151
|
Lu Y, Jin X, Chen Y, Li S, Yuan Y, Mai G, Tian B, Long D, Zhang J, Zeng L, Li Y, Cheng J. Mesenchymal stem cells protect islets from hypoxia/reoxygenation-induced injury. Cell Biochem Funct 2011; 28:637-43. [PMID: 21061411 DOI: 10.1002/cbf.1701] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypoxia/reoxygenation (H/R)-induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O(2) ≤ 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose-stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V-FITC. Anti-apoptotic effects were confirmed by mRNA expression analysis of hypoxia-resistant molecules, HIF-1α, HO-1, and COX-2, using semi-quantitative retrieval polymerase chain reaction (RT-PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co-cultured with MSCs. The MSCs protected the islets from H/R-induced injury by decreasing the apoptotic cell ratio and increasing HIF-1α, HO-1, and COX-2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC-islets group significantly differed from that of the islets-alone group. We proposed that MSCs could promote anti-apoptotic gene expression by enhancing their resistance to H/R-induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function.
Collapse
Affiliation(s)
- Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Li W, Zhou J, Chen L, Luo Z, Zhao Y. Lysyl oxidase, a critical intra- and extra-cellular target in the lung for cigarette smoke pathogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:161-84. [PMID: 21318022 PMCID: PMC3037068 DOI: 10.3390/ijerph8010161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/12/2011] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS), a complex chemical mixture, contains more than 4,800 different compounds, including oxidants, heavy metals, and carcinogens, that individually or in combination initiate or promote pathogenesis in the lung accounting for 82% of chronic obstructive pulmonary disease (COPD) deaths and 87% of lung cancer deaths. Lysyl oxidase (LO), a Cu-dependent enzyme, oxidizes peptidyl lysine residues in collagen, elastin and histone H1, essential for stabilization of the extracellular matrix and cell nucleus. Considerable evidences have shown that LO is a tumor suppressor as exemplified by inhibiting transforming activity of ras, a proto oncogene. CS condensate (CSC), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and cadmium (Cd), major components of CS, down-regulate LO expression at such multiple levels as mRNA, protein and catalytic activity in lung cells in vitro and in vivo indicating LO as a critical intra- and extracellular target for CS pathogenesis in the lung. In view of multiple biological functions and regulation characteristics of the LO gene, molecular mechanisms for CS damage to lung LO and its role in emphysema and cancer pathogenesis are discussed in this review.
Collapse
Affiliation(s)
- Wande Li
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| | - Jing Zhou
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| | - Lijun Chen
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510089, China; E-Mail: (L.C.)
| | - Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| | - Yinzhi Zhao
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| |
Collapse
|
153
|
Glaspy JA. Randomized controlled trials of the erythroid-stimulating agents in cancer patients. Cancer Treat Res 2011; 157:195-215. [PMID: 21052958 DOI: 10.1007/978-1-4419-7073-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- John A Glaspy
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine/UCLA, University of California-Los Angeles, CA 90095, USA.
| |
Collapse
|
154
|
Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2010; 2011:197946. [PMID: 21151670 PMCID: PMC2997513 DOI: 10.1155/2011/197946] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/25/2010] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) have been actively explored as a new generation of chemotherapeutics for cancers, generally known as epigenetic therapeutics. Recent findings indicate that several types of HDACIs repress angiogenesis, a process essential for tumor metabolism and progression. Accumulating evidence supports that this repression is mediated by disrupting the function of hypoxia-inducible factors (HIF-1, HIF-2, and collectively, HIF), which are the master regulators of angiogenesis and cellular adaptation to hypoxia. Since HIF also regulate glucose metabolism, cell survival, microenvironment remodeling, and other alterations commonly required for tumor progression, they are considered as novel targets for cancer chemotherapy. Though the precise biochemical mechanism underlying the HDACI-triggered repression of HIF function remains unclear, potential cellular factors that may link the inhibition of deacetylase activity to the repression of HIF function have been proposed. Here we review published data that inhibitors of type I/II HDACs repress HIF function by either reducing functional HIF-1α levels, or repressing HIF-α transactivation activity. In addition, underlying mechanisms and potential proteins involved in the repression will be discussed. A thorough understanding of HDACI-induced repression of HIF function may facilitate the development of future therapies to either repress or promote angiogenesis for cancer or chronic ischemic disorders, respectively.
Collapse
|
155
|
Velasquez MT, Katz JD. Osteoarthritis: another component of metabolic syndrome? Metab Syndr Relat Disord 2010; 8:295-305. [PMID: 20367223 DOI: 10.1089/met.2009.0110] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) has become a major public health problem not only because of its increasing prevalence worldwide but also because of its frequent association with cardiovascular disease, the leading cause of death in industrialized countries. There is growing evidence that OA is not simply a disease related to aging or mechanical stress of joints but rather a "metabolic disorder" in which various interrelated lipid, metabolic, and humoral mediators contribute to the initiation and progression of the disease process. Indeed, OA has been linked not only to obesity but also to other cardiovascular risk factors, namely, diabetes, dyslipidemia, hypertension, and insulin resistance.
Collapse
Affiliation(s)
- Manuel T Velasquez
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, District of Columbia 20037, USA.
| | | |
Collapse
|
156
|
Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia 2010; 12:608-17. [PMID: 20689755 DOI: 10.1593/neo.10344] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
Although the mechanisms through which hypoxia influences several phenotypic characteristics such as angiogenesis, selection for resistance to apoptosis, resistance to radiation and chemotherapy, and increased invasion and metastasis are well characterized, the relationship between tumor hypoxia and components of the extracellular matrix (ECM) is relatively unexplored. The collagen I (Col1) fiber matrix of solid tumors is the major structural part of the ECM. Col1 fiber density can increase tumor initiation, progression, and metastasis, with cancer cell invasion occurring along radially aligned Col1 fibers. Here we have investigated the influence of hypoxia on Col1 fiber density in solid breast and prostate tumor models. Second harmonic generation (SHG) microscopy was used to detect differences in Col1 fiber density and volume between hypoxic and normoxic tumor regions. Hypoxic regions were detected by fluorescence microscopy, using tumors derived from human breast and prostate cancer cell lines stably expressing enhanced green fluorescent protein (EGFP) under transcriptional control of the hypoxia response element. In-house fiber analysis software was used to quantitatively analyze Col1 fiber density and volume from the SHG microscopy images. Normoxic tumor regions exhibited a dense mesh of Col1 fibers. In contrast, fewer and structurally altered Col1 fibers were detected in hypoxic EGFP-expressing tumor regions. Microarray gene expression analyses identified increased expression of lysyl oxidase and reduced expression of some matrix metalloproteases in hypoxic compared with normoxic cancer cells. These results suggest that hypoxia mediates Col1 fiber restructuring in tumors, which may impact delivery of macromolecular agents as well as dissemination of cells.
Collapse
|
157
|
Yeh SH, Ou LC, Gean PW, Hung JJ, Chang WC. Selective inhibition of early--but not late--expressed HIF-1α is neuroprotective in rats after focal ischemic brain damage. Brain Pathol 2010; 21:249-62. [PMID: 21029239 DOI: 10.1111/j.1750-3639.2010.00443.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The expression of hypoxia-inducible factor-1-alpha (HIF-1α) is upregulated in ischemic stroke, but its function is still unclear. In the present study, biphasic expression of HIF-1α was observed during 1-12 h and after 48 h in neurons exposed to ischemic stress in vitro and in vivo. Treating neurons with 2-methoxyestradiol (2ME2) 0.5 h after ischemic stress or pre-silencing HIF-1α with small interfering RNA (siRNA) decreased brain injury, brain edema and number of apoptotic cell, and downregulates Nip-like protein X (Nix) expression. Conversely, applying 2ME2 to neurons 8 h after ischemic stress or silencing the HIF-1α with siRNA 12 h after oxygen-glucose deprivation (OGD) increased neuron damage and decreased vascular endothelial growth factor (VEGF) expression. Taken together, these results demonstrate that HIF-1α induced by ischemia in early and late times leads cellular apoptosis and survival, respectively, and provides a new insight into the divergent roles of HIF-1α expression in neurons after ischemic stroke.
Collapse
Affiliation(s)
- Shiu-Hwa Yeh
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
158
|
Zheng KYZ, Choi RCY, Xie HQH, Cheung AWH, Guo AJY, Leung KW, Chen VP, Bi CWC, Zhu KY, Chan GKL, Fu Q, Lau DTW, Dong TTX, Zhao KJ, Tsim KWK. The expression of erythropoietin triggered by danggui buxue tang, a Chinese herbal decoction prepared from radix Astragali and radix Angelicae Sinensis, is mediated by the hypoxia-inducible factor in cultured HEK293T cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:259-267. [PMID: 20723591 DOI: 10.1016/j.jep.2010.08.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/02/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL EVIDENCE Danggui buxue tang (DBT), a Chinese medicinal decoction that is being commonly used as hematopoietic medicine to treating woman menopausal irregularity, contains two herbs: radix Astragali and radix Angelicae Sinensis. Pharmacological results indicate that DBT can stimulate the production of erythropoietin (EPO), a specific hematopoietic growth factor, in cultured cells. AIM OF THE STUDY In order to reveal the mechanism of DBT's hematopoietic function, this study investigated the activity of the DBT-induced EPO expression and the upstream regulatory cascade of EPO via hypoxia-induced signaling in cultured kidney fibroblasts (HEK293T). MATERIALS AND METHODS DBT-induced mRNA expressions were revealed by real-time PCR, while the change of protein expressions were analyzed by Western blotting. For the analysis of hypoxia-dependent signaling, a luciferase reporter was used to report the transcriptional activity of hypoxia response element (HRE). RESULTS The plasmid containing HRE, being transfected into HEK293T, was highly responsive to the challenge of DBT application. To account for the transcriptional activation of HRE, DBT treatment was shown to increase the mRNA and protein expressions of hypoxia-inducible factor-1α (HIF-1α). In addition, the activation of Raf/MEK/ERK signaling pathway by DBT could also enhance the translation of HIF-1α, suggesting the dual actions of DBT in stimulating the EPO expression in kidney cells. CONCLUSION Our study indicates that HIF pathway plays an essential role in directing DBT-induced EPO expression in kidney. These results provide one of the molecular mechanisms of this ancient herbal decoction for its hematopoietic function.
Collapse
Affiliation(s)
- Ken Y Z Zheng
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Montgomery J, Syed MI, Rana I, Singh J, Clark LJ. Hemoglobin monitoring in head and neck cancer patients undergoing radiotherapy. Ann Otol Rhinol Laryngol 2010; 119:472-5. [PMID: 20734969 DOI: 10.1177/000348941011900708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Anemia is a well-recognized factor for local recurrence and decreased survival in cancer patients undergoing radiotherapy. Additionally, lower hemoglobin (Hb) levels have a negative impact on radiotherapy efficacy and response rates. The objective of this audit was to investigate how frequently Hb levels were observed in head and neck cancer patients receiving radiotherapy within a multidisciplinary team setting. METHODS We performed a retrospective first-cycle audit in a university hospital in Glasgow that is a tertiary referral center for head and neck cancer. Included were 78 patients with head and neck cancer who were undergoing radiotherapy. Online laboratory services and clinical case sheets were checked for each patient to monitor the frequency of observation of Hb levels before, during, and after radiotherapy. RESULTS Of these 78 patients, only 49 had their Hb level checked before radiotherapy treatment, only 9 during radiotherapy, and only 27 after completion of radiotherapy treatment (p < 0.0001). Of the 49 patients with preradiotherapy Hb levels available, 24% were found to be anemic; none of these patients had their Hb monitored during radiotherapy, and only 4 had Hb levels recorded after completion of treatment. CONCLUSIONS This audit has highlighted that despite evidence emphasizing that anemia in cancer is an independent prognostic factor for recurrence, there is no formal protocol for Hb monitoring in head and neck cancer patients undergoing radiotherapy. The audit has also demonstrated that Hb monitoring is infrequently performed and that subsequent observation of the Hb level is suboptimal.
Collapse
Affiliation(s)
- Jennifer Montgomery
- Department of Otolaryngology, Southern General Hospital, Greater Glasgow and Clyde National Health Service Trust, Glasgow, Scotland
| | | | | | | | | |
Collapse
|
160
|
|
161
|
Cellular and molecular mechanisms regulating the hepatic erythropoietin expression during acute-phase response: a role for IL-6. J Transl Med 2010; 90:1306-24. [PMID: 20458283 DOI: 10.1038/labinvest.2010.85] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The source of circulating erythropoietin (EPO), the mediators and the mechanisms involved in the upregulation of EPO gene expression during acute-phase reaction are still poorly understood. Acute-phase reaction was induced by either intramuscular turpentine oil (TO) or intraperitoneal lipopolysaccharide (LPS) administration into wild-type and interleukin (IL)-6 knockout (KO) mice. Animals were killed at different time points and blood, liver and muscle tissue were collected. Serum levels of EPO were measured by enzyme-linked immunoadsorbent assay; liver and injured muscle samples were processed for RNA isolation and for protein analysis. EPO, hypoxia-inducible factors 1alpha and 2alpha (HIF-1alpha and HIF-2alpha) mRNA were analyzed by RT-PCR and the protein levels were analyzed by western blot and electrophoretic mobility shift assay. HIF-1alpha and HIF-2alpha localization was performed through immunofluorescence staining. EPO, HIF-1 and HIF-2 gene and protein expression levels were also analyzed in isolated mouse hepatocytes after stimulation with IL-6. In the wild-type animals, EPO serum levels increased dramatically at 12 h after the insults together with the hepatic gene expression. In TO-treated animals, the EPO gene expression reached an 8.2-fold increase at 12 h, and in LPS-treated mice a similar induction was recorded at 6 h (about 4.5-fold increase). In the IL-6KO strain, the upregulation after the inflammatory stimuli was much lower (only 2.0-fold increase). A progressive upregulation of HIF-1alpha and HIF-2alpha was detectable until 6 h after the insults, but only HIF-1alpha upregulation was reduced in IL-6KO mice. In isolated hepatocytes, stimulation with a single dose of IL-6 induced a nuclear accumulation of HIF-1alpha, in parallel with an increase of EPO mRNA. No effect on HIF-2alpha expression was found. IL-6 appears to be the main regulator of EPO gene expression and a major contributor for HIF-1alpha induction in hepatocytes and Kupffer cells during acute-phase response. The increase of HIF-2alpha, predominantly expressed in endothelial cells and fibroblast-like cells, seems not to be affected by the lack of IL-6.
Collapse
|
162
|
Park AM, Sanders TA, Maltepe E. Hypoxia-inducible factor (HIF) and HIF-stabilizing agents in neonatal care. Semin Fetal Neonatal Med 2010; 15:196-202. [PMID: 20599462 PMCID: PMC2924157 DOI: 10.1016/j.siny.2010.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oxygen is essential for multicellular existence. Its reduction to water by the mitochondrial electron transport chain forms the cornerstone of aerobic metabolism. Conditions in which oxygen is limiting for electron transport result in bioenergetic collapse in metazoans. However, compared with postnatal existence, all of mammalian development occurs in a hypoxic environment in utero. Not just an epiphenomenon, this 'physiological hypoxia' is required for the activation of a transcriptional response mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators that coordinates the expression of hundreds of genes, many with developmentally critical functions. Oxygen tension, therefore, is a morphogen. Understanding the physiological significance of hypoxia responses during human development and the role of the HIF family of transcriptional regulators will have important consequences for the care of preterm neonates. Defining clinical care guidelines for the proper oxygenation of critically ill neonates that take account of these observations is therefore of paramount importance. The pharmacological stabilization of HIF family members may therefore have clinical utility in premature infants in whom this important morphogen has been inactivated by exposure to supraphysiological oxygen levels.
Collapse
Affiliation(s)
- Angela M. Park
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Timothy A. Sanders
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, California, USA
- Department of Biomedical Sciences, University of California, San Francisco, California, USA
- Center for Reproductive Sciences, University of California, San Francisco, California, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
163
|
Li Y, Li Y, Zhang T, Chan WK. The aryl hydrocarbon receptor nuclear translocator-interacting protein 2 suppresses the estrogen receptor signaling via an Arnt-dependent mechanism. Arch Biochem Biophys 2010; 502:121-9. [PMID: 20674540 DOI: 10.1016/j.abb.2010.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
We explored whether modulation of the estrogen receptor (ER) signaling is possible through an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent mechanism. We utilized the Arnt-interacting protein 2 (Ainp2) to examine whether the presence of Ainp2 in MCF-7 cells would interfere with the Arnt-mediated ER signaling. We found that Arnt increased the 17 beta-estradiol (E2)-dependent luciferase activity and Ainp2 significantly suppressed this Arnt-mediated luciferase activity. Ainp2 significantly suppressed 25% of the E2- and Arnt-dependent up-regulation of the GREB1 message. No suppression of the ER target gene expression by Ainp2 was detected in Arnt-knockdown MCF-7 cells and in Arnt-independent ER signaling. Although Ainp2 did not interact with ER alpha and ER beta, it suppressed the ER alpha::Arnt interaction and reduced the E2-driven recruitment of Arnt to the GREB1 promoter. We concluded that Ainp2 suppresses the ER signaling by not allowing Arnt to participate in the ER-dependent, Arnt-mediated activation of gene transcription.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | |
Collapse
|
164
|
Rodrigues CAV, Diogo MM, da Silva CL, Cabral JMS. Hypoxia enhances proliferation of mouse embryonic stem cell-derived neural stem cells. Biotechnol Bioeng 2010; 106:260-70. [PMID: 20014442 DOI: 10.1002/bit.22648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural stem (NS) cells can provide a source of material with potential applications for neural drug testing, developmental studies, or novel treatments for neurodegenerative diseases. Herein, the ex vivo expansion of a model system of mouse embryonic stem (mES) cell-derived NS cells was characterized and optimized, cells being cultivated under adherent conditions. Culture was first optimized in terms of initial cell plating density and oxygen concentration, known to strongly influence brain-derived NS cells. To this end, the growth of cells cultured under hypoxic (2%, 5%, and 10% O(2)) and normoxic (20% O(2)) conditions was compared. The results showed that 2-5% oxygen, without affecting multipotency, led to fold increase values in total cell number about twice higher than observed under 20% oxygen (20-fold vs. 10-fold, respectively) this effect being more pronounced when cells were plated at low density. With an optimal cell density of 10(4) cells/cm(2), the maximum growth rates were 1.9 day(-1) under hypoxia versus 1.7 day(-1) under normoxia. Cell division kinetics analysis by flow cytometry based on PKH67 tracking showed that when cultured in hypoxia, cells are at least one divisional generation ahead compared to normoxia. In terms of cell cycle, a larger population in a quiescent G(0) phase was observed in normoxic conditions. The optimization of NS cell culture performed here represents an important step toward the generation of a large number of neural cells from a reduced initial population, envisaging the potential application of these cells in multiple settings.
Collapse
Affiliation(s)
- Carlos A V Rodrigues
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
165
|
Benkler C, Offen D, Melamed E, Kupershmidt L, Amit T, Mandel S, Youdim MBH, Weinreb O. Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J 2010; 1:343-61. [PMID: 23199069 PMCID: PMC3405320 DOI: 10.1007/s13167-010-0026-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/19/2010] [Indexed: 12/13/2022]
Abstract
Treatment of amyotrophic lateral sclerosis (ALS) has been fueled, in part, by frustration over the shortcomings of the symptomatic drugs available, since these do not impede the progression of this disease. Currently, over 150 different potential therapeutic agents or strategies have been tested in preclinical models of ALS. Unfortunately, therapeutic modifiers of murine ALS have failed to be successfully translated into strategies for patients, probably because of differences in pharmacokinetics of the therapeutic agents, route of delivery, inefficiency of the agents to affect the distinct pathologies of the disease or inherent limitations of the available animal models. Given the multiplicity of the pathological mechanisms implicated in ALS, new therapies should consider the simultaneous manipulation of multiple targets. Additionally, a better management of ALS therapy should include understanding the interactions between potential risk factors, biomarkers and heterogeneous clinical features of the patients, aiming to manage their adverse events or personalize the safety profile of these agents. This review will discuss novel pharmacological approaches concerning adjusted therapy for ALS patients: iron-binding brain permeable multimodal compounds, genetic manipulation and cell-based treatment.
Collapse
Affiliation(s)
- Chen Benkler
- Felsenstein Medical Research Center, Tel Aviv University, Tel-Aviv, Israel
| | - Daniel Offen
- Felsenstein Medical Research Center, Tel Aviv University, Tel-Aviv, Israel
| | - Eldad Melamed
- Felsenstein Medical Research Center, Tel Aviv University, Tel-Aviv, Israel
| | - Lana Kupershmidt
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Silvia Mandel
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Moussa B. H. Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| |
Collapse
|
166
|
Ueda M, Kudo T, Kuge Y, Mukai T, Tanaka S, Konishi H, Miyano A, Ono M, Kizaka-Kondoh S, Hiraoka M, Saji H. Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha. Eur J Nucl Med Mol Imaging 2010; 37:1566-74. [PMID: 20428865 DOI: 10.1007/s00259-010-1467-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/29/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-(123)I-iodobenzoyl)norbiotinamide ((123)I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and (123)I-IBB for rapid imaging of HIF-1-active tumours. METHODS Tumour-implanted mice were pretargeted with POS. After 24 h, (125)I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between (125)I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of (125)I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1alpha immunohistochemistry. RESULTS (125)I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from (125)I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of (125)I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of (125)I-IBB was heterogeneous and was significantly correlated with HIF-1alpha-positive regions (R=0.58, p<0.0001). CONCLUSION POS pretargeting with (123)I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours.
Collapse
Affiliation(s)
- Masashi Ueda
- Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Fan YZ, Sun W. Molecular regulation of vasculogenic mimicry in tumors and potential tumor-target therapy. World J Gastrointest Surg 2010; 2:117-27. [PMID: 21160860 PMCID: PMC2999229 DOI: 10.4240/wjgs.v2.i4.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/26/2010] [Accepted: 02/02/2010] [Indexed: 02/06/2023] Open
Abstract
“Vasculogenic mimicry (VM)”, is a term that describes the unique ability of highly aggressive tumor cells to express a multipotent, stem cell-like phenotype, and form a pattern of vasculogenic-like networks in three-dimensional culture. As an angiogenesis-independent pathway, VM and/or periodic acid-schiff-positive patterns are associated with poor prognosis in tumor patients. Moreover, VM is resistant to angiogenesis inhibitors. Here, we will review the advances in research on biochemical and molecular signaling pathways of VM in tumors and on potential anti-VM therapy strategy.
Collapse
Affiliation(s)
- Yue-Zu Fan
- Yue-Zu Fan, Wei Sun, Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | | |
Collapse
|
168
|
Tseng WP, Yang SN, Lai CH, Tang CH. Hypoxia induces BMP-2 expression via ILK, Akt, mTOR, and HIF-1 pathways in osteoblasts. J Cell Physiol 2010; 223:810-8. [PMID: 20232298 DOI: 10.1002/jcp.22104] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has been shown that hypoxia stimulation regulates bone formation, maintenance, and repair. Bone morphogenetic protein (BMP) plays important roles in osteoblastic differentiation and bone formation. However, the effects of hypoxia exposure on BMP-2 expression in cultured osteoblasts are largely unknown. Here we found that hypoxia stimulation increased mRNA and protein levels of BMP-2 by qPCR, Western blot and ELISA assay in osteoblastic cells MG-63, hFOB and bone marrow stromal cells M2-10B4. Integrin-linked kinase (ILK) inhibitor (KP-392), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-[(R)-2-O-methyl-3-O-octadecylcarbonate]) or mammalian target of rapamycin (mTOR) inhibitor (rapamycin) inhibited the potentiating action of hypoxia. Exposure to hypoxia increased the kinase activity of ILK and phosphorylation of Akt and mTOR. Furthermore, hypoxia also increased the stability and activity of HIF-1 protein. The binding of HIF-1alpha to the HRE elements after exposure to hypoxia was measured by EMSA assay. Moreover, the use of pharmacological inhibitors or genetic inhibition revealed that both ILK/Akt and mTOR signaling pathway were potentially required for hypoxia-induced HIF-1alpha activation and subsequent BMP-2 up-regulation. Taken together, our results provide evidence that hypoxia enhances BMP-2 expression in osteoblasts by an HIF-1alpha-dependent mechanism involving the activation of ILK/Akt and mTOR pathways.
Collapse
Affiliation(s)
- Wen-Pei Tseng
- Graduate Institute of Sports and Health, National Changhua University of Education, Changhua County, Taiwan
| | | | | | | |
Collapse
|
169
|
Chou MTH, Anthony J, Bjorge JD, Fujita DJ. The von Hippel-Lindau Tumor Suppressor Protein Is Destabilized by Src: Implications for Tumor Angiogenesis and Progression. Genes Cancer 2010; 1:225-238. [PMID: 21212839 PMCID: PMC3014987 DOI: 10.1177/1947601910366719] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The von Hippel-Lindau tumor suppressor protein (VHL), when mutated and inactivated, has been associated with renal and CNS cancer development. VHL normally plays an important role in targeting for degradation of the HIF-1α (hypoxia inducible factor-1α) transcription factor, a primary positive regulator of vascular endothelial growth factor (VEGF) production. In this report we demonstrate that VHL destabilization can be induced by Src kinase and may be involved in other cancers, including breast cancer. We have found that elevated Src can trigger a drastic reduction in VHL stability even under normoxic conditions, through phosphorylation of VHL tyrosine residue 185, leading to ubiquitination and proteasome-mediated degradation of VHL. The Src-induced degradation of VHL protein leads to increased HIF-1α levels and transcriptional activity and increased VEGF production. In this manner, Src regulation of VHL protein stability may play an important role in promoting VEGF expression, tumor angiogenesis, and cancer progression.
Collapse
Affiliation(s)
- Mary T.-H. Chou
- Department of Biochemistry and Molecular Biology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Josephine Anthony
- Department of Biochemistry and Molecular Biology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey D. Bjorge
- Department of Biochemistry and Molecular Biology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Donald J. Fujita
- Department of Biochemistry and Molecular Biology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
170
|
Wan C, Shao J, Gilbert SR, Riddle RC, Long F, Johnson RS, Schipani E, Clemens TL. Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci 2010; 1192:322-6. [PMID: 20392254 PMCID: PMC3047468 DOI: 10.1111/j.1749-6632.2009.05238.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration. Mesenchymal cells in the developing stroma elicit angiogenic signals to recruit new blood vessels into bone. Reciprocal signals, likely emanating from the incoming vascular endothelium, stimulate mesenchymal cell specification through additional interactions with cells within the vascular stem cell niche. The hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key component in this process. We demonstrated that overexpression of HIF-1 in mature osteoblasts through disruption of the von Hippel-Lindau protein profoundly increases angiogenesis and osteogenesis; these processes appear to be coupled by cell nonautonomous mechanisms involving the action of vascular endothelial growth factor (VEGF) on the endothelial cells. The same occurred in the model of injury-mediated bone regeneration (distraction osteogenesis). Surprisingly, manipulation of HIF-1 does not influence angiogenesis of the skull bones, where earlier activation of HIF-1 in the condensing mesenchyme upregulates osterix during cranial bone formation.
Collapse
Affiliation(s)
- Chao Wan
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
DeNiro M, Al-Halafi A, Al-Mohanna FH, Alsmadi O, Al-Mohanna FA. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy. Mol Pharmacol 2010; 77:348-67. [PMID: 20008515 DOI: 10.1124/mol.109.061366] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and inducible nitric-oxide synthase (iNOS) have been implicated in ischemia-induced retinal neovascularization. Retinal ischemia has been shown to induce VEGF and iNOS expression. It has been postulated that one of the crucial consequences of iNOS expression in the ischemic retina is the inhibition of angiogenesis. Furthermore, iNOS was shown to be overexpressed in Müller cells from patients with diabetic retinopathy. YC-1, a small molecule inhibitor of hypoxia-inducible factor (HIF)-1 alpha, has been shown to inhibit iNOS expression in various tissue models. Our aim was to assess the pleiotropic effects of YC-1 in an oxygen-induced retinopathy (OIR) mouse model and evaluate its therapeutic potential in HIF-1- and iNOS-mediated retinal pathologies. Dual-injections of YC-1 into the neovascular retinas decreased the total retinopathy score, inhibited vaso-obliteration and pathologic tuft formation, and concomitantly promoted physiological retinal revascularization, compared with dimethyl sulfoxide (DMSO)-treated group. Furthermore, YC-1-treated retinas exhibited a marked increase in immunoreactivities for CD31 and von Willebrand factor and displayed significant inhibition in HIF-1alpha protein expression. Furthermore, YC-1 down-regulated VEGF, erythropoietin, endothelin-1, matrix metalloproteinase-9, and iNOS message and protein levels. When hypoxic Müller and neuoroglial cells were treated with YC-1, iNOS mRNA and protein levels were reduced in a dose-dependent fashion. We demonstrate that YC-1 inhibits pathological retinal neovascularization by exhibiting antineovascular activities, which impaired ischemia-induced expression of HIF-1 and its downstream angiogenic molecules. Furthermore, YC-1 enhanced physiological revascularization of the retinal vascular plexuses via the inhibition of iNOS mRNA and protein expressions. The pleiotropic effects of YC-1 allude to its possible use as a promising therapeutic iNOS inhibitor candidate for the treatment of retinal neovascularization.
Collapse
Affiliation(s)
- M DeNiro
- Research Department, King Khaled Eye Specialist Hospital, Aruba Street, P.O. Box.7191, Riyadh 11462, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
172
|
Manganese-mediated up-regulation of HIF-1alpha protein in Hep2 human laryngeal epithelial cells via activation of the family of MAPKs. Toxicol In Vitro 2010; 24:1208-14. [PMID: 20152896 DOI: 10.1016/j.tiv.2010.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/05/2010] [Accepted: 02/05/2010] [Indexed: 12/15/2022]
Abstract
High exposure of manganese is believed to be a risk factor for respiratory diseases. Evidence suggests that overexpression of HIF-1alpha transcription factor is linked to pulmonary inflammation and vascular change. In this study, we investigated the effect of manganese-chloride (manganese) on expression and activity of HIF-1alpha in various human airway cells, including Hep2 (laryngeal), H292 (bronchial), and A549 (lung). Profoundly, while manganese treatment led to low or little effect on induction of HIF-1alpha protein in H292 or A549 cells, it strongly induced HIF-1alpha protein expression in Hep2 cells. Mn treatment, however, did not induce HIF-1alpha mRNA expression in Hep2 cells. Luciferase experiments further demonstrated that manganese treatment increased the HRE-driven luciferase activity, suggesting that the induced HIF-1 is functional. Interestingly, manganese treatment also caused activation of p38 MAPK, JNK-1/2, ERK-1/2, and ATF-2, but not of PKB or NF-kappaB in Hep2 cells. Importantly, the manganese-mediated expression and activity of HIF-1alpha protein were largely blocked by treatment with the inhibitor of p38 MAPK (SB203580), JNK-1/2 (SP600125), or ERK-1/2 (PD98059), suggesting roles of these MAPKs in the manganese-induced HIF-1alpha protein expression and activity. Moreover, treatment with SP600125 or SB203580, but not PD98059, had partial inhibitory effects on the stability of HIF-1alpha protein induced by manganese, suggesting that p38 MAPK and JNK-1/2 also contribute to the Mn-mediated HIF-1alpha protein stability. These results suggest that manganese is able to up-regulate HIF-1alpha at the protein level in Hep2 cells and the up-regulation is largely dependent of activities of the family of MAPKs.
Collapse
|
173
|
Walczak-Drzewiecka A, Ratajewski M, Pułaski Ł, Dastych J. DNA methylation-dependent suppression of HIF1A in an immature hematopoietic cell line HMC-1. Biochem Biophys Res Commun 2010; 391:1028-32. [DOI: 10.1016/j.bbrc.2009.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
174
|
Wu W, Chen X, Hu C, Li J, Yu Z, Cai W. Transplantation of neural stem cells expressing hypoxia-inducible factor-1alpha (HIF-1alpha) improves behavioral recovery in a rat stroke model. J Clin Neurosci 2009; 17:92-5. [PMID: 19913430 DOI: 10.1016/j.jocn.2009.03.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022]
Abstract
We explored the possibility that hypoxia-inducible factor-1alpha (HIF-1alpha) might contribute to the therapeutic effect of neural stem cell (NSC) transplantation in cerebral ischemia. The relative efficacy of modified NSC to promote behavioral recovery was investigated in a rat model of stroke induced by a transient middle cerebral artery occlusion (MCAO). A recombinant adenovirus (Ad-HIF-1alpha) was engineered to express HIF-1alpha. Control NSC infected with control adenovirus (NSC-Ad), recombinant adenovirus Ad-HIF-1alpha, or NSC infected by Ad-HIF-1alpha (NSC-Ad-HIF-1alpha), were used for intraventricular transplantion into rat brain 24 hours after MCAO. Neurological deficits were assessed over 4 weeks using the modified neurological severity scale (NSS) score. Long-term in vivo expression of HIF-1alpha was demonstrated by Western blotting and immunocytochemistry, and derivatives of nestin-positive transplanted cells contributed to both neuronal (neurofilament-positive) and astroglial (glial fibrillary acidic protein-positive) lineages. All animals showed functional improvement. Improvement was accelerated in animals receiving either NSC-Ad or Ad-HIF-1alpha, while improvement at all times between 7 days and 28 days post MCAO was significantly greater in animals transplanted with NSC-Ad-HIF-1alpha than for other treated animals. NSC-Ad-HIF-1alpha cells also increased the number of factor VIII-positive cells in the region of ischemic injury, indicating that HIF-1alpha expression can promote angiogenesis. Gene-modified NSC expressing HIF-1alpha have therapeutic potential in ischemic stroke.
Collapse
Affiliation(s)
- Wanfu Wu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
175
|
DeNiro M, Alsmadi O, Al-Mohanna F. Modulating the hypoxia-inducible factor signaling pathway as a therapeutic modality to regulate retinal angiogenesis. Exp Eye Res 2009; 89:700-17. [DOI: 10.1016/j.exer.2009.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/08/2009] [Accepted: 06/24/2009] [Indexed: 11/29/2022]
|
176
|
Foulds WS, Kaur C, Luu CD, Kek WK. A role for photoreceptors in retinal oedema and angiogenesis: an additional explanation for laser treatment? Eye (Lond) 2009; 24:918-26. [PMID: 19745837 DOI: 10.1038/eye.2009.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To investigate the possible roles of retinal photoreceptors in macular oedema and retinal angiogenesis with particular reference to the mode of action of laser therapy. METHODS (i) Studies in rats made hypoxic for 2 h by administering an oxygen/nitrogen mixture of reduced oxygen content, and growth factors determined by RT-PCR, western blotting, and immunohistochemistry. Assessment of blood-retinal barrier integrity using fluorescent and electron-dense tracers. (ii) Studies in pigs with one retina made hypoxic by selective embolisation of the retinal capillary circulation with fluorescent microspheres. (iii) Assessment of laser therapy in selected cases of retinal neovascularisation indicating a role for photoreceptors. RESULTS In the hypoxic retina, angiogenic and vascular permeability factors such as vascular endothelial growth factor (VEGF), nitric oxide synthases (NOSs), and insulin-like growth factor-1 are upregulated in retinal astrocytes and Müller cells but are also present in large amount in the photoreceptors. Hypoxia-inducible factor-1 (HIF-1) is upregulated in retinal glial cells but not in the photoreceptors, suggesting that growth factors in the photoreceptors may not have been generated there. The tracer dye, rhodium isothiocyanate, leaking from an abnormally permeable inner blood-retinal barrier in the hypoxic retina accumulates in the photoreceptors. CONCLUSIONS The results indicate that laser treatment of macular oedema or retinal neovascularisation may obtain its effect not only by improving oxygen availability in the inner retina, but also by reducing the load of angiogenic/permeability factors that accumulate in the photoreceptors in hypoxic/ischaemic conditions.
Collapse
Affiliation(s)
- W S Foulds
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
| | | | | | | |
Collapse
|
177
|
Lara PC, Lloret M, Clavo B, Apolinario RM, Henríquez-Hernández LA, Bordón E, Fontes F, Rey A. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. Radiat Oncol 2009; 4:29. [PMID: 19660100 PMCID: PMC2728103 DOI: 10.1186/1748-717x-4-29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/06/2009] [Indexed: 12/16/2022] Open
Abstract
Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed.
Collapse
Affiliation(s)
- Pedro C Lara
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr, Negrín, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Qu Y, Mao M, Zhao F, Zhang L, Mu D. Proapoptotic Role of Human Growth and Transformation-Dependent Protein in the Developing Rat Brain After Hypoxia-Ischemia. Stroke 2009; 40:2843-8. [PMID: 19520982 DOI: 10.1161/strokeaha.109.553644] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Human growth and transformation-dependent protein (HGTD-P) is a new proapoptotic protein and an effector of cell death induced by hypoxia-ischemia (HI). The function of HGTD-P has been investigated in human prostate cancer cells and mouse neurons cultured in vitro. However, whether HGTD-P is involved in regulating the apoptosis of rat neurons is not clear, and the relevance of HGTD-P in HI animal models is still unknown. Therefore, in the present study, we tried to elucidate the role that HGTD-P plays in apoptosis of rat neurons subjected to HI, both in culture and in the developing rat brain in vivo.
Methods—
Samples from primary cultured neurons and postnatal day 10 rat brains with HI were collected. RT-PCR, Western blotting, and immunocytochemistry were used to detect the expression and distribution of rat HGTD-P, cleaved caspase 3, and apoptosis- inducing factor (AIF). MTT assay, DAPI, TUNEL, and flowcytometry were used to detect cell viability and apoptosis.
Results—
We found that HI upregulated the mRNA and protein levels of HGTD-P in rat neurons in vitro and in vivo. Antisense oligonucleotides (AS) targeted to HGTD-P inhibited the expression of HGTD-P, thus rescuing neuronal viability and attenuating neuronal apoptosis. In addition, we found that HGTD-P played its proapoptotic role by activating caspase 3 and inducing the translocation of AIF to nuclear.
Conclusions—
Our findings show that HGTD-P plays a proapoptotic role in the developing rat brain after HI and that it may be a potential target in treating HI-induced brain damage.
Collapse
Affiliation(s)
- Yi Qu
- From the Department of Pediatrics (Y.Q., M.M., F.Z., L.Z., D.M.), West China Second University Hospital, Sichuan University, Chengdu, China; and the Department of Neurology (D.M.), University of California, San Francisco
| | - Meng Mao
- From the Department of Pediatrics (Y.Q., M.M., F.Z., L.Z., D.M.), West China Second University Hospital, Sichuan University, Chengdu, China; and the Department of Neurology (D.M.), University of California, San Francisco
| | - Fengyan Zhao
- From the Department of Pediatrics (Y.Q., M.M., F.Z., L.Z., D.M.), West China Second University Hospital, Sichuan University, Chengdu, China; and the Department of Neurology (D.M.), University of California, San Francisco
| | - Lin Zhang
- From the Department of Pediatrics (Y.Q., M.M., F.Z., L.Z., D.M.), West China Second University Hospital, Sichuan University, Chengdu, China; and the Department of Neurology (D.M.), University of California, San Francisco
| | - Dezhi Mu
- From the Department of Pediatrics (Y.Q., M.M., F.Z., L.Z., D.M.), West China Second University Hospital, Sichuan University, Chengdu, China; and the Department of Neurology (D.M.), University of California, San Francisco
| |
Collapse
|
179
|
Kupershmidt L, Weinreb O, Amit T, Mandel S, Carri MT, Youdim MBH. Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis. FASEB J 2009; 23:3766-79. [PMID: 19638399 DOI: 10.1096/fj.09-130047] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel therapeutic approaches for the treatment of neurodegenerative disorders comprise drug candidates designed specifically to act on multiple central nervous system targets. We have recently synthesized multifunctional, nontoxic, brain-permeable iron-chelating drugs, M30 and HLA20, possessing the N-propargylamine neuroprotective moiety of rasagiline (Azilect) and the iron-chelating moiety of VK28. The present study demonstrates that M30 and HLA20 possess a wide range of pharmacological activities in mouse NSC-34 motor neuron cells, including neuroprotective effects against hydrogen peroxide- and 3-morpholinosydnonimine-induced neurotoxicity, induction of differentiation, and up-regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-target genes (enolase1 and vascular endothelial growth factor). Both compounds induced NSC-34 neuritogenesis, accompanied by a marked increase in the expression of brain-derived neurotrophic factor and growth-associated protein-43, which was inhibited by PD98059 and GF109203X, indicating the involvement of mitogen-activated protein kinase and protein kinase C pathways. A major finding was the ability of M30 to significantly extend the survival of G93A-SOD1 amyotrophic lateral sclerosis mice and delay the onset of the disease. These properties of the novel multimodal iron-chelating drugs possessing neuroprotective/neuritogenic activities may offer future therapeutic possibilities for motor neurodegenerative diseases.
Collapse
Affiliation(s)
- Lana Kupershmidt
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
180
|
LaFramboise WA, Jayaraman RC, Bombach KL, Ankrapp DP, Krill-Burger JM, Sciulli CM, Petrosko P, Wiseman RW. Acute molecular response of mouse hindlimb muscles to chronic stimulation. Am J Physiol Cell Physiol 2009; 297:C556-70. [PMID: 19625612 DOI: 10.1152/ajpcell.00046.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within 4 h of stimulation without injury or satellite cell recruitment. This conversion was associated with the expression of phenotype-specific transcription factors from resident fiber myonuclei, including the activation of nascent developmental transcriptional programs.
Collapse
Affiliation(s)
- W A LaFramboise
- Dept. of Pathology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Shadyside Hospital West Wing, WG02.11, 5230 Center Ave., Pittsburgh, PA 15232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Chen D, Shen L, Wang L, Lu A, Zhang H, Zhang X, Zhang Y, Shui W, Li L, Fan D, Zhang J. Association of polymorphisms in vascular endothelial growth factor gene with the age of onset of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 8:144-9. [PMID: 17538775 DOI: 10.1080/17482960601179373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the association between polymorphisms in vascular endothelial growth factor (VEGF) gene (-1558C-T, -1190A-G and -1154A-G) and age at onset of amyotrophic lateral sclerosis (ALS). Between July 2000 and June 2004 we conducted a clinical genetic study at Peking University Third Hospital, China. The analyses included a total of 93 ALS patients. Genotyping was performed by using the 5'-nuclease assay technology (Applied Biosystems) with TaqMan allele-specific fluorogenic oligonucleotide probes. We used multivariate linear regression modelling and haplotype-based association test to analyse the association of VEGF gene polymorphisms with the age of onset, adjusting for initial symptoms and sex. The results indicated that patients with the -1190A/G and -1190G/G genotypes exhibited about a 4.1- and 9.4-years earlier onset of ALS than the patients with the -1190A/A genotype. A similar pattern emerged when the VEGF -1154A-G gene was considered: the beta was -7.9(p<0.001) years and -11.7(p<0.001) years for -1154A/G and -1154G/G genotypes, respectively. The VEGF -1558C-T had a positive effect in the -1558C/T group (p = 0.007, beta = 7.0) and -1558T/T (p<0.001, beta = 9.6) compared to the -1558C/C group. We neither observed an interaction nor haplotype association with age onset among -1558C-T, -1190A-G and -1154A-G. In conclusion, our results indicate, for the first time, that there was an important association between the polymorphism of the VEGF gene and age of ALS onset. This suggests a possible role for VEGF variability in the aetiology of individual differences in ALS onset.
Collapse
Affiliation(s)
- Dafang Chen
- Department of Epidemiology and Statistics, School of Public Health, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L631-40. [PMID: 19592460 DOI: 10.1152/ajplung.90415.2008] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) enhances the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which contribute to the pathogenesis of hypoxic pulmonary hypertension (HPH). Previous reports have demonstrated that hypoxia upregulates ACE expression, but the underlying mechanism is unknown. Here, we found that ACE is persistently upregulated in PASMCs on the transcriptional level during hypoxia. Hypoxia-inducible factor 1alpha (HIF-1alpha), a key transcription factor activated during hypoxia, was able to upregulate ACE protein expression under normoxia, whereas knockdown of HIF-1alpha expression in PASMCs inhibited hypoxia-induced ACE upregulation. Furthermore, HIF-1alpha can bind and transactivate the ACE promoter directly. Therefore, we report that ACE is a novel target of HIF-1alpha. Recently, a homolog of ACE, ACE2, was reported to counterbalance the function of ACE. In contrast to ACE, we found that ACE2 mRNA and protein levels increased during the early stages of hypoxia and decreased to near-baseline levels at the later stages after HIF-1alpha accumulation. Thus HIF-1alpha inhibited ACE2 expression, and the accumulated ANG II catalyzed by ACE is a key mediator in the downregulation of ACE2 by HIF-1alpha. Moreover, a reduction of ACE2 expression in PASMCs by RNA interference was accompanied by significantly enhanced proliferation and migration during hypoxia. We conclude that ACE is directly regulated by HIF-1alpha, whereas ACE2 is regulated in a bidirectional way during hypoxia and may play a protective role during the development of HPH. In sum, these findings contribute to the understanding of the pathogenesis of HPH.
Collapse
Affiliation(s)
- Ruifeng Zhang
- Dept. of Respiratory Medicine, Ruijin Hospital, Medical School of Shanghai Jiaotong Univ., No. 197, Second Ruijin Rd., Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Siddiq A, Aminova LR, Troy CM, Suh K, Messer Z, Semenza GL, Ratan RR. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 2009; 29:8828-38. [PMID: 19587290 PMCID: PMC3290095 DOI: 10.1523/jneurosci.1779-09.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/22/2009] [Accepted: 06/01/2009] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death.
Collapse
Affiliation(s)
- Ambreena Siddiq
- Department of Neurosciences, Burke Medical Research Institute, White Plains, New York 10605
- Department of Neurosciences, Weill Medical College of Cornell University, New York, New York 10065
| | - Leila R. Aminova
- Department of Microbiology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| | - Carol M. Troy
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
| | - Kyungsun Suh
- Department of Neurosciences, Burke Medical Research Institute, White Plains, New York 10605
- Department of Neurosciences, Weill Medical College of Cornell University, New York, New York 10065
| | - Zachary Messer
- Department of Neurosciences, Burke Medical Research Institute, White Plains, New York 10605
| | - Gregg L. Semenza
- Institute for Cell Engineering and Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rajiv R. Ratan
- Department of Neurosciences, Burke Medical Research Institute, White Plains, New York 10605
- Department of Neurosciences, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
184
|
Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009; 324:1289-93. [PMID: 19498162 DOI: 10.1126/science.1169956] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To survive in hostile environments, organisms activate stress-responsive transcriptional regulators that coordinately increase production of protective factors. Hypoxia changes cellular metabolism and thus activates redox-sensitive as well as oxygen-dependent signal transducers. We demonstrate that Sirtuin 1 (Sirt1), a redox-sensing deacetylase, selectively stimulates activity of the transcription factor hypoxia-inducible factor 2 alpha (HIF-2alpha) during hypoxia. The effect of Sirt1 on HIF-2alpha required direct interaction of the proteins and intact deacetylase activity of Sirt1. Select lysine residues in HIF-2alpha that are acetylated during hypoxia confer repression of Sirt1 augmentation by small-molecule inhibitors. In cultured cells and mice, decreasing or increasing Sirt1 activity or levels affected expression of the HIF-2alpha target gene erythropoietin accordingly. Thus, Sirt1 promotes HIF-2 signaling during hypoxia and likely other environmental stresses.
Collapse
Affiliation(s)
- Elhadji M Dioum
- Veterans Affairs North Texas Health Care System, Department of Medicine, 4500 South Lancaster Road, Dallas, TX 75216, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Loboda A, Stachurska A, Dorosz J, Zurawski M, Wegrzyn J, Kozakowska M, Jozkowicz A, Dulak J. HIF-1 attenuates Ref-1 expression in endothelial cells: reversal by siRNA and inhibition of geranylgeranylation. Vascul Pharmacol 2009; 51:133-9. [PMID: 19524065 DOI: 10.1016/j.vph.2009.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 04/27/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Redox factor-1 (Ref-1), a multifunctional protein with DNA repairing activities, plays a cytoprotective function by post-translational redox modification of numerous transcription factors, including hypoxia inducible factor-1 (HIF-1). In the present study, activation of HIF-1 by hypoxia and dimethyloxaloylglycine (DMOG), a hypoxia mimic, diminished Ref-1 mRNA and protein expression in human microvascular endothelial cells (HMEC-1). Similarly, adenoviral delivery of the stabilized form of HIF-1alpha decreased Ref-1 mRNA and protein levels. Accordingly, HIF-1alpha siRNA abolished the hypoxia-induced inhibition of Ref-1 expression, indicating the role of HIF-1 in down-regulation of Ref-1. Also, translocation of Ref-1 from nucleus to cytoplasm after HIF-1 activation was noted. Interestingly, we observed the restoration of Ref-1 expression in hypoxia by pharmacologically relevant doses of atorvastatin. This effect was dependent on the inhibition of protein geranylgeranylation, but not farnesylation, as only the inhibitor of the former but not the latter prenylation step restored the Ref-1 expression. The regulation of Ref-1 by statins may be considered as a novel mechanism of their beneficial effects on endothelium.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Zhu Y, Cuevas IC, Gabriel RA, Su H, Nishimura SL, Gao P, Fields A, Hao Q, Young WL, Yang GY, Boudreau NJ. Restoring transcription factor HoxA5 expression inhibits the growth of experimental hemangiomas in the brain. J Neuropathol Exp Neurol 2009; 68:626-32. [PMID: 19458547 PMCID: PMC2728585 DOI: 10.1097/nen.0b013e3181a491ce] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hemangiomas are angiogenesis-dependent benign vascular tumors that can rupture and cause intracranial hemorrhages. We previously showed that the transcription factor homeobox A5 (HoxA5), which is absent in activated angiogenic endothelial cells can block angiogenesis. Here, we investigated whether restoring expression of HoxA5 blocks hemangioma growth by transplanting mouse hemangioendothelioma endothelial cells (EOMA) or HoxA5-expressing EOMA cells into the brains of mice. The EOMA cells induced brain hemangiomas characterized by large cystlike spaces lined by thin walls of endothelial cells surrounded by scant smooth muscle cells. When HoxA5-expressing EOMA cells were injected, lesion volumes were reduced between 5- and 20-fold compared with the EOMA control group (p < 0.05). Restoration of HoxA5 was associated with increased thrombospondin-2, which inhibits angiogenesis and reduced hypoxia-inducible factor 1alpha expression. These data suggest that restoring HoxA5 can attenuate experimental brain hemangioma development.
Collapse
Affiliation(s)
- Yiqian Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
- Joint Graduate Program in Bioengineering, University of California, San Francisco/University of California, Berkeley, CA
| | - Ileana C. Cuevas
- Department of Surgery, University of California, San Francisco, CA
| | - Rodney Allanigue Gabriel
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | | | - Peng Gao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
- Department of Neurosurgery, XuanWu Hospital, Capital University of Medical Sciences, Beijing, China
| | - Alexander Fields
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Qi Hao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
- Department of Neurology, University of California, San Francisco, CA
- Joint Graduate Program in Bioengineering, University of California, San Francisco/University of California, Berkeley, CA
| | - Guo-Yuan Yang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| | | |
Collapse
|
187
|
Stowe DF, Camara AKS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11:1373-414. [PMID: 19187004 PMCID: PMC2842133 DOI: 10.1089/ars.2008.2331] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O(2)(*-)) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H(2)O(2) inside and outside the mitochondrial matrix by superoxide dismutases. H(2)O(2) is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O(2)(*-). Cell ischemia, hypoxia, or toxins can result in excess O(2)(*-) production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H(2)O(2) can combine with Fe(2+) complexes to form reactive ferryl species (e.g., Fe(IV) = O(*)). In the presence of nitric oxide (NO(*)), O(2)(*-) forms the reactant peroxynitrite (ONOO(-)), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca(2+) entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O(2)(*-) emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O(2)(*-) by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O(2)(*-) generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratories, Department of Anesthesiology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
188
|
Ding ZY, Li ZG, Xing YZ, Ji H, Li HL, Chang ZJ. The construction of siRNA plasmid targeting mouse HIF-1alpha and in vitro study of its inhibition effect. Neurosci Bull 2009; 25:122-30. [PMID: 19448686 DOI: 10.1007/s12264-009-8122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To construct effective RNA-interference plasmids targeting mouse HIF-1alpha gene and testify their effects and specificities in interfering HIF-1alpha expression. METHODS Three RNA-interference plasmids targeting mouse HIF-1alpha gene, pBS/U6/HIF-1alpha-siRNAI~III, were constructed and identified using double digestion method in the present study. RT-PCR, immunostaining and western blotting were employed to detect the expression alterations of HIF-1alpha in 293T cells following transfections of the three plasmids, respectively. The interference effect of pBS/U6/HIF1alphai-II in SH-SY5Y cell line was further investigated. RESULTS All the three RNA-interference plasmids, especially pBS/U6/HIF1alphai-II, showed significant inhibition in HIF-1alpha expression in 293T cell line. pBS/U6/HIF1alphai-II could also inhibit HIF-1alpha expression in SH-SY5Y cell line, in a dose-dependent way. CONCLUSION Plasmid pBS/U6/HIF1alphai-II constructed in our study can effectively and specifically inhibit HIF-1alpha expression, and its role in neural tube development and dysfunction will be further investigated. Construct of pBS/U6/HIF1alphai-II plasmid will provide a useful tool to study the role of HIF-1 pathway in embryogenesis, oncogenesis and ischemia development.
Collapse
Affiliation(s)
- Zhen-Yu Ding
- Department of pharmacognosy, College of pharmacy, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
189
|
Kudo T, Ueda M, Kuge Y, Mukai T, Tanaka S, Masutani M, Kiyono Y, Kizaka-Kondoh S, Hiraoka M, Saji H. Imaging of HIF-1-Active Tumor Hypoxia Using a Protein Effectively Delivered to and Specifically Stabilized in HIF-1-Active Tumor Cells. J Nucl Med 2009; 50:942-9. [DOI: 10.2967/jnumed.108.061119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
190
|
Ding JY, Kreipke CW, Schafer P, Schafer S, Speirs SL, Rafols JA. Synapse loss regulated by matrix metalloproteinases in traumatic brain injury is associated with hypoxia inducible factor-1alpha expression. Brain Res 2009; 1268:125-134. [PMID: 19285046 PMCID: PMC2668731 DOI: 10.1016/j.brainres.2009.02.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 12/29/2022]
Abstract
The present study assessed the role of matrix metalloproteinase-2 (MMP-2) and -9 in synapse loss after traumatic brain injury (TBI) and the role of hypoxia inducible factor-1alpha (HIF-1alpha), a transcription factor up-regulated during hypoxia, in the regulation of MMP-2 and -9 expression post-TBI. Adult male Sprague-Dawley rats (n=6 per group, 400 g-425 g) were injured using Marmarou's closed-head acceleration impact model and allowed to survive for 1, 4, 24 and 48 h. In another set of experiments, 30 min after TBI, animals were treated with Minocycline (inhibitor of MMPs), or 2-Methoxyestradiol (2ME2, inhibitor of HIF-1alpha) and sacrificed at 4 h after injury. Relative amounts of synaptophysin, a presynaptic vesicular protein, HIF-1alpha, as well as MMP-2 and -9 were assessed by real-time PCR and Western blotting. Activity levels of MMP-2 and -9 were determined by zymography. Synaptophysin expression was significantly (p<0.05) decreased at 1 h through 48 h after TBI. A significant increase in gene and protein expressions of HIF-1alpha, MMP-2 and -9, as well as enzyme activity of MMP-2 and -9 at the same time points was also detected. Inhibition of either MMPs or HIF-1alpha significantly reversed the TBI-induced decrease in synaptophysin. Inhibition of HIF-1alpha reduced expression of MMP-2 and -9. This study showed an early detection of a correlation between synaptic loss and MMP expression after TBI. The data also supports a role for HIF-1alpha in the MMP regulatory cascade in synapse loss after TBI, suggesting potential targets for reducing loss of synaptic terminals.
Collapse
Affiliation(s)
- Jamie Y Ding
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Christian W Kreipke
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Patrick Schafer
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Steven Schafer
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Susan L Speirs
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - José A Rafols
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA.
| |
Collapse
|
191
|
Nemec AA, Barchowsky A. Signal transducer and activator of transcription 1 (STAT1) is essential for chromium silencing of gene induction in human airway epithelial cells. Toxicol Sci 2009; 110:212-23. [PMID: 19403854 DOI: 10.1093/toxsci/kfp084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)-dependent pathway to silence nickel (Ni)-induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase-activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1 alpha activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
192
|
Hypoxia-inducible factor-1alpha protects cultured cortical neurons from lipopolysaccharide-induced cell death via regulation of NR1 expression. J Neurosci 2009; 28:14259-70. [PMID: 19109507 DOI: 10.1523/jneurosci.4258-08.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation is involved in some neurodegenerative disorders. NMDA glutamate receptors play an important role in neuronal development. Here, we show that NR1 expression in the cerebral cortex and primary neurons of rats was upregulated after lipopolysaccharide (LPS) treatment. This increase in NR1 expression was considered to be strongly associated with hypoxia-inducible factor-1alpha (HIF-1alpha) activation because the treatment of primary neurons with either echinomycin or small interfering RNA (siRNA) targeting HIF-1alpha could block NR1 expression. HIF-1alpha could be induced by an increase in the translational efficiency of the cells. After this, it was transported into the nucleus where it bound to the NR1 promoter and regulated the induction of NR1 transcriptional activity by LPS. LPS injection into the prefrontal cortex caused neuronal death, and this condition was aggravated by intracerebroventricular injection of echinomycin. Furthermore, knockdown of HIF-1alpha and NR1 by the appropriate siRNAs reduced the neurite outgrowth and viability of the primary neurons. These results suggest that NR1 expression is regulated by HIF-1alpha and plays a protective role in neurons during LPS challenge.
Collapse
|
193
|
Ding JY, Kreipke CW, Speirs SL, Schafer P, Schafer S, Rafols JA. Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci Lett 2009; 453:68-72. [PMID: 19429018 PMCID: PMC2703426 DOI: 10.1016/j.neulet.2009.01.077] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated that traumatic brain injury (TBI) causes brain edema via aquaporins (AQPs), the water-transporting proteins. In the present study, we determined the role of hypoxia inducible factor-1alpha (HIF-1alpha), which is a transcription factor in response to physiological hypoxia, in regulating expression of AQP4 and AQP9. Adult male Sprague-Dawley rats (400-425g) received a closed head injury using the Marmarou weight drop model with a 450g weight and survived for 1, 4, 24 and 48h. Some animals were administered 30min after injury with 2-methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol which is known to post-transcriptionally down-regulate HIF-1alpha expression, and sacrificed 4h after injury. Real-time PCR and Western blot were used, respectively, to detect gene and protein expressions of manganese superoxide dismutase (MnSOD, showing hypoxic stress), HIF-1alpha, AQP4, and AQP9. ANOVA analysis demonstrated a significant (p<0.05) increase in gene expression of MnSOD, HIF-1alpha, AQP4, and AQP9, starting at 1h after injury through 48h. Western blot analysis further indicated a significant (p<0.05) increase in protein expression of these molecules at the same time points. Pharmacological inhibition of HIF-1alpha by 2ME2 reduced the up-regulated levels of AQP4 and AQP9 after TBI. The present study suggests that hypoxic conditions determined by MnSOD expression after closed head injury contribute to HIF-1alpha expression. HIF-1alpha, in turn, up-regulates expression of AQP4 and AQP9. These results characterize the pathophysiological mechanisms, and suggest possible therapeutic targets for TBI patients.
Collapse
Affiliation(s)
- Jamie Y Ding
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, United States
| | | | | | | | | | | |
Collapse
|
194
|
Zhang R, Zhou L, Li Q, Liu J, Yao W, Wan H. Up-regulation of two actin-associated proteins prompts pulmonary artery smooth muscle cell migration under hypoxia. Am J Respir Cell Mol Biol 2009; 41:467-75. [PMID: 19188659 DOI: 10.1165/rcmb.2008-0333oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia stimulates the migration of pulmonary artery smooth muscle cells (PASMCs), which contributes to the pathogenesis of pulmonary vessel structural remodeling in hypoxic pulmonary hypertension (HPH). In the present study, we found, using a proteomics-based method, that gelsolin-like actin-capping protein (CapG) and transgelin were preferentially expressed in human (h)PAMSCs under hypoxia compared with normoxia. These two actin-associated proteins, modulate a variety of physiologic processes, including motility of cells, by interacting differently with the actin cytoskeleton. Our study showed that these two genes were up-regulated at both mRNA and protein levels under hypoxia in hPASMCs. As a key transcriptional regulation factor under hypoxia, hypoxia-inducible factor 1alpha (HIF-1alpha) up-regulated CapG protein expression under normoxia, and knockdown of HIF-1alpha expression in hPASMCs also inhibited hypoxia induced CapG up-regulation. However, HIF-1alpha could not regulate transgelin expression. Reduction of CapG or transgelin expression in hPASMCs by RNA interference was accompanied by significantly impaired migration ability in vitro, especially under hypoxia. Our study demonstrates that CapG and transgelin were preferentially expressed in hPAMSCs under hypoxia compared with normoxia. Hypoxia stimulates expression of these two actin-associated proteins via HIF-1alpha-dependent and -independent pathways, respectively. The up-regulation of these two proteins may contribute to the increased motility of hPASMCs under hypoxia. These findings may contribute to the understanding of the pathogenesis of HPH.
Collapse
Affiliation(s)
- Ruifeng Zhang
- Department of Respiratory Medicine, Ruijin Hospital, Medical School of Shanghai Jiaotong University, N0.197, The Second Ruijin Road, Shanghai, 200025, China
| | | | | | | | | | | |
Collapse
|
195
|
Möller A, House CM, Wong CSF, Scanlon DB, Liu MCP, Ronai Z, Bowtell DDL. Inhibition of Siah ubiquitin ligase function. Oncogene 2009; 28:289-96. [PMID: 18850011 PMCID: PMC3000903 DOI: 10.1038/onc.2008.382] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 01/21/2023]
Abstract
Tumor hypoxia induces the upregulation of hypoxia-inducible factor 1alpha (Hif-1alpha), which in turn induces the expression of genes including VEGF to recruit new blood vessel outgrowth, enabling tumor growth and metastasis. Interference with the Hif-1 pathway and neoangiogenesis is an attractive antitumor target. The hydroxylation of Hif-1alpha by prolyl-hydroxylase (PHD) proteins during normoxia serves as a recognition motif for its proteasomal degradation. However, under hypoxic conditions, hydroxylation is inhibited and furthermore, PHD proteins are themselves polyubiquitylated and degraded by Siah ubiquitin ligases. Our data demonstrate for the first time that inhibition of the interaction between Siah and PHD proteins using a fragment derived from a Drosophila protein (phyllopod) interferes with the PHD degradation. Furthermore, cells stably expressing the phyllopod fragment display reduced upregulation of Hif-1alpha protein levels and Hif-1-mediated gene expression under hypoxia. In a syngeneic mouse model of breast cancer, the phyllopod fragment reduced tumor growth and neoangiogenesis and prolonged survival of the mice. In addition, levels of Hif-1alpha and its target Glut-1 are reduced in tumors expressing the phyllopod fragment. These data show, in a proof-of-principle study, that Siah protein, the most upstream component of the hypoxia pathway yet identified, is a viable drug target for antitumor therapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/pathology
- Cell Hypoxia/genetics
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/transplantation
- Dioxygenases/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Drug Delivery Systems
- Female
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/enzymology
- Mice
- Mice, Inbred C57BL
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/prevention & control
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Procollagen-Proline Dioxygenase/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Protein Processing, Post-Translational
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/physiology
- Recombinant Fusion Proteins/physiology
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/physiology
- Ubiquitination
- Xenograft Model Antitumor Assays
- Seven in Absentia Proteins
Collapse
Affiliation(s)
- A Möller
- Cancer Genomics and Biochemistry Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
196
|
Holm PW, Slart RHJA, Zeebregts CJ, Hillebrands JL, Tio RA. Atherosclerotic plaque development and instability: a dual role for VEGF. Ann Med 2009; 41:257-64. [PMID: 19089693 DOI: 10.1080/07853890802516507] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a potent growth factor for endothelial cells and inducer of angiogenesis, is important for endothelial integrity and thus for vascular function. On the other hand, VEGF may enhance the pathophysiologic mechanism of plaque formation and plaque destabilization. In this review we discuss the data available so far for VEGF as angiogenic and/or inflammatory cytokine in the vulnerable atherosclerotic plaque.
Collapse
Affiliation(s)
- Pieter W Holm
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
197
|
Winnard PT, Pathak AP, Dhara S, Cho SY, Raman V, Pomper MG. Molecular imaging of metastatic potential. J Nucl Med 2008; 49 Suppl 2:96S-112S. [PMID: 18523068 DOI: 10.2967/jnumed.107.045948] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
If molecular imaging is to prove clinically useful it will have to surpass current, primarily anatomic techniques in terms of sensitivity and the ability to detect minimal changes in tissue. One of the most important tests for molecular imaging is to determine whether it can image the metastatic potential of tumors. Like all predictive endeavors, the imaging of such "potential" is a daunting task, but one that only molecular imaging--rather than standard, anatomic techniques--is likely to solve. Although difficult, imaging of metastatic potential is also arguably the most important task for molecular imaging of cancer because it is generally the dissemination of malignant tissue, not its prolonged residence in an inopportune site, which kills the patient. Below are examples of uses of molecular imaging of metastases as well as of metastatic potential, the former being a far more developed area of clinical inquiry.
Collapse
Affiliation(s)
- Paul T Winnard
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore 21231, Maryland, USA
| | | | | | | | | | | |
Collapse
|
198
|
Salnikow K, Aprelikova O, Ivanov S, Tackett S, Kaczmarek M, Karaczyn A, Yee H, Kasprzak KS, Niederhuber J. Regulation of hypoxia-inducible genes by ETS1 transcription factor. Carcinogenesis 2008; 29:1493-9. [PMID: 18381358 PMCID: PMC2516492 DOI: 10.1093/carcin/bgn088] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/25/2008] [Accepted: 03/15/2008] [Indexed: 11/14/2022] Open
Abstract
Hypoxia-inducible factor (HIF-1) regulates the expression of genes that facilitate tumor cell survival by making them more resistant to therapeutic intervention. Recent evidence suggests that the activation of other transcription factors, in cooperation with HIF-1 or acting alone, is involved in the upregulation of hypoxia-inducible genes. Here we report that high cell density, a condition that might mimic the physiologic situation in growing tumor and most probably representing nutritional starvation, upregulates hypoxia-inducible genes. This upregulation can occur in HIF-independent manner since hypoxia-inducible genes carbonic anhydrase 9 (CA9), lysyloxidase like 2 (LOXL2) and n-myc-down regulated 1 (NDRG1)/calcium activated protein (Cap43) can be upregulated by increased cell density under both normoxic and hypoxic conditions in both HIF-1 alpha-proficient and -deficient mouse fibroblasts. Moreover, cell density upregulates the same genes in 1HAEo- and A549 human lung epithelial cells. Searching for other transcription factors involved in the regulation of hypoxia-inducible genes by cell density, we focused our attention on ETS1. As reported previously, members of v-ets erythroblastosis virus E26 oncogene homolog (ETS) family transcription factors participate in the upregulation of hypoxia-inducible genes. Here, we provide evidence that ETS1 protein is upregulated at high cell density in both human and mouse cells. The involvement of ETS1 in the upregulation of hypoxia-inducible genes was further confirmed in a luciferase reporter assay using cotransfection of ETS1 expression vector with NDRG1/Cap43 promoter construct. The downregulation of ETS1 expression with small interfering RNA (siRNA) inhibited the upregulation of CA9 and NDRG1/Cap43 caused by increased cell density. Collectively, our data indicate the involvement of ETS1 along with HIF-1 in regulating hypoxia-inducible genes.
Collapse
Affiliation(s)
- Konstantin Salnikow
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Sakakura Y, Shibui T, Irie K, Yajima T. Metabolic mode peculiar to Meckels cartilage: immunohistochemical comparisons of hypoxia-inducible factor-1 and glucose transporters in developing endochondral bones in mice. Eur J Oral Sci 2008; 116:341-52. [DOI: 10.1111/j.1600-0722.2008.00548.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
200
|
Liposome-Encapsulated Hemoglobin Transfusion Rescues Rats Undergoing Progressive Hemodilution From Lethal Organ Hypoxia Without Scavenging Nitric Oxide. Ann Surg 2008; 248:310-9. [DOI: 10.1097/sla.0b013e3181820c80] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|