151
|
Speroni F, Puppo MC, Chapleau N, de Lamballerie M, Castellani O, Añón MC, Anton M. High-pressure induced physicochemical and functional modifications of low-density lipoproteins from hen egg yolk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5719-25. [PMID: 15998139 DOI: 10.1021/jf0502808] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-pressure treatment represents a potential method to stabilize microbiologically agricultural raw materials that are sensitive to heat treatments. Low-density lipoproteins (LDL), the main contributors to the exceptional emulsifying properties of yolk, are particularly sensitive to heat treatment. In this study, high-pressure treatments have been performed on LDL, and their impact on LDL physicochemical and emulsifying properties has been assessed. LDL dispersions at two pH levels (pH 3 and 8) were treated at different pressure levels: 200, 400, and 600 MPa at 20 degrees C. LDL dispersion characteristics (solubility, aggregation, and protein denaturation) and LDL emulsifying properties (o/w 30:70 emulsions: droplet size, flocculation, and protein adsorption) of nontreated and high-pressure treated dispersions were compared. Solubility is not altered by high-pressure treatment whatever the pH, whereas aggregation and protein denaturation are drastically enhanced, in particular at pH 8. The effects of these modifications on LDL emulsifying properties are mainly a diminution of the flocculation (depletion and bridging) at this same pH. Finally, it seems that high-pressure treatment combined with an alkaline pH decreases droplet flocculation of LDL dispersions.
Collapse
Affiliation(s)
- F Speroni
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos-CIDCA (UNLP-CONICET) 47 y 116, 1900 La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
152
|
Vanderkooi JM, Dashnau JL, Zelent B. Temperature excursion infrared (TEIR) spectroscopy used to study hydrogen bonding between water and biomolecules. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:214-33. [PMID: 15927875 DOI: 10.1016/j.bbapap.2005.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 02/15/2005] [Accepted: 03/09/2005] [Indexed: 11/22/2022]
Abstract
Water is a highly polar molecule that is capable of making four H-bonding linkages. Stability and specificity of folding of water-soluble protein macromolecules are determined by the interplay between water and functional groups of the protein. Yet, under some conditions, water can be replaced with sugar or other polar protic molecules with retention of protein structure. Infrared (IR) spectroscopy allows one to probe groups on the protein that interact with solvent, whether the solvent is water, sugar or glycerol. The basis of the measurement is that IR spectral lines of functional groups involved in H-bonding show characteristic spectral shifts with temperature excursion, reflecting the dipolar nature of the group and its ability to H-bond. For groups involved in H-bonding to water, the stretching mode absorption bands shift to lower frequency, whereas bending mode absorption bands shift to higher frequency as temperature decreases. The results indicate increasing H-bonding and decreasing entropy occurring as a function of temperature, even at cryogenic temperatures. The frequencies of the amide group modes are temperature dependent, showing that as temperature decreases, the amide group H-bonds to water strengthen. These results are relevant to protein stability as a function of temperature. The influence of solvent relaxation is demonstrated for tryptophan fluorescence over the same temperature range where the solvent was examined by infrared spectroscopy.
Collapse
Affiliation(s)
- Jane M Vanderkooi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, 19104-6059, USA.
| | | | | |
Collapse
|
153
|
Tobé S, Heams T, Vergne J, Hervé G, Maurel MC. The catalytic mechanism of hairpin ribozyme studied by hydrostatic pressure. Nucleic Acids Res 2005; 33:2557-64. [PMID: 15870387 PMCID: PMC1088306 DOI: 10.1093/nar/gki552] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/16/2005] [Accepted: 04/16/2005] [Indexed: 01/07/2023] Open
Abstract
The discovery of ribozymes strengthened the RNA world hypothesis, which assumes that these precursors of modern life both stored information and acted as catalysts. For the first time among extensive studies on ribozymes, we have investigated the influence of hydrostatic pressure on the hairpin ribozyme catalytic activity. High pressures are of interest when studying life under extreme conditions and may help to understand the behavior of macromolecules at the origins of life. Kinetic studies of the hairpin ribozyme self-cleavage were performed under high hydrostatic pressure. The activation volume of the reaction (34 +/- 5 ml/mol) calculated from these experiments is of the same order of magnitude as those of common protein enzymes, and reflects an important compaction of the RNA molecule during catalysis, associated to a water release. Kinetic studies were also carried out under osmotic pressure and confirmed this interpretation and the involvement of water movements (78 +/- 4 water molecules per RNA molecule). Taken together, these results are consistent with structural studies indicating that loops A and B of the ribozyme come into close contact during the formation of the transition state. While validating baro-biochemistry as an efficient tool for investigating dynamics at work during RNA catalysis, these results provide a complementary view of ribozyme catalytic mechanisms.
Collapse
Affiliation(s)
- Sylvia Tobé
- Institut Jacques-Monod, Laboratoire de Biochimie de l'Evolution et Adaptabilité MoléculaireUniversité Paris VI, Tour 43, 2 place Jussieu, 75251 Paris Cedex 05, France
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, FRE 2621 CNRS and Université Pierre et Marie Curie96 Boulevard Raspail 75006 Paris, France
| | - Thomas Heams
- Institut Jacques-Monod, Laboratoire de Biochimie de l'Evolution et Adaptabilité MoléculaireUniversité Paris VI, Tour 43, 2 place Jussieu, 75251 Paris Cedex 05, France
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, FRE 2621 CNRS and Université Pierre et Marie Curie96 Boulevard Raspail 75006 Paris, France
| | - Jacques Vergne
- Institut Jacques-Monod, Laboratoire de Biochimie de l'Evolution et Adaptabilité MoléculaireUniversité Paris VI, Tour 43, 2 place Jussieu, 75251 Paris Cedex 05, France
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, FRE 2621 CNRS and Université Pierre et Marie Curie96 Boulevard Raspail 75006 Paris, France
| | - Guy Hervé
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, FRE 2621 CNRS and Université Pierre et Marie Curie96 Boulevard Raspail 75006 Paris, France
| | - Marie-Christine Maurel
- To whom correspondence should be addressed. Tel: +33 1 44 27 40 21; Fax: +33 1 44 27 99 16;
| |
Collapse
|
154
|
Dirix C, Meersman F, MacPhee CE, Dobson CM, Heremans K. High hydrostatic pressure dissociates early aggregates of TTR105-115, but not the mature amyloid fibrils. J Mol Biol 2005; 347:903-9. [PMID: 15784251 DOI: 10.1016/j.jmb.2005.01.073] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/13/2005] [Accepted: 01/31/2005] [Indexed: 11/25/2022]
Abstract
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.
Collapse
Affiliation(s)
- Carolien Dirix
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
155
|
Meersman F, Dirix C, Shipovskov S, Klyachko NL, Heremans K. Pressure-induced protein unfolding in the ternary system AOT-octane-water is different from that in bulk water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:3599-3604. [PMID: 15807607 DOI: 10.1021/la0470481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In a cellular environment, the presence of macromolecular cosolutes and membrane interfaces can influence the folding-unfolding behavior of proteins. Here we report on the pressure stability of alpha-chymotrypsin in the ternary system bis(2-ethylhexyl)sodium sulfosuccinate-octane-water using FTIR spectroscopy. The ternary system forms anionic reverse micelles which mimic cellular conditions. We find that inclusion of a single protein molecule in a reverse micelle does not alter its conformation. When pressurized in bulk water, alpha-chymotrypsin unfolds at 750 MPa into a partially unfolded structure. In contrast, in the ternary system, the same pressure increase induces a random coil-like unfolded state, which collapses into an amorphous aggregate during the decompression phase. It is suggested that the unfolding pathway is different in a cell-mimicking environment due to the combined effect of multiple factors, including confinement. A phase transition of the reverse micellar to the lamellar phase is thought to be essential to provide the conditions required for unfolding and aggregation, though the unfolding is not a direct result of the phase transition. Our observations therefore suggest that membranes may cause the formation of alternative conformations that are more susceptible to aggregation.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | | | | | | | | |
Collapse
|
156
|
Aertsen A, Michiels CW. SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Res Microbiol 2005; 156:233-7. [PMID: 15748989 DOI: 10.1016/j.resmic.2004.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/01/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
High-pressure treatment (>100 MPa) is known to induce several heat shock proteins as well as an SOS response in Escherichia coli. In the current work, we have investigated properties with respect to high-pressure treatment of mutants-deficient in Lon, a pressure-induced ATP-dependent protease that belongs to the heat shock regulon but that also has a link to the SOS regulon. We report that lon mutants show increased pressure sensitivity and exhibit hyperfilamentation during growth after high-pressure treatment. Both phenotypes could be entirely attributed to the action of the SOS protein SulA, a potent inhibitor of the cell division ring protein FtsZ and a specific target of the Lon protease, since they were suppressed by knock-out of SulA. Introduction of the lexA1 allele, which effectively blocks the entire SOS response, also suppressed the high pressure hypersensitivity of lon mutants, but not their UV hypersensitivity. These results indicate the existence of a SulA-dependent pathway of high-pressure-induced cell filamentation, and suggest involvement of the SOS response, and particularly of SulA, in high-pressure-mediated cell death in E. coli strains which are compromised in Lon function.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium.
| | | |
Collapse
|
157
|
Girard E, Kahn R, Mezouar M, Dhaussy AC, Lin T, Johnson JE, Fourme R. The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa. Biophys J 2005; 88:3562-71. [PMID: 15731378 PMCID: PMC1305503 DOI: 10.1529/biophysj.104.058636] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of cubic Cowpea mosaic virus crystals, compressed at 330 MPa in a diamond anvil cell, was refined at 2.8 A from data collected using ultrashort-wavelength (0.331 A) synchrotron radiation. With respect to the structure at atmospheric pressure, order is increased with lower Debye Waller factors and a larger number of ordered water molecules. Hydrogen-bond lengths are on average shorter and the cavity volume is strongly reduced. A tentative mechanistic explanation is given for the coexistence of disordered and ordered cubic crystals in crystallization drops and for the disorder-order transition observed in disordered crystals submitted to high pressure. Based on such explanation, it can be concluded that pressure would in general improve, albeit to a variable extent, the order in macromolecular crystals.
Collapse
|
158
|
Panda M, Horowitz PM. Activation parameters for the spontaneous and pressure-induced phases of the dissociation of single-ring GroEL (SR1) chaperonin. Protein J 2004; 23:85-94. [PMID: 15115186 DOI: 10.1023/b:jopc.0000016262.27420.3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the dissociation of single-ring heptameric GroEL (SR1) by high hydrostatic pressure in the range 0.5-3.0 kbar. The kinetics were studied as a function of temperature in the range 15-35 degrees C. The dissociation processes at each pressure and temperature showed biphasic behavior. The slower rate (k1,obs) was confirmed to be the self-dissociation of SR1 at any specific temperature at atmospheric pressure. This dissociation was pressure independent and followed concentration-dependent first-order kinetics. The self-dissociation rates followed normal Eyring plots (In k1,obs/T vs. 1/T) from which the free energy of activation (deltaG++ = 22 +/- 0.3 kcal mol(-1)), enthalpy of activation (deltaH++ = 18 +/- 0.5 kcal mol(-1)), and entropy of activation (deltaS++ = -15 +/- 1 kcal mol(-1)) were evaluated. The effect of pressure on the dissociation rates resulted in nonlinear behavior (ln k2,obs vs. pressure) at all the temperatures studied indicating that the activation volumes were pressure dependent. Activation volumes at zero pressure (V++o) and compressibility factors (beta++) for the dissociation rates at the specific temperatures were calculated. This is the first systematic study where the self-dissociation of an oligomeric chaperonin as well as its activation parameters are reported.
Collapse
Affiliation(s)
- Markandeswar Panda
- Department of Biochemistry, Mail Code 7760, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
159
|
|
160
|
Nicolini C, Ravindra R, Ludolph B, Winter R. Characterization of the temperature- and pressure-induced inverse and reentrant transition of the minimum elastin-like polypeptide GVG(VPGVG) by DSC, PPC, CD, and FT-IR spectroscopy. Biophys J 2004; 86:1385-92. [PMID: 14990468 PMCID: PMC1303976 DOI: 10.1016/s0006-3495(04)74209-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the temperature- and pressure-dependent structure and phase behavior of a solvated oligopeptide, GVG(VPGVG), which serves as a minimalistic elastin-like model system, over a large region of the thermodynamic phase field, ranging from 2 to 120 degrees C and from ambient pressure up to approximately 10 kbar, applying various spectroscopic (CD, FT-IR) and thermodynamic (DSC, PPC) measurements. We find that this octapeptide behaves as a two-state system which undergoes the well-known inverse-temperature folding transition occurring at T approximately 36 degrees C, and, in addition, a slow trend reversal at higher temperatures, finally leading to a reentrant unfolding close to the boiling point of water. Furthermore, the pressure-dependence of the folding/unfolding transition was studied to yield a more complete picture of the p, T-stability diagram of the system. A molecular-level picture of these processes, in particular on the role of water for the folding and unfolding events of the peptide, presented with the help of molecular-dynamics simulations, is presented in a companion article in this issue.
Collapse
Affiliation(s)
- C Nicolini
- Department of Chemistry, University of Dortmund, Dortmund, Germany
| | | | | | | |
Collapse
|
161
|
Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW. An SOS response induced by high pressure in Escherichia coli. J Bacteriol 2004; 186:6133-41. [PMID: 15342583 PMCID: PMC515162 DOI: 10.1128/jb.186.18.6133-6141.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although pressure is an important environmental parameter in microbial niches such as the deep sea and is furthermore used in food preservation to inactivate microorganisms, the fundamental understanding of its effects on bacteria remains fragmentary. Our group recently initiated differential fluorescence induction screening to search for pressure-induced Escherichia coli promoters and has already reported induction of the heat shock regulon. Here the screening was continued, and we report for the first time that pressure induces a bona fide SOS response in E. coli, characterized by the RecA and LexA-dependent expression of uvrA, recA, and sulA. Moreover, it was shown that pressure is capable of triggering lambda prophage induction in E. coli lysogens. The remnant lambdoid e14 element, however, could not be induced by pressure, as opposed to UV irradiation, indicating subtle differences between the pressure-induced and the classical SOS response. Furthermore, the pressure-induced SOS response seems not to be initiated by DNA damage, since DeltarecA and lexA1 (Ind-) mutants, which are intrinsically hypersensitive to DNA damage, were not sensitized or were only very slightly sensitized for pressure-mediated killing and since pressure treatment was not found to be mutagenic. In light of these findings, the current knowledge of pressure-mediated effects on bacteria is discussed.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, K.U.Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
162
|
Torrent J, Alvarez-Martinez MT, Harricane MC, Heitz F, Liautard JP, Balny C, Lange R. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. Biochemistry 2004; 43:7162-70. [PMID: 15170353 DOI: 10.1021/bi049939d] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our understanding of conformational conversion of proteins in diseases is essential for any diagnostic and therapeutic approach. Although not fully understood, misfolding of the prion protein (PrP) is implicated in the pathogenesis of prion diseases. Despite several efforts to produce the pathologically misfolded conformation in vitro from a recombinant PrP, no positive result has yet been obtained. Within the "protein-only hypothesis", the reason for this hindrance may be that the experimental conditions used did not allow selection of the pathway adopted in vivo resulting in conversion into the infectious form. Here, using a pressure perturbation approach, we show that recombinant PrP is converted to a novel misfolded conformer, which is prone to aggregate and ultimately form amyloid fibrils. A short incubation at high pressure (600 MPa) of the truncated form of hamster prion protein (SHaPrP(90-231)) resulted in the formation of pre-amyloid structures. The mostly globular aggregates were characterized by ThT and ANS binding, and by a beta-sheet-rich secondary structure. After overnight incubation at 600 MPa, amyloid fibrils were formed. In contrast to pre-amyloid structures, they showed birefringency of polarized light after Congo red staining and a strongly decreased ANS binding capacity, but enhanced ThT binding. Both aggregate types were resistant to digestion by PK, and can be considered as potential scrapie-like forms or precursors. These results may be useful for the search for compounds preventing pathogenic PrP misfolding and aggregation.
Collapse
Affiliation(s)
- Joan Torrent
- Université de Montpellier 2, EA3763, Place Eugène Bataillon, F-34095 Montpellier cédex 5, France
| | | | | | | | | | | | | |
Collapse
|
163
|
Aertsen A, Vanoirbeek K, De Spiegeleer P, Sermon J, Hauben K, Farewell A, Nyström T, Michiels CW. Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 2004; 70:2660-6. [PMID: 15128516 PMCID: PMC404417 DOI: 10.1128/aem.70.5.2660-2666.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Liu X, Zhou D, Szabelski P, Guiochon G. Influence of pressure on the retention and separation of insulin variants under linear conditions. Anal Chem 2004; 75:3999-4009. [PMID: 14632111 DOI: 10.1021/ac0205964] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of pressure on the retention behavior of insulin variants in RPLC on a YMC-ODS C18 column was investigated under linear conditions. The retention factors of these variants increase nearly 2-fold when the average column pressure is increased from 55 to 250 bar while their separation factors remain nearly unchanged. This effect is explained by a change of the partial molar volume of the insulin variants associated with their adsorption that decreases from -99 to -80 mL/mol for mobile-phase concentrations of acetonitrile increasing from 29 to 33% (v/v). This volume change is much larger than the one observed with low molecular weight compounds. For the same pressure variation, the average number Z of acetonitrile molecules displaced from the protein and the stationary phase upon adsorption increases from 22 to 23.3. The pressure-induced relative increase of the term b[S]/[D0]z (which corresponds to the initial slope of the adsorption isotherm) is approximately twice as large for Lispro than for porcine insulin. Because the binding constant of insulin decreases with increasing pressure, this suggests that the number of binding sites on the stationary phase increases even faster. Finally, it was observed that the column efficiency at flow rates higher than 0.6 mL/min increases slightly with increasing pressure. It is suggested that these observations are also valid for other proteins analyzed in RPLC.
Collapse
Affiliation(s)
- Xiaoda Liu
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | | | |
Collapse
|
165
|
Rigaldie Y, Largeteau A, Lemagnen G, Ibalot F, Pardon P, Demazeau G, Grislain L. Effects of high hydrostatic pressure on several sensitive therapeutic molecules and a soft nanodispersed drug delivery system. Pharm Res 2004; 20:2036-40. [PMID: 14725371 DOI: 10.1023/b:pham.0000008054.80136.5a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE According to the development in the last decade of industrial processes using high hydrostatic pressure (HHP) for preservation of several commercial food products, novel sterilization or decontamination processes for pharmaceutical products could be conceivable. The aim of this work is to evaluate the effects of HHP on the integrity of insulin and heparin solutions, suspension of monoclonal antibodies and Spherulites. METHODS High performance liquid chromatography, thin layer chromatography, capillary electrophoresis assays, ELISA tests, laser granulometry and spectrophotometry analyses have been performed to compare HHP treated drugs (in a domain of pressure and temperature ranging respectively from 20 up to 500 MPa and from 20 degrees C up to 37 degrees C) vs. untreated ones. RESULTS No difference has been detected except for monoclonal antibodies that are altered above 500 MPa. CONCLUSIONS The structure integrity of sensitive molecule due to the small energy involved by HHP and the development of industrial plants (intended for the decontamination of food products) confer to this technology the potential of a new method for sterilization of fragile drugs and an original alternative to aseptic processes and sterilizing filtration.
Collapse
Affiliation(s)
- Yohan Rigaldie
- LPCHP Laboratoire de Physico-Chimie des Hautes Pressions (Interface Hautes Pressions ENSCPB-ICMCB), Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB), 16 Avenue Pey Berland, 33608 Pessac, France
| | | | | | | | | | | | | |
Collapse
|
166
|
Herberhold H, Royer CA, Winter R. Effects of Chaotropic and Kosmotropic Cosolvents on the Pressure-Induced Unfolding and Denaturation of Proteins: An FT-IR Study on Staphylococcal Nuclease†. Biochemistry 2004; 43:3336-45. [PMID: 15035605 DOI: 10.1021/bi036106z] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FT-IR spectroscopy was used to study the effects of various chaotropic and kosmotropic cosolvents (glycerol, sucrose, sorbitol, K(2)SO(4), CaCl(2), and urea) on the secondary structure and thermodynamic properties upon unfolding and denaturation of staphylococcal nuclease (Snase). The data show that the different cosolvents have a profound effect on the denaturation pressure and the Gibbs free energy (DeltaG(o)) and volume (DeltaV(o) change of unfolding. Moreover, by analysis of the amide I' infrared bands, conformational changes of the protein upon unfolding in the different cosolvents have been determined. An increase, a reduction, or an independence of the volume change of unfolding is observed, depending on the type of cosolvent, which can at least in part be attributed to the formation of a different unfolded state structure of the protein. The data are compared with the corresponding thermodynamic values of DeltaV(o) for the temperature-induced unfolding process of Snase as obtained by pressure perturbation calorimetry, and significant differences are observed and discussed.
Collapse
Affiliation(s)
- Heinz Herberhold
- Physical Chemistry I, Department of Chemistry, University of Dortmund, Otto-Hahn Strasse 6, D-44227 Dortmund, Germany
| | | | | |
Collapse
|
167
|
Rigaldie Y, Demazeau G. Apports des hautes pressions aux sciences pharmaceutiques et médicales. ANNALES PHARMACEUTIQUES FRANÇAISES 2004; 62:116-27. [PMID: 15107729 DOI: 10.1016/s0003-4509(04)94290-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the beginning of the 20th century, effects of high pressure on biological systems have been studied, but the first applications in this domain have been developed in the 90's and concerned the preservation of food-stuff. Hence, much research work has been undertaken in order to develop high pressure effects in Biosciences. In the last decade, new methods or processes using high pressure (obtaining therapeutic molecules; decontamination or sterilization of biological stuff, sensitive drugs and drug carriers; development of vaccines; using high pressure as a tool in order to simulate and explore the mechanisms of proteins aggregation) underlining the potentialities of this technology in Medical and Pharmaceutical Sciences.
Collapse
Affiliation(s)
- Y Rigaldie
- LPCHP, Laboratoire de physico-chimie des hautes pressions (Interface hautes pressions ENSCPB-ICMCB), Ecole nationale supérieure de chimie et de physique de Bordeaux (ENSCPB), 16, avenue Pey Berland, F33608 Pessac Cedex
| | | |
Collapse
|
168
|
Ausili P, Pisani M, Finet S, Amenitsch H, Ferrero C, Mariani P. Pressure Effects on Columnar Lyotropics: Anisotropic Compressibilities in Guanosine Monophosphate Four-Stranded Helices. J Phys Chem B 2004. [DOI: 10.1021/jp036829s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pamela Ausili
- Istituto di Scienze Fisiche and INFM, Università di Ancona, Via Ranieri 65, I-60131 Ancona, Italy, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, I-34016 Basovizza (Trieste), Italy, and Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz, Austria
| | - Michela Pisani
- Istituto di Scienze Fisiche and INFM, Università di Ancona, Via Ranieri 65, I-60131 Ancona, Italy, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, I-34016 Basovizza (Trieste), Italy, and Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz, Austria
| | - Stephanie Finet
- Istituto di Scienze Fisiche and INFM, Università di Ancona, Via Ranieri 65, I-60131 Ancona, Italy, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, I-34016 Basovizza (Trieste), Italy, and Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz, Austria
| | - Heinz Amenitsch
- Istituto di Scienze Fisiche and INFM, Università di Ancona, Via Ranieri 65, I-60131 Ancona, Italy, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, I-34016 Basovizza (Trieste), Italy, and Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz, Austria
| | - Claudio Ferrero
- Istituto di Scienze Fisiche and INFM, Università di Ancona, Via Ranieri 65, I-60131 Ancona, Italy, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, I-34016 Basovizza (Trieste), Italy, and Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz, Austria
| | - Paolo Mariani
- Istituto di Scienze Fisiche and INFM, Università di Ancona, Via Ranieri 65, I-60131 Ancona, Italy, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, I-34016 Basovizza (Trieste), Italy, and Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz, Austria
| |
Collapse
|
169
|
Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2003.12.039] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
170
|
Lin SY, Wei YS, Hsieh TF, Li MJ. Pressure dependence of human fibrinogen correlated to the conformational ?-helix to ?-sheet transition: An Fourier transform infrared study microspectroscopic study. Biopolymers 2004; 75:393-402. [PMID: 15457437 DOI: 10.1002/bip.20012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We used Fourier transform infrared (FTIR) microspectroscopy to investigate pressure-induced conformational changes in secondary structure of fibrinogen (FBG). Solid state FBG was compressed on a KBr pellet (1KBr method) or between two KBr pellets (2KBr method). The peak positions of the original and second-derivative ir spectra of compressed FBG samples prepared by the 1KBr method were similar to FBG sample without pressure. When FBG was prepared by the 2KBr method and pressure was increased up to 400 kg/cm(2), peaks at 1625 (intermolecular beta-sheet) and 1611 (beta-sheet aggregates structure and/or the side-chain absorption of the tyrosine residues) cm(-1) were enhanced. The peaks near 1661 (beta-sheet) and 1652 (alpha-helix) cm(-1) also exhibited a marked change with pressure. A linear correlation was found between the peak intensity ratio of 1611/1652 cm(-1) (r = 0.9879) or 1625/1652 cm(-1) (r = 0.9752) and applied pressure. The curve-fitted compositional changes in secondary structure of FBG also indicate that the composition of the alpha-helix structure (1657-1659 cm(-1)) was gradually reduced with the increase in compression pressure, but the composition of the beta-sheet structure (1681, 1629, and 1609 cm(-1)) gradually increased. This indicates that pressure-induced conformational changes in FBG include not only transformations from alpha-helix to beta-sheet structure, but also unfolding and denaturation of FBG and the formation of aggregates.
Collapse
Affiliation(s)
- Shan-Yang Lin
- Biopharmaceutics Laboratory, Department of Medical Research and Education, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
171
|
Lima SMB, Peabody DS, Silva JL, De Oliveira AC. Mutations in the hydrophobic core and in the protein-RNA interface affect the packing and stability of icosahedral viruses. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1033.2003.03911.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
172
|
Ishimaru D, Maia LF, Maiolino LM, Quesado PA, Lopez PCM, Almeida FCL, Valente AP, Silva JL. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant. J Mol Biol 2003; 333:443-51. [PMID: 14529628 DOI: 10.1016/j.jmb.2003.08.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The wild-type p53 protein can be driven into a conformation corresponding to that adopted by structural mutant forms by heterodimerization with a mutant subunit. To seek partially folded states of the wild-type p53 core domain (p53C) we used high hydrostatic pressure (HP) and subzero temperatures. Aggregation of the protein was observed in parallel with its pressure denaturation at 25 and 37 degrees C. However, when HP experiments were performed at 4 degrees C, the extent of denaturation and aggregation was significantly less pronounced. On the other hand, subzero temperatures under pressure led to cold denaturation and yielded a non-aggregated, alternative conformation of p53C. Nuclear magnetic resonance (1H15N-NMR) data showed that the alternative p53C conformation resembled that of the hot-spot oncogenic mutant R248Q. This alternative state was as susceptible to denaturation and aggregation as the mutant R248Q when subjected to HP at 25 degrees C. Together these data demonstrate that wild-type p53C adopts an alternative conformation with a mutant-like stability, consistent with the dominant-negative effect caused by many mutants. This alternative conformation is likely related to inactive forms that appear in vivo, usually driven by interaction with mutant proteins. Therefore, it can be a valuable target in the search for ways to interfere with protein misfolding and hence to prevent tumor development.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Departamento de Bioquímica Médica, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Marchal S, Shehi E, Harricane MC, Fusi P, Heitz F, Tortora P, Lange R. Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem 2003; 278:31554-63. [PMID: 12766160 DOI: 10.1074/jbc.m304205200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding and formation of structured aggregates are considered to be the earliest events in the development of neurodegenerative diseases, but the mechanism of these biological phenomena remains to be elucidated. Here, we report a study of heat- and pressure-induced unfolding of human Q26 and murine Q6 ataxin-3 using spectroscopic methods. UV absorbance and fluorescence revealed that heat and pressure induced a structural transition of both proteins to a molten globule conformation. The unfolding pathway was partly irreversible and led to a protein conformation where tryptophans were more exposed to water. Furthermore, the use of fluorescent probes (8-anilino-1-naphthalenesulfonate and thioflavin T) allowed the identification of different intermediates during the process of pressure-induced unfolding. At high temperature and pressure, human Q26, but not murine Q6, underwent concentration-dependent aggregation. Fourier transform infrared and circular dichroism spectroscopy revealed that these aggregates are characterized by an increased beta-sheet content. As revealed by electron microscopy, heat- and pressure-induced aggregates were different; high temperature treatment led to fibrillar microaggregates (8-10-nm length), whereas high pressure induced oligomeric structures of globular shape (100 nm in diameter), which sometimes aligned to higher order suprastructures. Several intermediate structures were detected in this process. Two factors appear to govern ataxin unfolding and aggregation, the length of the polyglutamine tract and its protein context.
Collapse
Affiliation(s)
- Stéphane Marchal
- INSERM U128, IFR 122, 1919 route de Mende, F-34293 Montpellier Cédex 5, France
| | | | | | | | | | | | | |
Collapse
|
174
|
|
175
|
Dubins DN, Filfil R, Macgregor RB, Chalikian TV. Volume and compressibility changes accompanying thermally-induced native-to-unfolded and molten globule-to-unfolded transitions of cytochrome c: a high pressure study. Biochemistry 2003; 42:8671-8. [PMID: 12873126 DOI: 10.1021/bi030070t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have measured the transition temperatures, T(M), and van't Hoff enthalpies, DeltaH(M), of the thermally induced native-to-unfolded (N-to-U) and molten globule-to-unfolded (MG-to-U) transitions of cytochrome c at pressures between 50 and 2200 bar. We have used the pressure dependence of T(M) to evaluate the changes in volume, Delta(v), accompanying each protein transition event as a function of temperature and pressure. From analysis of the temperature and pressure dependences of Delta(v), we have additionally calculated the changes in expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), associated with the thermally induced conformational transitions of cytochrome c. Specifically, if extrapolated to 25 degrees C, the native-to-unfolded (N-to-U) transition is accompanied by changes in volume, Delta(v), expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), of -(5 +/- 3) x 10(-3) cm(3) g(-1), (1.8 +/- 0.3) x 10(-4) cm(3) g(-1) K(-1), and approximately 0 cm(3) g(-1) bar(-1), respectively. The molten globule-to-unfolded (MG-to-U) transition is accompanied by changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), of -(2.9 +/- 0.3) x 10(-3) cm(3) g(-1) at 40 degrees C and -(1.9 +/- 0.3) x 10(-6) cm(3) g(-1) bar(-1) at 35 degrees C, respectively. By comparing the volumetric properties of the N-to-U and N-to-MG transitions of cytochrome c, we have estimated the properties of the native-to-molten globule (N-to-MG) transition. For the latter transition, the changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), are approximately 0 cm(3) g(-1) at 40 degrees C and 1.9 cm(3) g(-1) bar(-1) at 35 degrees C, respectively. Our estimate for the change in expansibility, Delta(e), upon the N-to-MG is negative and equal to -(5 +/- 3) x 10(-4) cm(3) g(-1) K(-1). This finding contrasts with the results of previous studies all of which report positive changes in expansibility associated with protein denaturation. In general, our volumetric data permit us to assess the combined effect of temperature and pressure on the stability of various conformational states of cytochrome c.
Collapse
Affiliation(s)
- David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | | | | | | |
Collapse
|
176
|
Herberhold H, Marchal S, Lange R, Scheyhing CH, Vogel RF, Winter R. Characterization of the pressure-induced intermediate and unfolded state of red-shifted green fluorescent protein--a static and kinetic FTIR, UV/VIS and fluorescence spectroscopy study. J Mol Biol 2003; 330:1153-64. [PMID: 12860135 DOI: 10.1016/s0022-2836(03)00657-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The green fluorescence proteins (GFP) are widely used as reporters in molecular and cell biology. For their use it in high-pressure microbiology and biotechnology studies, their structural properties, thermodynamic parameters and stability diagrams have to be known. We investigated the pressure stability of the red-shifted green fluorescent protein (rsGFP) using Fourier-transform infrared spectroscopy, fluorescence and UV/Vis spectroscopy. We found that rsGFP does not unfold up to approximately 9kbar at room temperature. Its unique three-dimensional structure is held responsible for the high-pressure stability. At higher temperatures, its secondary structure collapses below 9kbar (e.g. the denaturation pressure at 58 degrees C is 7.8kbar). The analysis of the IR data shows that the pressure-denatured state contains more disordered structures at the expense of a decrease of intramolecular beta-sheets. As indicated by the large volume change of DeltaV degrees (u) approximately -250(+/-50)mlmol(-1) at 58 degrees C, this highly cooperative transition can be interpreted as a collapse of the beta-can structure of rsGFP. For comparison, the temperature-induced unfolding of rsGFP has also been studied. At high temperature (T(m)=78 degrees C), the unfolding resulted in the formation of an aggregated state. Contrary to the pressure-induced unfolding, the temperature-induced unfolding and aggregation of GFP is irreversible. From the FT-IR data, a tentative p,T-stability diagram for the secondary structure collapse of GFP has been obtained. Furthermore, changes in fluorescence and absorptivity were found which are not correlated to the secondary structural changes. The fluorescence and UV/Vis data indicate smaller conformational changes in the chromophore region at much lower pressures ( approximately 4kbar) which are probably accompanied by the penetration of water into the beta-can structure. In order to investigate also the kinetics of this initial step, pressure-jump relaxation experiments were carried out. The partial activation volumes observed indicate that the conformational changes in the chromophore region when passing the transition state are indeed rather small, thus leading to a comparably small volume change of -20 ml mol(-1) only. The use of the chromophore absorption and fluorescence band of rsGFP in using GFP as reporter for gene expression and other microbiological studies under high pressure conditions is thus limited to pressures of about 4kbar, which still exceeds the pressure range relevant for studies in vivo in micro-organisms, including piezophilic bacteria from deep-sea environments.
Collapse
Affiliation(s)
- H Herberhold
- Physical Chemistry I, Department of Chemistry, University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
We studied the thermodynamic stability of a small monomeric protein, staphylococcal nuclease (Snase), as a function of both temperature and pressure, and expressed it as a 3D free-energy surface on the p,T-plane using a second-order Taylor expansion of the Gibbs free-energy change delta G upon unfolding. We took advantage of a series of different techniques (small-angle X-ray scattering, Fourier-transform infrared spectroscopy, differential thermal analysis, pressure perturbation calorimetry and densitometry) in the evaluation of the conformation of the protein and in evaluating the changes in the thermodynamic parameters upon unfolding, such as the heat capacity, enthalpy, entropy, volume, isothermal compressibility and expansivity. The calculated results of the free-energy landscape of the protein are in good agreement with experimental data of the p,T-stability diagram of the protein over a temperature range from 200 to 400 K and at pressures from ambient pressure to 4000 bar. The results demonstrate that combined temperature--pressure-dependent studies can help delineate the free-energy landscape of proteins and hence help elucidate which features and thermodynamic parameters are essential in determining the stability of the native conformational state of proteins. The approach presented may also be used for studying other systems with so-called re-entrant or Tamman loop-shaped phase diagrams.
Collapse
Affiliation(s)
- Revanur Ravindra
- Department of Chemistry, Physical Chemistry I, University of Dortmund, Otto-Hahn Str. 6, 44221 Dortmund, Germany
| | | |
Collapse
|
178
|
Liu X, Szabelski P, Kaczmarski K, Zhou D, Guiochon G. Influence of pressure on the chromatographic behavior of insulin variants under nonlinear conditions. J Chromatogr A 2003; 988:205-18. [PMID: 12641157 DOI: 10.1016/s0021-9673(03)00002-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of pressure on the chromatographic behavior of two insulin variants in RPLC was investigated on a YMC-ODS C18 column, under nonlinear conditions. The adsorption isotherm data of porcine insulin and Lispro were measured at average column pressures ranging from 52 to 242 bar. These data fit well to the Toth and the bi-Langmuir isotherm models. The saturation capacity increases rapidly with increasing pressure while the affinity (or equilibrium) constant and the parameter characterizing the surface heterogeneity decrease. It is noteworthy that the distribution coefficient of the insulin variants increases with increasing pressure whereas their equilibrium constant b decreases for porcine insulin and increases for Lispro. The association constant b(ds), which characterizes the adsorption and desorption equilibrium of insulin in the system, increases with increasing pressure. The excellent agreement between the experimental overloaded profiles recorded under different pressures and those calculated using the POR model suggests that the chromatographic behavior of insulin is controlled more by equilibrium thermodynamics than by the mass transfer kinetics. The latter seems to be nearly independent of the average column pressure. Thus, increasing the average column pressure is an efficient, albeit costly, way to increase the loading capacity of the column, hence the production rate in preparative chromatography.
Collapse
Affiliation(s)
- Xiaoda Liu
- Department of Chemistry, The University of Tennessee, Buchler Hall, Knoxville, TN 37996-1600, USA
| | | | | | | | | |
Collapse
|
179
|
Da Poian AT, Johnson JE, Silva JL. Protein-RNA interactions and virus stability as probed by the dynamics of tryptophan side chains. J Biol Chem 2002; 277:47596-602. [PMID: 12359712 DOI: 10.1074/jbc.m209174200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correlation between dynamics and stability of icosahedral viruses was studied by steady-state and time-resolved fluorescence approaches. We compared the environment and dynamics of tryptophan side chains of empty capsids and ribonucleoprotein particles of two icosahedral viruses from the comovirus group: cowpea mosaic virus (CPMV) and bean pod mottle virus (BPMV). We found a great difference between tryptophan fluorescence emission spectra of the ribonucleoprotein particles and the empty capsids of BPMV. For CPMV, time-resolved fluorescence revealed differences in the tryptophan environments of the capsid protein. The excited-state lifetimes of tryptophan residues were significantly modified by the presence of RNA in the capsid. More than half of the emission of the tryptophans in the ribonucleoprotein particles of CPMV originates from a single exponential decay that can be explained by a similar, nonpolar environment in the local structure of most of the tryptophans, even though they are physically located in different regions of the x-ray structure. CPMV particles without RNA lost this discrete component of emission. Anisotropy decay measurements demonstrated that tryptophans rotate faster in empty particles when compared with the ribonucleoprotein particles. The increased structural breathing facilitates the denaturation of the empty particles. Our studies bring new insights into the intricate interactions between protein and RNA where part of the missing structural information on the nucleic acid molecule is compensated for by the dynamics.
Collapse
Affiliation(s)
- Andrea T Da Poian
- Departamento de Bioquímica Medica and Centro Nacional de Ressonancia Magnetica Nuclear de Macromoleculas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | |
Collapse
|
180
|
Cléry-Barraud C, Ordentlich A, Grosfeld H, Shafferman A, Masson P. Pressure and heat inactivation of recombinant human acetylcholinesterase. Importance of residue E202 for enzyme stability. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4297-307. [PMID: 12199708 DOI: 10.1046/j.1432-1033.2002.03122.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of pressure on structure and activity of recombinant human acetylcholinesterase (rHuAChE) were investigated up to a pressure of 300 MPa using gel electrophoresis under elevated hydrostatic pressure, fluorescence of bound 8-anilinonaphthalene-1-sulfonate (ANS) and activity measurements following exposure to high pressure. Study of wild-type enzyme and three single mutants (D74N, E202Q, E450A) and one sextuple mutant (E84Q/E292A/D349N/E358Q/E389Q/D390N) showed that pressure exerts a differential action on wild-type rHuAChE and its mutants, allowing estimation of the contribution of carboxylic amino acid side-chains to enzyme stability. Mutation of negatively charged residues D74 and E202 by polar side-chains strengthened heat or pressure stability. The mutation E450A and the sextuple mutation caused destabilization of the enzyme to pressure. Thermal inactivation data on mutants showed that all of them were stabilized against temperature. In conclusion, pressure and thermal stability of mutants provided evidence that the residue E202 is a determinant of structural and functional stability of HuAChE.
Collapse
Affiliation(s)
- Cécile Cléry-Barraud
- Centre de Recherches du Service de Santé des Armées, Unité d'enzymologie, France.
| | | | | | | | | |
Collapse
|