151
|
Chen S, Wang Y, Liu W, Liang Y, Wang Y, Wu Z, Xu L, Liang X, Ma C, Gao L. N-Glycosylation at Asn291 Stabilizes TIM-4 and Promotes the Metastasis of NSCLC. Front Oncol 2022; 12:730530. [PMID: 35433445 PMCID: PMC9008408 DOI: 10.3389/fonc.2022.730530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
T-cell immunoglobulin domain and mucin domain 4 (TIM-4) is a transmembrane protein that promotes epithelial-mesenchymal transition (EMT), migration and invasion of non-small cell lung cancer (NSCLC) cells. Most transmembrane proteins are modified by N-glycosylation and the importance of protein N-glycosylation in cancer cell metastasis has been well appreciated. However, whether TIM-4 is modified by N-glycosylation and the role of TIM-4 N-glycosylation in NSCLC remains largely unknown. In the current study, we reported that TIM-4 was extensively N-glycosylated at Asn291. After the removal of N-glycosylation, the stability of TIM-4 protein was decreased and TIM-4 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated ERAD. Thus, the expression of TIM-4 on the cell surface was decreased, which suppressed TIM-4-mediated metastasis in NSCLC. In summary, the present study identifies TIM-4 N-glycosylation and its role in NSCLS migration, which would provide a valuable biomarker for developing drugs targeting N-glycosylation at Asn291 on TIM-4.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuzhen Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Liu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingchun Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuanchang Wu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Xiaohong Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifen Gao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
152
|
Meyer BH, Adam PS, Wagstaff BA, Kolyfetis GE, Probst AJ, Albers SV, Dorfmueller HC. Agl24 is an ancient archaeal homolog of the eukaryotic N-glycan chitobiose synthesis enzymes. eLife 2022; 11:e67448. [PMID: 35394422 PMCID: PMC8993221 DOI: 10.7554/elife.67448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
Protein N-glycosylation is a post-translational modification found in organisms of all domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in Eukaryotes, although the enzyme catalyzing this reaction remains unknown. Here, we report the identification of a thermostable archaeal β-1,4-N-acetylglucosaminyltransferase, named archaeal glycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core. Biochemical characterization confirmed its function as an inverting β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase. Substitution of a conserved histidine residue, found also in the eukaryotic and bacterial homologs, demonstrated its functional importance for Agl24. Furthermore, bioinformatics and structural modeling revealed similarities of Agl24 to the eukaryotic Alg14/13 and a distant relation to the bacterial MurG, which are catalyzing the same or a similar reaction, respectively. Phylogenetic analysis of Alg14/13 homologs indicates that they are ancient in Eukaryotes, either as a lateral transfer or inherited through eukaryogenesis.
Collapse
Affiliation(s)
- Benjamin H Meyer
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbial Ecology, University of Duisburg-EssenEssenGermany
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Molecular Biology of Archaea, Faculty of Biology, University of FreiburgFreiburgGermany
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry University Duisburg-EssenEssenGermany
| | - Ben A Wagstaff
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - George E Kolyfetis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of AthensAthensGreece
| | - Alexander J Probst
- Centre of Water and Environmental Research (ZWU), University of Duisburg-EssenEssenGermany
| | - Sonja V Albers
- Molecular Biology of Archaea, Faculty of Biology, University of FreiburgFreiburgGermany
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
153
|
Hsu YP, Verma D, Sun S, McGregor C, Mangion I, Mann BF. Successive remodeling of IgG glycans using a solid-phase enzymatic platform. Commun Biol 2022; 5:328. [PMID: 35393560 PMCID: PMC8990068 DOI: 10.1038/s42003-022-03257-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
The success of glycoprotein-based drugs in various disease treatments has become widespread. Frequently, therapeutic glycoproteins exhibit a heterogeneous array of glycans that are intended to mimic human glycopatterns. While immunogenic responses to biologic drugs are uncommon, enabling exquisite control of glycosylation with minimized microheterogeneity would improve their safety, efficacy and bioavailability. Therefore, close attention has been drawn to the development of glycoengineering strategies to control the glycan structures. With the accumulation of knowledge about the glycan biosynthesis enzymes, enzymatic glycan remodeling provides a potential strategy to construct highly ordered glycans with improved efficiency and biocompatibility. In this study, we quantitatively evaluate more than 30 enzymes for glycoengineering immobilized immunoglobulin G, an impactful glycoprotein class in the pharmaceutical field. We demonstrate successive glycan remodeling in a solid-phase platform, which enabled IgG glycan harmonization into a series of complex-type N-glycoforms with high yield and efficiency while retaining native IgG binding affinity. A solid-phase glycan remodeling (SPGR) platform is presented. Over thirty enzymes were evaluated for successive glycoengineering of immobilized antibodies with outstanding performance in several SPGR reactions.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.,Exploratory Science Center, Merck & Co., Inc, Cambridge, MA, 02141, USA
| | - Deeptak Verma
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Shuwen Sun
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Caroline McGregor
- Process Research & Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Ian Mangion
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Benjamin F Mann
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.
| |
Collapse
|
154
|
Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:1-40. [PMID: 35320517 DOI: 10.1007/978-1-0716-2055-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.
Collapse
Affiliation(s)
- Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
155
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
156
|
Chen SY, Lih TSM, Li QK, Zhang H. Comparing Urinary Glycoproteins among Three Urogenital Cancers and Identifying Prostate Cancer-Specific Glycoproteins. ACS OMEGA 2022; 7:9172-9180. [PMID: 35350332 PMCID: PMC8945184 DOI: 10.1021/acsomega.1c05223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Prostate cancer, bladder cancer, and renal cancers are major urogenital cancers. Of which, prostate cancer is the most commonly diagnosed and second leading cause of cancer death for men in the United States. For urogenital cancers, urine is considered as proximate body fluid to the tumor site for developing non-invasiveness tests. However, the specific molecular signatures from different urogenital cancers are needed to relate changes in urine to various cancer detections. Herein, we utilized a previously published C4-Tip and C18/MAX-Tip workflow for enrichment of glycopeptides from urine samples and evaluated urinary glycopeptides for its cancer specificity. We analyzed 66 urine samples from bladder cancer (n = 27), prostate cancer (n = 4), clear cell renal cell carcinoma (ccRCC, n = 3), and benign plastic hyperplasia (BPH, n = 32) and then compared them with a previous publication that reported glycopeptides associated with aggressive prostate cancer (Gleason score ≥ 8). We further demonstrated the cancer specificity of the glycopeptides associated with aggressive prostate cancer. In this study, a total of 33 glycopeptides were identified to be specifically differentially expressed in prostate cancer compared to other urogenital cancer types as well as BPH urines. By cross-comparison with our previous urinary glycoproteomic dataset for aggressive prostate cancer, we reported a total of four glycopeptides from glycoproteins DSC2, MGAM, PIK3IP1, and CD55, commonly identified to be prostate cancer-specific. Together, these results deepen our understanding of the urinary glycoproteins associated with urogenital cancer types and expand our knowledge of the cancer specificity of urinary glycoproteins among urogenital cancer progression.
Collapse
Affiliation(s)
- Shao-Yung Chen
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218-2625, Maryland, United States
| | - Tung-Shing Mamie Lih
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
| | - Qing Kay Li
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
| | - Hui Zhang
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218-2625, Maryland, United States
- Department
of Urology, Johns Hopkins University, Baltimore 21287, Maryland, United States
- Department
of Oncology, Johns Hopkins University Baltimore 21205, Maryland, United States
| |
Collapse
|
157
|
Kirkemo LL, Elledge SK, Yang J, Byrnes JR, Glasgow JE, Blelloch R, Wells JA. Cell-surface tethered promiscuous biotinylators enable comparative small-scale surface proteomic analysis of human extracellular vesicles and cells. eLife 2022; 11:73982. [PMID: 35257663 PMCID: PMC8983049 DOI: 10.7554/elife.73982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Characterization of cell surface proteome differences between cancer and healthy cells is a valuable approach for the identification of novel diagnostic and therapeutic targets. However, selective sampling of surface proteins for proteomics requires large samples (>10e6 cells) and long labeling times. These limitations preclude analysis of material-limited biological samples or the capture of rapid surface proteomic changes. Here, we present two labeling approaches to tether exogenous peroxidases (APEX2 and HRP) directly to cells, enabling rapid, small-scale cell surface biotinylation without the need to engineer cells. We used a novel lipidated DNA-tethered APEX2 (DNA-APEX2), which upon addition to cells promoted cell agnostic membrane-proximal labeling. Alternatively, we employed horseradish peroxidase (HRP) fused to the glycan-binding domain of wheat germ agglutinin (WGA-HRP). This approach yielded a rapid and commercially inexpensive means to directly label cells containing common N-Acetylglucosamine (GlcNAc) and sialic acid glycans on their surface. The facile WGA-HRP method permitted high surface coverage of cellular samples and enabled the first comparative surface proteome characterization of cells and cell-derived small extracellular vesicles (EVs), leading to the robust quantification of 953 cell and EV surface annotated proteins. We identified a newly recognized subset of EV-enriched markers, as well as proteins that are uniquely upregulated on Myc oncogene-transformed prostate cancer EVs. These two cell-tethered enzyme surface biotinylation approaches are highly advantageous for rapidly and directly labeling surface proteins across a range of material-limited sample types.
Collapse
Affiliation(s)
- Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Susanna K Elledge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Jiuling Yang
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Jeff E Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Robert Blelloch
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
158
|
Zhao S, Mo X, Wen Z, Ren L, Chen Z, Lin W, Wang Q, Min S, Chen B. Comprehensive bioinformatics analysis reveals the hub genes and pathways associated with multiple myeloma. Hematology 2022; 27:280-292. [PMID: 35192775 DOI: 10.1080/16078454.2022.2040123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE While the prognosis of multiple myeloma (MM) has significantly improved over the last decade because of new treatment options, it remains incurable. Aetiological explanations and biological targets based on genomics may provide additional help for rational disease intervention. MATERIALS AND METHODS Three microarray datasets associated with MM were downloaded from the Gene Expression Omnibus (GEO) database. GSE125364 and GSE39754 were used as the training set, and GSE13591 was used as the verification set. The differentially expressed genes (DEGs) were obtained from the training set, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate their functions. The hub genes were derived from the combined results of a protein-protein interaction (PPI) network and weighted gene coexpression network analysis (WGCNA). The receiver operating characteristic (ROC) curves of hub genes were plotted to evaluate their clinical diagnostic value. Biological processes and signaling pathways associated with hub genes were explained by gene set enrichment analysis (GSEA). RESULTS A total of 1759 DEGs were identified. GO and KEGG pathway analyses suggested that the DEGs were related to the process of protein metabolism. RPN1, SEC61A1, SPCS1, SRPR, SRPRB, SSR1 and TRAM1 were proven to have clinical diagnostic value for MM. The GSEA results suggested that the hub genes were widely involved in the N-glycan biosynthesis pathway. CONCLUSION The hub genes identified in this study can partially explain the potential molecular mechanisms of MM and serve as candidate biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Xiaoyi Mo
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Zhenxing Wen
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Lijuan Ren
- Molecular Diagnosis and Gene Testing Center, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhipeng Chen
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Wei Lin
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Qi Wang
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, People's Republic of China
| | - Shaoxiong Min
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Bailing Chen
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| |
Collapse
|
159
|
Gaye MM, Ward CM, Piasecki AJ, Stahl VL, Karagianni A, Costello CE, Ravid K. Characterization of Glycoproteoforms of Integrins α2 and β1 in Megakaryocytes in the Occurrence of JAK2V617F Mutation-Induced Primary Myelofibrosis. Mol Cell Proteomics 2022; 21:100213. [PMID: 35182768 PMCID: PMC8968581 DOI: 10.1016/j.mcpro.2022.100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.
Collapse
Affiliation(s)
- Maissa M. Gaye
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christina M. Ward
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew J. Piasecki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vanessa L. Stahl
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aikaterini Karagianni
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Catherine E. Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA,For correspondence: Catherine E. Costello; Katya Ravid
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
160
|
Cvetko A, Tijardović M, Bilandžija-Kuš I, Gornik O. Comparison of self-sampling blood collection for N-glycosylation analysis. BMC Res Notes 2022; 15:61. [PMID: 35172879 PMCID: PMC8849020 DOI: 10.1186/s13104-022-05958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Self-sampling of capillary blood provides easier sample collection, handling, and shipping compared to more invasive blood sampling via venepuncture. Recently, other means of capillary blood collection were introduced to the market, such as Neoteryx sticks and Noviplex cards. We tested the comparability of these two self-sampling methods, alongside dried blood spots (DBS), with plasma acquired from venepunctured blood in N-glycoprofiling of total proteins. We have also tested the intra-day repeatability of the three mentioned self-sampling methods. Capillary blood collection with Neoteryx, Noviplex and DBS was done following the manufacturers’ instructions and N-glycoprofiling of released, fluorescently labelled N-glycans was performed with ultra-performance liquid chromatography. Results Comparability with plasma was assessed by calculating the relative deviance, which was 0.674 for DBS, 0.092 for Neoteryx sticks, and 0.069 for Noviplex cards. In repeatability testing, similar results were obtained, with Noviplex cards and Neoteryx sticks performing substantially better than DBS (CVs = 4.831% and 7.098%, compared to 14.305%, respectively). Our preliminary study on the use of Neoteryx and Noviplex self-sampling devices in glycoanalysis demonstrates their satisfactory performance in both the comparability and repeatability testing, however, they should be further tested in larger collaborations and cohorts. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05958-9.
Collapse
Affiliation(s)
- Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
161
|
Baker AN, Muguruza AR, Richards S, Georgiou PG, Goetz S, Walker M, Dedola S, Field RA, Gibson MI. Lateral Flow Glyco-Assays for the Rapid and Low-Cost Detection of Lectins-Polymeric Linkers and Particle Engineering Are Essential for Selectivity and Performance. Adv Healthc Mater 2022; 11:e2101784. [PMID: 34747143 PMCID: PMC7612396 DOI: 10.1002/adhm.202101784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow immuno-assays, such as the home pregnancy test, are rapid point-of-care diagnostics that use antibody-coated nanoparticles to bind antigens/analytes (e.g., viruses, toxins or hormones). Ease of use, no need for centralized infrastructure and low-cost, makes these devices appealing for rapid disease identification, especially in low-resource environments. Here glycosylated polymer-coated nanoparticles are demonstrated for the sensitive, label-free detection of lectins in lateral flow and flow-through. The systems introduced here use glycans, not antibodies, to provide recognition: a "lateral flow glyco-assay," providing unique biosensing opportunities. Glycans are installed onto polymer termini and immobilized onto gold nanoparticles, providing colloidal stability but crucially also introducing assay tunability and selectivity. Using soybean agglutinin and Ricinus communis agglutinin I (RCA120 ) as model analytes, the impact of polymer chain length and nanoparticle core size are evaluated, with chain length found to have a significant effect on signal generation-highlighting the need to control the macromolecular architecture to tune response. With optimized systems, lectins are detectable at subnanomolar concentrations, comparable to antibody-based systems. Complete lateral flow devices are also assembled to show how these devices can be deployed in the "real world." This work shows that glycan-binding can be a valuable tool in rapid diagnostics.
Collapse
Affiliation(s)
- Alexander N. Baker
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Asier R. Muguruza
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Sarah‐Jane Richards
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Stephen Goetz
- Iceni Diagnostics LtdNorwich Research ParkNorwichNR4 7GJUK
| | - Marc Walker
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Simone Dedola
- Iceni Diagnostics LtdNorwich Research ParkNorwichNR4 7GJUK
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Matthew I. Gibson
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
162
|
Kuribara T, Totani K. Oligomannose-Type Glycan Processing in the Endoplasmic Reticulum and Its Importance in Misfolding Diseases. BIOLOGY 2022; 11:biology11020199. [PMID: 35205066 PMCID: PMC8869290 DOI: 10.3390/biology11020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glycans play many roles in biological processes. For instance, they mediate cell–cell interaction, viral infection, and protein folding of glycoproteins. Glycoprotein folding in the endoplasmic reticulum (ER) is closely related to the onset of diseases such as misfolding diseases caused by accumulation of misfolded proteins in the ER. In this review, we focused on oligomannose-type glycan processing in the ER, which has central roles in glycoprotein folding in the ER, and we summarise relationship between oligomannose-type glycan processing and misfolding diseases arising from the disruption of ER homeostasis. Abstract Glycoprotein folding plays a critical role in sorting glycoprotein secretion and degradation in the endoplasmic reticulum (ER). Furthermore, relationships between glycoprotein folding and several diseases, such as type 2 diabetes and various neurodegenerative disorders, are indicated. Patients’ cells with type 2 diabetes, and various neurodegenerative disorders induce ER stress, against which the cells utilize the unfolded protein response for protection. However, in some cases, chronic and/or massive ER stress causes critical damage to cells, leading to the onset of ER stress-related diseases, which are categorized into misfolding diseases. Accumulation of misfolded proteins may be a cause of ER stress, in this respect, perturbation of oligomannose-type glycan processing in the ER may occur. A great number of studies indicate the relationships between ER stress and misfolding diseases, while little evidence has been reported on the connection between oligomannose-type glycan processing and misfolding diseases. In this review, we summarize alteration of oligomannose-type glycan processing in several ER stress-related diseases, especially misfolding diseases and show the possibility of these alteration of oligomannose-type glycan processing as indicators of diseases.
Collapse
|
163
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
164
|
Arumugam K, Sellappan M, Anand D, Anand S, Radhakrishnan SV. A Text Mining and Machine Learning Protocol for Extracting Posttranslational Modifications of Proteins from PubMed: A Special Focus on Glycosylation, Acetylation, Methylation, Hydroxylation, and Ubiquitination. Methods Mol Biol 2022; 2496:179-202. [PMID: 35713865 DOI: 10.1007/978-1-0716-2305-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational modifications (PTMs) of proteins impart a significant role in human cellular functions ranging from localization to signal transduction. Hundreds of PTMs act in a human cell. Among them, only the selected PTMs are well established and documented. PubMed includes thousands of papers on the selected PTMs, and it is a challenge for the biomedical researchers to assimilate useful information manually. Alternatively, text mining approaches and machine learning algorithm automatically extract the relevant information from PubMed. Protein phosphorylation is a well-established PTM and several research works are under way. Many existing systems are there for protein phosphorylation information extraction. A recent approach uses a hybrid approach using text mining and machine learning to extract protein phosphorylation information from PubMed. Some of the other common PTMs that exhibit similar features in terms of entities that are involved in PTM process, that is, the substrate, the enzymes, and the amino acid residues, are glycosylation, acetylation, methylation, hydroxylation, and ubiquitination. This has motivated us to repurpose and extend the text mining protocol and machine learning information extraction methodology developed for protein phosphorylation to these PTMs. In this chapter, the chemistry behind each of the PTMs is briefly outlined and the text mining protocol and machine learning algorithm adaption is explained for the same.
Collapse
Affiliation(s)
- Krishnamurthy Arumugam
- Department of Management Studies, Coimbatore Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
| | - Malathi Sellappan
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Coimbatore, Tamilnadu, India
| | - Dheepa Anand
- Department of Pharmacology, Cheran College of Pharmacy, Coimbatore, Tamilnadu, India
| | - Sadhanha Anand
- Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India
| | | |
Collapse
|
165
|
Pecori F, Hanamatsu H, Furukawa JI, Nishihara S. Comprehensive and Comparative Structural Glycome Analysis in Mouse Epiblast-like Cells. Methods Mol Biol 2022; 2490:179-193. [PMID: 35486246 DOI: 10.1007/978-1-0716-2281-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycosylation is one of the most abundant posttranslational modifications and is involved in a wide range of cellular processes. Glycome diversity in mammals is generated by the action of over 200 distinct glycosyltransferases and related enzymes. Nevertheless, glycosylation dynamics are tightly coordinated to allow proper organismal development. Here, using mouse embryonic stem cells (mESCs) and mouse epiblast-like cells (mEpiLCs) as model systems, we describe a robust protocol that allows comprehensive and comparative structural analysis of the glycome.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
- Glycan and Life System Integration Center (GaLSIC), Soka University, Tokyo, Japan.
| |
Collapse
|
166
|
Zhang Y, Gao Y, Yong Y. Lectin-Mediated Coimmobilization of Cascade Glycoenzymes. Methods Mol Biol 2022; 2487:189-195. [PMID: 35687237 DOI: 10.1007/978-1-0716-2269-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the vast majority of enzymes are glycosylated, lectins can serve as molecular glues to agglutinate multiple glycoenzymes for preparing multienzyme catalysts in an efficient and biocompatible way. Taking glucose oxidase and horseradish peroxidase as a model cascade, we describe in this protocol the coimmobilization of cascade glycoenzymes through lectin-mediated protein agglutination with and without magnetic nanoparticles as carriers.
Collapse
Affiliation(s)
- Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Yunzhenshan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - You Yong
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
167
|
Aoki-Kinoshita KF. Functions of Glycosylation and Related Web Resources for Its Prediction. Methods Mol Biol 2022; 2499:135-144. [PMID: 35696078 DOI: 10.1007/978-1-0716-2317-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycosylation involves the attachment of carbohydrate sugar chains, or glycans, onto an amino acid residue of a protein. These glycans are often branched structures and serve to modulate the function of proteins. Glycans are synthesized through a complex process of enzymatic reactions that occur in the Golgi apparatus in mammalian systems. Because there is currently no sequencer for glycans, technologies such as mass spectrometry is used to characterize glycans in a biological sample to ascertain its glycome. This is a tedious process that requires high levels of expertise and equipment. Thus, the enzymes that work on glycans, called glycogenes or glycoenzymes, have been studied to better understand glycan function. With the development of glycan-related databases and a glycan repository, bioinformatics approaches have attempted to predict the glycosylation pathway and the glycosylation sites on proteins. This chapter introduces these methods and related Web resources for understanding glycan function.
Collapse
|
168
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
169
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
170
|
Li Y, Ma B, Li X, Shang S, Tan Z. Development of a Glycoform Library-based Strategy to Decipher the Role of Protein Glycosylation. Methods Mol Biol 2022; 2530:195-211. [PMID: 35761051 DOI: 10.1007/978-1-0716-2489-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycoproteins obtained from cell culture supernatants or lysates generally exist as mixtures of over 100 differently glycosylated protein forms (glycoforms). The study of glycosylation is significantly impeded because of the heterogeneous nature of glycoproteins. To overcome this challenge, we developed and optimized a glycoform library-based strategy to investigate the role of protein glycosylation. In this strategy, chemical synthesis was used to prepare individual homogeneous glycoforms and the role of glycosylation was determined by comparing a series of glycoforms with systematic differences in their glycosylation patterns.
Collapse
Affiliation(s)
- Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
171
|
Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, Dang L, Ma C, Liu D, Mu F, Hu L, Sun S. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol 2021; 16:2135-2152. [PMID: 34855283 PMCID: PMC9168967 DOI: 10.1002/1878-0261.13147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/09/2022] Open
Abstract
Primary liver cancer, mainly comprising hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), remains a major global health problem. Although ICC is clinically different from HCC, their molecular differences are still largely unclear. In this study, precision N‐glycoproteomic analysis was performed on both ICC and HCC tumors as well as paracancer tissues to investigate their aberrant site‐specific N‐glycosylation. By using our newly developed glycoproteomic methods and novel algorithm, termed ‘StrucGP’, a total of 486 N‐glycan structures attached on 1235 glycosites were identified from 894 glycoproteins in ICC and HCC tumors. Notably, glycans with uncommon LacdiNAc (GalNAcβ1‐4GlcNAc) structures were distinguished from their isomeric glycans. In addition to several bi‐antennary and/or bisecting glycans that were commonly elevated in ICC and HCC, a number of LacdiNAc‐containing, tri‐antennary, and core‐fucosylated glycans were uniquely increased in ICC. More interestingly, almost all LacdiNAc‐containing N‐glycopeptides were enhanced in ICC tumor but not in HCC tumor, and this phenomenon was further confirmed by lectin histochemistry and the high expression of β1‐4 GalNAc transferases in ICC at both mRNA and protein expression levels. The novel N‐glycan alterations uniquely detected in ICC provide a valuable resource for future studies regarding to the discovery of ICC diagnostic biomarkers, therapeutic targets, and mechanism investigations.
Collapse
Affiliation(s)
- Jun Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Ting Zhao
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jing Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiechen Shen
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Li Jia
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Bojing Zhu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Liuyi Dang
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Chen Ma
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Didi Liu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Fan Mu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Liangshuo Hu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Shisheng Sun
- College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|
172
|
Gallo GL, Valko A, Aguilar NH, Weisz AD, D'Alessio C. A novel fission yeast platform to model N-glycosylation and the bases of congenital disorders of glycosylation Type I. J Cell Sci 2021; 135:274232. [PMID: 34851357 DOI: 10.1242/jcs.259167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Congenital Disorders of Glycosylation Type I (CDG-I) are inherited human diseases caused by deficiencies in lipid-linked oligosaccharide (LLO) synthesis or the glycan transfer to proteins during N-glycosylation. We constructed a platform of 16 Schizosaccharomyces pombe mutant strains that synthesize all possible theoretical combinations of LLOs containing three to zero Glc and nine to five Man. The occurrence of unexpected LLOs suggested the requirement of specific Man residues for glucosyltransferases activities. We then quantified protein hypoglycosylation in each strain and found that in S. pombe the presence of Glc in the LLO is more relevant to the transfer efficiency than the amount of Man residues. Surprisingly, a decrease in the number of Man in glycans somehow improved the glycan transfer. The most severe hypoglycosylation was produced in cells completely lacking Glc and having a high number of Man. This deficiency could be reverted by expressing a single subunit OST with a broad range of substrate specificity. Our work shows the usefulness of this new S. pombe set of mutants as a platform to model the molecular bases of human CDG-I diseases.
Collapse
Affiliation(s)
- Giovanna L Gallo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Buenos Aires C1428EGA, Argentina.,Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Argentina.,Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
| | - Ayelen Valko
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Buenos Aires C1428EGA, Argentina.,Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Argentina.,Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
| | - Nathalia Herrera Aguilar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Buenos Aires C1428EGA, Argentina.,Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
| | - Ariel D Weisz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Buenos Aires C1428EGA, Argentina
| | - Cecilia D'Alessio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Buenos Aires C1428EGA, Argentina.,Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
173
|
Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol 2021; 100:151186. [PMID: 34839178 DOI: 10.1016/j.ejcb.2021.151186] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
N-linked glycosylation is a post-translational modification crucial for membrane protein folding, stability and other cellular functions. Alteration of membrane protein N-glycans is implicated in wide range of pathological conditions including cancer metastasis, chronic inflammatory diseases, and viral pathogenesis. Even though the roles of N-glycans have been studied extensively, our knowledge of their mechanisms remains unclear due to the lack of detailed structural analysis of the N-glycome. Mapping the N-glycome landscape will open new avenues to explore disease mechanisms and identify novel therapeutic targets. This review discusses the diverse structure of N-linked glycans, the function and regulation of N-glycosylation in health and disease, and ends with a focus on recent approaches to target N-glycans in rheumatoid arthritis and cancer metastasis.
Collapse
Affiliation(s)
- Sally Esmail
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
174
|
Abstract
Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.
Collapse
|
175
|
Nazemi SA, Olesińska M, Pezzella C, Varriale S, Lin CW, Corvini PFX, Shahgaldian P. Immobilisation and stabilisation of glycosylated enzymes on boronic acid-functionalised silica nanoparticles. Chem Commun (Camb) 2021; 57:11960-11963. [PMID: 34705002 DOI: 10.1039/d1cc04916j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a method of glycosylated enzymes' surface immobilisation and stabilisation. The enzyme is immobilised at the surface of silica nanoparticles through the reversible covalent binding of vicinal diols of the enzyme glycans with a surface-attached boronate derivative. A soft organosilica layer of controlled thickness is grown at the silica surface, entrapping the enzyme and thus avoiding enzyme leaching. We demonstrate that this approach results not only in high and durable activity retention but also enzyme stabilisation.
Collapse
Affiliation(s)
- Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Magdalena Olesińska
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Cinzia Pezzella
- Biopox, Viale Maria Bakunin, 12 - CAP 80125 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100 80055 Portici, NA, Italy
| | | | - Chia-Wei Lin
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | - Philippe F-X Corvini
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| |
Collapse
|
176
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
177
|
Nayak S, Zhao Y, Mao Y, Li N. System-Wide Quantitative N-Glycoproteomic Analysis from K562 Cells and Mouse Liver Tissues. J Proteome Res 2021; 20:5196-5202. [PMID: 34596409 DOI: 10.1021/acs.jproteome.1c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a key regulator of many biological processes, glycosylation is an essential post-translational modification (PTM) in the living system. Over 50% of human proteins are known to be glycosylated. Alterations in glycoproteins are directly linked to many diseases, making it crucial to understand system-wide glycosylation changes. The majority of known glycoproteins are from plasma membrane; however, glycosylation is a dynamic process that occurs throughout multiple subcellular organelles and involves sets of enzymes, chaperones, transporters, and sugar donor molecules. Many glycoproteins are expressed not only in plasma membranes but also in subcellular organelles. Here, we developed a mass-spectrometry-based quantitative workflow for the system-wide N-glycoproteomic analysis of membrane and cytosolic proteins extracted using a MEM-PER kit. The kit facilitates the extraction and solubilization of both membrane and cytosolic proteins in a simple, efficient, and reproducible manner. We analyzed the K562 cell line and mouse liver tissue to evaluate this approach. A total of 934 glycosites, 5154 glycopeptides, and 536 glycoproteins from the K562 cell line and a total of 1449 glycosites, 7549 glycopeptides, and 660 glycoproteins from mouse liver tissue were identified. This simple and reproducible approach provides a unique way to understand system-wide glycosylation in biological processes and enables the identification and quantitation of glycan profiles at glycosylation sites in proteins.
Collapse
Affiliation(s)
- Shruti Nayak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
178
|
Kim J, Yin D, Lee J, An HJ, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ): Application to Glycomics. Anal Chem 2021; 93:14497-14505. [PMID: 34724788 DOI: 10.1021/acs.analchem.1c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new relative quantification strategy for glycomics, named deuterium oxide (D2O) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic D2O labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's r > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic D2O labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dongtan Yin
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jua Lee
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
179
|
Guan S, Bythell BJ. Evidence of gas-phase pyranose-to-furanose isomerization in protonated peptidoglycans. Phys Chem Chem Phys 2021; 23:23256-23266. [PMID: 34632474 DOI: 10.1039/d1cp03842g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptidoglycans are diverse co- and post-translational modifications of key importance in myriad biological processes. Mass spectrometry is employed to infer their biomolecular sequences and stereochemisties, but little is known about the critical gas-phase dissociation processes involved. Here, using tandem mass spectrometry (MS/MS and MSn), isotopic labelling and high-level simulations, we identify and characterize a facile isomerization reaction that produces furanose N-acetylated ions. This reaction occurs for both O- and N-linked peptidoglycans irrespective of glycosidic linkage stereochemistry (α/β). Dissociation of the glycosidic and other bonds thus occur from the furanose isomer critically altering the reaction feasibility and product ion structures.
Collapse
Affiliation(s)
- Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 307 The Chemistry Building, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, MO 63121, USA.
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 The Chemistry Building, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, MO 63121, USA.
| |
Collapse
|
180
|
Hyun JY, Kim S, Lee CH, Lee HS, Shin I. Efficient Preparation and Bioactivity Evaluation of Glycan-Defined Glycoproteins. ACS Chem Biol 2021; 16:1930-1940. [PMID: 33232137 DOI: 10.1021/acschembio.0c00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Owing to the generation of heterogeneous glycoproteins in cells, it is highly difficult to study glycoprotein-mediated biological events and to develop biomedical agents. Thus, general and efficient methods to prepare homogeneous glycoproteins are in high demand. Herein, we report a general method for the efficient preparation of homogeneous glycoproteins that utilizes a combination of genetic code expansion and chemoselective ligation techniques. In the protocol to produce glycan-defined glycoproteins, an alkyne tag-containing protein, generated by genetic encoding of an alkynylated unnatural amino acid, was quantitatively coupled via click chemistry to versatile azide-appended glycans. The glycoproteins produced by the present strategy were found to recognize mammalian cell-surface lectins and enter the cells through lectin-mediated internalization. Also, cell studies exhibited that the glycoprotein containing multiple mannose-6-phosphate residues enters diseased cells lacking specific lysosomal glycosidases by binding to the cell-surface M6P receptor, and subsequently migrates to lysosomes for efficient degradation of stored glycosphingolipids.
Collapse
Affiliation(s)
- Ji Young Hyun
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
181
|
Pratama F, Linton D, Dixon N. Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria. Microb Cell Fact 2021; 20:198. [PMID: 34649588 PMCID: PMC8518210 DOI: 10.1186/s12934-021-01689-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background The production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation, and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements, is the impact of target protein sequon accessibility during glycosylation. Results Here, we explore a series of genetic and process engineering strategies to increase recombinant N-linked glycosylation, mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductase or disulphide-bond isomerase activity. These approaches achieve up to twofold improvement in glycosylation efficiency. Furthermore, we also demonstrate that supplementation with the chemical oxidant cystine enhances the titre of glycoprotein in an oxidoreductase knockout strain by improving total protein production and cell fitness, while at the same time maintaining higher levels of glycosylation efficiency. Conclusions In this study, we demonstrate that improved protein glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native host such as Campylobacter jejuni and mammalian cells. Furthermore, it provides insight into strain engineering and bioprocess strategies, to improve glycoprotein yield and titre, and to avoid physiological burden of unfolded protein stress upon cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01689-x.
Collapse
Affiliation(s)
- Fenryco Pratama
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.,Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK. .,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
182
|
N-glycosylation of a cargo protein C-terminal domain recognized by the type IX secretion system in Cytophaga hutchinsonii affects protein secretion and localization. Appl Environ Microbiol 2021; 88:e0160621. [PMID: 34644163 DOI: 10.1128/aem.01606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii is a Gram-negative bacterium belonging to the phylum Bacteroidetes. It digests crystalline cellulose with an unknown mechanism, and possesses a type IX secretion system (T9SS) that can recognize the C-terminal domain (CTD) of the cargo protein as a signal. In this study, the functions of CTD in the secretion and localization of T9SS substrates in C. hutchinsonii were studied by fusing the green fluorescent protein (GFP) with CTD from CHU_2708. CTD is necessary for the secretion of GFP by C. hutchinsonii T9SS. The GFP-CTDCHU_2708 fusion protein was found to be glycosylated in the periplasm with a molecular mass about 5 kDa higher than that predicted from its sequence. The glycosylated protein was sensitive to peptide-N-glycosidase F which can hydrolyze N-linked oligosaccharides. Analyses of mutants obtained by site-directed mutagenesis of asparagine residues in the N-X-S/T motif of CTDCHU_2708 suggest that N-glycosylation occurred on the CTD. CTD N-glycosylation is important for the secretion and localization of GFP-CTD recombinant proteins in C. hutchinsonii. Glycosyltransferase encoding gene chu_3842, a homologous gene of Campylobacter jejuni pglA, was found to participate in the N-glycosylation of C. hutchinsonii. Deletion of chu_3842 affected cell motility, cellulose degradation, and cell resistance to some chemicals. Our study provided the evidence that CTD as the signal of T9SS was N-glycosylated in the periplasm of C. hutchinsonii. IMPORTANCE The bacterial N-glycosylation system has previously only been found in several species of Proteobacteria and Campylobacterota, and the role of N-linked glycans in bacteria is still not fully understood. C. hutchinsonii has a unique cell-contact cellulose degradation mechanism, and many cell surface proteins including cellulases are secreted by the T9SS. Here, we found that C. hutchinsonii, a member of the phylum Bacteroidetes, has an N-glycosylation system. Glycosyltransferase CHU_3842 was found to participate in the N-glycosylation of C. hutchinsonii proteins, and had effects on cell resistance to some chemicals, cell motility, and cellulose degradation. Moreover, N-glycosylation occurs on the CTD translocation signal of T9SS. The glycosylation of CTD apears to play an important role in affecting T9SS substrates transportation and localization. This study enriched our understanding of the widespread existence and multiple biological roles of N-glycosylation in bacteria.
Collapse
|
183
|
Xu Y, Zhang H. Putting the pieces together: mapping the O-glycoproteome. Curr Opin Biotechnol 2021; 71:130-136. [PMID: 34358979 PMCID: PMC8629430 DOI: 10.1016/j.copbio.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Protein glycosylation is the most diverse and omnipresent protein modification. Glycosylation provides glycoproteins with important structural and functional properties to facilitate critical biological processes. Despite the significance of protein glycosylation, the investigation of glycoproteome, especially O-linked glycoproteome, remains elusive due to the lack of a comprehensive methodology to conform with the diversity of O-linked glycoforms of O-linked glycoproteins. In recent years, mass spectrometry has become an indispensable tool for the characterization of O-linked glycosylated proteins across biological systems. We herein highlight the recent developments in MS-based O-linked glycoproteomic technologies, quantitative data acquisition strategy and bioinformatic tools, with a special focus on mucin-type O-linked glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
184
|
Lu X, Wu J, Qin Y, Liang J, Qian H, Song J, Qu C, Liu R. Identification of N-glycoproteins of hip cartilage in patients with osteonecrosis of femoral head using quantitative glycoproteomics. Int J Biol Macromol 2021; 187:892-902. [PMID: 34331982 DOI: 10.1016/j.ijbiomac.2021.07.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
N-glycosylation is a major post-translational modification of proteins and involved in many diseases, however, the state and role of N-glycosylation in cartilage degeneration of osteonecrosis of femoral head (ONFH) remain unclear. The aim of this study is to identify the glycoproteins of ONFH hip cartilage. Cartilage tissues were collected from nine patients with ONFH and nine individuals with traumatic femoral neck fracture. Cartilage glycoproteins were identified by glycoproteomics based on LC-MS/MS. The differentially N-glycoproteins including glycosites were identified in ONFH and controls. A total of 408 N-glycoproteins with 444 N-glycosites were identified in ONFH and control cartilage. Among them, 104 N-glycoproteins with 130 N-glycosites were significantly differential in ONFH and control cartilage, which including matrix-remodeling-associated protein 5, prolow-density lipoprotein receptor-related protein 1, clusterin and lysosome-associated membrane glycoprotein 2. Gene Ontology analysis revealed the significantly differential glycoproteins mainly belonged to protein metabolic process, single-multicellular organism process, proteolysis, biological adhesion and cell adhesion. KEGG pathway and protein-protein interaction analysis suggested that the significantly differential glycoproteins were associated with PI3K-Akt signalling pathway, ECM-receptor interaction, protein processing in the endoplasmic reticulum and N-glycan biosynthesis. This information provides substantial insight into the role of protein glycosylation in the development of cartilage degeneration of ONFH patients.
Collapse
Affiliation(s)
- Xueliang Lu
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China; Department of Orthopedics, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Junlong Wu
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province 471009, China
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jialin Liang
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China
| | - Hang Qian
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China
| | - Jidong Song
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå 90185, Sweden
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China.
| |
Collapse
|
185
|
Mule SN, Rosa-Fernandes L, Coutinho JVP, Gomes VDM, Macedo-da-Silva J, Santiago VF, Quina D, de Oliveira GS, Thaysen-Andersen M, Larsen MR, Labriola L, Palmisano G. Systems-wide analysis of glycoprotein conformational changes by limited deglycosylation assay. J Proteomics 2021; 248:104355. [PMID: 34450331 DOI: 10.1016/j.jprot.2021.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A new method to probe the conformational changes of glycoproteins on a systems-wide scale, termed limited deglycosylation assay (LDA), is described. The method measures the differential rate of deglycosylation of N-glycans on natively folded proteins by the common peptide:N-glycosidase F (PNGase F) enzyme which in turn informs on their spatial presentation and solvent exposure on the protein surface hence ultimately the glycoprotein conformation. LDA involves 1) protein-level N-deglycosylation under native conditions, 2) trypsin digestion, 3) glycopeptide enrichment, 4) peptide-level N-deglycosylation and 5) quantitative MS-based analysis of formerly N-glycosylated peptides (FNGPs). LDA was initially developed and the experimental conditions optimized using bovine RNase B and fetuin. The method was then applied to glycoprotein extracts from LLC-MK2 epithelial cells upon treatment with dithiothreitol to induce endoplasmic reticulum stress and promote protein misfolding. Data from the LDA and 3D structure analysis showed that glycoproteins predominantly undergo structural changes in loops/turns upon ER stress as exemplified with detailed analysis of ephrin-A5, GALNT10, PVR and BCAM. These results show that LDA accurately reports on systems-wide conformational changes of glycoproteins induced under controlled treatment regimes. Thus, LDA opens avenues to study glycoprotein structural changes in a range of other physiological and pathophysiological conditions relevant to acute and chronic diseases. SIGNIFICANCE: We describe a novel method termed limited deglycosylation assay (LDA), to probe conformational changes of glycoproteins on a systems-wide scale. This method improves the current toolbox of structural proteomics by combining site and conformational-specific PNGase F enzymatic activity with large scale quantitative proteomics. X-ray crystallography, nuclear magnetic resonance spectroscopy and cryoEM techniques are the major techniques applied to elucidate macromolecule structures. However, the size and heterogeneity of the oligosaccharide chains poses several challenges to the applications of these techniques to glycoproteins. The LDA method presented here, can be applied to a range of pathophysiological conditions and expanded to investigate PTMs-mediated structural changes in complex proteomes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Verônica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Quina
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
186
|
Jankowski N, Urlacher VB, Koschorreck K. Two adjacent C-terminal mutations enable expression of aryl-alcohol oxidase from Pleurotus eryngii in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:7743-7755. [PMID: 34545417 PMCID: PMC8502153 DOI: 10.1007/s00253-021-11585-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/30/2022]
Abstract
Fungal aryl-alcohol oxidases (AAOs) are attractive biocatalysts because they selectively oxidize a broad range of aromatic and aliphatic allylic primary alcohols while yielding hydrogen peroxide as the only by-product. However, their use is hampered by challenging and often unsuccessful heterologous expression. Production of PeAAO1 from Pleurotus eryngii ATCC 90787 in Pichia pastoris failed, while PeAAO2 from P. eryngii P34 with an amino acid identity of 99% was expressed at high yields. By successively introducing mutations in PeAAO1 to mimic the sequence of PeAAO2, the double mutant PeAAO1 ER with mutations K583E and Q584R was constructed, that was successfully expressed in P. pastoris. Functional expression was enhanced up to 155 U/l via further replacements D361N (variant NER) or V367A (variant AER). Fed-batch cultivation of recombinant P. pastoris yielded up to 116 mg/l of active variants. Glycosylated PeAAO1 variants demonstrated high stability and catalytic efficiencies similar to PeAAO2. Interestingly, P. pastoris expressing PeAAO1 variant ER contained roughly 13 gene copies but showed similar volumetric activity as NER and AER with one to two gene copies and four times lower mRNA levels. Additional H-bonds and salt bridges introduced by mutations K583E and Q584R might facilitate heterologous expression by enhanced protein folding.Key points• PeAAO1 not expressed in P. pastoris and PeAAO2 well-expressed in Pichia differ at 7 positions.• Expression of PeAAO1 in P. pastoris achieved through mutagenesis based on PeAAO2 sequence.• Combination of K583E and Q584R is essential for expression of PeAAO1 in P. pastoris.
Collapse
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
187
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
188
|
Harada Y, Ohkawa Y, Maeda K, Kizuka Y, Taniguchi N. Extracellular Vesicles and Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:137-149. [PMID: 34495533 DOI: 10.1007/978-3-030-70115-4_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
189
|
Justo BL, Jasiulionis MG. Characteristics of TIMP1, CD63, and β1-Integrin and the Functional Impact of Their Interaction in Cancer. Int J Mol Sci 2021; 22:9319. [PMID: 34502227 PMCID: PMC8431149 DOI: 10.3390/ijms22179319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tissue Inhibitor of Metalloproteases 1, also known as TIMP-1, is named for its well-established function of inhibiting the proteolytic activity of matrix metalloproteases. Given this function, many studies were carried out to verify if TIMP-1 was able to interrupt processes such as tumor cell invasion and metastasis. In contrast, many studies have shown that TIMP-1 expression is increased in several types of tumors, and this increase was correlated with a poor prognosis and lower survival in cancer patients. Later, it was shown that TIMP-1 is also able to modulate cell behavior through the induction of signaling pathways involved in cell growth, proliferation, and survival. The mechanisms involved in the regulation of the pleiotropic functions of TIMP-1 are still poorly understood. Thus, this review aimed to present literature data that show its ability to form a membrane complex with CD63 and β1-integrin, and point to N-glycosylation as a potential regulatory mechanism of the functions exerted by TIMP-1. This article reviewed the characteristics and functions performed individually by TIMP1, CD63, and β1-integrin, the roles of the TIMP-1/CD63/β1-integrin complex, both in a physiological context and in cancer, and the regulatory mechanisms involved in its assembly.
Collapse
Affiliation(s)
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 5 Floor, São Paulo 04039-032, Brazil;
| |
Collapse
|
190
|
Chuzel L, Fossa SL, Boisvert ML, Cajic S, Hennig R, Ganatra MB, Reichl U, Rapp E, Taron CH. Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microb Cell Fact 2021; 20:162. [PMID: 34419057 PMCID: PMC8379841 DOI: 10.1186/s12934-021-01652-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.
Collapse
Affiliation(s)
- Léa Chuzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- New England Biolabs, Ipswich, MA, 01938, USA
| | | | | | - Samanta Cajic
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- glyXera GmbH, 39120, Magdeburg, Germany
| | | |
Collapse
|
191
|
Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc Natl Acad Sci U S A 2021; 118:2019220118. [PMID: 33658366 DOI: 10.1073/pnas.2019220118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A challenge faced by peptidases is the recognition of highly diverse substrates. A feature of some peptidase families is the capacity to specifically use post-translationally added glycans present on their protein substrates as a recognition determinant. This is ultimately critical to enabling peptide bond hydrolysis. This class of enzyme is also frequently large and architecturally sophisticated. However, the molecular details underpinning glycan recognition by these O-glycopeptidases, the importance of these interactions, and the functional roles of their ancillary domains remain unclear. Here, using the Clostridium perfringens ZmpA, ZmpB, and ZmpC M60 peptidases as model proteins, we provide structural and functional insight into how these intricate proteins recognize glycans as part of catalytic and noncatalytic substrate recognition. Structural, kinetic, and mutagenic analyses support the key role of glycan recognition within the M60 domain catalytic site, though they point to ZmpA as an apparently inactive enzyme. Wider examination of the Zmp domain content reveals noncatalytic carbohydrate binding as a feature of these proteins. The complete three-dimensional structure of ZmpB provides rare insight into the overall molecular organization of a highly multimodular enzyme and reveals how the interplay of individual domain function may influence biological activity. O-glycopeptidases frequently occur in host-adapted microbes that inhabit or attack mucus layers. Therefore, we anticipate that these results will be fundamental to informing more detailed models of how the glycoproteins that are abundant in mucus are destroyed as part of pathogenic processes or liberated as energy sources during normal commensal lifestyles.
Collapse
|
192
|
Bao B, Kellman BP, Chiang AWT, Zhang Y, Sorrentino JT, York AK, Mohammad MA, Haymond MW, Bode L, Lewis NE. Correcting for sparsity and interdependence in glycomics by accounting for glycan biosynthesis. Nat Commun 2021; 12:4988. [PMID: 34404781 PMCID: PMC8371009 DOI: 10.1038/s41467-021-25183-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Glycans are fundamental cellular building blocks, involved in many organismal functions. Advances in glycomics are elucidating the essential roles of glycans. Still, it remains challenging to properly analyze large glycomics datasets, since the abundance of each glycan is dependent on many other glycans that share many intermediate biosynthetic steps. Furthermore, the overlap of measured glycans can be low across samples. We address these challenges with GlyCompare, a glycomic data analysis approach that accounts for shared biosynthetic steps for all measured glycans to correct for sparsity and non-independence in glycomics, which enables direct comparison of different glycoprofiles and increases statistical power. Using GlyCompare, we study diverse N-glycan profiles from glycoengineered erythropoietin. We obtain biologically meaningful clustering of mutant cell glycoprofiles and identify knockout-specific effects of fucosyltransferase mutants on tetra-antennary structures. We further analyze human milk oligosaccharide profiles and find mother’s fucosyltransferase-dependent secretor-status indirectly impact the sialylation. Finally, we apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional glycosylation data to reveal tissues and disease-specific glycan presentations. Our substructure-oriented approach will enable researchers to take full advantage of the growing power and size of glycomics data. Glycomics can uncover important molecular changes but measured glycans are highly interconnected and incompatible with common statistical methods, introducing pitfalls during analysis. Here, the authors develop an approach to identify glycan dependencies across samples to facilitate comparative glycomics.
Collapse
Affiliation(s)
- Bokan Bao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
| | - Yujie Zhang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Austin K York
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Morey W Haymond
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA. .,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
193
|
Maverakis E, Merleev AA, Park D, Kailemia MJ, Xu G, Ruhaak LR, Kim K, Hong Q, Li Q, Leung P, Liakos W, Wan YJY, Bowlus CL, Marusina AI, Lal NN, Xie Y, Luxardi G, Lebrilla CB. Glycan biomarkers of autoimmunity and bile acid-associated alterations of the human glycome: Primary biliary cirrhosis and primary sclerosing cholangitis-specific glycans. Clin Immunol 2021; 230:108825. [PMID: 34403816 DOI: 10.1016/j.clim.2021.108825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
We have recently introduced multiple reaction monitoring (MRM) mass spectrometry as a novel tool for glycan biomarker research and discovery. Herein, we employ this technique to characterize the site-specific glycan alterations associated with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Glycopeptides associated with disease severity were also identified. Multinomial regression modelling was employed to construct and validate multi-analyte diagnostic models capable of accurately distinguishing PBC, PSC, and healthy controls from one another (AUC = 0.93 ± 0.03). Finally, to investigate how disease-relevant environmental factors can influence glycosylation, we characterized the ability of bile acids known to be differentially expressed in PBC to alter glycosylation. We hypothesize that this could be a mechanism by which altered self-antigens are generated and become targets for immune attack. This work demonstrates the utility of the MRM method to identify diagnostic site-specific glycan classifiers capable of distinguishing even related autoimmune diseases from one another.
Collapse
Affiliation(s)
- Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA.
| | - Alexander A Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dayoung Park
- Department of Chemistry, University of California Davis, Davis, CA, USA; Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | - Gege Xu
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - L Renee Ruhaak
- Department of Chemistry, University of California Davis, Davis, CA, USA; Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Qiuting Hong
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Patrick Leung
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - William Liakos
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, UC Davis School of Medicine, CA, USA
| | - Alina I Marusina
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Nelvish N Lal
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| |
Collapse
|
194
|
Noborn F, Nikpour M, Persson A, Nilsson J, Larson G. Expanding the Chondroitin Sulfate Glycoproteome - But How Far? Front Cell Dev Biol 2021; 9:695970. [PMID: 34490248 PMCID: PMC8418075 DOI: 10.3389/fcell.2021.695970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are found at cell surfaces and in connective tissues, where they interact with a multitude of proteins involved in various pathophysiological processes. From a methodological perspective, the identification of CSPGs is challenging, as the identification requires the combined sequencing of specific core proteins, together with the characterization of the CS polysaccharide modification(s). According to the current notion of CSPGs, they are often considered in relation to a functional role in which a given proteoglycan regulates a specific function in cellular physiology. Recent advances in glycoproteomic methods have, however, enabled the identification of numerous novel chondroitin sulfate core proteins, and their glycosaminoglycan attachment sites, in humans and in various animal models. In addition, these methods have revealed unexpected structural complexity even in the linkage regions. These findings indicate that the number and structural complexity of CSPGs are much greater than previously perceived. In light of these findings, the prospect of finding additional CSPGs, using improved methods for structural and functional characterizations, and studying novel sample matrices in humans and in animal models is discussed. Further, as many of the novel CSPGs are found in low abundance and with not yet assigned functions, these findings may challenge the traditional notion of defining proteoglycans. Therefore, the concept of proteoglycans is considered, discussing whether "a proteoglycan" should be defined mainly on the basis of an assigned function or on the structural evidence of its existence.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
195
|
Khairol Mokhtar NHI, Hussin A, Hamid AA, Zainal Ariffin SH, Shahidan MA. Systematic Optimisation of Microtiter Plate Lectin Assay to Improve Sialic Acid Linkage Detection. Comb Chem High Throughput Screen 2021; 25:1507-1517. [PMID: 34342257 DOI: 10.2174/1386207324666210802122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
AIMS We aimed to develop a high-throughput lectin assay with minimized background signals to investigate the interactions of lectins and sialic acid glycans, focusing on prostate-specific antigen (PSA). BACKGROUND High background signals resulting from nonspecific binding are a significant concern for microtiter plate-based enzyme-linked lectin sorbent assays (ELLSAs), as they can mask specific binding signals and cause false-positive results. METHODS In this study, we constructed an ELLSA based on different washing step parameters, including the number of washing cycles, NaCl and Tween-20 concentrations, and the type of blocking agent and evaluated the effects on both specific and nonspecific binding signals. Furthermore, we performed a PSA binding assay using the optimized ELLSA. RESULTS The optimal washing parameters based on the highest specific binding signal proposed four cycles of washing steps using a washing buffer containing a high salt concentration (0.5 M NaCl) and mild detergent (0.05% Tween-20). The utilization of the optimized washing parameters in this assay was shown to be sufficient to obtain the optimal binding signals without the use of any blocking agent. Binding assays performed using the optimized ELLSA revealed that the glycan of the PSA sample used in this study mainly consists of terminal α2,6-linked sialic acid, as strongly recognized by Sambucus nigra agglutinin (SNA) with a KD value of 12.38 nM. CONCLUSION The ELLSA reported in this study provides a simple yet sensitive assay for sialic acid linkage recognition.
Collapse
Affiliation(s)
- Nur Hanina Izzati Khairol Mokhtar
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| | - Ainulkhir Hussin
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah. Malaysia
| | - Aidil Abdul Hamid
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| | - Shahrul Hisham Zainal Ariffin
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| | - Muhammad Ashraf Shahidan
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| |
Collapse
|
196
|
Zhao P, Zhang L, Tan L, Luo S, Huang Y, Peng H, Cao J, He X. Genetic analysis and prenatal diagnosis in a Chinese with growth retardation, abnormal liver function, and microcephaly. Mol Genet Genomic Med 2021; 9:e1751. [PMID: 34331832 PMCID: PMC8457690 DOI: 10.1002/mgg3.1751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/11/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Background Congenital disorders of glycosylation (CDG) are a genetically heterogeneous group of disorders caused by defects in the synthesis and processing of glycoproteins. COG6‐CDG is a kind of disorder caused by conserved oligomeric golgi complex 6 (COG6) deficiency. To date, only 19 patients with COG6‐CDG have been reported. Methods We report a girl in a Chinese family with developmental delay, growth retardation, microcephaly, abnormal liver function, and hypohidrosis. Trio whole‐exome sequencing was performed for this patient and her parents, and the variants identified were validated by Sanger sequencing. Prenatal diagnosis was done for this family during a subsequent pregnancy. The literature review on these patients was performed by reviewing articles published in English and Chinese. Results Genetic sequencing identified two novel heterozygous mutations: c.428G>T (p.S143I) and c.1843C>T (p.Q615X) in the COG6 gene, inherited from her healthy parents, respectively. A total of 11 different mutations in COG6 have been reported previously, and mutations potentially affecting splicing are the most common. The main clinical features included development delay, facial dysmorphism, growth retardation, skin abnormalities (hypohidrosis), microcephaly, abnormal brain structure, liver involvement, and recurrent infections. Conclusion Our work broadens the mutation spectrum of COG6 gene and states the importance of whole‐exome sequencing in facilitating the definitive diagnosis of this disorder and prenatal diagnosis in a subsequent pregnancy.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Lei Zhang
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Li Tan
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Sukun Luo
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Yufeng Huang
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Hanming Peng
- Gastroenterology Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Jiangxia Cao
- Prenatal Diagnosis Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Xuelian He
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| |
Collapse
|
197
|
Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021; 9:695139. [PMID: 34395368 PMCID: PMC8356061 DOI: 10.3389/fpubh.2021.695139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels.
Collapse
Affiliation(s)
- Emmanuelle Logette
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
198
|
Chen S, Wu D, Robinson CV, Struwe WB. Native Mass Spectrometry Meets Glycomics: Resolving Structural Detail and Occupancy of Glycans on Intact Glycoproteins. Anal Chem 2021; 93:10435-10443. [PMID: 34279906 DOI: 10.1021/acs.analchem.1c01460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoproteins are inherently heterogeneous and therefore resolving structures in their entirety remains a major challenge in structural biology. Native mass spectrometry has transformed our ability to study glycoproteins, and despite advances in high-resolution instrumentation, there are comparatively a few studies demonstrating its potential with data largely limited to an overall measure of monosaccharide composition for all glycans across glycosylation sites for a given protein. Clearly, these readouts lack glycan topology information, namely, monosaccharide linkage and glycan branching. To address this deficiency, we developed a new approach that joins native mass spectrometry with glycan exoglycosidase sequencing, the combination of which provides remarkable glycoprotein structural details. We show how N-glycan branching, terminal fucosylation, LacNAc extensions, and N- and O-glycan occupancy (i.e., total number of glycans) can be directly characterized on intact glycoproteins with minimal sample preparation. Taken together, native exoglycosidase sequencing mass spectrometry (NES-MS) notably improves our ability to characterize protein glycosylation, addressing a significant need in structural biology that will enable new routes to understand glycoprotein function.
Collapse
Affiliation(s)
- Siyun Chen
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Di Wu
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Carol V Robinson
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Weston B Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| |
Collapse
|
199
|
Current Status of Mining, Modification, and Application of Cellulases in Bioactive Substance Extraction. Curr Issues Mol Biol 2021; 43:687-703. [PMID: 34287263 PMCID: PMC8929041 DOI: 10.3390/cimb43020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Cellulases have been used to extract bioactive ingredients from medical plants; however, the poor enzymatic properties of current cellulases significantly limit their application. Two strategies are expected to address this concern: (1) new cellulase gene mining strategies have been promoted, optimized, and integrated, thanks to the improvement of gene sequencing, genomic data, and algorithm optimization, and (2) known cellulases are being modified, thanks to the development of protein engineering, crystal structure data, and computing power. Here, we focus on mining strategies and provide a systemic overview of two approaches based on sequencing and function. Strategies based on protein structure modification, such as introducing disulfide bonds, proline, salt bridges, N-glycosylation modification, and truncation of loop structures, have already been summarized. This review discusses four aspects of cellulase-assisted extraction. Initially, cellulase alone was used to extract bioactive substances, and later, mixed enzyme systems were developed. Physical methods such as ultrasound, microwave, and high hydrostatic pressure have assisted in improving extraction efficiency. Cellulase changes the structure of biomolecules during the extraction process to convert them into effective ingredients with better activity and bioavailability. The combination of cellulase with other enzymes and physical technologies is a promising strategy for future extraction applications.
Collapse
|
200
|
Burgoyne C, Smith R. C-SEQer: An Open-Source de Novo Glycan Identification Tool in C+. J Proteome Res 2021; 20:4068-4074. [PMID: 34213337 DOI: 10.1021/acs.jproteome.1c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycans play an important role in many biochemical processes, including protein function and cell signaling. Mass spectrometry (MS) provides the potential for high-throughput, high-sensitivity analysis of glycans but relies heavily on computational interpretation of experimental results. Open-source, stand-alone algorithms for de novo glycan MS analysis are few. One such algorithm, Sweet-SEQer, is available in Python. Glycan analysis of mass spectra can easily involve high volumes of data where Python's performance in time and memory is a noticeable bottleneck. This manuscript describes C-SEQer, a new implementation of the Sweet-SEQer algorithm in C++, which produces the same output as the original algorithm in approximately 15-fold less time with substantially less memory usage. The implementation is freely available with an MIT license.
Collapse
Affiliation(s)
- Christopher Burgoyne
- Department of Computer Science, University of Montana, Missoula, Montana 59812, United States
| | - Rob Smith
- Department of Computer Science, University of Montana, Missoula, Montana 59812, United States.,Prime Labs, Inc., Missoula, Montana 59802, United States
| |
Collapse
|