151
|
Fröbel J, Cadeddu RP, Hartwig S, Bruns I, Wilk CM, Kündgen A, Fischer JC, Schroeder T, Steidl UG, Germing U, Lehr S, Haas R, Czibere A. Platelet proteome analysis reveals integrin-dependent aggregation defects in patients with myelodysplastic syndromes. Mol Cell Proteomics 2013; 12:1272-80. [PMID: 23382103 DOI: 10.1074/mcp.m112.023168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bleeding complications are a significant clinical problem in patients with myelodysplastic syndromes even at sufficient platelet counts (>50,000/μl). However, the underlying pathology of this hemorrhagic diathesis is still unknown. Here, we analyzed the platelet proteome of patients with myelodysplastic syndromes by quantitative two-dimensional difference gel electrophoresis followed by mass spectrometric protein identification. Proteins identified with lower concentrations, such as Talin-1, Vinculin, Myosin-9, Filmain-A, and Actin play critical roles in integrin αIIbβ3 signaling and thus platelet aggregation. Despite normal agonist receptor expression, calcium flux, and granule release upon activation, the activation capacity of integrin αIIbβ3 was diminished in myelodysplastic syndrome platelets. Förster resonance energy transfer analysis showed a reduced co-localization of Talin-1 to the integrin's β3-subunit, which is required for receptor activation and fibrinogen binding. In addition, platelet spreading on immobilized fibrinogen was incomplete, and platelet aggregation assays confirmed a general defect in integrin-dependent platelet aggregation in patients with myelodysplastic syndromes. Our data provide novel aspects on the molecular pathology of impaired platelet function in myelodysplastic syndromes and suggest a mechanism of defective integrin αIIbβ3 signaling that may contribute to the hemorrhagic diathesis observed in these patients.
Collapse
Affiliation(s)
- Julia Fröbel
- Department of Hematology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Berrou E, Adam F, Lebret M, Fergelot P, Kauskot A, Coupry I, Jandrot-Perrus M, Nurden A, Favier R, Rosa JP, Goizet C, Nurden P, Bryckaert M. Heterogeneity of Platelet Functional Alterations in Patients With Filamin A Mutations. Arterioscler Thromb Vasc Biol 2013; 33:e11-8. [DOI: 10.1161/atvbaha.112.300603] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
We examined platelet functions in 4 unrelated patients with filaminopathy A caused by dominant mutations of the X-linked filamin A (
FLNA
) gene.
Methods and Results—
Patients P1, P2, and P4 exhibited periventricular nodular heterotopia, heterozygozity for truncating
FLNA
mutations, and thrombocytopenia (except P2). P3 exhibited isolated thrombocytopenia and heterozygozity for a p.Glu1803Lys
FLNA
mutation. Truncated FLNa was undetectable by Western blotting of P1, P2, and P4 platelets, but full-length FLNa was detected at 37%, 82%, and 57% of control, respectively. P3 FLNa (p.Glu1803Lys and full-length) was assessed at 79%. All patients exhibited a platelet subpopulation negative for FLNa. Platelet aggregation, secretion, glycoprotein VI signaling, and thrombus growth on collagen were decreased for P1, P3, and P4, but normal for P2. For the 2 patients analyzed (P1 and P4), spreading was enhanced and, more markedly, in FLNa-negative platelets, suggesting that FLNa negatively regulates cytoskeleton reorganization. Platelet adhesion to von Willebrand factor under flow correlated with platelet full-length FLNa content: markedly reduced for P1 and P4 and unchanged for P2. Interestingly, von Willebrand factor flow adhesion was increased for P3, consistent with a gain-of-function effect enhancing glycoprotein Ib-IX-V/von Willebrand factor interaction. These results are consistent with a positive role for FLNa in platelet adhesion under high shear.
Conclusion—
FLNA
mutation heterogeneity correlates with different platelet functional impacts and points to opposite regulatory roles of FLNa in spreading and flow adhesion under shear.
Collapse
Affiliation(s)
- Eliane Berrou
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Frédéric Adam
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Marilyne Lebret
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Patricia Fergelot
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Alexandre Kauskot
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Isabelle Coupry
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Martine Jandrot-Perrus
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Alan Nurden
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Rémi Favier
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Jean-Philippe Rosa
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Cyril Goizet
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Paquita Nurden
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| | - Marijke Bryckaert
- From the INSERM, U770, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Paris-Sud, Le Kremlin Bicêtre, France (E.B., F.A., M.L., A.K., J-P.R., M.B.); Université Bordeaux Segalen, Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France (P.F., I.C., C.G.); CHU Bordeaux, Centre de Référence Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France (P.F., C.G.); INSERM, U698, Paris, France (M.J
| |
Collapse
|
153
|
Fürst DO, Goldfarb LG, Kley RA, Vorgerd M, Olivé M, van der Ven PFM. Filamin C-related myopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:33-46. [PMID: 23109048 DOI: 10.1007/s00401-012-1054-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/22/2012] [Accepted: 10/11/2012] [Indexed: 01/20/2023]
Abstract
The term filaminopathy was introduced after a truncating mutation in the dimerization domain of filamin C (FLNc) was shown to be responsible for a devastating muscle disease. Subsequently, the same mutation was found in patients from diverse ethnical origins, indicating that this specific alteration is a mutational hot spot. Patients initially present with proximal muscle weakness, while distal and respiratory muscles become affected with disease progression. Muscle biopsies of these patients show typical signs of myofibrillar myopathy, including disintegration of myofibrils and aggregation of several proteins into distinct intracellular deposits. Highly similar phenotypes were observed in patients with other mutations in Ig-like domains of FLNc that result in expression of a noxious protein. Biochemical and biophysical studies showed that the mutated domains acquire an abnormal structure causing decreased stability and eventually becoming a seed for abnormal aggregation with other proteins. The disease usually presents only after the fourth decade of life possibly as a result of ageing-related impairments in the machinery that is responsible for disposal of damaged proteins. This is confirmed by mutations in components of this machinery that cause a highly similar phenotype. Transfection studies of cultured muscle cells reflect the events observed in patient muscles and, therefore, may provide a helpful model for testing future dedicated therapeutic strategies. More recently, FLNC mutations were also found in families with a distal myopathy phenotype, caused either by mutations in the actin-binding domain of FLNc that result in increased actin-binding and non-specific myopathic abnormalities without myofibrillar myopathy pathology, or a nonsense mutation in the rod domain that leads to RNA instability, haploinsufficiency with decreased expression levels of FLNc in the muscle fibers and myofibrillar abnormalities, but not to the formation of desmin-positive protein aggregates required for the diagnosis of myofibrillar myopathy.
Collapse
Affiliation(s)
- Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
154
|
Jiang X, Yue J, Lu H, Campbell N, Yang Q, Lan S, Haffty BG, Yuan C, Shen Z. Inhibition of filamin-A reduces cancer metastatic potential. Int J Biol Sci 2012; 9:67-77. [PMID: 23289018 PMCID: PMC3535535 DOI: 10.7150/ijbs.5577] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/16/2012] [Indexed: 11/30/2022] Open
Abstract
Filamin-A cross-links actin filaments into dynamic orthogonal networks, and interacts with an array of proteins of diverse cellular functions. Because several filamin-A interaction partners are implicated in signaling of cell mobility regulation, we tested the hypothesis that filamin-A plays a role in cancer metastasis. Using four pairs of filamin-A proficient and deficient isogenic cell lines, we found that filamin-A deficiency in cancer cells significantly reduces their migration and invasion. Using a xenograft tumor model with subcutaneous and intracardiac injections of tumor cells, we found that the filamin-A deficiency causes significant reduction of lung, splenic and systemic metastasis in nude mice. We evaluated the expression of filamin-A in breast cancer tissues by immunohistochemical staining, and found that low levels of filamin-A expression in cancer cells of the tumor tissues are associated with a better distant metastasis-free survival than those with normal levels of filamin-A. These data not only validate filamin-A as a prognostic marker for cancer metastasis, but also suggest that inhibition of filamin-A in cancer cells may reduce metastasis and that filamin-A can be used as a therapeutic target for filamin-A positive cancer.
Collapse
Affiliation(s)
- Xi Jiang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Kley RA, Serdaroglu-Oflazer P, Leber Y, Odgerel Z, van der Ven PFM, Olivé M, Ferrer I, Onipe A, Mihaylov M, Bilbao JM, Lee HS, Höhfeld J, Djinović-Carugo K, Kong K, Tegenthoff M, Peters SA, Stenzel W, Vorgerd M, Goldfarb LG, Fürst DO. Pathophysiology of protein aggregation and extended phenotyping in filaminopathy. ACTA ACUST UNITED AC 2012; 135:2642-60. [PMID: 22961544 DOI: 10.1093/brain/aws200] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations in FLNC cause two distinct types of myopathy. Disease associated with mutations in filamin C rod domain leading to expression of a toxic protein presents with progressive proximal muscle weakness and shows focal destructive lesions of polymorphous aggregates containing desmin, myotilin and other proteins in the affected myofibres; these features correspond to the profile of myofibrillar myopathy. The second variant associated with mutations in the actin-binding domain of filamin C is characterized by weakness of distal muscles and morphologically by non-specific myopathic features. A frameshift mutation in the filamin C rod domain causing haploinsufficiency was also found responsible for distal myopathy with some myofibrillar changes but no protein aggregation typical of myofibrillar myopathies. Controversial data accumulating in the literature require re-evaluation and comparative analysis of phenotypes associated with the position of the FLNC mutation and investigation of the underlying disease mechanisms. This is relevant and necessary for the refinement of diagnostic criteria and developing therapeutic approaches. We identified a p.W2710X mutation in families originating from ethnically diverse populations and re-evaluated a family with a p.V930_T933del mutation. Analysis of the expanded database allows us to refine clinical and myopathological characteristics of myofibrillar myopathy caused by mutations in the rod domain of filamin C. Biophysical and biochemical studies indicate that certain pathogenic mutations in FLNC cause protein misfolding, which triggers aggregation of the mutant filamin C protein and subsequently involves several other proteins. Immunofluorescence analyses using markers for the ubiquitin-proteasome system and autophagy reveal that the affected muscle fibres react to protein aggregate formation with a highly increased expression of chaperones and proteins involved in proteasomal protein degradation and autophagy. However, there is a noticeably diminished efficiency of both the ubiquitin-proteasome system and autophagy that impairs the muscle capacity to prevent the formation or mediate the degradation of aggregates. Transfection studies of cultured muscle cells imitate events observed in the patient's affected muscle and therefore provide a helpful model for testing future therapeutic strategies.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, Neuromuscular Centre Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Mooso BA, Vinall RL, Tepper CG, Savoy RM, Cheung JP, Singh S, Siddiqui S, Wang Y, Bedolla RG, Martinez A, Mudryj M, Kung HJ, deVere White RW, Ghosh PM. Enhancing the effectiveness of androgen deprivation in prostate cancer by inducing Filamin A nuclear localization. Endocr Relat Cancer 2012; 19:759-77. [PMID: 22993077 PMCID: PMC3540117 DOI: 10.1530/erc-12-0171] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As prostate cancer (CaP) is regulated by androgen receptor (AR) activity, metastatic CaP is treated with androgen deprivation therapy (ADT). Despite initial response, patients on ADT eventually progress to castration-resistant CaP (CRPC), which is currently incurable. We previously showed that cleavage of the 280 kDa structural protein Filamin A (FlnA) to a 90 kDa fragment, and nuclear localization of the cleaved product, sensitized CRPC cells to ADT. Hence, treatment promoting FlnA nuclear localization would enhance androgen responsiveness. Here, we show that FlnA nuclear localization induced apoptosis in CRPC cells during ADT, identifying it as a treatment tool in advanced CaP. Significantly, the natural product genistein combined polysaccharide (GCP) had a similar effect. Investigation of the mechanism of GCP-induced apoptosis showed that GCP induced FlnA cleavage and nuclear localization and that apoptosis resulting from GCP treatment was mediated by FlnA nuclear localization. Two main components of GCP are genistein and daidzein: the ability of GCP to induce G2 arrest was due to genistein whereas sensitivity to ADT stemmed from daidzein; hence, both were needed to mediate GCP's effects. FlnA cleavage is regulated by its phosphorylation; we show that ADT enhanced FlnA phosphorylation, which prevented its cleavage, whereas GCP inhibited FlnA phosphorylation, thereby sensitizing CaP cells to ADT. In a mouse model of CaP recurrence, GCP, but not vehicle, impeded relapse following castration, indicating that GCP, when administered with ADT, interrupted the development of CRPC. These results demonstrate the efficacy of GCP in promoting FlnA nuclear localization and enhancing androgen responsiveness in CaP.
Collapse
Affiliation(s)
- Benjamin A. Mooso
- VA Northern California Health Care System, Mather, CA
- University of California Davis School of Medicine, Sacramento, CA
| | - Ruth L. Vinall
- University of California Davis School of Medicine, Sacramento, CA
| | | | | | - Jean P. Cheung
- University of California Davis School of Medicine, Sacramento, CA
| | - Sheetal Singh
- VA Northern California Health Care System, Mather, CA
- University of California Davis School of Medicine, Sacramento, CA
| | | | - Yu Wang
- University of California Davis School of Medicine, Sacramento, CA
| | - Roble G. Bedolla
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Anthony Martinez
- University of California Davis School of Medicine, Sacramento, CA
| | - Maria Mudryj
- VA Northern California Health Care System, Mather, CA
- University of California Davis School of Medicine, Sacramento, CA
| | - Hsing-Jien Kung
- University of California Davis School of Medicine, Sacramento, CA
| | | | - Paramita M. Ghosh
- VA Northern California Health Care System, Mather, CA
- University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
157
|
Filamin isoforms in molluscan smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1334-41. [DOI: 10.1016/j.bbapap.2012.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/28/2012] [Accepted: 07/23/2012] [Indexed: 11/23/2022]
|
158
|
Wang Q, Dai XQ, Li Q, Tuli J, Liang G, Li SS, Chen XZ. Filamin interacts with epithelial sodium channel and inhibits its channel function. J Biol Chem 2012; 288:264-73. [PMID: 23161538 DOI: 10.1074/jbc.m112.396408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial sodium channel (ENaC) in the kidneys is critical for Na(+) balance, extracellular volume, and blood pressure. Altered ENaC function is associated with respiratory disorders, pseudohypoaldosteronism type 1, and Liddle syndrome. ENaC is known to interact with components of the cytoskeleton, but the functional roles remain largely unclear. Here, we examined the interaction between ENaC and filamins, important actin filament components. We first discovered by yeast two-hybrid screening that the C termini of ENaC α and β subunits bind filamin A, B, and C, and we then confirmed the binding by in vitro biochemical assays. We demonstrated by co-immunoprecipitation that ENaC, either overexpressed in HEK, HeLa, and melanoma A7 cells or natively expressed in LLC-PK1 and IMCD cells, is in the same complex with native filamin. Furthermore, the biotinylation and co-immunoprecipitation combined assays showed the ENaC-filamin interaction on the cell surface. Using Xenopus oocyte expression and two-electrode voltage clamp electrophysiology, we found that co-expression of an ENaC-binding domain of filamin substantially reduces ENaC channel function. Western blot and immunohistochemistry experiments revealed that the filamin A C terminus (FLNAC) modestly reduces the expression of the ENaC α subunit in oocytes and A7 cells. After normalizing the current by plasma membrane expression, we found that FLNAC results in ~50% reduction in the ENaC channel activity. The inhibitory effect of FLNAC was confirmed by lipid bilayer electrophysiology experiments using purified ENaC and FLNAC proteins, which showed that FLNAC substantially reduces ENaC single channel open probability. Taken together, our study demonstrated that filamin reduces ENaC channel function through direct interaction on the cell surface.
Collapse
Affiliation(s)
- Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
159
|
McDonald KK, Stajich J, Blach C, Ashley-Koch AE, Hauser MA. Exome analysis of two limb-girdle muscular dystrophy families: mutations identified and challenges encountered. PLoS One 2012; 7:e48864. [PMID: 23155419 PMCID: PMC3498247 DOI: 10.1371/journal.pone.0048864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
The molecular diagnosis of muscle disorders is challenging: genetic heterogeneity (>100 causal genes for skeletal and cardiac muscle disease) precludes exhaustive clinical testing, prioritizing sequencing of specific genes is difficult due to the similarity of clinical presentation, and the number of variants returned through exome sequencing can make the identification of the disease-causing variant difficult. We have filtered variants found through exome sequencing by prioritizing variants in genes known to be involved in muscle disease while examining the quality and depth of coverage of those genes. We ascertained two families with autosomal dominant limb-girdle muscular dystrophy of unknown etiology. To identify the causal mutations in these families, we performed exome sequencing on five affected individuals using the Agilent SureSelect Human All Exon 50 Mb kit and the Illumina HiSeq 2000 (2×100 bp). We identified causative mutations in desmin (IVS3+3A>G) and filamin C (p.W2710X), and augmented the phenotype data for individuals with muscular dystrophy due to these mutations. We also discuss challenges encountered due to depth of coverage variability at specific sites and the annotation of a functionally proven splice site variant as an intronic variant.
Collapse
Affiliation(s)
- Kristin K. McDonald
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Jeffrey Stajich
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Colette Blach
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Allison E. Ashley-Koch
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael A. Hauser
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- * E-mail:
| |
Collapse
|
160
|
The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended. Biochem J 2012; 446:261-9. [PMID: 22676060 DOI: 10.1042/bj20120361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Filamins are large proteins that cross-link actin filaments and connect to other cellular components. The C-terminal rod 2 region of FLNa (filamin A) mediates dimerization and interacts with several transmembrane receptors and intracellular signalling adaptors. SAXS (small-angle X-ray scattering) experiments were used to make a model of a six immunoglobulin-like domain fragment of the FLNa rod 2 (domains 16-21). This fragment had a surprising three-branched structural arrangement, where each branch was made of a tightly packed two-domain pair. Peptides derived from transmembrane receptors and intracellular signalling proteins induced a more open structure of the six domain fragment. Mutagenesis studies suggested that these changes are caused by peptides binding to the CD faces on domains 19 and 21 which displace the preceding domain A-strands (18 and 20 respectively), thus opening the individual domain pairs. A single particle cryo-EM map of a nine domain rod 2 fragment (domains 16-24), showed a relatively compact dimeric particle and confirmed the three-branched arrangement as well as the peptide-induced conformation changes. These findings reveal features of filamin structure that are important for its interactions and mechanical properties.
Collapse
|
161
|
Tasca G, Odgerel Z, Monforte M, Aurino S, Clarke NF, Waddell LB, Udd B, Ricci E, Goldfarb LG. Novel FLNC mutation in a patient with myofibrillar myopathy in combination with late-onset cerebellar ataxia. Muscle Nerve 2012; 46:275-82. [PMID: 22806379 DOI: 10.1002/mus.23349] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Mutations in the gene that encodes filamin C, FLNC, represent a rare cause of a distinctive type of myofibrillar myopathy (MFM). METHODS We investigated an Italian patient by means of muscle biopsy, muscle and brain imaging and molecular analysis of MFM genes. RESULTS The patient harbored a novel 7256C>T, p.Thr2419Met mutation in exon 44 of FLNC. Clinical, pathological and muscle MRI findings were similar to the previously described filaminopathy cases. This patient had, in addition, cerebellar ataxia with atrophy of cerebellum and vermis evident on brain MRI scan. Extensive screening failed to establish a cause of cerebellar atrophy. CONCLUSIONS We report an Italian filaminopathy patient, with a novel mutation in a highly conserved region. This case raises the possibility that the disease spectrum caused by FLNC may include cerebellar dysfunction.
Collapse
|
162
|
Lin WS, Jiao BY, Wu YL, Chen WN, Lin X. Hepatitis B virus X protein blocks filamentous actin bundles by interaction with eukaryotic translation elongat ion factor 1 alpha 1. J Med Virol 2012; 84:871-7. [PMID: 22499008 DOI: 10.1002/jmv.23283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hepatitis B virus (HBV)-encoded X protein (HBx protein) is a multi-functional regulatory protein. It functions by protein-protein interaction and plays a pivotal role in the pathogenesis of HBV-related diseases. However, the partners in hepatocytes interacting with HBx protein are far from understood fully. In this study, immunoprecipitation was employed to screen for binding partners for the HBx protein from huh-7 hepatoma cells infected with recombinant adenovirus expressing HBx protein, and five cellular proteins including eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), were identified. The interaction between HBx protein and eEF1A1 was confirmed further using a GST pull-down assay and co-immunoprecipitation, respectively. In Huh-7 hepatoma cells, the HBx protein inhibits dimer formation of eEF1A1, hence blocks filamentous actin bundling. These findings provide new insights into the molecular mechanisms involved in the functions of the HBx protein.
Collapse
Affiliation(s)
- Wan-Song Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou City, China
| | | | | | | | | |
Collapse
|
163
|
Planagumà J, Minsaas L, Pons M, Myhren L, Garrido G, Aragay AM. Filamin A-hinge region 1-EGFP: a novel tool for tracking the cellular functions of filamin A in real-time. PLoS One 2012; 7:e40864. [PMID: 22870205 PMCID: PMC3411599 DOI: 10.1371/journal.pone.0040864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/18/2012] [Indexed: 01/13/2023] Open
Abstract
Background Filamin A (FLNa) is an actin-crosslinking protein necessary for stabilizing the cell surface, organizing protrusive activity and for promoting efficient cellular translocation. Recently, our group demonstrated the requirement of FLNa for the internalization of the chemokine receptor CCR2B. Methodology and Principal Findings In order to study the role of FLNa in vitro and in real-time, we have developed a fluorescent FLNa-EGFP construct. In this novel imaging tool, we introduced the EGFP-tag inside the flexible hinge 1 region of FLNa between two calpain cleavage sites. Our findings indicate that the FLNa-EGFP construct was correctly expressed, cleaved by calpain and colocalized with actin filaments as shown by immunostaining experiments in the human melanoma cell lines A7 (FLNa-repleted) and M2 (FLNa-deficient). In addition, scanning-electron microscopy (SEM) and micropatterning studies also provided clear evidence that the cell rigidity was restored. FLNa-EGFP allowed us to demonstrate the interaction of FLNa with the chemokine receptor CCR2B in endocytic vesicles after CCL2 ligand stimulation. Through live-cell imaging studies we show that the CCR2B receptor in Rab5-positive vesicles moves along filamin A-positive fibers. Significance Taken together, these results outline the functionality of the FLNa-EGFP and the importance of filamin A for receptor internalization and movement into endocytic vesicles.
Collapse
Affiliation(s)
- Jesús Planagumà
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
164
|
Wang Q, Dai XQ, Li Q, Wang Z, Cantero MDR, Li S, Shen J, Tu JC, Cantiello H, Chen XZ. Structural interaction and functional regulation of polycystin-2 by filamin. PLoS One 2012; 7:e40448. [PMID: 22802962 PMCID: PMC3393660 DOI: 10.1371/journal.pone.0040448] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/07/2012] [Indexed: 01/26/2023] Open
Abstract
Filamins are important actin cross-linking proteins implicated in scaffolding, membrane stabilization and signal transduction, through interaction with ion channels, receptors and signaling proteins. Here we report the physical and functional interaction between filamins and polycystin-2, a TRP-type cation channel mutated in 10–15% patients with autosomal dominant polycystic kidney disease. Yeast two-hybrid and GST pull-down experiments demonstrated that the C-termini of filamin isoforms A, B and C directly bind to both the intracellular N- and C-termini of polycystin-2. Reciprocal co-immunoprecipitation experiments showed that endogenous polycystin-2 and filamins are in the same complexes in renal epithelial cells and human melanoma A7 cells. We then examined the effect of filamin on polycystin-2 channel function by electrophysiology studies with a lipid bilayer reconstitution system and found that filamin-A substantially inhibits polycystin-2 channel activity. Our study indicates that filamins are important regulators of polycystin-2 channel function, and further links actin cytoskeletal dynamics to the regulation of this channel protein.
Collapse
Affiliation(s)
- Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiao-Qing Dai
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Qiang Li
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Zuocheng Wang
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - María del Rocío Cantero
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shu Li
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ji Shen
- Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jian-Cheng Tu
- Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Horacio Cantiello
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail: (XZC); (HC)
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (XZC); (HC)
| |
Collapse
|
165
|
Dokholyan NV. Physical microscopic model of proteins under force. J Phys Chem B 2012; 116:6806-9. [PMID: 22375559 DOI: 10.1021/jp212543m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature has evolved proteins to counteract forces applied on living cells, and has designed proteins that can sense forces. One can appreciate Nature's ingenuity in evolving these proteins to be highly sensitive to force and to have a high dynamic force range at which they operate. To achieve this level of sensitivity, many of these proteins are composed of multiple domains and linking peptides connecting these domains, each of them having their own force response regimes. Here, using a simple model of a protein, we address the question of how each individual domain responds to force. We also ask how multidomain proteins respond to forces. We find that the end-to-end distance of individual domains under force scales linearly with force. In multidomain proteins, we find that the force response has a rich range: at low force, extension is predominantly governed by "weaker" linking peptides or domain intermediates, while at higher force, the extension is governed by unfolding of individual domains. Overall, the force extension curve comprises multiple sigmoidal transitions governed by unfolding of linking peptides and domains. Our study provides a basic framework for the understanding of protein response to force, and allows for interpretation experiments in which force is used to study the mechanical properties of multidomain proteins.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
166
|
Bachmair EM, Bots ML, Mennen LI, Kelder T, Evelo CT, Horgan GW, Ford I, de Roos B. Effect of supplementation with an 80:20 cis9,trans11 conjugated linoleic acid blend on the human platelet proteome. Mol Nutr Food Res 2012; 56:1148-59. [PMID: 22648731 DOI: 10.1002/mnfr.201100763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 11/06/2022]
Abstract
SCOPE The dietary fatty acid cis9,trans11 conjugated linoleic acid (cis9,trans11 CLA) has been shown to modify the function of endothelial cells, monocytes, and platelets, all of which are involved in the development of atherosclerosis. Potential mechanisms for the platelet effects have not been assessed previously. In this study, we assessed how supplementation of the diet with an 80:20 cis9,trans11 CLA blend affects the platelet proteome. METHODS AND RESULTS In a double-blind, randomized, placebo-controlled, parallel-group trial, 40 overweight but apparently healthy adults received either 4 g per day of cis9,trans11 CLA-enriched oil or placebo oil, consisting of palm oil and soybean oil, for 3 months. Total platelet proteins were extracted from washed platelets, separated using two-dimensional gel electrophoresis and differentially regulated protein spots were identified by LC-ESI-MS/MS. Supplementation with the CLA blend, compared with placebo, resulted in significant alterations in levels of 46 spots (p < 0.05), of which 40 were identified. Network analysis revealed that the majority of these proteins participate in regulation of the cytoskeleton and platelet structure, as well as receptor action, signaling, and focal adhesion. CONCLUSION The platelet proteomics approach revealed novel insights into regulation of cellular biomarkers of atherogenic and thrombotic pathways by an 80:20 cis9,trans11 CLA blend.
Collapse
Affiliation(s)
- Eva-Maria Bachmair
- Rowett Institute of Nutrition & Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Baldassarre M, Razinia Z, Brahme NN, Buccione R, Calderwood DA. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. J Cell Sci 2012; 125:3858-69. [PMID: 22595522 DOI: 10.1242/jcs.104018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filamins are an important family of actin-binding proteins that, in addition to bundling actin filaments, link cell surface adhesion proteins, signaling receptors and channels to the actin cytoskeleton, and serve as scaffolds for an array of intracellular signaling proteins. Filamins are known to regulate the actin cytoskeleton, act as mechanosensors that modulate tissue responses to matrix density, control cell motility and inhibit activation of integrin adhesion receptors. In this study, we extend the repertoire of filamin activities to include control of extracellular matrix (ECM) degradation. We show that knockdown of filamin increases matrix metalloproteinase (MMP) activity and induces MMP2 activation, enhancing the ability of cells to remodel the ECM and increasing their invasive potential, without significantly altering two-dimensional random cell migration. We further show that within filamin A, the actin-binding domain is necessary, but not sufficient, to suppress the ECM degradation seen in filamin-A-knockdown cells and that dimerization and integrin binding are not required. Filamin mutations are associated with neuronal migration disorders and a range of congenital malformations characterized by skeletal dysplasia and various combinations of cardiac, craniofacial and intestinal anomalies. Furthermore, in breast cancers loss of filamin A has been correlated with increased metastatic potential. Our data suggest that effects on ECM remodeling and cell invasion should be considered when attempting to provide cellular explanations for the physiological and pathological effects of altered filamin expression or filamin mutations.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Pharmacology, Department of Cell Biology and Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | | | | | | | |
Collapse
|
168
|
Tossavainen H, Koskela O, Jiang P, Ylänne J, Campbell ID, Kilpeläinen I, Permi P. Model of a Six Immunoglobulin-Like Domain Fragment of Filamin A (16–21) Built Using Residual Dipolar Couplings. J Am Chem Soc 2012; 134:6660-72. [DOI: 10.1021/ja2114882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Helena Tossavainen
- Program in
Structural Biology
and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari
1, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Outi Koskela
- Laboratory of Organic Chemistry, Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Pengju Jiang
- Biochemistry Department, University of Oxford, Oxford, OX1 3QU
United Kingdom
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164 China
| | - Jari Ylänne
- Department of Biological
and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35,
FI-40014 Jyväskylä, Finland
| | - Iain D. Campbell
- Biochemistry Department, University of Oxford, Oxford, OX1 3QU
United Kingdom
| | - Ilkka Kilpeläinen
- Laboratory of Organic Chemistry, Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Perttu Permi
- Program in
Structural Biology
and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari
1, P.O. Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
169
|
Light S, Sagit R, Ithychanda SS, Qin J, Elofsson A. The evolution of filamin-a protein domain repeat perspective. J Struct Biol 2012; 179:289-98. [PMID: 22414427 DOI: 10.1016/j.jsb.2012.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 02/03/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates.
Collapse
Affiliation(s)
- Sara Light
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Science for Life Laboratory, Bioinformatics Infrastructure for Life Sciences, Stockholm University, SE-17121 Solna, Sweden
| | | | | | | | | |
Collapse
|
170
|
Abstract
Filamins are essential, evolutionarily conserved, modular, multidomain, actin-binding proteins that organize the actin cytoskeleton and maintain extracellular matrix connections by anchoring actin filaments to transmembrane receptors. By cross-linking and anchoring actin filaments, filamins stabilize the plasma membrane, provide cellular cortical rigidity, and contribute to the mechanical stability of the plasma membrane and the cell cortex. In addition to binding actin, filamins interact with more than 90 other binding partners including intracellular signaling molecules, receptors, ion channels, transcription factors, and cytoskeletal and adhesion proteins. Thus, filamins scaffold a wide range of signaling pathways and are implicated in the regulation of a diverse array of cellular functions including motility, maintenance of cell shape, and differentiation. Here, we review emerging structural and functional evidence that filamins are mechanosensors and/or mechanotransducers playing essential roles in helping cells detect and respond to physical forces in their local environment.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
171
|
Muriel O, Echarri A, Hellriegel C, Pavón DM, Beccari L, Del Pozo MA. Phosphorylated filamin A regulates actin-linked caveolae dynamics. J Cell Sci 2011; 124:2763-76. [PMID: 21807941 DOI: 10.1242/jcs.080804] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Caveolae are relatively stable membrane invaginations that compartmentalize signaling, regulate lipid metabolism and mediate viral entry. Caveolae are closely associated with actin fibers and internalize in response to diverse stimuli. Loss of cell adhesion is known to induce rapid and robust caveolae internalization and trafficking toward a Rab11-positive recycling endosome; however, pathways governing this process are poorly understood. Here, we report that filamin A is required to maintain the F-actin-dependent linear distribution of caveolin-1. High spatiotemporal resolution particle tracking of caveolin-1-GFP vesicles by total internal reflection fluorescence (TIRF) microscopy revealed that FLNa is required for the F-actin-dependent arrest of caveolin-1 vesicles in a confined area and their stable anchorage to the plasma membrane. The linear distribution and anchorage of caveolin-1 vesicles are both required for proper caveolin-1 inwards trafficking. De-adhesion-triggered caveolae inward trafficking towards a recycling endosome is impaired in FLNa-depleted HeLa and FLNa-deficient M2-melanoma cells. Inwards trafficking of caveolin-1 requires both the ability of FLNa to bind actin and cycling PKCα-dependent phosphorylation of FLNa on Ser2152 after cell detachment.
Collapse
Affiliation(s)
- Olivia Muriel
- Integrin Signaling Laboratory, Department of Vascular Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
172
|
Ghosh D, Yu H, Tan XF, Lim TK, Zubaidah RM, Tan HT, Chung MCM, Lin Q. Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res 2011; 10:4373-87. [PMID: 21854069 DOI: 10.1021/pr2005617] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study compared the whole cell proteome profiles of two isogenic colorectal cancer (CRC) cell lines (primary SW480 cell line and its lymph node metastatic variant SW620), as an in vitro metastatic model, to gain an insight into the molecular events of CRC metastasis. Using iTRAQ (isobaric tags for relative and absolute quantitation) based shotgun proteomics approach, we identified 1140 unique proteins, out of which 147 were found to be significantly altered in the metastatic cell. Ingenuity pathway analysis with those significantly altered proteins, revealed cellular organization and assembly as the top-ranked altered biological function. Differential expression pattern of 6 candidate proteins were validated by Western blot. Among these, the low expression level of β-catenin combined with the up-regulation of CacyBP (Calcyclin binding Protein), a β-catenin degrading protein, in the metastatic cell provided a rational guide for the downstream functional assays. The relative expression pattern of these two proteins was further validated in three other CRC cells by Western blot and quantitative immunofluorescence studies. Overexpression of CacyBP in three different primary CRC cell lines showed significant reduction in adhesion characteristics as well as cellular β-catenin level as confirmed by our experiments, indicating the possible involvement of CacyBP in CRC metastasis. In short, this study demonstrates successful application of a quantitative proteomics approach to identify novel key players for CRC metastasis, which may serve as biomarkers and/or drug targets to improve CRC therapy.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117543
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Kumar S. Homology modeling and consensus protein disorder prediction of human filamin. Bioinformation 2011; 6:366-9. [PMID: 21904422 PMCID: PMC3163912 DOI: 10.6026/97320630006366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/23/2022] Open
Abstract
Filamins are dimeric actin-binding proteins participating in the organization of the actin-based cytoskeleton. Their modular domain organization is made up of an N-terminal actin-binding domain composed of two CH domains followed by flexible rod regions that consist of 24 Ig-like domains. Homology modeling was used to model human filamin using Modeller 9v5. The resulting model assessed by Verify 3D and PROCHECK showed that the final model is reliable. The conformational disorder prediction of human filamin residues were also mapped on the validated structure of human filamin. Prediction of protein disorder in filamin structures will help structural biologists to find suitable targets to be analyzed and for understanding protein function.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Bioinformatics, School of Biotechnology and Health Sciences, Karunya University, Coimbatore - 641114, Tamil Nadu, India
| |
Collapse
|
174
|
Lewis AS, Estep CM, Chetkovich DM. The fast and slow ups and downs of HCN channel regulation. Channels (Austin) 2011; 4:215-31. [PMID: 20305382 DOI: 10.4161/chan.4.3.11630] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (h channels) form the molecular basis for the hyperpolarization-activated current, I(h), and modulation of h channels contributes to changes in cellular properties critical for normal functions in the mammalian brain and heart. Numerous mechanisms underlie h channel modulation during both physiological and pathological conditions, leading to distinct changes in gating, kinetics, surface expression, channel conductance or subunit composition of h channels. Here we provide a focused review examining mechanisms of h channel regulation, with an emphasis on recent findings regarding interacting proteins such as TRIP8b. This review is intended to serve as a comprehensive resource for physiologists to provide potential molecular mechanisms underlying functionally important changes in I(h) in different biological models, as well as for molecular biologists to delineate the predicted h channel changes associated with complex regulatory mechanisms in both normal function and in disease states.
Collapse
Affiliation(s)
- Alan S Lewis
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
175
|
Page RC, Clark JG, Misra S. Structure of filamin A immunoglobulin-like repeat 10 from Homo sapiens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:871-6. [PMID: 21821884 PMCID: PMC3151117 DOI: 10.1107/s1744309111024249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022]
Abstract
Filamin A (FlnA) plays a critical role in cytoskeletal organization, cell motility and cellular signaling. FlnA utilizes different binding sites on a series of 24 immunoglobulin-like domains (Ig repeats) to interact with diverse cytosolic proteins and with cytoplasmic portions of membrane proteins. Mutations in a specific domain, Ig10 (FlnA-Ig10), are correlated with two severe forms of the otopalatodigital syndrome spectrum disorders Melnick-Needles syndrome and frontometaphyseal dysplasia. The crystal structure of FlnA-Ig10 determined at 2.44 Å resolution provides insight into the perturbations caused by these mutations.
Collapse
Affiliation(s)
- Richard C Page
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
176
|
Razinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, Calderwood DA. The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. J Cell Sci 2011; 124:2631-41. [PMID: 21750192 DOI: 10.1242/jcs.084343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filamins are an important family of actin-binding and crosslinking proteins that mediate remodeling of the actin cytoskeleton and maintain extracellular matrix connections by anchoring transmembrane proteins to actin filaments and linking them to intracellular signaling cascades. We recently found that filamins are targeted for proteasomal degradation by the E3 ubiquitin ligase specificity subunit ASBα and that acute degradation of filamins through this ubiquitin-proteasome pathway correlates with cell differentiation. Specifically, in myeloid leukemia cells retinoic-acid-induced expression of ASB2α triggers filamin degradation and recapitulates early events crucial for cell differentiation. ASB2α is thought to link substrates to the ubiquitin transferase machinery; however, the mechanism by which ASB2α interacts with filamin to induce degradation remained unknown. Here, we use cell-based and biochemical assays to show that the subcellular localization of ASB2α to actin-rich structures is dependent on filamin and that the actin-binding domain (ABD) of filamin mediates the interaction with ASB2α. Furthermore, we show that the ABD is necessary and sufficient for ASB2α-mediated filamin degradation. We propose that ASB2α exerts its effect by binding the ABD and mediating its polyubiquitylation, so targeting filamins for degradation. These studies provide the molecular basis for ASB2α-mediated filamin degradation and unravel an important mechanism by which filamin levels can be acutely regulated.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | | | | | |
Collapse
|
177
|
Lamsoul I, Burande CF, Razinia Z, Houles TC, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood DA, Lutz PG. Functional and structural insights into ASB2alpha, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem 2011; 286:30571-30581. [PMID: 21737450 DOI: 10.1074/jbc.m111.220921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
By providing contacts between hematopoietic cells and the bone marrow microenvironment, integrins are implicated in cell adhesion and thereby in control of cell fate of normal and leukemia cells. The ASB2 gene, initially identified as a retinoic acid responsive gene and a target of the promyelocytic leukemia retinoic acid receptor α oncoprotein in acute promyelocytic leukemia cells, encodes two isoforms, a hematopoietic-type (ASB2α) and a muscle-type (ASB2β) that are involved in hematopoietic and myogenic differentiation, respectively. ASB2α is the specificity subunit of an E3 ubiquitin ligase complex that targets filamins to proteasomal degradation. To examine the relationship of the ASB2α structure to E3 ubiquitin ligase function, functional assays and molecular modeling were performed. We show that ASB2α, through filamin A degradation, enhances adhesion of hematopoietic cells to fibronectin, the main ligand of β1 integrins. Furthermore, we demonstrate that a short N-terminal region specific to ASB2α, together with ankyrin repeats 1 to 10, is necessary for association of ASB2α with filamin A. Importantly, the ASB2α N-terminal region comprises a 9-residue segment with predicted structural homology to the filamin-binding motifs of migfilin and β integrins. Together, these data provide new insights into the molecular mechanisms of ASB2α binding to filamin.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Clara F Burande
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Ziba Razinia
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Thibault C Houles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Delphine Menoret
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Massimiliano Baldassarre
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Monique Erard
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Christel Moog-Lutz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - David A Calderwood
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Pierre G Lutz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France.
| |
Collapse
|
178
|
Cooper J, Liu L, Woodruff EA, Taylor HE, Goodwin JS, D'Aquila RT, Spearman P, Hildreth JEK, Dong X. Filamin A protein interacts with human immunodeficiency virus type 1 Gag protein and contributes to productive particle assembly. J Biol Chem 2011; 286:28498-510. [PMID: 21705339 DOI: 10.1074/jbc.m111.239053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection.
Collapse
Affiliation(s)
- JoAnn Cooper
- Center for AIDS Health Disparities Research, Department of Microbiology, and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Uchida M, Ishii I, Hirata K, Yamamoto F, Tashiro K, Suzuki T, Nakayama Y, Ariyoshi N, Kitada M. Degradation of filamin induces contraction of vascular smooth muscle cells in type-I collagen matrix honeycombs. Cell Physiol Biochem 2011; 27:669-80. [PMID: 21691085 DOI: 10.1159/000330076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dedifferentiated rabbit vascular smooth muscle cells (SMCs) exhibit similar features to differentiated SMCs when cultured in three-dimensional matrices of type-I collagen called "honeycombs," but the mechanism is unknown. The role of filamin, an actin-binding protein that links actin filaments in SMCs, was investigated. METHODS Filamin and other related proteins were detected by western blot analysis and immunofluorescence staining. Honeycomb size was measured to confirm the contraction of SMCs. RESULTS Full-length filamin was expressed in subconfluent SMCs cultured on plates; however, degradation of filamin, which might be regulated by calpain, was observed in confluent SMCs cultured on plates and in honeycombs. While filamin was co-localized with β-actin in subconfluent SMCs grown on plates, filamin was detected in the cytoplasm in SMCs cultured in honeycombs, and degraded filamin was mainly detected in the cytoplasmic fraction of these cells. In addition, β-actin expression was low in the cytoskeletal fraction of SMCs cultured in honeycombs compared with cells cultured on plates, and the size of the honeycombs used for culturing SMCs was significantly reduced. CONCLUSION These data suggest that degradation of filamin in SMCs cultured in honeycombs induces structural weakness of β-non-muscle actin filaments, thereby permitting SMCs in honeycombs to achieve contractility.
Collapse
Affiliation(s)
- Masashi Uchida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Pentikäinen U, Jiang P, Takala H, Ruskamo S, Campbell ID, Ylänne J. Assembly of a filamin four-domain fragment and the influence of splicing variant-1 on the structure. J Biol Chem 2011; 286:26921-30. [PMID: 21636571 DOI: 10.1074/jbc.m110.195958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filamins are scaffold proteins that bind to various proteins, including the actin cytoskeleton, integrin adhesion receptors, and adaptor proteins such as migfilin. Alternative splicing of filamin, largely constructed from 24 Ig-like domains, is thought to have a role in regulating its interactions with other proteins. The filamin A splice variant-1 (FLNa var-1) lacks 41 amino acids, including the last β-strand of domain 19, FLNa(19), and the first β-strand of FLNa(20) that was previously shown to mask a key binding site on FLNa(21). Here, we present a structural characterization of domains 18-21, FLNa(18-21), in the FLNa var-1 as well as its nonspliced counterpart. A model of nonspliced FLNa(18-21), obtained from small angle x-ray scattering data, shows that these four domains form an L-shaped structure, with one arm composed of a pair of domains. NMR spectroscopy reveals that in the splice variant, FLNa(19) is unstructured whereas the other domains retain the same fold as in their canonical counterparts. The maximum dimensions predicted by small angle x-ray scattering data are increased upon migfilin binding in the FLNa(18-21) but not in the splice variant, suggesting that migfilin binding is able to displace the masking β-strand and cause a rearrangement of the structure. Possible function roles for the spliced variants are discussed.
Collapse
Affiliation(s)
- Ulla Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, P. O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland.
| | | | | | | | | | | |
Collapse
|
181
|
Ithychanda SS, Qin J. Evidence for multisite ligand binding and stretching of filamin by integrin and migfilin. Biochemistry 2011; 50:4229-31. [PMID: 21524097 PMCID: PMC3097901 DOI: 10.1021/bi2003229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Filamin, a large cytoskeletal adaptor, connects plasma membrane to cytoskeleton by binding to transmembrane receptor integrin and actin. Seven of 24 filamin immunoglobulin repeats have conserved integrin binding sites, of which repeats 19 and 21 were shown to be autoinhibited by their adjacent repeats 18 and 20, respectively. Here we show using nuclear magnetic resonance spectroscopy that the autoinhibition can be relieved by integrin or integrin regulator migfilin. We further demonstrate that repeats 19 and 21 can simultaneously engage ligands. The data suggest that filamin is mechanically stretched by integrin or migfilin via a multisite binding mechanism for regulating cytoskeleton and integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- Sujay Subbayya Ithychanda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
182
|
Chou SW, Hwang P, Gomez G, Fernando CA, West MC, Pollock LM, Lin-Jones J, Burnside B, McDermott BM. Fascin 2b is a component of stereocilia that lengthens actin-based protrusions. PLoS One 2011; 6:e14807. [PMID: 21625653 PMCID: PMC3082522 DOI: 10.1371/journal.pone.0014807] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/22/2010] [Indexed: 02/04/2023] Open
Abstract
Stereocilia are actin-filled protrusions that permit mechanotransduction in the
internal ear. To identify proteins that organize the cytoskeleton of
stereocilia, we scrutinized the hair-cell transcriptome of zebrafish. One
promising candidate encodes fascin 2b, a filamentous actin-bundling protein
found in retinal photoreceptors. Immunolabeling of zebrafish hair cells and the
use of transgenic zebrafish that expressed fascin 2b fused to green fluorescent
protein demonstrated that fascin 2b localized to stereocilia specifically. When
filamentous actin and recombinant fusion protein containing fascin 2b were
combined in vitro to determine their dissociation constant, a
Kd≈0.37 µM was observed. Electron
microscopy showed that fascin 2b-actin filament complexes formed parallel actin
bundles in vitro. We demonstrated that expression of fascin 2b
or espin, another actin-bundling protein, in COS-7 cells induced the formation
of long filopodia. Coexpression showed synergism between these proteins through
the formation of extra-long protrusions. Using phosphomutant fascin 2b proteins,
which mimicked either a phosphorylated or a nonphosphorylated state, in COS-7
cells and in transgenic hair cells, we showed that both formation of long
filopodia and localization of fascin 2b to stereocilia were dependent on serine
38. Overexpression of wild-type fascin 2b in hair cells was correlated with
increased stereociliary length relative to controls. These findings indicate
that fascin 2b plays a key role in shaping stereocilia.
Collapse
Affiliation(s)
- Shih-Wei Chou
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
| | - Philsang Hwang
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
| | - Gustavo Gomez
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
| | - Carol A. Fernando
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
| | - Megan C. West
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
| | - Lana M. Pollock
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Genetics, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
| | - Jennifer Lin-Jones
- Department of Molecular and Cell Biology,
University of California, Berkeley, California, United States of
America
| | - Beth Burnside
- Department of Molecular and Cell Biology,
University of California, Berkeley, California, United States of
America
| | - Brian M. McDermott
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
- Department of Neurosciences, Case Western
Reserve University School of Medicine, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
183
|
Allam AB, Alvarez S, Brown MB, Reyes L. Ureaplasma parvum infection alters filamin A dynamics in host cells. BMC Infect Dis 2011; 11:101. [PMID: 21507248 PMCID: PMC3107797 DOI: 10.1186/1471-2334-11-101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 04/20/2011] [Indexed: 05/14/2025] Open
Abstract
Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI), and complicated UTI. One protein that was perturbed by infection (filamin A) was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1). BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A) that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P < 0.004; ANOVA, P < 0.02). This phenomenon was independent of clinical profile (asymptomatic vs. complicated UTI). We selected filamin A as a target for additional studies. In the BPH-1 model, we confirmed that U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01), which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful molecular marker for identifying the specific host cell pathways that are perturbed during U. parvum infection.
Collapse
Affiliation(s)
- Ayman B Allam
- Department of Infectious Disease & Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
184
|
Ai J, Huang H, Lv X, Tang Z, Chen M, Chen T, Duan W, Sun H, Li Q, Tan R, Liu Y, Duan J, Yang Y, Wei Y, Li Y, Zhou Q. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol Biochem 2011; 27:207-16. [PMID: 21471709 DOI: 10.1159/000327946] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) is one of the most deadly diseases; metastasis and recurrence are the most important factors that affect the therapy of HCC chronically. Until now, the prognosis for the metastasis of HCC had not improved. Recently, several proteins that are related to metastasis and invasion of HCC were identified, but the effective markers still remain to be elucidated. METHODS In this study, comparative proteomics was used to study the differentially expressed proteins in two HCC cell lines MHCC97L and HCCLM9, which have low and high metastatic potentials, respectively. RESULTS Our findings indicated that filamin A (FLNA) and phosphoglycerate kinase 1 (PGK1) were two significantly differentially expressed proteins, with high expression in HCCLM9 cells, and may influence the metastasis of HCC cells. CONCLUSION Taken together with the confirmation of expression on the mRNA level, we propose the use of FLNA and PGK1 as potential markers for the progression of HCC.
Collapse
Affiliation(s)
- Jianzhong Ai
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Nakamura F, Stossel TP, Hartwig JH. The filamins: organizers of cell structure and function. Cell Adh Migr 2011; 5:160-9. [PMID: 21169733 DOI: 10.4161/cam.5.2.14401] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Filamin A (FLNa), the first non-muscle actin filament cross-linking protein, was identified in 1975. Thirty five years of FLNa research has revealed its structure in great detail, discovered its isoforms (FLNb and c), and identified over 90 binding partners including channels, receptors, intracellular signaling molecules, and even transcription factors. Due to this diversity, mutations in human FLN genes result in a wide range of anomalies with moderate to lethal consequences. This review focuses on the structure and functions of FLNa in cell migration and adhesion.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Translational Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
186
|
The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta 2011; 412:812-22. [PMID: 21333641 DOI: 10.1016/j.cca.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many aspects of MScl. This review aims to provide an overview over proteomic biomarker studies in the EAE model emphasizing the translational aspects with respect to MScl in humans.
Collapse
|
187
|
Lynch CD, Gauthier NC, Biais N, Lazar AM, Roca-Cusachs P, Yu CH, Sheetz MP. Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions. Mol Biol Cell 2011; 22:1263-73. [PMID: 21325628 PMCID: PMC3198308 DOI: 10.1091/mbc.e10-08-0661] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells severely depleted of filamins were observed to have numerous motility-related defects, including a defect in endoplasmic spreading; smaller, more dynamic focal adhesions; and an inability to sustain high levels of traction force. The endoplasm as a separate mechanical unit spread by pulling forces is also discussed. Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB–/– mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA–/– MEFs, but not FlnB–/– MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.
Collapse
Affiliation(s)
- Christopher D Lynch
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Selcen D. Myofibrillar myopathies. Neuromuscul Disord 2011; 21:161-71. [PMID: 21256014 DOI: 10.1016/j.nmd.2010.12.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022]
Abstract
Myofibrillar myopathies represent a group of muscular dystrophies with a similar morphologic phenotype. They are characterized by a distinct pathologic pattern of myofibrillar dissolution associated with disintegration of the Z-disk, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins and sometimes congophilic material. The clinical features of myofibrillar myopathies are more variable. These include progressive muscle weakness, that often involves or begins in distal muscles but limb-girdle or scapuloperoneal distributions can also occur. Cardiomyopathy and peripheral neuropathy are frequent associated features. EMG of the affected muscles reveals myopathic motor unit potentials and abnormal irritability often with myotonic discharges. Rarely, neurogenic motor unit potentials or slow nerve conductions are present. The generic diagnosis of myofibrillar myopathies is based on muscle biopsy findings in frozen sections. To date, all myofibrillar myopathy mutations have been traced to Z-disk-associated proteins, namely, desmin, αB-crystallin, myotilin, ZASP, filamin C and Bag3. However, in the majority of the myofibrillar myopathy patients the disease gene awaits discovery.
Collapse
Affiliation(s)
- Duygu Selcen
- Department of Neurology, Division of Child Neurology and Neuromuscular Disease Research Laboratory, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
189
|
Windhorst S, Kalinina T, Schmid K, Blechner C, Kriebitzsch N, Hinsch R, Chang L, Herich L, Schumacher U, Mayr GW. Functional role of inositol-1,4,5-trisphosphate-3-kinase-A for motility of malignant transformed cells. Int J Cancer 2011; 129:1300-9. [DOI: 10.1002/ijc.25782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/02/2010] [Indexed: 11/09/2022]
|
190
|
Wakamatsu Y, Sakai D, Suzuki T, Osumi N. FilaminB is required for the directed localization of cell-cell adhesion molecules in embryonic epithelial development. Dev Dyn 2010; 240:149-61. [DOI: 10.1002/dvdy.22518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
191
|
Filamin A mediates interactions between cytoskeletal proteins that control cell adhesion. FEBS Lett 2010; 585:18-22. [PMID: 21095189 DOI: 10.1016/j.febslet.2010.11.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/09/2010] [Accepted: 11/17/2010] [Indexed: 11/22/2022]
Abstract
Cell adhesion, spreading and migration on extracellular matrices are regulated by complex processes that involve the cytoskeleton and a large array of adhesion receptors, including the β1 integrin. Filamin A is a large, multi-domain, homodimeric actin binding protein that contributes to the mechanical stability of cells and interacts with several proteins that regulate cell adhesion including β1 integrin and several protein kinases. Here we review current data on the structure, mechanical properties and intracellular signaling functions of filamin that regulate cell adhesion. We also consider new data showing that interactions of filamin A with intermediate filaments and protein kinase C enable tight regulation of β1 integrin function and consequently early events in cell adhesion and migration on extracellular matrix proteins.
Collapse
|
192
|
Nakahira M, Macedo JNA, Seraphim TV, Cavalcante N, Souza TACB, Damalio JCP, Reyes LF, Assmann EM, Alborghetti MR, Garratt RC, Araujo APU, Zanchin NIT, Barbosa JARG, Kobarg J. A draft of the human septin interactome. PLoS One 2010; 5:e13799. [PMID: 21082023 PMCID: PMC2970546 DOI: 10.1371/journal.pone.0013799] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins. Methodology/Principal Findings Here, we performed yeast two-hybrid screens with human septins 1–10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments. Conclusions/Significance If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the “group rule”, i.e. members of the same group (e.g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.
Collapse
Affiliation(s)
- Marcel Nakahira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
| | | | - Thiago Vargas Seraphim
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
| | - Nayara Cavalcante
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Tatiana A. C. B. Souza
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | | | - Luis Fernando Reyes
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Eliana M. Assmann
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Marcos R. Alborghetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
| | - Richard C. Garratt
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Ana Paula U. Araujo
- Centro de Biotecnologia Molecular Estrutural, Universidade de São Paulo, São Carlos, Brasil
| | - Nilson I. T. Zanchin
- Centro de Biologia Molecular e Engenharia Genética e Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brasil
| | - João A. R. G. Barbosa
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brasil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas, Campinas, Brasil
- * E-mail:
| |
Collapse
|
193
|
Diffuse Abnormal Layering of Small Intestinal Smooth Muscle is Present in Patients With FLNA Mutations and X-linked Intestinal Pseudo-obstruction. Am J Surg Pathol 2010; 34:1528-43. [DOI: 10.1097/pas.0b013e3181f0ae47] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
194
|
Halene S, Gao Y, Hahn K, Massaro S, Italiano JE, Schulz V, Lin S, Kupfer GM, Krause DS. Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood 2010; 116:1942-50. [PMID: 20525922 PMCID: PMC3173990 DOI: 10.1182/blood-2010-01-261743] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 05/21/2010] [Indexed: 12/30/2022] Open
Abstract
Serum response factor (Srf) is a MADS-box transcription factor that is critical for muscle differentiation. Its function in hematopoiesis has not yet been revealed. Mkl1, a cofactor of Srf, is part of the t(1;22) translocation in acute megakaryoblastic leukemia, and plays a critical role in megakaryopoiesis. To test the role of Srf in megakaryocyte development, we crossed Pf4-Cre mice, which express Cre recombinase in cells committed to the megakaryocytic lineage, to Srf(F/F) mice in which functional Srf is no longer expressed after Cre-mediated excision. Pf4-Cre/Srf(F/F) knockout (KO) mice are born with normal Mendelian frequency, but have significant macrothrombocytopenia with approximately 50% reduction in platelet count. In contrast, the BM has increased number and percentage of CD41(+) megakaryocytes (WT: 0.41% ± 0.06%; KO: 1.92% ± 0.12%) with significantly reduced ploidy. KO mice show significantly increased megakaryocyte progenitors in the BM by FACS analysis and CFU-Mk. Megakaryocytes lacking Srf have abnormal stress fiber and demarcation membrane formation, and platelets lacking Srf have abnormal actin distribution. In vitro and in vivo assays reveal platelet function defects in KO mice. Critical actin cytoskeletal genes are down-regulated in KO megakaryocytes. Thus, Srf is required for normal megakaryocyte maturation and platelet production partly because of regulation of cytoskeletal genes.
Collapse
Affiliation(s)
- Stephanie Halene
- Department of Internal Medicine and Yale Cancer Center, Section of Hematology, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Odgerel Z, van der Ven PFM, Fürst DO, Goldfarb LG. DNA sequencing errors in molecular diagnostics of filamin myopathy. Clin Chem Lab Med 2010; 48:1409-14. [PMID: 20578970 DOI: 10.1515/cclm.2010.272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Filamin myopathy is a neuromuscular disorder manifesting with predominantly limb-girdle muscle weakness and in many patients with diaphragm paralysis and cardiomyopathy, caused by mutations in the filamin C (FLNC) gene. Molecular diagnosis of filamin myopathy based on direct DNA sequencing of coding exons is compromised by the presence of a high homology pseudogene (pseFLNC) located approximately 53.6 kb downstream of the functional FLNC gene on chromosome 7q. METHODS Molecular cloning, RT-PCR and real-time PCR methods were used to detect sequence differences between the FLNC and pseFLNC that are implicated in known or potential molecular diagnostic errors. Overall, 50 patients with a phenotype resembling filamin myopathy have been screened for mutations in FLNC. RESULTS FLNC sequence inconsistencies caused by the interference from pseFLNC were identified and diagnostic errors involving, in particular, the detection of the most frequent disease-causing FLNC p.W2710X mutation resolved. Mismatches between the FLNC and pseFLNC sequences were tabulated for future use. CONCLUSIONS We devise a strategy that allows one to discern mutations occurring in the functional FLNC from those harbored in pseFLNC, thus preventing possible complications in future research and patient genetic testing.
Collapse
Affiliation(s)
- Zagaa Odgerel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9404, USA
| | | | | | | |
Collapse
|
196
|
Cabrita L, Dobson CM, Christodoulou J. Early Nascent Chain Folding Events on the Ribosome. Isr J Chem 2010. [DOI: 10.1002/ijch.201000015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
197
|
Luan X, Hong D, Zhang W, Wang Z, Yuan Y. A novel heterozygous deletion–insertion mutation (2695–2712 del/GTTTGT ins) in exon 18 of the filamin C gene causes filaminopathy in a large Chinese family. Neuromuscul Disord 2010; 20:390-6. [DOI: 10.1016/j.nmd.2010.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/17/2010] [Accepted: 03/10/2010] [Indexed: 11/25/2022]
|
198
|
Linnemann A, van der Ven PFM, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Fürst DO. The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 2010; 89:681-92. [PMID: 20554076 DOI: 10.1016/j.ejcb.2010.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/28/2022] Open
Abstract
Here we introduce myopodin as a novel filamin C binding partner. Corroborative yeast two-hybrid and biochemical analyses indicate that the central part of myopodin that shows high homology to the closely related protein synaptopodin and that is common to all its currently known or predicted variants interacts with filamin C immunoglobulin-like domains 20-21. A detailed characterization of the previously described interaction between myopodin and alpha-actinin demonstrates for the first time that myopodin contains three independent alpha-actinin-binding sites. Newly developed myopodin-specific antibodies reveal expression at the earliest stages of in vitro differentiation of human skeletal muscle cells preceding the expression of sarcomeric alpha-actinin. Myopodin colocalizes with filamin and alpha-actinin during all stages of muscle development. By contrast, colocalization with its previously identified binding partner zyxin is restricted to early developmental stages. Genetic and cellular analyses of skeletal muscle provided direct evidence for an alternative transcriptional start site in exon three, corroborating the expression of a myopodin variant lacking the PDZ domain encoded by exons 1 and 2 in skeletal muscle. We conclude that myopodin is a multiadapter protein of the sarcomeric Z-disc that links nascent myofibrils to the sarcolemma via zyxin, and might play a role in early assembly and stabilization of the Z-disc. Mutations in FLNC, ACTN2 and several other genes encoding Z-disc-related proteins cause myopathy and cardiomyopathy. Its localization and its association with the myopathy-associated proteins filamin C and alpha-actinin make myopodin an interesting candidate for a muscle disease gene.
Collapse
Affiliation(s)
- Anja Linnemann
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Jeon YJ, Yoo HM, Chung CH. ISG15 and immune diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:485-96. [PMID: 20153823 PMCID: PMC7127291 DOI: 10.1016/j.bbadis.2010.02.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/22/2022]
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein, consisting of two ubiquitin-like domains. ISG15 is synthesized as a precursor in certain mammals and, therefore, needs to be processed to expose the C-terminal glycine residue before conjugation to target proteins. A set of three-step cascade enzymes, an E1 enzyme (UBE1L), an E2 enzyme (UbcH8), and one of several E3 ligases (e.g., EFP and HERC5), catalyzes ISG15 conjugation (ISGylation) of a specific protein. These enzymes are unique among the cascade enzymes for ubiquitin and other ubiquitin-like proteins in that all of them are induced by type I IFNs or other stimuli, such as exposure to viruses and lipopolysaccharide. Mass spectrometric analysis has led to the identification of several hundreds of candidate proteins that can be conjugated by ISG15. Some of them are type I IFN-induced proteins, such as PKR and RIG-I, and some are the key regulators that are involved in IFN signaling, such as JAK1 and STAT1, implicating the role of ISG15 and its conjugates in type I IFN-mediated innate immune responses. However, relatively little is known about the functional significance of ISG15 induction due to the lack of information on the consequences of its conjugation to target proteins. Here, we describe the recent progress made in exploring the biological function of ISG15 and its reversible modification of target proteins and thus in their implication in immune diseases.
Collapse
Affiliation(s)
| | | | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
200
|
Santos HH, Garcia PP, Pereira L, Leão LL, Aguiar RAPL, Lana AMA, Carvalho MRS, Aguiar MJB. Mutational analysis of two boys with the severe perinatally lethal Melnick-Needles syndrome. Am J Med Genet A 2010; 152A:726-31. [PMID: 20186808 DOI: 10.1002/ajmg.a.33260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melnick-Needles syndrome (MNS) (OMIM 309350) is a rare, X-linked dominant condition, caused by mutations in the filamin A gene (FLNA, on Xq28). In females, the syndrome presents with bone dysplasia and characteristic facial changes. Affected males may show two different phenotypes. One is similar to the female phenotype and is seen in children born to unaffected mothers and suggesting new mutations. Alternatively, males born to affected mothers have an embryonic or perinatally lethal disorder. It has been claimed that MNS constitutes part of a spectrum including frontometaphyseal dysplasia, otopalatodigital syndrome type 1 (OPD1) and otopalatodigital syndrome type 2 (OPD2). These conditions are produced by different mutations in the filamin A gene (FLNA). MNS is caused by three different mutations in FLNA exon 22, to date detected only in females. We describe the clinical manifestations and present the results of FLNA exon 22 mutations screening in two boys with the perinatally lethal form of MNS and their affected mothers. In order to obtain DNA amplification from paraffin-embedded tissues, we designed a new method based on hemi-nested PCR. One of the children (and his mother) had a previously undescribed mutation produced by a double SNP in the positions 3776 and 3777 of the gene and leading to an amino acid substitution (NP_001447:p.[Gly1176Asp]). The second child (and his mother) had an already known mutation (NP_001447.2:p[.Ser1199Leu]). This is the first report confirming the presence FLNA mutations in boys with the perinatally lethal phenotype of MNS. (
Collapse
Affiliation(s)
- Helena H Santos
- Serviço Especial de Genética, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|