However, it is largely unknown if this population contains stem cells that can only become new neurons, in other words “dedicated neuronal stem cells”. Moreover, it is also not clear what kinds of signals communicate with these stem cells to promote the production of new neurons. In animals from flies to humans, a signaling molecule encoded by a gene called hedgehog forms part of a signaling pathway that can promote neuron production during development. Therefore, Currie et al. asked if the hedgehog signaling molecule might communicate with the stem cells in adult flatworms to control how many new neurons they produce. The experiments revealed that the hedgehog signaling molecule is almost exclusively produced by the flatworm’s brain and the pair of nerve cords that run the length of the flatworm. Currie et al. then found a smaller group of cells close to the flatworm’s brain that looked like dedicated neural stem cells. These cells can receive the hedgehog signals, and further experiments showed that flatworm’s brain requires hedgehog signaling to be able to produce new neurons at its normal level. The hedgehog signaling molecule is likely only one of many signaling molecules that regulate the production of new neurons in flatworms. It will be important to uncover these additional signals and understand how they work in concert. In the future, a better understanding of this process will help efforts to devise ways to induce humans to replace neurons that are lost following injury or neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.19735.002
Collapse
Affiliation(s)
- Ko W Currie
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alyssa M Molinaro
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
155
|
Deochand ME, Birkholz TR, Beane WS. Temporal regulation of planarian eye regeneration. ACTA ACUST UNITED AC 2016; 3:209-221. [PMID: 27800171 PMCID: PMC5084360 DOI: 10.1002/reg2.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration timelines. We followed the timing of regeneration for one organ, the eye, after multiple injury types that involved tissue loss (single‐ and double‐eye ablation, and decapitation) in Schmidtea mediterranea. Our data reveal that the timing of regeneration remained constant despite changing injury parameters. Optic tissue regrowth, nerve re‐innervation, and functional recovery were similar between injury types (even when the animal was simultaneously regrowing its brain). Changes in metabolic rate (i.e., starving vs. fed regenerates) also had no effect on regeneration timelines. In addition, our data suggest there may exist a role for optic nerve degeneration following eye ablation. Our results suggest that the temporal regulation of planarian eye regeneration is tightly controlled and resistant to variations in injury type.
Collapse
Affiliation(s)
- Michelle E Deochand
- Department of Biological Sciences Western Michigan University Kalamazoo MI, USA
| | - Taylor R Birkholz
- Department of Biological Sciences Western Michigan University Kalamazoo MI, USA
| | - Wendy S Beane
- Department of Biological Sciences Western Michigan University Kalamazoo MI, USA
| |
Collapse
|
156
|
Gahan JM, Bradshaw B, Flici H, Frank U. The interstitial stem cells in Hydractinia and their role in regeneration. Curr Opin Genet Dev 2016; 40:65-73. [DOI: 10.1016/j.gde.2016.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
157
|
Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW. Hedgehog signaling regulates gene expression in planarian glia. eLife 2016; 5:e16996. [PMID: 27612382 PMCID: PMC5055395 DOI: 10.7554/elife.16996] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.
Collapse
Affiliation(s)
- Irving E Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Sylvain W Lapan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - M Lucila Scimone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Peter W Reddien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
158
|
Lei K, Thi-Kim Vu H, Mohan RD, McKinney SA, Seidel CW, Alexander R, Gotting K, Workman JL, Sánchez Alvarado A. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians. Dev Cell 2016; 38:413-29. [PMID: 27523733 DOI: 10.1016/j.devcel.2016.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/01/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022]
Abstract
A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion.
Collapse
Affiliation(s)
- Kai Lei
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Hanh Thi-Kim Vu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ryan D Mohan
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Kirsten Gotting
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
159
|
Gehrke AR, Srivastava M. Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev 2016; 40:131-137. [PMID: 27498025 DOI: 10.1016/j.gde.2016.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/02/2016] [Accepted: 07/13/2016] [Indexed: 11/26/2022]
Abstract
The molecular mechanisms underlying whole-body regeneration are best understood in the planarian flatworm Schmidtea mediterranea, where a heterogeneous population of somatic stem cells called neoblasts provides new tissue for regeneration of essentially any missing body part. Studies on Schmidtea have provided a detailed description of neoblasts and their role in regeneration, but comparatively little is known about the evolutionary history of these cells and their underlying developmental programs. Acoels, an understudied group of aquatic worms that are also capable of extensive whole-body regeneration, have arisen as an attractive group to study the evolution of regenerative processes due to their phylogenetically distant position relative to flatworms. Here, we review the phylogenetic distribution of neoblast cells and compare their anatomical locations, transcriptional profiles, and roles during regeneration in flatworms and acoels to understand the evolution of whole-body regeneration. While the general role of neoblasts appears conserved in species separated by 550 million years of evolution, the extrinsic inputs they receive during regeneration can vary, making the distinction between homology and convergence of mechanism unclear. A more detailed understanding of the precise mechanisms behind whole-body regeneration in diverse phyla is necessary to understand the evolutionary history of this powerful process.
Collapse
Affiliation(s)
- Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
160
|
Wang C, Han XS, Li FF, Huang S, Qin YW, Zhao XX, Jing Q. Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian. Cell Discov 2016; 2:16029. [PMID: 27551436 PMCID: PMC4969599 DOI: 10.1038/celldisc.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023] Open
Abstract
Pigmentation processes occur from invertebrates to mammals. Owing to the complexity of the pigmentary system, in vivo animal models for pigmentation study are limited. Planarians are capable of regenerating any missing part including the dark-brown pigments, providing a promising model for pigmentation study. However, the molecular mechanism of planarian body pigmentation is poorly understood. We found in an RNA interference screen that a forkhead containing transcription factor, Albino, was required for pigmentation without affecting survival or other regeneration processes. In addition, the body color recovered after termination of Albino double stranded RNA feeding owing to the robust stem cell system. Further expression analysis revealed a spatial and temporal correlation between Albino and pigmentation process. Gene expression arrays revealed that the expression of three tetrapyrrole biosynthesis enzymes, ALAD, ALAS and PBGD, was impaired upon Albino RNA interference. RNA interference of PBGD led to a similar albinism phenotype caused by Albino RNA interference. Moreover, PBGD was specifically expressed in pigment cells and can serve as a pigment cell molecular marker. Our results revealed that Albino controls planarian body color pigmentation dominantly via regulating tetrapyrrole biogenesis. These results identified Albino as the key regulator of the tetrapyrrole-based planarian body pigmentation, suggesting a role of Albino during stem cell-pigment cell fate decision and provided new insights into porphyria pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xiao-Shuai Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Fang-Fang Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
161
|
Dingwall CB, King RS. Muscle-derived matrix metalloproteinase regulates stem cell proliferation in planarians. Dev Dyn 2016; 245:963-70. [PMID: 27327381 DOI: 10.1002/dvdy.24428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a large family of regulatory enzymes that function in extracellular matrix degradation and facilitate a diverse range of cellular processes. Despite the significant focus on the activities of MMPs in human disease, there is a lack of substantial knowledge regarding their normal physiological roles and their role in regulating aspects of stem cell biology. The freshwater planarian Schmidtea mediterranea (S. mediterranea) is an excellent system in which to study robust and nearly unlimited regeneration, guided by a population of mitotically active stem cells, termed neoblasts. RESULTS We characterized MMPs in the context of planarian stem cells, specifically exploring the role of S. mediterranea MT-MMPB. Using in situ hybridization and available functional genomic tools, we observed that mt-mmpB is expressed in the dorsoventral muscle cells, and its loss results in a reduction in animal size accompanied by a decrease in mitotic cells, suggesting that it plays a unique role in regulating stem cell proliferation. CONCLUSIONS The novel findings of this study bring to light the unique and critical roles that muscles play in regulating neoblast function, and more broadly, highlight the importance of MMPs in stem cell biology. Developmental Dynamics 245:963-970, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caitlin B Dingwall
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ryan S King
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biology, St. Norbert College, De Pere, Wisconsin
| |
Collapse
|
162
|
Arnold CP, Merryman MS, Harris-Arnold A, McKinney SA, Seidel CW, Loethen S, Proctor KN, Guo L, Sánchez Alvarado A. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. eLife 2016; 5. [PMID: 27441386 PMCID: PMC4993586 DOI: 10.7554/elife.16793] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration. DOI:http://dx.doi.org/10.7554/eLife.16793.001 Regeneration, the ability to replace missing or damaged tissue, has fascinated biologists for years and has inspired a new direction for the medical field. Figuring out how some animals easily accomplish this while others do not may help us to develop new therapies that enhance regeneration in humans. Previous work has indicated that the immune system, which is normally used to defend the body against bacteria, plays an important but complicated role in regeneration. By studying the relationships between bacteria, the immune system and regeneration in simple systems, it may be possible to see how their interactions either support or prevent the replacement of lost tissues. Flatworms called planaria can regenerate all of their tissues. Arnold et al. have now investigated what bacteria exist in planaria, how the planarian immune system responds to these bacteria, and how this response affects regeneration. The results reveal that the two main types of bacteria that are present in planaria are also found in humans. In fact, conditions that encourage the growth and spread of one of these types of bacteria (called Proteobacteria, many of which can make humans ill) damaged the worms and prevented them from regenerating. Arnold et al. then looked to see if the worms had genes that were similar to human genes that control the key immune process of inflammation, and found evidence of several such genes. Reducing the activity levels of these genes enabled worms that had been infected with Proteobacteria to regenerate again. However, these genes only seem to be responsible for regeneration when the planaria are infected with bacteria. Thus, planaria could be used as a simple model to discover how changes in resident bacteria can be detected by the immune system and affect the ability to regenerate tissues. Future studies could use planaria to identify even more genes that control regeneration during infection. Also, since the main types of bacteria in planaria are similar to those in humans, planaria may help us to learn how animals can properly balance the levels of these bacteria in order to remain healthy. DOI:http://dx.doi.org/10.7554/eLife.16793.002
Collapse
Affiliation(s)
| | - M Shane Merryman
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Longhua Guo
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
163
|
Owlarn S, Bartscherer K. Go ahead, grow a head! A planarian's guide to anterior regeneration. ACTA ACUST UNITED AC 2016; 3:139-55. [PMID: 27606065 PMCID: PMC5011478 DOI: 10.1002/reg2.56] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Abstract
The unique ability of some planarian species to regenerate a head de novo, including a functional brain, provides an experimentally accessible system in which to study the mechanisms underlying regeneration. Here, we summarize the current knowledge on the key steps of planarian head regeneration (head‐versus‐tail decision, anterior pole formation and head patterning) and their molecular and cellular basis. Moreover, instructive properties of the anterior pole as a putative organizer and in coordinating anterior midline formation are discussed. Finally, we highlight that regeneration initiation occurs in a two‐step manner and hypothesize that wound‐induced and existing positional cues interact to detect tissue loss and together determine the appropriate regenerative outcomes.
Collapse
Affiliation(s)
- Suthira Owlarn
- Max Planck Research Group Stem Cells and Regeneration Max Planck Institute for Molecular Biomedicine Von-Esmarch-Str. 5448149 Münster Germany; Medical Faculty University of Münster Albert-Schweitzer-Campus 148149 Münster Germany; CiM-IMPRS Graduate School Schlossplatz 548149 Münster Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration Max Planck Institute for Molecular Biomedicine Von-Esmarch-Str. 5448149 Münster Germany; Medical Faculty University of Münster Albert-Schweitzer-Campus 148149 Münster Germany
| |
Collapse
|
164
|
Shibata N, Kashima M, Ishiko T, Nishimura O, Rouhana L, Misaki K, Yonemura S, Saito K, Siomi H, Siomi M, Agata K. Inheritance of a Nuclear PIWI from Pluripotent Stem Cells by Somatic Descendants Ensures Differentiation by Silencing Transposons in Planarian. Dev Cell 2016; 37:226-37. [DOI: 10.1016/j.devcel.2016.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/18/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022]
|
165
|
Wurtzel O, Cote LE, Poirier A, Satija R, Regev A, Reddien PW. A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Dev Cell 2016; 35:632-645. [PMID: 26651295 DOI: 10.1016/j.devcel.2015.11.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 12/27/2022]
Abstract
Regeneration starts with injury. Yet how injuries affect gene expression in different cell types and how distinct injuries differ in gene expression remain unclear. We defined the transcriptomes of major cell types of planarians--flatworms that regenerate from nearly any injury--and identified 1,214 tissue-specific markers across 13 cell types. RNA sequencing on 619 single cells revealed that wound-induced genes were expressed either in nearly all cell types or specifically in one of three cell types (stem cells, muscle, or epidermis). Time course experiments following different injuries indicated that a generic wound response is activated with any injury regardless of the regenerative outcome. Only one gene, notum, was differentially expressed early between anterior- and posterior-facing wounds. Injury-specific transcriptional responses emerged 30 hr after injury, involving context-dependent patterning and stem-cell-specialization genes. The regenerative requirement of every injury is different; however, our work demonstrates that all injuries start with a common transcriptional response.
Collapse
Affiliation(s)
- Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lauren E Cote
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amber Poirier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Aviv Regev
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
166
|
Peiris TH, Ramirez D, Barghouth PG, Oviedo NJ. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians. BMC DEVELOPMENTAL BIOLOGY 2016; 16:7. [PMID: 27068018 PMCID: PMC4827215 DOI: 10.1186/s12861-016-0107-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Background Akt (PKB) is a serine threonine protein kinase downstream of the phosphoinositide 3-kinase (PI3K) pathway. In mammals, Akt is ubiquitously expressed and is associated with regulation of cellular proliferation, metabolism, cell growth and cell death. Akt has been widely studied for its central role in physiology and disease, in particular cancer where it has become an attractive pharmacological target. However, the mechanisms by which Akt signaling regulates stem cell behavior in the complexity of the whole body are poorly understood. Planarians are flatworms with large populations of stem cells capable of dividing to support adult tissue renewal and regeneration. The planarian ortholog Smed-Akt is molecularly conserved providing unique opportunities to analyze the function of Akt during cellular turnover and repair of adult tissues. Results Our findings abrogating Smed-Akt with RNA-interference in the planarian Schmidtea mediterranea led to a gradual decrease in stem cell (neoblasts) numbers. The reduced neoblast numbers largely affected the maintenance of adult tissues including the nervous and excretory systems and ciliated structures in the ventral epithelia, which impaired planarian locomotion. Downregulation of Smed-Akt function also resulted in an increase of cell death throughout the animal. However, in response to amputation, levels of cell death were decreased and failed to localize near the injury site. Interestingly, the neoblast mitotic response was increased around the amputation area but the regenerative blastema failed to form. Conclusions We demonstrate Akt signaling is essential for organismal physiology and in late stages of the Akt phenotype the reduction in neoblast numbers may impair regeneration in planarians. Functional disruption of Smed-Akt alters the balance between cell proliferation and cell death leading to systemic impairment of adult tissue renewal. Our results also reveal novel roles for Akt signaling during regeneration, specifically for the timely localization of cell death near the injury site. Thus, Akt signaling regulates neoblast biology and mediates in the distribution of injury-mediated cell death during tissue repair in planarians. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0107-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA
| | - Daniel Ramirez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA. .,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA. .,Health Sciences Research Institute, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
167
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
168
|
Peiris TH, Ramirez D, Barghouth PG, Ofoha U, Davidian D, Weckerle F, Oviedo NJ. Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 2016; 143:1697-709. [PMID: 27013241 DOI: 10.1242/dev.131318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Cellular fate decisions are influenced by their topographical location in the adult body. For instance, tissue repair and neoplastic growth are greater in anterior than in posterior regions of adult animals. However, the molecular underpinnings of these regional differences are unknown. We identified a regional switch in the adult planarian body upon systemic disruption of homologous recombination with RNA-interference of Rad51 Rad51 knockdown increases DNA double-strand breaks (DSBs) throughout the body, but stem cells react differently depending on their location along the anteroposterior axis. In the presence of extensive DSBs, cells in the anterior part of the body resist death, whereas cells in the posterior region undergo apoptosis. Furthermore, we found that proliferation of cells with DNA damage is induced in the presence of brain tissue and that the retinoblastoma pathway enables overproliferation of cells with DSBs while attending to the demands of tissue growth and repair. Our results implicate both autonomous and non-autonomous mechanisms as key mediators of regional cell behavior and cellular transformation in the adult body.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Daniel Ramirez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Udokanma Ofoha
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Devon Davidian
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Frank Weckerle
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
169
|
Sugiura T, Wang H, Barsacchi R, Simon A, Tanaka EM. MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature 2016; 531:237-40. [PMID: 26934225 PMCID: PMC4795554 DOI: 10.1038/nature16974] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Identifying key molecules that launch regeneration has been a long-sought goal. Multiple regenerative animals show an initial wound-associated proliferative response that transits into sustained proliferation if a considerable portion of the body part has been removed. In the axolotl, appendage amputation initiates a round of wound-associated cell cycle induction followed by continued proliferation that is dependent on nerve-derived signals. A wound-associated molecule that triggers the initial proliferative response to launch regeneration has remained obscure. Here, using an expression cloning strategy followed by in vivo gain- and loss-of-function assays, we identified axolotl MARCKS-like protein (MLP) as an extracellularly released factor that induces the initial cell cycle response during axolotl appendage regeneration. The identification of a regeneration-initiating molecule opens the possibility of understanding how to elicit regeneration in other animals.
Collapse
Affiliation(s)
- Takuji Sugiura
- DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden
- Max Planck Institute for Molecular Cell Biology and Genetics
| | - Heng Wang
- Karolinska Institute, Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine
| | - Rico Barsacchi
- Max Planck Institute for Molecular Cell Biology and Genetics
| | - Andras Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine
| | - Elly M. Tanaka
- DFG Research Center for Regenerative Therapies (CRTD), Technische Universität Dresden
- Max Planck Institute for Molecular Cell Biology and Genetics
| |
Collapse
|
170
|
Ong TH, Romanova EV, Roberts-Galbraith RH, Yang N, Zimmerman TA, Collins JJ, Lee JE, Kelleher NL, Newmark PA, Sweedler JV. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. J Biol Chem 2016; 291:8109-20. [PMID: 26884331 PMCID: PMC4825013 DOI: 10.1074/jbc.m115.709196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enablede novostudies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatwormSchmidtea mediterraneaat different time points during cephalic ganglia regeneration. A protocol was developed to makeS. mediterraneatissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- From the Department of Chemistry, and the Beckman Institute
| | | | - Rachel H Roberts-Galbraith
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ning Yang
- From the Department of Chemistry, and the Beckman Institute
| | | | - James J Collins
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ji Eun Lee
- From the Department of Chemistry, and the Beckman Institute
| | - Neil L Kelleher
- the Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60611
| | - Phillip A Newmark
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | |
Collapse
|
171
|
Mangel M, Bonsall MB, Aboobaker A. Feedback control in planarian stem cell systems. BMC SYSTEMS BIOLOGY 2016; 10:17. [PMID: 26873593 PMCID: PMC4752765 DOI: 10.1186/s12918-016-0261-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023]
Abstract
Background In planarian flatworms, the mechanisms underlying the activity of collectively pluripotent adult stem cells (neoblasts) and their descendants can now be studied from the level of the individual gene to the entire animal. Flatworms maintain startling developmental plasticity and regenerative capacity in response to variable nutrient conditions or injury. We develop a model for cell dynamics in such animals, assuming that fully differentiated cells exert feedback control on neoblast activity. Results Our model predicts a number of whole organism level and general cell biological and behaviours, some of which have been empirically observed or inferred in planarians and others that have not. As previously observed empirically we find: 1) a curvilinear relationship between external food and planarian steady state size; 2) the fraction of neoblasts in the steady state is constant regardless of planarian size; 3) a burst of controlled apoptosis during regeneration after amputation as the number of differentiated cells are adjusted towards their homeostatic/steady state level. In addition our model describes the following properties that can inform and be tested by future experiments: 4) the strength of feedback control from differentiated cells to neoblasts (i.e. the activity of the signalling system) and from neoblasts on themselves in relation to absolute number depends upon the level of food in the environment; 5) planarians adjust size when food level reduces initially through increased apoptosis and then through a reduction in neoblast self-renewal activity; 6) following wounding or excision of differentiated cells, different time scales characterize both recovery of size and the two feedback functions; 7) the temporal pattern of feedback controls differs noticeably during recovery from a removal or neoblasts or a removal of differentiated cells; 8) the signaling strength for apoptosis of differentiated cells depends upon both the absolute and relative deviations of the number of differentiated cells from their homeostatic level; and 9) planaria prioritize resource use for cell divisions. Conclusions We offer the first analytical framework for organizing experiments on planarian flatworm stem cell dynamics in a form that allows models to be compared with quantitative cell data based on underlying molecular mechanisms and thus facilitate the interplay between empirical studies and modeling. This framework is the foundation for studying cell migration during wound repair, the determination of homeostatic levels of differentiated cells by natural selection, and stochastic effects. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0261-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc Mangel
- Department of Applied Mathematics and Statistics, University of California, Santa Cruz, 95064, CA, USA. .,Department of Biology, University of Bergen, Bergen, 9020, Norway.
| | | | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
172
|
Tasaki J, Uchiyama-Tasaki C, Rouhana L. Analysis of Stem Cell Motility In Vivo Based on Immunodetection of Planarian Neoblasts and Tracing of BrdU-Labeled Cells After Partial Irradiation. Methods Mol Biol 2016; 1365:323-338. [PMID: 26498794 DOI: 10.1007/978-1-4939-3124-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Planarian flatworms have become an important system for the study of stem cell behavior and regulation in vivo. These organisms are able to regenerate any part of their body upon damage or amputation. A crucial cellular event in the process of planarian regeneration is the migration of pluripotent stem cells (known as neoblasts) to the site of injury. Here we describe two approaches for analyzing migration of planarian stem cells to an area where these have been ablated by localized X-ray irradiation. The first approach involves immunolabeling of mitotic neoblasts, while the second is based on tracing stem cells and their progeny after BrdU incorporation. The use of planarians in studies of cell motility is suitable for the identification of factors that influence stem cell migration in vivo and is amenable to RNA interference or pharmacological screening.
Collapse
Affiliation(s)
- Junichi Tasaki
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Chihiro Uchiyama-Tasaki
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| |
Collapse
|
173
|
Hill EM, Petersen CP. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development 2015; 142:4217-29. [PMID: 26525673 DOI: 10.1242/dev.123612] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
174
|
Tu KC, Cheng LC, T K Vu H, Lange JJ, McKinney SA, Seidel CW, Sánchez Alvarado A. Egr-5 is a post-mitotic regulator of planarian epidermal differentiation. eLife 2015; 4:e10501. [PMID: 26457503 PMCID: PMC4716842 DOI: 10.7554/elife.10501] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023] Open
Abstract
Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo.
Collapse
Affiliation(s)
- Kimberly C Tu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Li-Chun Cheng
- Stowers Institute for Medical Research, Kansas City, United States
| | - Hanh T K Vu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, United States.,Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
175
|
Hubert A, Henderson JM, Cowles MW, Ross KG, Hagen M, Anderson C, Szeterlak CJ, Zayas RM. A functional genomics screen identifies an Importin-α homolog as a regulator of stem cell function and tissue patterning during planarian regeneration. BMC Genomics 2015; 16:769. [PMID: 26459857 PMCID: PMC4603911 DOI: 10.1186/s12864-015-1979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. Methods We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. Results Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. Conclusions Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1979-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA. .,Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-0001, USA.
| | - Jordana M Henderson
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Martis W Cowles
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Matthew Hagen
- Biological and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Christa Anderson
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Claudia J Szeterlak
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
176
|
Adler CE, Sánchez Alvarado A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol 2015; 25:687-696. [PMID: 26437587 DOI: 10.1016/j.tcb.2015.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Many of our organs can maintain and repair themselves during homeostasis and injury, as a result of the action of tissue-specific, multipotent stem cells. However, recent evidence from mammalian systems suggests that injury stimulates dramatic plasticity, or transient changes in cell potential, in both stem cells and more differentiated cells. Planarian flatworms possess abundant stem cells, making them an exceptional model for understanding the cellular behavior underlying homeostasis and regeneration. Recent discoveries of cell lineages and regeneration-specific events provide an initial framework for unraveling the complex cellular contributions to regeneration. In this review, we discuss the concept of cellular plasticity in the context of planarian regeneration, and consider the possibility that pluripotency may be a transient, probabilistic state exhibited by stem cells.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Current address: Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
177
|
Meserve JH, Duronio RJ. Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 2015; 142:2740-51. [PMID: 26160905 DOI: 10.1242/dev.119339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
178
|
Rossi L, Bonuccelli L, Iacopetti P, Evangelista M, Ghezzani C, Tana L, Salvetti A. Prohibitin 2 regulates cell proliferation and mitochondrial cristae morphogenesis in planarian stem cells. Stem Cell Rev Rep 2015; 10:871-87. [PMID: 24974103 DOI: 10.1007/s12015-014-9540-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prohibitins are pleiotropic proteins, whose multiple roles are emerging as key elements in the regulation of cell survival and proliferation. Indeed, prohibitins interact with several intracellular proteins strategically involved in the regulation of cell cycle progression in response to extracellular growth signals. Prohibitins also have regulatory functions in mitochondrial fusion and cristae morphogenesis, phenomena related to the ability of self-renewing embryonic stem cells to undergo differentiation, during which mitochondria develop numerous cristae, increase in number, and generate an extensive reticular network. We recently identified a Prohibitin 2 homolog (DjPhb2) that is expressed in adult stem cells (neoblasts) of planarians, a well-known model system for in vivo studies on stem cells and tissue regeneration. Here, we show that in DjPhb2 silenced planarians, most proliferating cells disappear, with the exception of a subpopulation of neoblasts localized along the dorsal body midline. Neoblast depletion impairs regeneration and, finally, leads animals to death. Our in vivo findings demonstrate that prohibitin 2 plays an important role in regulating stem cell biology, being involved in both the control of cell cycle progression and mitochondrial cristae morphogenesis.
Collapse
Affiliation(s)
- Leonardo Rossi
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
179
|
Geng X, Wang G, Qin Y, Zang X, Li P, Geng Z, Xue D, Dong Z, Ma K, Chen G, Xu C. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians. PLoS One 2015; 10:e0132045. [PMID: 26131905 PMCID: PMC4488856 DOI: 10.1371/journal.pone.0132045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.
Collapse
Affiliation(s)
- Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
| | - Gaiping Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Yanli Qin
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Zhi Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Deming Xue
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Kexue Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
- * E-mail: (CSX); (GWC)
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
- * E-mail: (CSX); (GWC)
| |
Collapse
|
180
|
Zhu SJ, Hallows SE, Currie KW, Xu C, Pearson BJ. A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife 2015; 4. [PMID: 26114597 PMCID: PMC4507787 DOI: 10.7554/elife.07025] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/25/2015] [Indexed: 12/30/2022] Open
Abstract
Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment. DOI:http://dx.doi.org/10.7554/eLife.07025.001 Adult tissues constantly replace the millions of cells they lose on a daily basis. This is made possible by adult stem cells. But how is a stable population of stem cells maintained throughout the life of the organism with constant cell division? One way this can be accomplished is if at every stem cell division, only one of the daughter cells remains a stem cell, while the other becomes specialized. For humans, if this balance is disturbed, cancers may result from too many stem cells, and early aging may result from too few stem cells. A freshwater flatworm called Schmidtea mediterranea is known for its ability to regenerate nearly every part of its body after injury. This flatworm possesses stem cells called neoblasts that can form all of the flatworm's different cell types both during regeneration and during normal tissue turnover. Evidence suggests that the number of neoblasts and the number of specialized cells that neoblasts produce are finely balanced, similar to adult human tissues. However, little is known about the mechanism that controls whether a neoblast takes on a more specialized form. To express a gene, it must first be copied or ‘transcribed’ into an RNA molecule. Identifying the RNA molecules that are enriched in the non-stem cells that develop from neoblasts could therefore indicate which genes regulate the cell specialization process. These RNA molecules could also be used as markers that identify which cells have taken on a more specialized form. Using techniques called transcriptional profiling and RNA interference, Zhu et al. identified 32 new markers that indicate that the neoblasts have started to specialize into epithelial cells: cells that line the surfaces of many structures in the body. Further investigation revealed that one gene, called mex3-1, is needed for many specialized cell types—not just epithelial cells—to mature from neoblasts in the flatworms. In doing so, mex3-1 also limits the size of the stem cell population. Equivalents of mex3-1 are found in many different species including humans, and so Zhu et al.'s results may help us to understand how other animals regenerate and control the size of their stem cell populations. Mutant flatworms that cannot express mex3-1 could also be used to study other genes that help neoblasts to specialize. DOI:http://dx.doi.org/10.7554/eLife.07025.002
Collapse
Affiliation(s)
- Shu Jun Zhu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Stephanie E Hallows
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ko W Currie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - ChangJiang Xu
- Terrence Donnelly Centre for Cellular and Biomedical Research, Toronto, Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
181
|
Light and electron microscopic studies of the intestinal epithelium in Notoplana humilis (Platyhelminthes, Polycladida): the contribution of mesodermal/gastrodermal neoblasts to intestinal regeneration. Cell Tissue Res 2015; 362:529-40. [DOI: 10.1007/s00441-015-2221-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
|
182
|
Salvetti A, Rossi L, Iacopetti P, Li X, Nitti S, Pellegrino T, Mattoli V, Golberg D, Ciofani G. In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. Nanomedicine (Lond) 2015; 10:1911-22. [PMID: 25835434 DOI: 10.2217/nnm.15.46] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM Boron nitride nanotubes (BNNTs) represent an extremely interesting class of nanomaterials, and recent findings have suggested a number of applications in the biomedical field. Anyhow, extensive biocompatibility investigations are mandatory before any further advancement toward preclinical testing. MATERIALS & METHODS Here, we report on the effects of multiwalled BNNTs in freshwater planarians, one of the best-characterized in vivo models for developmental biology and regeneration research. RESULTS & DISCUSSION Obtained results indicate that BNNTs are biocompatible in the investigated model, since they do not induce oxidative DNA damage and apoptosis, and do not show adverse effects on planarian stem cell biology and on de novo tissue regeneration. In summary, collected findings represent another important step toward BNNT realistic applications in nanomedicine.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Department of Clinical & Experimental Medicine, University of Pisa, Via Alessandro Volta 4, 56126 Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Alessandro Volta 4, 56126 Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical & Experimental Medicine, University of Pisa, Via Alessandro Volta 4, 56126 Pisa, Italy
| | - Xia Li
- National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics (MANA), Namiki 1-1, 305-0044 Tsukuba (Ibaraki), Japan
| | - Simone Nitti
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Dmitri Golberg
- National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics (MANA), Namiki 1-1, 305-0044 Tsukuba (Ibaraki), Japan
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| |
Collapse
|
183
|
Chen X, Xu C. Protein expression profiling in head fragments during planarian regeneration after amputation. Dev Genes Evol 2015; 225:79-93. [PMID: 25697422 DOI: 10.1007/s00427-015-0494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, 471003, China
| | | |
Collapse
|
184
|
Barghouth PG, Thiruvalluvan M, Oviedo NJ. Bioelectrical regulation of cell cycle and the planarian model system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2629-37. [PMID: 25749155 DOI: 10.1016/j.bbamem.2015.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022]
Abstract
Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Manish Thiruvalluvan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Health Sciences Research Institute, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
185
|
Β-catenin-dependent control of positional information along the AP body axis in planarians involves a teashirt family member. Cell Rep 2014; 10:253-65. [PMID: 25558068 DOI: 10.1016/j.celrep.2014.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/07/2014] [Accepted: 12/09/2014] [Indexed: 11/21/2022] Open
Abstract
Wnt/β-catenin signaling regulates tissue homeostasis and regeneration in metazoans. In planarians-flatworms with high regenerative potential-Wnt ligands are thought to control tissue polarity by shaping a β-catenin activity gradient along the anterior-posterior axis, yet the downstream mechanisms are poorly understood. We performed an RNA sequencing (RNA-seq)-based screen and identified hundreds of β-catenin-dependent transcripts, of which several were expressed in muscle tissue and stem cells in a graded fashion. In particular, a teashirt (tsh) ortholog was induced in a β-catenin-dependent manner during regeneration in planarians and zebrafish, and RNAi resulted in two-headed planarians. Strikingly, intact planarians depleted of tsh induced anterior markers and slowly transformed their tail into a head, reminiscent of β-catenin RNAi phenotypes. Given that β-catenin RNAi enhanced the formation of muscle cells expressing anterior determinants in tail regions, our study suggests that this pathway controls tissue polarity through regulating the identity of differentiating cells during homeostasis and regeneration.
Collapse
|
186
|
Lopes KAR, DE Campos Velho NMR, Pacheco-Soares C. Method of isolation and characterization of Girardia tigrina stem cells. Biomed Rep 2014; 3:163-166. [PMID: 25798241 DOI: 10.3892/br.2014.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 02/02/2023] Open
Abstract
Tissue regeneration is widely studied due to its importance for understanding the biology of stem cells, aiming at their application in medicine for therapeutic and various other purposes. The establishment of experimental models is necessary, as certain invertebrates and vertebrates have different regeneration abilities depending on their taxon position on the evolutionary scale. Planarians are an efficacious in vivo model for stem cell biology, but the correlation between planarian cellular and molecular neoblast pluripotency mechanisms and those of mammalian stem cells is unknown. The present study had the following objectives: i) Establish Girardia tigrina cell culture, ii) determine the time required for complete cell disintegration and iii) obtain neoblasts by cell subdivision. Twenty-four specimens were deprived of food for seven days. After this time, disintegration was performed by incubation protected at three temperatures for 48 h in an antibiotic, antimycotic and trypsin solution, after which the suspension was homogenized and centrifuged. Histopaque® 1077 was used for cell separation and interphases were collected and monitored by optical and fluorescence microscopy. Optical microscopy analysis informed the nucleus-to-cytoplasm ratio, cell morphology and cell size. Under fluorescence microscopy, interphase 1 (I1) was subdivided into two groups and neoblasts were marked for characterization; one group was stained with 4',6-diamidino-2-phenylindole and the other was immunolabeled with octamer-binding transcription factor 4 (OCT4) and isolated and observed after 10 days of cultivation. Neoblasts predominated in I1 with a small amount of other cell types. In conclusion, sample disintegration with a trypsin and antibiotic solution was effective at 18˚C and Iscove's modified Dulbecco's medium supplemented with fetal bovine serum was adequate for the establishment of primary cell cultures after 48-h incubation and centrifugation. Antibody anti-OCT4 was used for the characterization of stem cells and was successfully labeled with concentrated neoblasts on interphase 1.
Collapse
Affiliation(s)
- K A R Lopes
- Laboratory Planarians, Nature Study Center, University of Vale do Paraíba, São José dos Campos, SP 12244-000, Brazil ; Laboratory of Dynamics of Cellular Compartments, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP 12244-000, Brazil
| | - N M R DE Campos Velho
- Laboratory of Dynamics of Cellular Compartments, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP 12244-000, Brazil
| | - C Pacheco-Soares
- Laboratory of Dynamics of Cellular Compartments, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP 12244-000, Brazil
| |
Collapse
|
187
|
Cowles MW, Omuro KC, Stanley BN, Quintanilla CG, Zayas RM. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians. PLoS Genet 2014; 10:e1004746. [PMID: 25356635 PMCID: PMC4214590 DOI: 10.1371/journal.pgen.1004746] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. COE transcription factors are conserved across widely divergent animals and are crucial for organismal development. COE genes also play roles in adult animals and have been implicated in central nervous system (CNS) diseases; however, the function of COE in the post-embryonic CNS remains poorly understood. Planarian regeneration provides an excellent model to study the function of transcription factors in cell differentiation and in terminally differentiated cells. In planarians, coe is expressed in differentiating and mature neurons, and its function is required for CNS regeneration. In this study, we show that coe is required to maintain structure and function of the CNS in uninjured planarians. We took advantage of this phenotype to identify genes regulated by coe by comparing global gene expression changes between control and coe mRNA-deficient planarians. This approach revealed downregulated genes downstream of coe with biological roles in CNS function. Expression analysis of downregulated genes uncovered previously unknown candidate targets of coe in the CNS. Furthermore, functional analysis of downstream targets identified coe-regulated genes required for CNS regeneration. These results demonstrate that the roles of COE in stem cell specification and neuronal function are active and indispensable during CNS renewal in adult animals.
Collapse
Affiliation(s)
- Martis W. Cowles
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Kerilyn C. Omuro
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Brianna N. Stanley
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Carlo G. Quintanilla
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ricardo M. Zayas
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
188
|
Abstract
Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.
Collapse
Affiliation(s)
- Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; University Paris-Diderot, Paris, France
| | - Silke Reiter
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Switzerland.
| |
Collapse
|
189
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
190
|
Innate immune system and tissue regeneration in planarians: an area ripe for exploration. Semin Immunol 2014; 26:295-302. [PMID: 25082737 DOI: 10.1016/j.smim.2014.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023]
Abstract
The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism.
Collapse
|
191
|
Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 2014; 15:326-339. [PMID: 25017721 DOI: 10.1016/j.stem.2014.06.007] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022]
Abstract
Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage, including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings indicate that planarian neoblasts comprise two major and functionally distinct cellular compartments.
Collapse
|
192
|
Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Reports 2014; 3:339-52. [PMID: 25254346 PMCID: PMC4176530 DOI: 10.1016/j.stemcr.2014.06.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
Planarians can regenerate any missing body part in a process requiring dividing cells called neoblasts. Historically, neoblasts have largely been considered a homogeneous stem cell population. Most studies, however, analyzed neoblasts at the population rather than the single-cell level, leaving the degree of heterogeneity in this population unresolved. We combined RNA sequencing of neoblasts from wounded planarians with expression screening and identified 33 transcription factors transcribed in specific differentiated cells and in small fractions of neoblasts during regeneration. Many neoblast subsets expressing distinct tissue-associated transcription factors were present, suggesting candidate specification into many lineages. Consistent with this possibility, klf, pax3/7, and FoxA were required for the differentiation of cintillo-expressing sensory neurons, dopamine-β-hydroxylase-expressing neurons, and the pharynx, respectively. Together, these results suggest that specification of cell fate for most-to-all regenerative lineages occurs within neoblasts, with regenerative cells of blastemas being generated from a highly heterogeneous collection of lineage-specified neoblasts. Forty-one transcription factors are expressed in subsets of planarian neoblasts Specific combinations of transcription factors mark different neoblast subsets Specific cell-type regeneration failures follow transcription factor RNAi The neoblast population contains many specified progenitors after wounding
Collapse
|
193
|
Vásquez-Doorman C, Petersen CP. zic-1 Expression in Planarian neoblasts after injury controls anterior pole regeneration. PLoS Genet 2014; 10:e1004452. [PMID: 24992682 PMCID: PMC4081000 DOI: 10.1371/journal.pgen.1004452] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/07/2014] [Indexed: 11/24/2022] Open
Abstract
Mechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury. We used expression profiling of purified neoblasts to identify factors needed for anterior pole formation. Using this approach, we identified zic-1, a Zic-family transcription factor, as transcriptionally activated in a subpopulation of neoblasts near wound sites early in head regeneration. As head regeneration proceeds, the Wnt inhibitor notum becomes expressed in the newly forming anterior pole in zic-1-expressing cells descended from neoblasts. Inhibition of zic-1 by RNAi resulted in a failure to express notum at the anterior pole and to regenerate a head, but did not affect tail regeneration. Both injury and canonical Wnt signaling inhibition are required for zic-1 expression, and double-RNAi experiments suggest zic-1 inhibits Wnt signaling to allow head regeneration. Analysis of neoblast fate determinants revealed that zic-1 controls specification of notum-expressing cells from foxD-expressing neoblasts to form the anterior pole, which organizes subsequent outgrowth. Specialized differentiation programs may in general underlie injury-dependent formation of tissue organizing centers used for regenerative outgrowth. Some animals are capable of regenerating organs damaged or removed by injury, and this ability likely requires precise control of secreted proteins that promote growth. Planarians are flatworms that can regenerate any missing tissues by regulating the activity of adult stem cells that can produce any specialized cell type. We identify the zic-1 gene as activated in planarian stem cells by injury and needed for head regeneration after decapitation. This gene's product likely acts as a transcription factor to produce cells that secrete a growth-promoting protein, NOTUM, at the tip of the regenerating tissue outgrowth to organize and enable head regeneration. These results suggest that regeneration requires specialized uses of stem cell descendants to orchestrate new tissue production following injury.
Collapse
Affiliation(s)
- Constanza Vásquez-Doorman
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
194
|
Rouhana L, Weiss JA, King RS, Newmark PA. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies. Development 2014; 141:2592-601. [PMID: 24903754 DOI: 10.1242/dev.101618] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Jennifer A Weiss
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
195
|
Almuedo-Castillo M, Crespo X, Seebeck F, Bartscherer K, Salò E, Adell T. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling. PLoS Genet 2014; 10:e1004400. [PMID: 24922054 PMCID: PMC4055413 DOI: 10.1371/journal.pgen.1004400] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/09/2014] [Indexed: 01/18/2023] Open
Abstract
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.
Collapse
Affiliation(s)
- María Almuedo-Castillo
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Xenia Crespo
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Florian Seebeck
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Faculty of Medicine, University of Münster, Münster, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Faculty of Medicine, University of Münster, Münster, Germany
| | - Emili Salò
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Teresa Adell
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
196
|
Adler CE, Seidel CW, McKinney SA, Sánchez Alvarado A. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. eLife 2014; 3:e02238. [PMID: 24737865 PMCID: PMC3985184 DOI: 10.7554/elife.02238] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 01/08/2023] Open
Abstract
Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, United States
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
197
|
Fraguas S, Barberán S, Iglesias M, Rodríguez-Esteban G, Cebrià F. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development 2014; 141:1835-47. [PMID: 24700819 DOI: 10.1242/dev.101345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.
Collapse
Affiliation(s)
- Susanna Fraguas
- Departament de Genètica de la Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avenida Diagonal 643, Edifici Prevosti planta 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
198
|
Vogg MC, Owlarn S, Pérez Rico YA, Xie J, Suzuki Y, Gentile L, Wu W, Bartscherer K. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev Biol 2014; 390:136-48. [PMID: 24704339 DOI: 10.1016/j.ydbio.2014.03.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022]
Abstract
Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue.
Collapse
Affiliation(s)
- Matthias C Vogg
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Suthira Owlarn
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; CiM-IMPRS Graduate School, Schlossplatz 5, 48149 Münster, Germany
| | - Yuvia A Pérez Rico
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yoko Suzuki
- CiM-IMPRS Graduate School, Schlossplatz 5, 48149 Münster, Germany; Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Luca Gentile
- Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| |
Collapse
|
199
|
Chong T, Collins JJ, Brubacher JL, Zarkower D, Newmark PA. A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite. Nat Commun 2013; 4:1814. [PMID: 23652002 PMCID: PMC3674237 DOI: 10.1038/ncomms2811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/26/2013] [Indexed: 12/26/2022] Open
Abstract
Evolutionary transitions between hermaphroditic and dioecious reproductive states are found in many groups of animals. To understand such transitions, it is important to characterize diverse modes of sex determination utilized by metazoans. Currently, little is known about how simultaneous hermaphrodites specify and maintain male and female organs in a single individual. Here we show that a sex-specific gene, Smed-dmd-1 encoding a predicted doublesex/male-abnormal-3 (DM) domain transcription factor, is required for specification of male germ cells in a simultaneous hermaphrodite, the planarian Schmidtea mediterranea. dmd-1 has a male-specific role in the maintenance and regeneration of the testes and male accessory reproductive organs. In addition, a homologue of dmd-1 exhibits male-specific expression in Schistosoma mansoni, a derived, dioecious flatworm. These results demonstrate conservation of the role of DM domain genes in sexual development in lophotrochozoans and suggest one means by which modulation of sex-specific pathways can drive the transition from hermaphroditism to dioecy. Hermaphrodites develop and maintain male and female reproductive organs in a single individual. Chong et al. show that a DM domain transcription factor is required for male germ cell regeneration and maintains ‘maleness’ in a hermaphrodite, the planarian flatworm Schmidtea mediterranea.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
200
|
Kao D, Felix D, Aboobaker A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 2013; 14:797. [PMID: 24238224 PMCID: PMC4046745 DOI: 10.1186/1471-2164-14-797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Planarians can regenerate entire animals from a small fragment of the body. The regenerating fragment is able to create new tissues and remodel existing tissues to form a complete animal. Thus different fragments with very different starting components eventually converge on the same solution. In this study, we performed an extensive RNA-seq time-course on regenerating head and tail fragments to observe the differences and similarities of the transcriptional landscape between head and tail fragments during regeneration. RESULTS We have consolidated existing transcriptomic data for S. mediterranea to generate a high confidence set of transcripts for use in genome wide expression studies. We performed a RNA-seq time-course on regenerating head and tail fragments from 0 hours to 3 days. We found that the transcriptome profiles of head and tail regeneration were very different at the start of regeneration; however, an unexpected convergence of transcriptional profiles occurred at 48 hours when head and tail fragments are still morphologically distinct. By comparing differentially expressed transcripts at various time-points, we revealed that this divergence/convergence pattern is caused by a shared regulatory program that runs early in heads and later in tails.Additionally, we also performed RNA-seq on smed-prep(RNAi) tail fragments which ultimately fail to regenerate anterior structures. We find the gene regulation program in response to smed-prep(RNAi) to display the opposite regulatory trend compared to the previously mentioned share regulatory program during regeneration. Using annotation data and comparative approaches, we also identified a set of approximately 4,800 triclad specific transcripts that were enriched amongst the genes displaying differential expression during the regeneration time-course. CONCLUSION The regeneration transcriptome of head and tail regeneration provides us with a rich resource for investigating the global expression changes that occurs during regeneration. We show that very different regenerative scenarios utilize a shared core regenerative program. Furthermore, our consolidated transcriptome and annotations allowed us to identity triclad specific transcripts that are enriched within this core regulatory program. Our data support the hypothesis that both conserved aspects of animal developmental programs and recent evolutionarily innovations work in concert to control regeneration.
Collapse
Affiliation(s)
- Damian Kao
- />School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Daniel Felix
- />Fundación CNIC Carlos III- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro, 3, Madrid, Código Postal 28029 Spain
| | - Aziz Aboobaker
- />Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|