151
|
|
152
|
DNA and RNA Cleavage Mediated by Phenanthroline-Cuprous Oligonucleotides: From Properties to Applications. ARTIFICIAL NUCLEASES 2004. [DOI: 10.1007/978-3-642-18510-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
153
|
Boutorine AS, Ryabinin VA, Novopashina DS, Venyaminova AG, Hélène C, Sinyakov AS. Stabilization of DNA double and triple helices by conjugation of minor groove binders to oligonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1267-72. [PMID: 14565396 DOI: 10.1081/ncn-120022943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.
Collapse
Affiliation(s)
- A S Boutorine
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 565, CNRS UMR 8646, Paris Cedex, France.
| | | | | | | | | | | |
Collapse
|
154
|
James PL, Brown T, Fox KR. Thermodynamic and kinetic stability of intermolecular triple helices containing different proportions of C+*GC and T*AT triplets. Nucleic Acids Res 2003; 31:5598-606. [PMID: 14500823 PMCID: PMC206477 DOI: 10.1093/nar/gkg782] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used oligonucleotides containing appropriately placed fluorophores and quenchers to measure the stability of 15mer intermolecular triplexes with third strands consisting of repeats of TTT, TTC, TCC and TCTC. In the presence of 200 mM sodium (pH 5.0) triplexes that contain only T.AT triplets are unstable and melt below 30 degrees C. In contrast, triplets with repeats of TTC, TCC and CTCT melt at 67, 72 and 76 degrees C, respectively. The most stable complex is generated by the sequence containing alternating C+*GC and T*AT triplets. All four triplexes are stabilised by increasing the ionic strength or by the addition of magnesium, although triplexes with a higher proportion of C+*GC triplets are much less sensitive to changes in the ionic conditions. The enthalpies of formation of these triplexes were estimated by examining the concentration dependence of the melting profiles and show that, in the presence of 200 mM sodium at pH 5.0, each C+*GC triplet contributes about 30 kJ x mol(-1), while each T*AT contributes only 11 kJ x mol(-1). Kinetic experiments with these oligonucleotides show that in 200 mM sodium (pH 5.0) repeats of TCC and TTC have half-lives of approximately 20 min, while the triplex with alternating C+*GC and T.AT triplets has a half-life of approximately 3 days. In contrast, the dissociation kinetics of the triplex containing only T*AT are too fast to measure.
Collapse
Affiliation(s)
- Peter L James
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
155
|
Jaumot J, Aviña A, Eritja R, Tauler R, Gargallo R. Resolution of parallel and antiparallel oligonucleotide triple helices formation and melting processes by multivariate curve resolution. J Biomol Struct Dyn 2003; 21:267-78. [PMID: 12956610 DOI: 10.1080/07391102.2003.10506922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A procedure is described for the complete resolution of concentration profiles of oligonucleotide triplexes as a function of pH and temperature. The pH and temperature ranges at which triplexes are present and the relative concentrations of all the species involved in acid-base and conformational equilibria are successfully estimated from Multivariate Curve Resolution analysis of UV absorbance spectra recorded along acid-base titrations and melting experiments of single stranded, hairpin and their mixtures. The dependence of formation constants upon pH was successfully estimated. The hairpin h26 (5'-GAAGGAGGAGA-TTTT-TCTCCTCCTTC-3'), and the single stranded oligonucleotides s11CT (5'-CTTCCTCCTCT-3'), s11AG (5'-AGAGGAGGAAG-3') and s11TG (5'-TGTGGTGGTTG-3') were synthesized and their protonation and conformational equilibria were studied in detail. The procedure was shown to be especially useful for the study of triplexes with a low hypochromism upon formation.
Collapse
Affiliation(s)
- J Jaumot
- Departament de Quimica Analitica, Universitat de Barcelona, Marti Franques 1 -11, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
156
|
Miyashita T, Matsumoto N, Moriguchi T, Shinozuka K. Novel dinucleoside phosphotriester unit conjugated with an intercalative moiety in a stereospecific manner enhances thermal stability of an alternate-stranded triple helix. Tetrahedron Lett 2003. [DOI: 10.1016/j.tetlet.2003.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
157
|
Dapas B, Tell G, Scaloni A, Pines A, Ferrara L, Quadrifoglio F, Scaggiante B. Identification of different isoforms of eEF1A in the nuclear fraction of human T-lymphoblastic cancer cell line specifically binding to aptameric cytotoxic GT oligomers. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3251-3262. [PMID: 12869201 DOI: 10.1046/j.1432-1033.2003.03713.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
GT oligomers, showing a dose-dependent cytotoxic effect on a variety of human cancer cell lines, but not on normal human lymphocytes, recognize and form complexes with nuclear proteins. By working with human T-lymphoblastic CCRF-CEM cells and by using MS and SouthWestern blotting, we identified eukaryotic elongation factor 1 alpha (eEF1A) as the main nuclear protein that specifically recognizes these oligonucleotides. Western blotting and supershift assays confirmed the nature of this protein and its involvement in forming a cytotoxicity-related complex (CRC). On the contrary, normal human lymphocytes did not show nuclear proteins able to produce CRC in a SouthWestern blot. Comparative bidimensional PAGE and Western-blotting analysis for eEF1A revealed the presence of a specific cluster of spots, focusing at more basic pH, in nuclear extracts of cancer cells but absent in those of normal lymphocytes. Moreover, a bidimensional PAGE SouthWestern blot demonstrated that cytotoxic GT oligomers selectively recognized the more basic eEF1A isoform expressed only in cancer cells. These results suggest the involvement of eEF1A, associated with the nuclear-enriched fraction, in the growth and maintenance of tumour cells, possibly modulated by post-translational processing of the polypeptide chain.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Biomedical Sciences and Technologies, University of Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
158
|
|
159
|
Ivanov S, Alekseev Y, Bertrand JR, Malvy C, Gottikh MB. Formation of stable triplexes between purine RNA and pyrimidine oligodeoxyxylonucleotides. Nucleic Acids Res 2003; 31:4256-63. [PMID: 12853644 PMCID: PMC165958 DOI: 10.1093/nar/gkg443] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Revised: 03/07/2003] [Accepted: 04/30/2003] [Indexed: 11/13/2022] Open
Abstract
Hybridization properties of oligodeoxyxylonucleotides (OXNs) built from pyrimidine monomers with an inverted 3'-OH group of the furanose have been studied using the gel mobility shift, UV melting and circular dichroism (CD) spectroscopy methods. Pyrimidine OXNs form triple helices with complementary purine RNA in which one OXN is parallel and another is antiparallel with respect to the RNA target. Surprisingly, no duplex formation between the pyrimidine OXNs and purine RNAs is detected. The modified triplexes are stable at pH 7. Their thermal stability depends on the number of C(G-C) triplets and, for G-rich RNA sequences, it is comparable with the stability of native DNA-RNA duplexes. The CD spectra of triplexes formed by OXNs with purine RNA targets are similar to spectra of A-type helices. A pyrimidine OXN having a clamp structure efficiently inhibits reverse transcription of murine pim-1 mRNA in vitro mediated by the Mo-MuLV reverse transcriptase.
Collapse
Affiliation(s)
- Sergei Ivanov
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Moscow State University, Moscow 119899, Russia
| | | | | | | | | |
Collapse
|
160
|
Guianvarc'h D, Fourrey JL, Maurisse R, Sun JS, Benhida R. Design of artificial nucleobases for the recognition of the AT inversion by triple-helix forming oligonucleotides: a structure-stability relationship study and neighbour bases effect. Bioorg Med Chem 2003; 11:2751-9. [PMID: 12788349 DOI: 10.1016/s0968-0896(03)00229-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report herein on the synthesis, the incorporation into triplex forming oligonucleotides (TFO) and the recognition properties of a series of synthetic nucleosides designed for the specific recognition of an inverted A x T base pair in a pyrimidine triple helix motif. These analogues were designed on the basis of the results obtained with our previously reported compounds S and B(t), in order to define a structure-stability relationship. We report also on the chemical nature effect of the bases flanking S in the case of S-containing TFOs, in order to get further informations about the recognition process within the A x TxS triplet. This study establishes guidelines for the conception of more potent analogues for the recognition of both A x T and G x C inverted base pairs.
Collapse
Affiliation(s)
- Dominique Guianvarc'h
- Laboratoire de Biophysique, UR 565 INSERM, UMR 8646 CNRS, Muséum National d'Histoire Naturelle, 43 rue Cuvier 75231 Paris Cédex 05, France
| | | | | | | | | |
Collapse
|
161
|
Selective recognition of CG interruption by 2′,4′-BNA having 1-isoquinolone as a nucleobase in a pyrimidine motif triplex formation. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00728-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
162
|
Hwang JT, Baltasar FE, Cole DL, Sigman DS, Chen CHB, Greenberg MM. Transcription inhibition using modified pentanucleotides. Bioorg Med Chem 2003; 11:2321-8. [PMID: 12713844 DOI: 10.1016/s0968-0896(03)00071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of gene expression was recently achieved by targeting the transcriptionally competent open complex using relatively short, pentameric modified oligonucleotides at approximately 60 microM. Corroborative affinity cleavage experiments using the copper complex of a phenanthroline conjugate provided the impetus to synthesize additional analogues containing substituents at the 2'-position of uridine in a derivative of 5'-GUGGA (-4 to +1), with the purpose of inhibiting transcription at lower concentrations. Conjugates of 5'-GUGGA modified at the 2'-position of uridine were convergently synthesized using a recently reported method. Seven analogues based upon the 5'-GUGGA scaffold were tested for their ability to inhibit transcription of the lac UV-5 operon. The conjugate containing a tethered pyrene showed 70% inhibition at 20 microM, and modest inhibition at as low as 5 microM. This is a significant improvement over previously tested pentanucleotides and provides direction for the preparation of a next generation of inhibitors.
Collapse
Affiliation(s)
- Jae-Taeg Hwang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
163
|
Das S, Kumar GS, Ray A, Maiti M. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J Biomol Struct Dyn 2003; 20:703-14. [PMID: 12643773 DOI: 10.1080/07391102.2003.10506887] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A comparative study on the interaction of sanguinarine and berberine with DNA and RNA triplexes and their parent duplexes was performed, by using a combination of spectrophotometric, UV thermal melting, circular dichroic and thermodynamic techniques. Formation of the DNA and RNA triplexes was confirmed from UV-melting and circular dichroic measurements. The interaction process was characterized by increase of thermal melting temperature, perturbation in circular dichroic spectrum and the typical hypochromic and bathochromic effects in the absorption spectrum. Scatchard analysis indicated that both the alkaloids bound to the triplex and duplex structures in a non-cooperative manner and the binding was stronger to triplexes than to parent duplexes. Thermal melting studies further indicated that sanguinarine stabilized the Hoogsteen base paired third strand of both DNA and RNA triplexes more tightly compared to their Watson-Crick strands, while berberine stabilized the third strand only without affecting the Watson-Crick strand. However, sanguinarine stabilized the parent duplexes while no stabilization was observed with berberine under identical conditions. Circular dichroic studies were also consistent with the observation that perturbations of DNA and RNA triplexes were more compared to their parent duplexes in presence of the alkaloids. Thermodynamic data revealed that binding of sanguinarine and berberine to triplexes (T.AxT and U.AxU) and duplexes (A.T and A.U) showed negative enthalpy changes and positive entropy changes but that of sanguinarine to C.GxC(+) triplex and G.C duplex exhibited negative enthalpy and negative entropy changes. Taken together, these results suggest that both sanguinarine and berberine can bind and stabilize the DNA and RNA triplexes more strongly than their respective parent duplexes.
Collapse
Affiliation(s)
- Suman Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
164
|
Lentzen O, Constant JF, Defrancq E, Prévost M, Schumm S, Moucheron C, Dumy P, Kirsch-De Mesmaeker A. Photocrosslinking in ruthenium-labelled duplex oligonucleotides. Chembiochem 2003; 4:195-202. [PMID: 12616633 DOI: 10.1002/cbic.200390031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The formation of a photoadduct between a [Ru(1,4,5,8-tetraazaphenanthrene)(2)4,7-diphenylphenanthroline](2+) complex chemically attached to a synthetic oligonucleotide, and a guanine moiety in a complementary targeted single-stranded DNA molecule was studied for ten 17-mer duplexes by denaturing gel electrophoresis. This photoadduct formation leads to photocrosslinking of the two strands. The percentage quenching of luminescence of the complex by electron transfer was compared to the resulting yield of photocrosslinked product. This yield does not only depend on the ionisation potential of the guanine bases, which are electron donors, but also on other factors, such as the position of the guanine bases as compared to the site of attachment of the complex. The photocrosslinking yield is higher when the guanine moieties are towards the 3' end on the complementary strand as compared to the tethering site. Computer modelling results are in agreement with this preference for the 3' side for the photoreaction. Interestingly, the photocrosslink is not alkali labile. Moreover, a type III exonuclease enzyme is blocked at the position of photocrosslinking.
Collapse
Affiliation(s)
- O Lentzen
- Université Libre de Bruxelles, Organic Chemistry and Photochemistry, CP. 160/08, 50 Avenue F. D. Roosevelt, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Carbone GM, McGuffie EM, Collier A, Catapano CV. Selective inhibition of transcription of the Ets2 gene in prostate cancer cells by a triplex-forming oligonucleotide. Nucleic Acids Res 2003; 31:833-43. [PMID: 12560478 PMCID: PMC149218 DOI: 10.1093/nar/gkg198] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor Ets2 has a role in cancer development and represents an attractive therapeutic target. In this study, we designed a triplex-forming oligonucleotide (TFO) directed to a homopurine:homopyrimidine sequence in the Ets2 promoter. Transcription factors of the Sp family bound to this sequence and mutation of the Sp1 site reduced Ets2 promoter activity. The Ets2-TFO had high binding affinity for the target sequence and inhibited binding of Sp1/Sp3 to the overlapping site. This effect occurred with a high degree of sequence specificity. Mismatched oligonucleotides did not inhibit Sp1/Sp3 binding and mutations in the target sequence that abolished triplex formation prevented inhibition of Sp1/Sp3 binding by the TFO. The Ets2-TFO inhibited Ets2 promoter activity and expression of the endogenous gene in prostate cancer cells at nanomolar concentrations. The TFO did not affect reporter constructs with mutations in the TFO binding site and promoters of non-targeted genes. Expression of non-targeted genes was also not affected in TFO-treated cells. Collectively, these data demonstrated that the anti-transcriptional activity of the Ets2-TFO was sequence- and target-specific, and ruled out alternative, non-triplex mediated mechanisms of action. This anti-transcriptional approach may be useful to examine the effects of selective downregulation of Ets2 expression and may have therapeutic applications.
Collapse
Affiliation(s)
- Giuseppina M Carbone
- Laboratory of Cancer Genomics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
166
|
Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int J Biochem Cell Biol 2003; 35:22-31. [PMID: 12467644 DOI: 10.1016/s1357-2725(02)00165-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have gained prominence in the recent years because of their potential applications in antigene therapy. In particular they have been used as (i) inducers of site-specific mutations, (ii) reagents that selectively and specifically cleave target DNA, and (iii) as modulators of gene expression. In this mini-review, we have made an attempt to highlight the characteristics of these TFOs and the effects of various modifications in the phosphate backbone as well as in the purine and pyrimidine moieties, which contribute to the stability and efficiency of triplex formation. Studies to explore the mechanism of down-regulation of transcription of various genes suggest that at least some TFOs exert their effect by inhibiting binding of specific transcription factors to their cognate cis-acting elements. Recent reports indicate the presence of these potential triplex-forming DNA structures in the genomes of prokaryotes and eukaryotes that may play a major role in target site selection and chromosome segregation as well as in the cause of heritable diseases. Finally, some potential problems in the development of these TFOs as antigene therapeutic agents have also been discussed.
Collapse
Affiliation(s)
- Ramareddy V Guntaka
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA.
| | | | | |
Collapse
|
167
|
Alberti P, Arimondo PB, Mergny JL, Garestier T, Hélène C, Sun JS. A directional nucleation-zipping mechanism for triple helix formation. Nucleic Acids Res 2002; 30:5407-15. [PMID: 12490709 PMCID: PMC140048 DOI: 10.1093/nar/gkf675] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T.A base pair by a C.G pair at either the 5' or the 3' end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5' side of the triplex (referred to as the 5' side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5' end to the 3' end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5' than at the 3' duplex-triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression.
Collapse
Affiliation(s)
- Patrizia Alberti
- Laboratoire de Biophysique, USM0503 Muséum National d'Histoire Naturelle, UMR8646 CNRS-MNHN, U565 INSERM, 43 rue Cuvier 75231 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
168
|
Ohsato T, Ishihara N, Muta T, Umeda S, Ikeda S, Mihara K, Hamasaki N, Kang D. Mammalian mitochondrial endonuclease G. Digestion of R-loops and localization in intermembrane space. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5765-70. [PMID: 12444964 DOI: 10.1046/j.1432-1033.2002.03238.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian mitochondria contain strong nuclease activity. Endonuclease G (endoG), which predominantly resides in mitochondria, accounts for a large part of this nuclease activity. It has been proposed to act as an RNase H-like nuclease on RNA.DNA hybrids (R-loops) in the D-loop region where the origins of mitochondrial replication are mapped, providing RNA primers for mtDNA replication. However, in contrast with this proposed activity, endoG has recently been shown to translocate to nuclei on apoptotic stimulation and act as a nuclease without sequence specificity. To clarify the role of endoG in mtDNA replication, we examined its submitochondrial localization and its ability to cleave R-loops. At low concentration, it preferentially produces double-stranded breaks in R-loops, but does not act as an RNase H-like nuclease. In addition, it exists in the mitochondrial intermembrane space, but not in the matrix where mtDNA replication occurs. These results do not support the involvement of endoG in mtDNA replication. Based on the fact that guanine tracts, which are preferential targets of endoG, tend to form triplex structures and that endoG produces double-stranded breaks in R-loops, we propose that three-stranded DNA may be the preferred substrate of endoG.
Collapse
Affiliation(s)
- Takashi Ohsato
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Sasaki S. [Creation of functional recognition molecules for chemical modification of gene expression]. YAKUGAKU ZASSHI 2002; 122:1081-93. [PMID: 12510386 DOI: 10.1248/yakushi.122.1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial molecules that exhibit specific recognition of duplex DNA have attracted great interest because of their potential application in the manipulation of gene expression. Specific chemical reactions to the target base within the predetermined site would secure selective inhibition at either translation or transcription reactions. A more interesting application would be to alter the reacted base structure to induce a point mutation. In our study, we have focused our efforts on: 1) development of new cross-linking molecules with high efficiency as well as high selectivity; 2) establishment of a new molecular basis for the formation of nonnatural triplexes; and 3) synthetic approaches to the new minor groove binders. This paper summarizes our recent results using two new functional molecules: 2-amino-6-vinylpurine derivatives as new cross-linking agents; and W-shaped nucleic acid analogues as new recognition molecules for the formation of nonnatural-type triplexes.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
170
|
Abstract
The extraordinary explosion of molecular and cellular insights may provide potentially exploitable opportunities to meet the challenge of curing and ultimately preventing all cancer in children. This article describes the various approaches in developing molecular therapy targeted at common childhood cancers.
Collapse
Affiliation(s)
- Gregory H Reaman
- The George Washington University School of Medicine and Health Science, 2300 Eye Street NW, Washington, DC 20007, USA.
| |
Collapse
|
171
|
Guianvarc'h D, Fourrey JL, Maurisse R, Sun JS, Benhida R. Synthesis, incorporation into triplex-forming oligonucleotide, and binding properties of a novel 2'-deoxy-C-nucleoside featuring a 6-(thiazolyl-5)benzimidazole nucleobase. Org Lett 2002; 4:4209-12. [PMID: 12443060 DOI: 10.1021/ol026609h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] 6-(Thiazolyl-5)benzimidazole (B(t)()) was designed as a novel nucleobase for the specific recognition of an inverted A.T base pair in a triple helix motif. It was successfully incorporated into an 18-mer triplex-forming oligonucleotide (TFO) using the 2'-deoxy-C-nucleoside phosphoramidite 16. The triple helix binding properties of the modified TFO were examined by means of thermal denaturation experiments targeting an oligopyrimidine.oligopurine 26-mer DNA duplex containing an A.T base pair inversion.
Collapse
Affiliation(s)
- Dominique Guianvarc'h
- Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
172
|
Christensen C, Eldrup AB, Haaima G, Nielsen PE. 1,8-Naphthyridin-2,7-(1,8H)-dione is an effective mimic of protonated cytosine in peptide nucleic acid triplex recognition systems. Bioorg Med Chem Lett 2002; 12:3121-4. [PMID: 12372515 DOI: 10.1016/s0960-894x(02)00658-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel bicyclic mimic of protonated cytosine [1,8-naphthyridin-2,7-(1,8H)-dione, (K)] for Hoogsteen type triplex recognition of guanine has been designed for incorporation into peptide nucleic acids. Bis-PNA clamps with the K base incorporated in the Hoogsteen strand showed a significant stabilization of the triplexes at pH 7 as compared to similar triplexes with PNA oligomers containing either cytosine (6.7 degrees C per unit) or pseudoisocytosine (1.5 degrees C per unit). Cooperative stabilization was observed when the K units were placed in adjacent positions ( approximately 3 degrees C per unit).
Collapse
Affiliation(s)
- Caspar Christensen
- Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark
| | | | | | | |
Collapse
|
173
|
Dinica R, Charmantray F, Demeunynck M, Dumy P. Regioselective synthesis of angular nitrogen polyheterocycles: dipyrido[3,2-a:2′,3′-c]quinolino[2,3-h]phenazines. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)01900-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
174
|
Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat 2002; 1:405-16. [PMID: 12625767 DOI: 10.1177/153303460200100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthetic oligonucleotides have recently been the object of many investigations aimed to develop sequence-selective compounds able to modulate, either positively or negatively, transcription of eukaryotic and viral genes. Alteration of transcription could be obtained by using synthetic oligonucleotides mimicking target sites of transcription factors (the transcription factor decoy -TFD- approach). This could lead to either inhibition or activation of gene expression, depending on the biological functions of the target transcription factors. Since several transcription factors are involved in tumor onset and progression, this issue is of great interest in order to design anti-tumor compounds. In addition to oligonucleotides, peptide nucleic acids (PNA) can be proposed for the modulation of gene expression. In this respect, double-stranded PNA-DNA chimeras have been shown to be capable to exhibit strong decoy activity. In the case of treatment of breast cancer cells, decoy oligonucleotides mimicking CRE binding sites, promoter region of estrogen receptor alpha gene, NF-kB binding sites have been used with promising results. Therefore, the transcription factor decoy approach could be object of further studies to develop protocols for the treatment of breast cancer. In the future, transcription factors regulating cell cycle, hormone-dependent differentiation, tumor invasion and metastasis are expected to be suitable targets for transcription factor decoy.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biochemistry and Molecular Biology, Ferrara University, Via Luigi Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
175
|
Ghosh MK, Katyal A, Brahmachari V, Chandra R. Design and structural analysis of hairpin-TFO for transcriptional activation of genes in S. cerevisiae. J Biomol Struct Dyn 2002; 20:265-73. [PMID: 12354078 DOI: 10.1080/07391102.2002.10506842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Triplex forming oligonucleotides (TFOs) have the potential to modulate gene expression. While most of the experiments are directed towards triplex mediated inhibition of gene expression the strategy potentially could be used for gene specific activation. In an attempt to design a strategy for gene specific activation in vivo applicable to a large number of genes we have designed a TFO based activator-target system which may be utilized in Saccharomyces cerevisiae or any other system where Gal4 protein is ectopically expressed. The total genome sequence of Saccharomyces cerevisiae and expression profiles were used to select the target genes with upstream poly (pu/py) sequences. We have utilized the paradigm of Gal4 protein and its binding site. We describe here the selection of target genes and design of hairpin-TFO including the targeting sequences containing polypurine stretch found in the upstream promoter regions of weakly expressed genes. We demonstrate, the formation of hairpin-TFO, its binding to Gal4 protein, its ability to form triplex with the target duplex in vitro, the effect of polyethylenimine on complex formation and discuss the implication on in vivo transcription activation.
Collapse
Affiliation(s)
- Mrinal Kanti Ghosh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | | | | | | |
Collapse
|
176
|
Reither S, Jeltsch A. Specificity of DNA triple helix formation analyzed by a FRET assay. BMC BIOCHEMISTRY 2002; 3:27. [PMID: 12323077 PMCID: PMC128820 DOI: 10.1186/1471-2091-3-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Accepted: 09/12/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND A third DNA strand can bind into the major groove of a homopurine duplex DNA to form a DNA triple helix. Sequence specific triplex formation can be applied for gene targeting, gene silencing and mutagenesis. RESULTS We have analyzed triplex formation of two polypurine triplex forming oligodeoxynucleotides (TFOs) using fluorescence resonance energy transfer (FRET). Under our conditions, the TFOs bind to their cognate double strand DNAs with binding constants of 2.6 x 10(5) and 2.3 x 10(6) M(-1). Our data confirm that the polypurine TFO binds in an antiparallel orientation with respect to the polypurine DNA strand and that triplex formation requires Mg2+ ions whereas it is inhibited by K+ ions. The rate of formation of triple helices is slow with bimolecular rate constants of 5.6 x 10(4) and 8.1 x 10(4) min(-1) M(-1). Triplex dissociation was not detectable over at least 30 hours. Triplex formation is sequence specific; alteration of a single base pair within the 13 base pairs long TFOs prevents detectable triplex formation. CONCLUSION We have applied a FRET assay to investigate the specificity of DNA triple helix formation. This assay is homogeneous, continuous and specific, because the appearance of the FRET signal is directly correlated to triplex formation. We show that polypurine TFOs bind highly specifically to polypurine stretches in double stranded DNA. This is a prerequisite for biotechnical applications of triple helices to mediate sequence specific recognition of DNA.
Collapse
Affiliation(s)
- Sabine Reither
- Institut für Biochemie, FB8 Justus-Liebig-Universität Heinrich-Buff-Ring 58 35392 Giessen Germany
- present address: Institut für Genetik, Universität des Saarlandes Postfach 151150 66041 Saarbrücken Germany
| | - Albert Jeltsch
- Institut für Biochemie, FB8 Justus-Liebig-Universität Heinrich-Buff-Ring 58 35392 Giessen Germany
| |
Collapse
|
177
|
Dapas B, Perissin L, Pucillo C, Quadrifoglio F, Scaggiante B. Increase in therapeutic index of doxorubicin and vinblastine by aptameric oligonucleotide in human T lymphoblastic drug-sensitive and multidrug-resistant cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:247-255. [PMID: 12238813 DOI: 10.1089/108729002320351566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aptameric GT oligomers are a new class of potential anticancer molecules that inhibit the growth of human cancer cell lines by binding to specific nuclear proteins. We demonstrated that an aptameric GT oligonucleotide increased the therapeutic index of doxorubicin and vinblastine in T lymphoblastic drug-sensitive and multidrug-resistant (MDR) cells. The doxorubicin ID50 decreased 6.5-fold by coadministration of 1 microM GT to CCRF-CEM cells and by 24-fold by coadministration of 0.75 microM GT to CEM-VLB300 cells. In CEM-VLB300 cells, the vinblastine ID50 decreased 11-fold by coadministration of 0.5 microM GT. Control CT sequence did not potentiate the drugs in either CCRF-CEM or CEM-VLB300 cells. The ability of GT to bind to specific nuclear proteins in cancer cells related to the increase in the therapeutic index of doxorubicin and vinblastine. No cooperation was detected by the administration of GT oligomer together with doxorubicin to rat differentiated thyroid FRTL-5 cells and to normal human lymphocytes. These cells did not show binding of GT to the specific nuclear proteins, and they were not sensitive to the cytotoxic action of the GT sequence. Drug potentiation by GT not involving normal human lymphocytes might be exploited to develop a more selective treatment of drug-sensitive and MDR tumors.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Biomedical Sciences and Technologies, University of Udine, Italy
| | | | | | | | | |
Collapse
|
178
|
McGuffie EM, Catapano CV. Design of a novel triple helix-forming oligodeoxyribonucleotide directed to the major promoter of the c-myc gene. Nucleic Acids Res 2002; 30:2701-9. [PMID: 12060688 PMCID: PMC117288 DOI: 10.1093/nar/gkf376] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Altered expression of c-myc is implicated in pathogenesis and progression of many human cancers. Triple helix-forming oligonucleotides (TFOs) directed to a polypurine/polypyrimidine sequence in a critical regulatory region near the c-myc P2 promoter have been shown to inhibit c-myc transcription in vitro and in cells. However, these guanine-rich TFOs had moderate binding affinity and required high concentrations for activity. The 23 bp myc P2 sequence is split equally into AT- and GC-rich tracts. Gel mobility analysis of a series of short TFOs directed in parallel and anti-parallel orientation to the purine strand of each tract showed that only parallel CT and anti-parallel GT TFOs formed stable triplex on the AT- and GC-rich tracts, respectively. A novel full-length GTC TFO was designed to bind simultaneously in parallel and anti-parallel orientation to the polypurine strand. Gel-shift and footprinting assays showed that the new TFO formed a triple helix in physiological conditions with significantly higher affinity than an anti-parallel TFO. Protein-binding assays showed that 1 microM GTC TFO inhibited binding of nuclear transcription factors to the P2 promoter sequence. The novel TFO can be developed into a potent antigene agent, and its design strategy applied to similar genomic sequences, thus expanding the TFO repertoire.
Collapse
Affiliation(s)
- E M McGuffie
- Department of Medicine, Division of Hematology/Oncology and Laboratory of Cancer Genomics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
179
|
Pasternack LB, Lin SB, Chin TM, Lin WC, Huang DH, Kan LS. Proton NMR studies of 5'-d-(TC)(3) (CT)(3) (AG)(3)-3'--a paperclip triplex: the structural relevance of turns. Biophys J 2002; 82:3170-80. [PMID: 12023241 PMCID: PMC1302106 DOI: 10.1016/s0006-3495(02)75659-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study, we present the results of structural analysis of an 18-mer DNA 5'-T(1)C(2)T(3)C(4)T(5)C(6)C(7)T(8)C(9)T(10)C(11)T(12)A(13)G(14)A(15)G(16)A(17)G(18)-3' by proton nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The NMR data are consistent with characteristics for triple helical structures of DNA: downfield shifting of resonance signals, typical for the H3(+) resonances of Hoogsteen-paired cytosines; pH dependence of these H3(+) resonance; and observed nuclear Overhauser effects consistent with Hoogsteen and Watson-Crick basepairing. A three-dimensional model for the triplex is developed based on data obtained from two-dimensional NMR studies and molecular modeling. We find that this DNA forms an intramolecular "paperclip" pyrimidine-purine-pyrimidine triple helix. The central triads resemble typical Hoogsteen and Watson-Crick basepairing. The triads at each end region can be viewed as hairpin turns stabilized by a third base. One of these turns is comprised of a hairpin turn in the Watson-Crick basepairing portion of the 18-mer with the third base coming from the Hoogsteen pairing strand. The other turn is comprised of two bases from the continuous pyrimidine portion of the 18-mer, stabilized by a hydrogen-bond from a purine. This "triad" has well defined structure as indicated by the number of nuclear Overhauser effects and is shown to play a critical role in stabilizing triplex formation of the internal triads.
Collapse
Affiliation(s)
- Laura B Pasternack
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
180
|
Antony T, Subramaniam V. A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:145-54. [PMID: 12162697 DOI: 10.1089/108729002760220743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.
Collapse
Affiliation(s)
- Thomas Antony
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
181
|
Goobes R, Cohen O, Minsky A. Unique condensation patterns of triplex DNA: physical aspects and physiological implications. Nucleic Acids Res 2002; 30:2154-61. [PMID: 12000835 PMCID: PMC115281 DOI: 10.1093/nar/30.10.2154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Revised: 03/14/2002] [Accepted: 03/14/2002] [Indexed: 11/12/2022] Open
Abstract
Triple-stranded DNA structures can be formed in living cells, either by native DNA sequences or following the application of antigene strategies, in which triplex-forming oligonucleotides are targeted to the nucleus. Recent studies imply that triplex motifs may play a role in DNA transcription, recombination and condensation processes in vivo. Here we show that very short triple-stranded DNA motifs, but not double-stranded segments of a comparable length, self-assemble into highly condensed and ordered structures. The condensation process, studied by circular dichroism and polarized-light microscopy, occurs under conditions that mimic cellular environments in terms of ionic strength, ionic composition and crowding. We argue that the unique tendency of triplex DNA structures to self-assemble, a priori unexpected in light of the very short length and the large charge density of these motifs, reflects the presence of strong attractive interactions that result from enhanced ion correlations. The results provide, as such, a direct experimental link between charge density, attractive interactions between like-charge polymers and DNA packaging. Moreover, the observations strongly support the notion that triple-stranded DNA motifs may be involved in the regulation of chromosome organization in living cells.
Collapse
Affiliation(s)
- Rivka Goobes
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
182
|
Grimm GN, Boutorine AS, Lincoln P, Nordén B, Hélène C. Formation of DNA triple helices by an oligonucleotide conjugated to a fluorescent ruthenium complex. Chembiochem 2002; 3:324-31. [PMID: 11933233 DOI: 10.1002/1439-7633(20020402)3:4<324::aid-cbic324>3.0.co;2-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A conjugate of a triple helix forming oligonucleotide (TFO) and the Lambda and Delta enantiomers of the ruthenium diphenanthroline dipyridophenazine complex [Ru(phen)(2)dppz](2+) was synthesized. The ruthenium complex was attached to the 5'-end of the TFO through the dppz moiety. This conjugate formed a stable triple helix with the polypurine tract (PPT) sequence from HIV proviral DNA. The thermal denaturation temperature of the triplex was increased by 12 degrees C. One remarkable property of the Delta-[Ru(phen)(2)dppz](2+) complex is a strong increase in its fluorescence when it intercalates into DNA. While the fluorescence of the oligonucleotide conjugate was very weak, the formation of a duplex with a complementary sequence or of a triple helix with a target duplex resulted in a large increase in fluorescence of the Delta enantiomer. The increase in fluorescence allowed us to follow the kinetics of duplex and triplex formation by fluorescence spectrometry. In contrast, the Lambda enantiomer gave a much smaller fluorescence change when a triplex was formed, even though the stability of the triplex was comparable to that of the Delta enantiomer. The property was ascribed to intercalation of the dipyridophenazine moiety of the Delta enantiomer into DNA and subsequent threading of the ruthenium complex through the DNA double helix. Salt effects were consistent with the involvement of DNA breathing in the formation of the intercalating complex.
Collapse
Affiliation(s)
- Günther N Grimm
- Laboratoire de Biophysique, INSERM 201-CNRS UMR 8646, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
183
|
Abstract
Mainly driven by the needs of antisense research, a large number of oligonucleotide analogues have been prepared and evaluated over the last 15 years. Besides minor structural modifications of the building blocks of DNA and RNA itself, a considerable effort has been devoted to the de novo design of nucleoside analogues with improved binding properties. A particularly successful concept turned out to be that of conformational restriction. This review focuses on recent advances in this area and tries to summarize scope and limitations of this design principle.
Collapse
Affiliation(s)
- Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|
184
|
Carmona P, Molina M. Binding of oligonucleotides to a viral hairpin forming RNA triplexes with parallel G*G*C triplets. Nucleic Acids Res 2002; 30:1333-7. [PMID: 11884630 PMCID: PMC101366 DOI: 10.1093/nar/30.6.1333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared and UV spectroscopies have been used to study the assembly of a hairpin nucleotide sequence (nucleotides 3-30) of the 5' non-coding region of the hepatitis C virus RNA (5'-GGCGGGGAUUAUCCCCGCUGUGAGGCGG-3') with a RNA 20mer ligand (5'-CCGCCUCACAAAGGUGGGGU-3') in the presence of magnesium ion and spermidine. The resulting complex involves two helical structural domains: the first one is an intermolecular duplex stem at the bottom of the target hairpin and the second one is a parallel triplex generated by the intramolecular hairpin duplex and the ligand. Infrared spectroscopy shows that N-type sugars are exclusively present in the complex. This is the first case of formation of a RNA parallel triplex with purine motif and shows that this type of targeting RNA strands to viral RNA duplexes can be used as an alternative to antisense oligonucleotides or ribozymes.
Collapse
Affiliation(s)
- Pedro Carmona
- Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain.
| | | |
Collapse
|
185
|
Farrar G, Kenna PF, Humphries P. On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 2002; 21:857-64. [PMID: 11867514 PMCID: PMC125887 DOI: 10.1093/emboj/21.5.857] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retinitis pigmentosa (RP), the group of hereditary conditions involving death of retinal photoreceptors, represents the most prevalent cause of visual handicap among working populations in developed countries. Here we provide an overview of the molecular pathologies associated with such disorders, from which it becomes clearly apparent that RP is one of the most genetically heterogeneous of hereditary conditions for which molecular pathologies have so far been elucidated. While heterogeneity of such magnitude would appear to represent a major impediment to the development of therapeutics, mutation-independent approaches to therapy are being developed to effectively by-pass such diversity in genetic aetiology. The implications of such technologies in terms of therapeutic intervention in RP, and indeed other genetically heterogeneous conditions, will be addressed.
Collapse
MESH Headings
- 3' Untranslated Regions
- 5' Untranslated Regions
- Animals
- Apoptosis/drug effects
- Disease Progression
- Eye Proteins/genetics
- Eye Proteins/physiology
- Genes, Dominant
- Genes, Recessive
- Genetic Heterogeneity
- Genetic Linkage
- Genetic Therapy
- Humans
- Mammals/anatomy & histology
- Mice
- Mice, Knockout
- Models, Animal
- Nerve Growth Factors/therapeutic use
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- RNA, Catalytic/therapeutic use
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- Retina/ultrastructure
- Retinal Rod Photoreceptor Cells/physiology
- Retinal Rod Photoreceptor Cells/radiation effects
- Retinitis Pigmentosa/genetics
- Retinitis Pigmentosa/pathology
- Retinitis Pigmentosa/therapy
- Rhodopsin/deficiency
- Rhodopsin/genetics
- Syndrome
- Transcription Factors/deficiency
- Transcription Factors/genetics
- X Chromosome/genetics
Collapse
Affiliation(s)
| | | | - Peter Humphries
- The Ocular Genetics Unit, Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
Corresponding author e-mail:
| |
Collapse
|
186
|
Nagatsugi F, Matsuyama Y, Maeda M, Sasaki S. Selective cross-linking to the adenine of the TA interrupting site within the triple helix. Bioorg Med Chem Lett 2002; 12:487-9. [PMID: 11814825 DOI: 10.1016/s0960-894x(01)00783-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The triplex-forming oligonucleotide incorporating the new nucleoside derivative (2) that connects the 2-amino-6-vinylpurine moiety to the 2-deoxyribose unit with an ethyl spacer has exhibited highly selective cross-linking reaction to the adenine of the TA interrupting site within the triple helix.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
187
|
Prévot I, Leumann C. Evaluation of Novel Third-Strand Bases for the Recognition of a C⋅G Base Pair in the Parallel DNA Triple-Helical Binding Motif. Helv Chim Acta 2002. [DOI: 10.1002/1522-2675(200202)85:2<502::aid-hlca502>3.0.co;2-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
188
|
Vargas-Baca I, Mitra D, Zulyniak HJ, Banerjee J, Sleiman HF. Solid-Phase Synthesis of Transition Metal Linked, Branched Oligonucleotides This work was supported by NSERC (Canada), CFI (Canada) and FCAR (Quebec). The authors gratefully acknowledge Prof. M. J. Damha and his laboratory, McGill University, for helpful discussion. Angew Chem Int Ed Engl 2001; 40:4629-4632. [PMID: 12404368 DOI: 10.1002/1521-3773(20011217)40:24<4629::aid-anie4629>3.0.co;2-s] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ignacio Vargas-Baca
- Department of Chemistry, McGill University 801 Sherbrooke St. W., Montreal, Quebec H3A 2K6 (Canada)
| | | | | | | | | |
Collapse
|
189
|
Vargas-Baca I, Mitra D, Zulyniak HJ, Banerjee J, Sleiman HF. Solid-Phase Synthesis of Transition Metal Linked, Branched Oligonucleotides. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20011217)113:24<4765::aid-ange4765>3.0.co;2-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
190
|
Giancola C, Petraccone L, Pieri M, Barone G. Thermodynamic and computational studies of DNA triple helices containing a nucleotide or a non-nucleotide linker in the third strand. Biophys Chem 2001; 94:23-31. [PMID: 11744187 DOI: 10.1016/s0301-4622(01)00205-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this paper we report a thermodynamic characterisation of stability and melting behaviour of four different triple helices at pH 6.0. The target duplex consists of 16 base pairs in alternate sequence of the type 5'-(purine)(m)(pyrimidine)(m)-3'. The four triplexes are formed by targeting the 16-mer duplex with an all pyrimidine 16-mer or 15-mer or 14-mer third strand. The 16-mer oligonucleotide contains a 3'-3' phosphodiester junction and corresponding triplex was named 16-mer P. The 14-mer oligonucleotide contains a non-nucleotide linker, the 1,2,3 propanetriol residue and the corresponding triplex was named 14-mer PT. For the 15-mer oligonucleotide both junctions were alternatively used and the relative triplexes were named 15-mer P and 15-mer PT, respectively. These linkers introduce the appropriate polarity inversion and let the third strand switch from one oligopurine strand of the duplex to the other. Thermal denaturation profiles indicate the initial loss of the third strand followed by the dissociation of the target duplex. Transition enthalpies, entropies and free energies were derived from differential scanning calorimetric measurements. The comparison of Gibbs energies reveals that a more stable triplex is obtained when in the third strand there is the lack of one nucleotide in the junction region and a propanetriol residue as linker was used. The thermodynamic data were discussed in light of molecular mechanics and dynamics calculations.
Collapse
Affiliation(s)
- C Giancola
- Department of Chemistry, University Federico II of Naples, Via Cintia, Monte Sant' Angelo, 80126 Naples, Italy.
| | | | | | | |
Collapse
|
191
|
Diviacco S, Rapozzi V, Xodo L, Helene C, Quadrifoglio F, Giovannangeli C. Site-directed inhibition of DNA replication by triple helix formation. FASEB J 2001; 15:2660-8. [PMID: 11726542 DOI: 10.1096/fj.01-0440com] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sequence-specific DNA recognition can be achieved by the use of triplex-forming molecules, namely, oligonucleotides (TFO) and peptide nucleic acids (PNAs). They have been used to regulate transcription or induce genomic DNA modifications at a selected site in cells and, recently, in vivo. We have determined the conditions under which a triplex structure can inhibit DNA replication in cells. An oligopyrimidine.oligopurine sequence suitable for triplex formation was inserted in a plasmid on both sides of the SV40 origin of replication. This insert-containing plasmid was replicated in COS-1 cells together with the parent plasmid, and the ratio between the corresponding replicated DNAs was quantitated. Selective inhibition of replication of the insert-containing plasmid can be ascribed to ligand binding to the oligopyrimidine.oligopurine sequence. Inhibition of DNA replication was observed using triplex-forming molecules that induce either covalent binding at the double-stranded target sequence (with TFO-psoralen conjugate and irradiation) or noncovalent triplex formation after strand displacement (with bis-PNA). In contrast, in the absence of covalent cross-linking, TFOs (which have been shown to arrest transcription elongation) did not act on replication. These results open new perspectives for future design and use of specific inhibitors of intracellular DNA information processing.
Collapse
Affiliation(s)
- S Diviacco
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, 33100 Udine. Italy
| | | | | | | | | | | |
Collapse
|
192
|
Xu X, Hamhouyia F, Thomas SD, Burke TJ, Girvan AC, McGregor WG, Trent JO, Miller DM, Bates PJ. Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 2001; 276:43221-30. [PMID: 11555643 DOI: 10.1074/jbc.m104446200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of G-rich oligonucleotides (GROs) that have non-antisense antiproliferative activity against a number of cancer cell lines has been recently described. This biological activity of GROs was found to be associated with their ability to form stable G-quartet-containing structures and their binding to a specific cellular protein, most likely nucleolin (Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377). In this report, we further investigate the novel mechanism of GRO activity by examining their effects on cell cycle progression and on nucleic acid and protein biosynthesis. Cell cycle analysis of several tumor cell lines showed that cells accumulate in S phase in response to treatment with an active GRO. Analysis of 5-bromodeoxyuridine incorporation by these cells indicated the absence of de novo DNA synthesis, suggesting an arrest of the cell cycle predominantly in S phase. At the same time point, RNA and protein synthesis were found to be ongoing, indicating that arrest of DNA replication is a primary event in GRO-mediated inhibition of proliferation. This specific blockade of DNA replication eventually resulted in altered cell morphology and induction of apoptosis. To characterize further GRO-mediated inhibition of DNA replication, we used an in vitro assay based on replication of SV40 DNA. GROs were found to be capable of inhibiting DNA replication in the in vitro assay, and this activity was correlated to their antiproliferative effects. Furthermore, the effect of GROs on DNA replication in this assay was related to their inhibition of SV40 large T antigen helicase activity. The data presented suggest that the antiproliferative activity of GROs is a direct result of their inhibition of DNA replication, which may result from modulation of a replicative helicase activity.
Collapse
Affiliation(s)
- X Xu
- Human Molecular Biology Group, James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Ziemba A, Derosier LC, Methvin R, Song CY, Clary E, Kahn W, Milesi D, Gorn V, Reed M, Ebbinghaus S. Repair of triplex-directed DNA alkylation by nucleotide excision repair. Nucleic Acids Res 2001; 29:4257-63. [PMID: 11691913 PMCID: PMC60196 DOI: 10.1093/nar/29.21.4257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are being investigated as highly specific DNA binding agents to inhibit the expression of clinically relevant genes. So far, they have been shown to inhibit transcription from the HER-2/neu gene in vitro, whereas their use in vivo has been studied to a limited extent. This study uses a TFO-chlorambucil (chl) conjugate capable of forming site-specific covalent guanine adducts within the HER-2/neu promoter. We demonstrate that nucleotide excision repair (NER) represents a mechanism of cellular resistance to TFO-directed DNA alkylation. In vitro repair assays demonstrate that triplex-directed chl-guanine adducts are substrates for repair by NER competent cell extracts but not XP12BE cell extracts deficient in NER. The degree of repair is estimated by a ligation-mediated polymerase chain reaction with a pre-formed triplex in a plasmid transfected into repair competent cells, indicating that approximately 25% of the guanine adducts are removed after 24 h. These data indicate that guanine adducts from TFO-directed alkylation are a substrate for NER and that DNA repair is a significant barrier to the intracellular persistence of target gene binding by TFOs.
Collapse
Affiliation(s)
- A Ziemba
- Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Haq I, Chowdhry BZ, Jenkins TC. Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol 2001; 340:109-49. [PMID: 11494846 DOI: 10.1016/s0076-6879(01)40420-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- I Haq
- Krebs Institute for Biomolecular Science, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | |
Collapse
|
195
|
Cripe TP, Mackall CL. Exploiting genetic alterations to design novel therapies for cancer. Hematol Oncol Clin North Am 2001; 15:657-75, viii. [PMID: 11676278 DOI: 10.1016/s0889-8588(05)70241-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the 3 decades since the signing of the National Cancer Act, there has been tremendous progress in the elucidation of the molecular underpinnings of cancer. Molecular genetic studies have been particularly insightful, revealing genetic rearrangements, such as chromosomal translocations, which may be the seminal event leading to deregulated cell growth for many childhood and adult cancers. These findings have led to new diagnostic and prognostic tools but have been slow to be translated into new therapeutic modalities. This article reviews a variety of methods now under development to exploit genetic changes in cancer to develop specific anticancer agents using gene therapy, viral therapy, and immunotherapy approaches. As many of these strategies inevitably enter the clinic, it will be imperative for health care professionals to be familiar with these novel approaches as they help patients navigate the likely broad array of treatment options.
Collapse
Affiliation(s)
- T P Cripe
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
| | | |
Collapse
|
196
|
Hai M, Bidichandani SI, Hogan ME, Patel PI. Competitive binding of triplex-forming oligonucleotides in the two alternate promoters of the PMP22 gene. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:233-46. [PMID: 11572600 DOI: 10.1089/108729001317022232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Overexpression of the 22-kDa peripheral myelin protein (PMP22) causes the inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1A (CMT1A). In an attempt to alter PMP22 gene expression as a possible therapeutic strategy for CMT1A, antiparallel triplex-forming oligonucleotides (TFO) were designed to bind to purine-rich target sequences in the two PMP22 gene promoters, P1 and P2. Target region I in P1 and region V in P2 were also shown to specifically bind proteins in mammalian nuclear extracts. Competition for binding of these targets by TFO vs. protein(s) was compared by exposing proteins to their target sequences after triplex formation (passive competition) or by allowing TFO and proteins to simultaneously compete for the same targets (active competition). In both formats, TFO were shown to competitively interfere with the binding of protein to region I. Oligonucleotides directed to region V competed for protein binding by a nontriplex-mediated mechanism, most likely via the formation of higher-order, manganese-destabilizable structures. Given that the activity of the P1 promoter is closely linked to peripheral nerve myelination, TFO identified here could serve as useful reagents in the investigation of promoter function, the role of PMP22 in myelination, and possibly as rationally designed drugs for the therapy of CMT1A. The nontriplex-mediated action of TFO directed at the P2 promoter may have wider implications for the use of such oligonucleotides in vivo.
Collapse
Affiliation(s)
- M Hai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
197
|
Völker J, Klump HH, Manning GS, Breslauer KJ. Counterion association with native and denatured nucleic acids: an experimental approach. J Mol Biol 2001; 310:1011-25. [PMID: 11501992 DOI: 10.1006/jmbi.2001.4841] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melting temperature of the poly(dA) . poly(dT) double helix is exquisitely sensitive to salt concentration, and the helix-to-coil transition is sharp. Modern calorimetric instrumentation allows this transition to be detected and characterized with high precision at extremely low duplex concentrations. We have taken advantage of these properties to show that this duplex can be used as a sensitive probe to detect and to characterize the influence of other solutes on solution properties. We demonstrate how the temperature associated with poly(dA) . poly(dT) melting can be used to define the change in bulk solution cation concentration imparted by the presence of other duplex and triplex solutes, in both their native and denatured states. We use this information to critically evaluate features of counterion condensation theory, as well as to illustrate "crosstalk" between different, non-contacting solute molecules. Specifically, we probe the melting of a synthetic homopolymer, poly(dA) . poly(dT), in the presence of excess genomic salmon sperm DNA, or in the presence of one of two synthetic RNA polymers (the poly(rA) . poly(rU) duplex or the poly(rU) . poly(rA) . poly(rU) triplex). We find that these additions cause a shift in the melting temperature of poly(dA) . poly(dT), which is proportional to the concentration of the added polymer and dependent on its conformational state (B versus A, native versus denatured, and triplex versus duplex). To a first approximation, the magnitude of the observed tm shift does not depend significantly on whether the added polymer is RNA or DNA, but it does depend on the number of strands making up the helix of the added polymer. We ascribe the observed changes in melting temperature of poly(dA) . poly(dT) to the increase in ionic strength of the bulk solution brought about by the presence of the added nucleic acid and its associated counterions. We refer to this communication between non-contacting biopolymers in solution as solvent-mediated crosstalk. By comparison with a known standard curve of tm versus log[Na+] for poly(dA) . poly(dT), we estimate the magnitude of the apparent change in ionic strength resulting from the presence of the bulk nucleic acid, and we compare these results with predictions from theory. We find that current theoretical considerations correctly predict the direction of the t(m) shift (the melting temperature increases), while overestimating its magnitude. Specifically, we observe an apparent increase in ionic strength equal to 5% of the concentration of the added duplex DNA or RNA (in mol phosphate), and an additional apparent increase of about 9.5 % of the nucleic acid concentration (mol phosphate) upon denaturation of the added DNA or RNA, yielding a total apparent increase of 14.5 %. For the poly(rU) . poly(rA) . poly(rU) triplex, the total apparent increase in ionic strength corresponds to about 13.6% of the amount of added triplex (moles phosphate). The effect we observe is due to coupled equilibria between the solute molecules mediated by modulations in cation concentration induced by the presence and/or the transition of one of the solute molecules. We note that our results are general, so one can use a different solute probe sensitive to proton binding to characterize subtle changes in solution pH induced by the presence of another solute in solution. We discuss some of the broader implications of these measurements/results in terms of nucleic acid melting in multicomponent systems, in terms of probing counterion environments, and in terms of potential regulatory mechanisms.
Collapse
Affiliation(s)
- J Völker
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway 08854, USA
| | | | | | | |
Collapse
|
198
|
Zan H, Komori A, Li Z, Cerutti A, Schaffer A, Flajnik MF, Diaz M, Casali P. The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. Immunity 2001; 14:643-53. [PMID: 11371365 PMCID: PMC4632985 DOI: 10.1016/s1074-7613(01)00142-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ig somatic mutations would be introduced by a polymerase (pol) while repairing DNA outside main DNA replication. We show that human B cells constitutively express the translesion pol zeta, which effectively extends DNA past mismatched bases (mispair extender), and pol eta, which bypasses DNA lesions in an error-free fashion. Upon B cell receptor (BCR) engagement and coculture with activated CD4+ T cells, these lymphocytes upregulated pol zeta, downregulated pol eta, and mutated the Ig and bcl-6 genes. Inhibition of the pol zeta REV3 catalytic subunit by specific phosphorothioate-modified oligonucleotides impaired Ig and bcl-6 hypermutation and UV damage-induced DNA mutagenesis, without affecting cell cycle or viability. Thus, pol zeta plays a critical role in Ig and bcl-6 hypermutation, perhaps facilitated by the downregulation of pol eta.
Collapse
Affiliation(s)
- Hong Zan
- Division of Molecular Immunology, Department of Pathology, New York, New York 10021
| | - Atsumasa Komori
- Division of Molecular Immunology, Department of Pathology, New York, New York 10021
| | - Zongdong Li
- Division of Molecular Immunology, Department of Pathology, New York, New York 10021
| | - Andrea Cerutti
- Division of Molecular Immunology, Department of Pathology, New York, New York 10021
| | - András Schaffer
- Division of Molecular Immunology, Department of Pathology, New York, New York 10021
- Immunology Program, Cornell University Weill Graduate School of Medical Sciences, New York, New York 10021
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland 21201
| | - Marilyn Diaz
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Paolo Casali
- Division of Molecular Immunology, Department of Pathology, New York, New York 10021
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, New York 10021
- Immunology Program, Cornell University Weill Graduate School of Medical Sciences, New York, New York 10021
- Correspondence:
| |
Collapse
|
199
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
200
|
Gongora R, Stephan RP, Zhang Z, Cooper MD. An essential role for Daxx in the inhibition of B lymphopoiesis by type I interferons. Immunity 2001; 14:727-37. [PMID: 11420043 DOI: 10.1016/s1074-7613(01)00152-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interferon-alpha and -beta inhibit the interleukin-7-mediated growth and survival of T and B lymphoid progenitors via an unknown, STAT1-independent pathway. Gene expression profile analysis of interferon-beta-treated progenitor B cells revealed enhanced Daxx expression, with concomitant Daxx protein increase and nuclear body translocation. The interferon effects included downregulation of cell cycle regulating genes and cell cycle arrest, followed by Bcl-2 downregulation and apoptosis. Daxx antisense oligonucleotides rescued the interferon-treated pro-B cells from growth arrest and apoptosis in parallel with the reduction of nuclear Daxx. These findings implicate the gene repressor function of Daxx in interferon-induced apoptosis of lymphoid progenitors.
Collapse
Affiliation(s)
- R Gongora
- Division of Developmental and Clinical Immunology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|