151
|
Abstract
Ascorbic acid may be involved in the defense against oxidant stress in endothelial cells. Such a role requires that the cells effectively recycle the vitamin from its oxidized forms. In this work, we studied the ability of cultured bovine aortic endothelial cells (BAECs) to take up and reduce dehydroascorbic acid (DHA) to ascorbate, as well as the dependence of ascorbate recycling on intracellular GSH. BAECs took up and reduced DHA to ascorbate much more readily than they took up ascorbate. Although BAECs in culture did not contain ascorbate, ascorbate accumulated to concentrations of 2-3 mM in BAECs following incubation with 400 microM DHA. Extracellular ferricyanide oxidized intracellular ascorbate, which was recycled by the cells. Reduction of DHA, either when added to the cells or when generated in response to ferricyanide, caused significant decreases in intracellular GSH concentrations. Depletion of intracellular GSH with 1-chloro-2,4-dinitrobenzene, diethylmaleate, and diamide almost abolished the ability of the cells to reduce DHA to ascorbate. DHA reduction by thioredoxin reductase was evident in dialyzed cell extracts, but occurred at rates far lower than direct GSH reduction of DHA. These results suggest that maximal rates of DHA reduction, and thus recycling of ascorbate from DHA, are dependent upon GSH in these cells.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, 715 Medical Research Building II, Nashville, TN 37232-6303, USA.
| | | | | |
Collapse
|
152
|
Feihl F, Waeber B, Liaudet L. Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Ther 2001; 91:179-213. [PMID: 11744067 DOI: 10.1016/s0163-7258(01)00155-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis is a heterogeneous class of syndromes caused by a systemic inflammatory response to infection. Septic shock, a severe form of sepsis, is associated with the development of progressive damage in multiple organs, and is a leading cause of patient mortality in intensive care units. Despite important advances in understanding its pathophysiology, therapy remains largely symptomatic and supportive. A decade ago, the overproduction of nitric oxide (NO) had been discovered as a potentially important event in this condition. As a result, great hopes arose that the pharmacological inhibition of NO synthesis could be developed into an efficient, mechanism-based therapeutic approach. Since then, an extraordinary effort by the scientific community has brought a deeper insight regarding the feasibility of this goal. Here we present in summary form the present state of knowledge of the biological chemistry and physiology of NO. We then proceed to a systematic review of experimental and clinical data, indicating an up-regulation of NO production in septic shock; information on the role of NO in septic shock, as provided by experiments in transgenic mice that lack the ability to up-regulate NO production; effects of pharmacological inhibitors of NO production in various experimental models of septic shock; and relevant clinical experience. The accrued evidence suggests that the contribution of NO to the pathophysiology of septic shock is highly heterogeneous and, therefore, difficult to target therapeutically without appropriate monitoring tools, which do not exist at present.
Collapse
Affiliation(s)
- F Feihl
- Division of Pathophysiology and Medical Teaching, Department of Internal Medicine, University Hospital, PPA, BH19-317, CHUV, CH 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
153
|
Granger DN, Stokes KY, Shigematsu T, Cerwinka WH, Tailor A, Krieglstein CF. Splanchnic ischaemia-reperfusion injury: mechanistic insights provided by mutant mice. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:83-91. [PMID: 11678730 DOI: 10.1046/j.1365-201x.2001.00888.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reperfusion of ischaemic tissues often leads to microvascular dysfunction that is manifested as impaired endothelium-dependent dilation of arterioles, enhanced fluid filtration and leucocyte plugging in capillaries, and the trafficking of leucocytes and plasma protein extravasation in postcapillary venules. Efforts to define the mechanisms that underlie these microvascular responses to ischaemia and reperfusion have largely relied on pharmacological agents and monoclonal antibodies. Gene-targeting technology has been applied to the production of transgenic and knockout mice that are rapidly gaining acceptance as tools for mechanistic studies of ischaemia-reperfusion (I/R) injury that obviate some of the concerns (e.g. specificity) raised about previously employed experimental strategies. This review summarizes some of our efforts to apply gene-targeted mice to the study of I/R injury in the splanchnic vascular bed. A role for endothelial cell adhesion molecules (CAMs) and reactive oxygen metabolites is supported by results from mutant mice. Low density lipoprotein receptor mice also reveal that the microvascular and inflammatory responses to I/R are greatly exaggerated during chronic hypercholesterolaemia. The wide variety of mutant mice that have been produced for inflammation-related research makes this experimental strategy particularly promising for mechanistic investigations of the tissue responses to I/R.
Collapse
Affiliation(s)
- D N Granger
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
154
|
Steiner DR, Gonzalez NC, Wood JG. Leukotriene B(4) promotes reactive oxidant generation and leukocyte adherence during acute hypoxia. J Appl Physiol (1985) 2001; 91:1160-7. [PMID: 11509511 DOI: 10.1152/jappl.2001.91.3.1160] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute systemic hypoxia produces rapid leukocyte adherence in the rat mesenteric microcirculation, although the underlying mechanisms are not fully known. Hypoxia is known to increase reactive oxygen species (ROS) generation, which could result in formation of the lipid inflammatory mediator leukotriene B(4) (LTB(4)). The goal of this study was to examine the role of LTB(4) in hypoxia-induced microvascular alterations. Using intravital microscopy, we determined the effect of the LTB(4) antagonist, LTB(4)-dimethyl amide (LTB(4)-DMA), on ROS generation and leukocyte adherence in mesenteric venules during hypoxia. Exogenous LTB(4) increased ROS generation to 144 +/- 8% compared with control values and also promoted leukocyte adherence. These responses to LTB(4) were blocked by pretreating the mesentery with LTB(4)-DMA. Leukopenia did not significantly attenuate the LTB(4)-induced increase in ROS generation (142 +/- 12.1%). LTB(4)-DMA substantially, though not completely, reduced hypoxia-induced ROS generation from 66 +/- 18% to 11 +/- 4% above control values. Hypoxia-induced leukocyte adherence was significantly attenuated by LTB(4)-DMA. Our results support a role for LTB(4) in the mechanism of hypoxia-induced ROS generation and leukocyte adherence in the rat mesenteric microcirculation.
Collapse
Affiliation(s)
- D R Steiner
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
155
|
Kevil CG, Bullard DC. In vitro culture and characterization of gene targeted mouse endothelium. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:151-7. [PMID: 11678738 DOI: 10.1046/j.1365-201x.2001.00901.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endothelial cells play a crucial role in maintaining cardiovascular homeostasis. Although many cardiovascular disorders involve endothelial cell dysfunction, the specific cellular and molecular mechanisms involved are not well known. We sought to establish a reproducible method of endothelial cell isolation from gene targeted mice to specifically examine endothelial pathophysiological mechanisms. Primary aortic endothelial cell cultures were established from wild type and intercellular adhesion molecule-1 (ICAM-1) deficient mice. Isolation of mouse aortic endothelial cells (MAEC) by fluorescent activated cell sorting routinely resulted in pure, homogenous, primary cultures. Wild type and ICAM-1 deficient endothelial cell morphology was similar, with both cultures showing cobblestone morphology and DiI-Ac-LDL staining. Monocyte adhesion to ICAM-1 deficient aortic endothelial cells was decreased by 86% as compared with wild type MAEC. Monocyte adhesion was also determined using YN-1, an ICAM-1 blocking antibody. YN-1 decreased monocyte adhesion to wild type aortic endothelial cells by 25%, whereas YN-1 did not further decrease monocyte adhesion to ICAM-1 deficient MAEC. These data demonstrate that gene targeted endothelial cell cultures are an effective means of identifying specific cellular and molecular mechanisms involved in endothelial cell physiology and dysfunction.
Collapse
Affiliation(s)
- C G Kevil
- Department of Genomics and Pathobiology, University of Alabama-Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
156
|
Simões C, Svensjö E, Bouskela E. Effects of L-NA and sodium nitroprusside on ischemia/reperfusion-induced leukocyte adhesion and macromolecular leakage in hamster cheek pouch venules. Microvasc Res 2001; 62:128-35. [PMID: 11516241 DOI: 10.1006/mvre.2001.2324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to study how the topical application of a nitric oxide synthase inhibitor (l-NA, Nomega-nitro-L-arginine) and a nitric oxide donor, sodium nitroprusside (SNP), could modulate leukocyte adhesion (sticking) and microvascular permeability as altered by ischemia/reperfusion (I/R) and topically applied histamine after I/R. Golden hamsters were prepared for intravital microscopy. Ischemia was induced by an inflatable silicon rubber cuff mounted around the neck of the cheek pouch prepared for intravital microscopy. Saline, L-NA, sodium nitroprusside, and histamine were applied in the superfusion solution. FITC-dextran was injected iv 30 min before initiation of ischemia as a marker of microvascular permeability. L-NA 10(-5) M inhibited both the increase in number of sticking leukocytes and the increase in vascular permeability after I/R compared with the untreated control group of hamsters. SNP neutralized this effect of L-NA on leukocytes and vascular permeability and caused arteriolar dilation at the concentration used, 10(-6) M. Both SNP and L-NA + SNP enhanced the I/R-induced macromolecular leakage. The topical application of SNP and SNP + L-NA did not modify the response to histamine after I/R compared with the untreated control group. In hamsters not subjected to I/R, histamine-induced macromolecular leakage was inhibited by L-NA and L-NA + SNP but was unchanged by SNP. It is concluded that inhibition of nitric oxide formation by L-NA reduced both leukocyte adhesion in postcapillary venules and the increase in macromolecular leakage and that a NO donor such as SNP could enhance the macromolecular leakage response to I/R.
Collapse
Affiliation(s)
- C Simões
- Laboratório de Pesquisas em Microcirculação, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Rio de Janeiro, 20550-013, Brazil
| | | | | |
Collapse
|
157
|
Laroux FS, Pavlick KP, Hines IN, Kawachi S, Harada H, Bharwani S, Hoffman JM, Grisham MB. Role of nitric oxide in inflammation. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:113-8. [PMID: 11678733 DOI: 10.1046/j.1365-201x.2001.00891.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of laboratories have sought to elucidate the role of nitric oxide (NO) in both acute and chronic inflammatory diseases. It is now well appreciated that NO can influence many aspects of the inflammatory cascade ranging from its own expression to recruitment of leucocytes to the effected tissue. With the advent of mice selectively deficient in the various isoforms of nitric oxide synthase (NOS), the role that NO may play in various disease states can now be examined in vivo. One such syndrome that has gained much attention in recent years is ischaemia and reperfusion-induced tissue injury. Ischaemia-reperfusion (I/R) injury is an important clinical consideration in situations such as transplantation, trauma, liver or bowel resection and haemorrhagic shock. A hallmark of I/R is the production of reactive oxygen species (ROS) during the reperfusion phase and it is thought that the production of ROS mediate much of the post-ischaemic tissue injury. This review will examine the current state of knowledge regarding the regulatory mechanisms by which NO can influence various aspects of the inflammatory cascade as well as its role in a model of I/R injury in vivo.
Collapse
Affiliation(s)
- F S Laroux
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Stubenitsky B, Booster M, Kootstra G, Brasile L, Haisch C. Deletrious effect of prolonged cold ischemia on renal function. Transpl Int 2001. [DOI: 10.1111/j.1432-2277.2001.tb00054.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
159
|
Koo DD, Welsh KI, West NE, Channon KM, Penington AJ, Roake JA, Morris PJ, Fuggle SV. Endothelial cell protection against ischemia/reperfusion injury by lecithinized superoxide dismutase. Kidney Int 2001; 60:786-96. [PMID: 11473663 DOI: 10.1046/j.1523-1755.2001.060002786.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Organs used for transplantation may experience long periods of cold ischemic preservation and consequently oxygen free radical-mediated damage following reperfusion. Lecithinized superoxide dismutase (lec-SOD) is a novel free radical scavenger that has been shown to bind with high affinity to cell membranes. The aim of this study was to determine whether lec-SOD bound to endothelial cells under organ preservation conditions to mediate direct antioxidant activity at the endothelial cell surface and thus offer protection against the harmful effects of ischemia/reperfusion injury. METHODS An in vitro study was performed on large vessel endothelial cells (HUVEC) and a human microvascular endothelial cell line HMEC-1, to investigate the potential therapeutic benefits of incorporating lec-SOD into organ preservation solution. A cold hypoxia/reoxygenation system was developed to examine lec-SOD binding affinity to endothelial cells, protection against hypoxia/reoxygenation-induced cell death, and neutrophil adhesion. RESULTS Lec-SOD bound to endothelial cells with higher affinity than unmodified recombinant human superoxide dismutase (rhSOD) and significantly protected both HUVEC and HMEC-1 from cell death following 27 hours of cold hypoxia (P < 0.01). Furthermore, neutrophil adhesion to the endothelium stimulated by hypoxia and reoxygenation was significantly inhibited by treatment with lec-SOD but not by lecithin or rhSOD (P < 0.01). Analysis by flow cytometry demonstrated that E-selectin and ICAM-1 were up-regulated by hypoxia/reoxygenation that was inhibited in part by lec-SOD. CONCLUSIONS The results from this study suggest that incorporation of lec-SOD into organ preservation solutions provides effective protection to endothelial cells against cold ischemia and reperfusion injury following transplantation.
Collapse
Affiliation(s)
- D D Koo
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Van der Goes A, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, Adamson P, Greenwood J, Dijkstra CD, De Vries HE. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J 2001; 15:1852-4. [PMID: 11481252 DOI: 10.1096/fj.00-0881fje] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A Van der Goes
- Department of Molecular Cell Biology and Immunology, VUMC, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Kilinc K, Kilinc A, Wolf RE, Grisham MB. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite. Biochem Biophys Res Commun 2001; 285:273-6. [PMID: 11444837 DOI: 10.1006/bbrc.2001.5168] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitration of tyrosine residues in protein to yield 3-nitrotyrosine derivatives has been suggested to represent a specific footprint for peroxynitrite formation in vivo. However, recent studies suggest that certain hemoproteins such as peroxidases catalyze the H(2)O(2)-dependent nitration of tyrosine to yield 3-nitrotyrosine in a peroxynitrite-independent reaction. Because 3-nitrotyrosine has been shown to be present in the postischemic myocardium, we wished to assess the ability of myoglobin to catalyze the nitration of tyrosine in vitro. We found that myoglobin catalyzed the oxidation of nitrite and promoted the nitration of tyrosine. Both nitrite oxidation and tyrosine nitration were H(2)O(2)-dependent and required the formation of ferryl (Fe(+4)) myoglobin. In addition, nitrite oxidation and tyrosine nitration were pH-dependent with a pH optimum of approximately 6.0. Taken together, these data suggest that the acidic pH and low oxygen tension produced during myocardial ischemia will facilitate myoglobin-catalyzed, peroxyntrite-independent formation of 3-nitrotyrosine.
Collapse
Affiliation(s)
- K Kilinc
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 7113, USA
| | | | | | | |
Collapse
|
162
|
Abstract
Myocardial ischemia-reperfusion (I/R) is a well-known stimulus for acute inflammatory responses that promote cell death and impair pump function. Interleukin-10 (IL-10) is an endogenous, potent anti-inflammatory cytokine. Recently, it has been proposed that IL-10 inhibits inducible nitric oxide synthase (iNOS) activity after myocardial I/R and consequently exerts cardioprotective effects. However, whether this actually occurs remains unclear. To test this hypothesis, we utilized iNOS-deficient (-/-), IL-10 -/-, and IL-10/iNOS -/- mice to examine the potential mechanism of IL-10-mediated cardioprotection after myocardial I/R. Wild-type, iNOS -/-, IL-10 -/-, and IL-10/iNOS -/- mice were subjected to in vivo myocardial ischemia (30 min) and reperfusion (24 h). Deficiency of iNOS alone did not significantly alter the extent of myocardial necrosis compared with wild-type mice. We found that deficiency of IL-10 resulted in a significantly (P < 0.05) larger infarct size than that in wild-type hearts. Interestingly, deficiency of both IL-10 and iNOS yielded significantly (P < 0.01) larger myocardial infarct sizes compared with wild-type animals. Histological examination of myocardial tissue samples revealed augmented neutrophil infiltration into the I/R myocardium of IL-10 -/- and IL-10/iNOS -/- mice compared with hearts of wild-type mice. These results demonstrate that 1) deficiency of endogenous IL-10 exacerbates myocardial injury after I/R; 2) the cardioprotective effects of IL-10 are not dependent on the presence or absence of iNOS; and 3) deficiency of IL-10 enhances the infiltration of neutrophils into the myocardium after I/R.
Collapse
Affiliation(s)
- S P Jones
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
163
|
Zhang C, Reiter C, Eiserich JP, Boersma B, Parks DA, Beckman JS, Barnes S, Kirk M, Baldus S, Darley-Usmar VM, White CR. L-arginine chlorination products inhibit endothelial nitric oxide production. J Biol Chem 2001; 276:27159-65. [PMID: 11375389 DOI: 10.1074/jbc.m100191200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myeloperoxidase-derived oxidant hypochlorous acid (HOCl) is thought to contribute to endothelial dysfunction, but the mechanisms underlying this inhibitory effect are unknown. The present study tested the hypothesis that HOCl and L-arginine (L-Arg) react to form novel compounds that adversely affect endothelial function by inhibiting nitric oxide (NO) formation. Using spectrophotometric techniques, we found that HOCl and L-Arg react rapidly (k = 7.1 x 10(5) m(-1) s(-1)) to form two major products that were identified by mass spectrometry as monochlorinated and dichlorinated adducts of L-Arg. Pretreatment of bovine aortic endothelial cells with the chlorinated L-Arg metabolites (Cl-l-Arg) inhibited the -induced formation of the NO metabolites nitrate (NO(3)(-)) and nitrite (NO(2)(-)) in a concentration-dependent manner. Preincubation of rat aortic ring segments with Cl-L-Arg resulted in concentration-dependent inhibition of acetylcholine-induced relaxation. In contrast, blood vessels relaxed normally to the endothelium-independent vasodilator sodium nitroprusside. In vivo administration of Cl-L-Arg to anesthetized rats increased carotid artery vascular resistance. A greater than 10-fold excess of L-Arg was required to reverse the inhibitory effects of Cl-L-Arg in vivo and in vitro. Reaction of HOCl with D-arginine (D-Arg) did not result in the formation of inhibitory products. These results suggest that HOCl reacts with L-Arg to form chlorinated products that act as nitric-oxide synthase inhibitors.
Collapse
Affiliation(s)
- C Zhang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Affiliation(s)
- D Stuehr
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
165
|
Tsukahara H, Hiraoka M, Kobata R, Hata I, Ohshima Y, Jiang MZ, Noiri E, Mayumi M. Increased oxidative stress in rats with chronic nitric oxide depletion: measurement of urinary 8-hydroxy-2'-deoxyguanosine excretion. Redox Rep 2001; 5:23-8. [PMID: 10905540 DOI: 10.1179/rer.2000.5.1.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been reported to serve as a sensitive biomarker of oxidative stress. We examined the effect of chronic blockade of nitric oxide (NO) on urinary excretion of 8-OHdG in rats. Two types of NO synthase inhibitor were used: N(G)-nitro-L-arginine methyl ester (L-NAME) as a non-selective inhibitor and aminoguanidine (AG) as a selective inhibitor of the inducible isoform. Oral administration of L-NAME (20, 50 and 80 mg/dl of drinking water), but not AG (400 mg/dl), for 4 weeks induced systemic hypertension and a significant reduction in urinary excretion of NO2-/NO3-. Rats treated with L-NAME also showed a significant increase in urinary 8-OHdG excretion compared with the control animals. The effects of L-NAME (50 mg/dl) on blood pressure and urinary excretion of NO2/NO3- and 8-OHdG were restored by a large dose of L-arginine (2.0 g/dl). Chronic AG administration did not significantly alter urinary 8-OHdG excretion. On combining all the data, there was a significant negative correlation between urinary NO2-/NO,- and 8-OHdG. These observations suggest the importance of constitutive NO synthase activity in the maintenance of oxidant buffering capacity in rats. Oral administration of L-NAME may serve as a model of hypertension due to chronic NO deficiency with increased oxidative stress.
Collapse
Affiliation(s)
- H Tsukahara
- Department of Pediatrics, Fukui Medical University,Japan.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Hall JP, Merithew E, Davis RJ. c-Jun N-terminal kinase (JNK) repression during the inflammatory response? Just say NO. Proc Natl Acad Sci U S A 2000; 97:14022-4. [PMID: 11121010 PMCID: PMC34087 DOI: 10.1073/pnas.97.26.14022] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- J P Hall
- Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
167
|
Jones SP, Lefer DJ. Myocardial Reperfusion Injury: Insights Gained from Gene-Targeted Mice. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2000; 15:303-308. [PMID: 11390931 DOI: 10.1152/physiologyonline.2000.15.6.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia-reperfusion injury involves activation of multiple cell types, including leukocytes and endothelial cells. The pursuant inflammation involves diminished nitric oxide production, influx of neutrophils, and myocardial cell injury. Gene-targeted animals provide important clues about the progression of this inflammatory cascade.
Collapse
Affiliation(s)
- Steven P. Jones
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130
| | | |
Collapse
|
168
|
Abstract
Recognition of the endothelium-derived relaxation factor as nitric oxide (NO) gave rise to an impression that NO was synthesised only by the endothelial lining of the vessel wall. Later it was found that NO is synthesized constitutively by the enzyme nitric oxide synthase (NOS) in various cells. However, inflammatory cytokines can induce NOS (known as inducible NOS [iNOS]) activity in all the somatic cells. Blood cells, such as eosinophils, platelets, neutrophils, monocytes, and macrophages, also synthesize NO. Among them, polymorphonuclear leukocytes (PMNs) constitute an important proportion and are also the major participants in a number of pathological conditions with suggestive involvement of NO. PMNs can synthesize NO at rates similar to endothelial cells, thus suggesting the importance of PMN-derived NO in various physiological and pathological conditions. Most of the studies so far focus on the peripheral PMNs, while studies on PMNs after emigration are limited, thus warranting systematic studies on PMNs from both sources. The role of the endothelial NOS (eNOS) and functions of NO derived from the endothelial cells has been studied extensively. However, understanding of the PMNs NOS and its regulatory role in their function is unraveling. The present review summarizes the modulatory role of NO on PMNs functions and points out the discrepancies relating to presence of NOS in PMNs. This information will be helpful in understanding the importance of NO in physiological and pathological conditions associated with PMNs.
Collapse
Affiliation(s)
- S Sethi
- Pharmacology Division, Central Drug Research Institute, -226001,., Lucknow, India
| | | |
Collapse
|
169
|
Stubenitsky BM, Booster MH, Brasile L, Araneda D, Haisch CE, Kootstra G. Exsanguinous metabolic support perfusion--a new strategy to improve graft function after kidney transplantation. Transplantation 2000; 70:1254-8. [PMID: 11063352 DOI: 10.1097/00007890-200010270-00024] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The compounding damage of warm ischemia (WI) followed by cold preservation is a major barrier in renal transplantation. Although the relative effect of WI is not yet well understood, therapeutic strategies have mostly focused on minimizing the pathology seen upon reperfusion from the cold. Our study was designed to examine the effect of restoration of renal metabolism by warm perfusion on graft survival and to investigate the compounding damage of WI. METHODS Using a known critical canine autotransplantation model (1), kidneys were exposed to 30 min WI followed by 24 hr cold storage in Viaspan. They were then either reimplanted directly or first transitioned to 3 hr of warm perfusion with an acellular perfusate before reimplantation. Contralateral kidneys were subjected to 0, 30, or 60 min WI; 24 hr cold storage, and 3 hr warm perfusion. RESULTS Transplanted kidneys that were warm perfused before reimplantation had both lower 24 hr posttransplant serum creatinine (median of 3.2 vs. 4.1 mg/dl) and lower peak serum creatinine (median of 4.95 vs. 7.1 mg/dl). Survival rate for warm perfused kidneys was 90% (9/10) vs. 73% (8/11). In the contralateral kidneys, metabolism was affected by the compounding damage of WI. Renal oxygen and glucose consumption diminished significantly, whereas vascular resistance and lactate dehydrogenase-release rose significantly with increasing WI. CONCLUSIONS The results demonstrate a reduction of reperfusion damage by an acellular ex vivo restoration of renal metabolism. Furthermore, data from the contralateral kidneys substantiates the relative role of WI on metabolism in renal transplantation.
Collapse
Affiliation(s)
- B M Stubenitsky
- Department of Surgery, azM University Hospital, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
170
|
Kawachi S, Hines IN, Laroux FS, Hoffman J, Bharwani S, Gray L, Leffer D, Grisham MB. Nitric oxide synthase and postischemic liver injury. Biochem Biophys Res Commun 2000; 276:851-4. [PMID: 11027558 DOI: 10.1006/bbrc.2000.3559] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion.
Collapse
Affiliation(s)
- S Kawachi
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, Louisiana, 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Cardiovascular[TRACE;del] disease is the leading cause of death in the US and world-wide. Advances in molecular biology and the human genome project have revealed opportunities for novel strategies for cardiac gene therapy. This review discusses general and specific aspects of gene transfer strategies in cardiac tissues. These include 1) the selection and/or optimization of the vector for gene transfer; 2) the identification of the target gene(s); 3) the use of cardiac-specific promoters; and 4) the use of an appropriate delivery system for administration. Currently, several vectors (e.g., viral and nonviral vectors) have been developed and many target genes have been identified (e.g., VEGF, FGF, beta-AR, etc.). Many investigations have provided experimental models for gene delivery systems but the most efficient cardiac gene transfer was obtained from intramyocardial injection or perfusion of explanted myocardium. The data available thus far have suggested favorable immediate effects following gene transfer, but long-term value of cardiac gene therapy has not been proven. Further refinements in appropriate vectors that provide cell or tissue selectivity and long-lasting effects are necessary as well as the development of minimally invasive procedures for gene transfer.
Collapse
Affiliation(s)
- S K Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | |
Collapse
|
172
|
D.H. Koo D, Fuggle SV. Impact of ischemia/reperfusion injury and early inflammatory responses in kidney transplantation. Transplant Rev (Orlando) 2000. [DOI: 10.1053/trre.2000.16754] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
173
|
Kaul DK, Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest 2000; 106:411-20. [PMID: 10930444 PMCID: PMC314325 DOI: 10.1172/jci9225] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In sickle cell anemia, the initiation, progression, and resolution of a vasoocclusive episode may present features of ischemia-reperfusion injury, with recurrent episodes of ischemia/hypoxia and reoxygenation promoting inflammation. Here, we have tested the hypothesis that hypoxia/reoxygenation triggers inflammation in the transgenic sickle mouse. In these mice, even at ambient air, peripheral leukocyte counts are elevated by 1.7-fold and neutrophil counts by almost 3-fold. Two hours of hypoxia, followed by reoxygenation, induced a greater than normal rolling flux and adhesion of leukocytes in these mice, but no leukocyte extravasation. When 3 hours of hypoxia was followed by reoxygenation, sickle mice, but not normal mice, showed a distinct inflammatory response characterized by an increased number of adherent and emigrated leukocytes. Because these events, which are exaggerated in sickle mice, are not seen in response to hypoxia alone, we conclude that they represent a form of reperfusion injury. Studies using an H(2)O(2)-sensitive probe revealed clear evidence of oxidant production in vascular endothelial cells after hypoxia/reoxygenation in sickle mice. Infusion of an anti-P-selectin antibody, but not an anti-E-selectin antibody, completely inhibited this inflammatory response and significantly increased wall shear rates. These findings suggest that leukocyte-endothelium interaction contribute to vasoocclusive events in the sickle mice and perhaps in human sickle disease.
Collapse
Affiliation(s)
- D K Kaul
- Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
174
|
Kawachi S, Morise Z, Jennings SR, Conner E, Cockrell A, Laroux FS, Chervenak RP, Wolcott M, van der Heyde H, Gray L, Feng L, Granger DN, Specian RA, Grisham MB. Cytokine and adhesion molecule expression in SCID mice reconstituted with CD4+ T cells. Inflamm Bowel Dis 2000; 6:171-80. [PMID: 10961589 DOI: 10.1097/00054725-200008000-00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The objectives of this study were to quantify colonic cytokine and endothelial cell adhesion molecule (ECAM) expression in the colons of severe combined immunodeficient (SCID) mice reconstituted with different subsets of CD4+ T lymphocytes. We found that animals injected with CD45RBhigh but not CD45RBlow T cells or phosphate-buffered saline (PBS) developed clinical evidence of colitis at 6-8 weeks following reconstitution, as assessed by loss of body weight, development of loose stools and/or diarrhea, and histopathology. Concurrent with the onset of distal bowel inflammation was enhanced expression of a variety of Th1 and macrophage-derived cytokines including interferon gamma, tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-12, and IL-18 lymphotoxin-beta. In addition, message levels and vascular surface expression of ICAM-1, VCAM-1, and MAdCAM-1 were all significantly enhanced in the colitic SCID mice reconstituted with CD45RBhigh T cells compared with SCID mice reconstituted with PBS or CD45RBlow T cells that did not develop disease. Significant increases in some of these ECAMs were also noted in the cecum and stomach and to a lesser degree in the small bowel. Our data confirm that reconstitution of SCID mice with CD45RBhigh but not CD45RBlow T cells induces chronic colitis, and that the colonic inflammation is associated with enhanced expression of proinflammatory cytokines and different ECAMs in the colon. Furthermore, our studies demonstrate that reconstitution of SCID mice with CD45RBhigh T cells enhances ECAM expression in tissues distant from the site of active inflammation.
Collapse
Affiliation(s)
- S Kawachi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport 71130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
AbstractReperfusion of tissues after interruption of their vascular supply causes free-radical generation that leads to tissue damage, a scenario referred to as “reperfusion injury.” Because sickle disease involves repeated transient ischemic episodes, we sought evidence for excessive free-radical generation in sickle transgenic mice. Compared with normal mice, sickle mice at ambient air had a higher ethane excretion (marker of lipid peroxidation) and greater conversion of salicylic acid to 2,3-dihydroxybenzoic acid (marker of hydroxyl radical generation). During hypoxia (11% O2), only sickle mice converted tissue xanthine dehydrogenase to oxidase. Only the sickle mice exhibited a further increase in ethane excretion during restitution of normal oxygen tension after 2 hours of hypoxia. Only the sickle mice showed abnormal activation of nuclear factor–κB after exposure to hypoxia-reoxygenation. Allopurinol, a potential therapeutic agent, decreased ethane excretion in the sickle mice. Thus, sickle transgenic mice exhibit biochemical footprints consistent with excessive free-radical generation even at ambient air and following a transient induction of enhanced sickling. We suggest that reperfusion injury physiology may contribute to the evolution of the chronic organ damage characteristic of sickle cell disease. If so, novel therapeutic approaches might be of value.
Collapse
|
176
|
Abstract
Reperfusion of tissues after interruption of their vascular supply causes free-radical generation that leads to tissue damage, a scenario referred to as “reperfusion injury.” Because sickle disease involves repeated transient ischemic episodes, we sought evidence for excessive free-radical generation in sickle transgenic mice. Compared with normal mice, sickle mice at ambient air had a higher ethane excretion (marker of lipid peroxidation) and greater conversion of salicylic acid to 2,3-dihydroxybenzoic acid (marker of hydroxyl radical generation). During hypoxia (11% O2), only sickle mice converted tissue xanthine dehydrogenase to oxidase. Only the sickle mice exhibited a further increase in ethane excretion during restitution of normal oxygen tension after 2 hours of hypoxia. Only the sickle mice showed abnormal activation of nuclear factor–κB after exposure to hypoxia-reoxygenation. Allopurinol, a potential therapeutic agent, decreased ethane excretion in the sickle mice. Thus, sickle transgenic mice exhibit biochemical footprints consistent with excessive free-radical generation even at ambient air and following a transient induction of enhanced sickling. We suggest that reperfusion injury physiology may contribute to the evolution of the chronic organ damage characteristic of sickle cell disease. If so, novel therapeutic approaches might be of value.
Collapse
|
177
|
Abstract
The free radical nitric oxide (NO) has emerged in recent years as a fundamental signaling molecule for the maintenance of homeostasis, as well as a potent cytotoxic effector involved in the pathogenesis of a wide range of human diseases. Although this paradoxical fate has generated confusion, separating the biological actions of NO on the basis of its physiologic chemistry provides a conceptual framework which helps to distinguish between the beneficial and toxic consequences of NO, and to envision potential therapeutic strategies for the future. Under normal conditions, NO produced in low concentration acts as a messenger and cytoprotective (antioxidant) factor, via direct interactions with transition metals and other free radicals. Alternatively, when the circumstances allow the formation of substantial amounts of NO and modify the cellular microenvironment (formation of the superoxide radical), the chemistry of NO will turn into indirect effects consecutive to the formation of dinitrogen trioxide and peroxynitrite. These "reactive nitrogen species" will, in turn, mediate both oxidative and nitrosative stresses, which form the basis of the cytotoxicity generally attributed to NO, relevant to the pathophysiology of inflammation, circulatory shock, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- L Liaudet
- Division of Pulmonary Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | | | | |
Collapse
|
178
|
Affiliation(s)
- M B Grisham
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
179
|
Abstract
Reperfusion of ischaemic tissues is often associated with microvascular dysfunction that is manifested as impaired endothelium-dependent dilation in arterioles, enhanced fluid filtration and leukocyte plugging in capillaries, and the trafficking of leukocytes and plasma protein extravasation in postcapillary venules. Activated endothelial cells in all segments of the microcirculation produce more oxygen radicals, but less nitric oxide, in the initial period following reperfusion. The resulting imbalance between superoxide and nitric oxide in endothelial cells leads to the production and release of inflammatory mediators (e.g. platelet-activating factor, tumour necrosis factor) and enhances the biosynthesis of adhesion molecules that mediate leukocyte-endothelial cell adhesion. Some of the known risk factors for cardiovascular disease (hypercholesterolaemia, hypertension, and diabetes) appear to exaggerate many of the microvascular alterations elicited by ischaemia and reperfusion (I/R). The inflammatory mediators released as a consequence of reperfusion also appear to activate endothelial cells in remote organs that are not exposed to the initial ischaemic insult. This distant response to I/R can result in leukocyte-dependent microvascular injury that is characteristic of the multiple organ dysfunction syndrome. Adaptational responses to I/R injury have been demonstrated that allow for protection of briefly ischaemic tissues against the harmful effects of subsequent, prolonged ischaemia, a phenomenon called ischaemic preconditioning. There are two temporally and mechanistically distinct types of protection afforded by this adaptational response, i.e. acute and delayed preconditioning. The factors (e.g. protein kinase C activation) that initiate the acute and delayed preconditioning responses appear to be similar; however the protective effects of acute preconditioning are protein synthesis-independent, while the effects of delayed preconditioning require protein synthesis. The published literature in this field of investigation suggests that there are several potential targets for therapeutic intervention against I/R-induced microvascular injury.
Collapse
Affiliation(s)
- D L Carden
- Departments of Medicine, and Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
180
|
Akgür FM, Zibari GB, McDonald JC, Granger DN, Brown MF. Effects of dextran and pentoxifylline on hemorrhagic shock-induced P-selectin expression. J Surg Res 1999; 87:232-8. [PMID: 10600354 DOI: 10.1006/jsre.1999.5758] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dextran and pentoxifylline have been shown to prevent leukocyte-endothelium adherence encountered after hemorrhagic shock. P-Selectin is the first endothelial cell adhesion molecule to be upregulated after an ischemic insult. We investigated the effects of resuscitation with dextran 70 and administration of pentoxifylline during resuscitation on hemorrhagic shock-induced P-selectin expression. MATERIAL AND METHODS Hemorrhagic shock was induced in C57BL/6 mice by withdrawing blood to reduce mean arterial blood pressure to 30 mm Hg for 45 min. Animals were resuscitated by infusing one of the following solutions (each n:5): (1) Ringer's lactate, (2) 6% dextran 70, (3) Ringer's lactate plus 50 mg/kg pentoxifylline, (4) 5% human albumin. Afterward shed blood was infused. In vivo P-selectin expression was determined using dual-radiolabeled monoclonal antibody technique in lung, heart, liver, kidney, mesentery, stomach, small bowel, and colon 5 h after resuscitation. RESULTS P-Selectin was significantly upregulated in all of the organs studied in the Ringer's lactate resuscitation group (P < 0.001). Resuscitation with dextran 70 and administration of pentoxifylline during resuscitation prevented P-selectin upregulation. Resuscitation with human albumin caused significant attenuation but could not prevent P-selectin upregulation (p < 0.01). CONCLUSION Our study implies that the prevention of hemorrhagic shock-induced leukocyte-endothelium adherence by dextran 70 and pentoxifylline observed in other studies may be mediated by prevention of P-selectin expression by these agents.
Collapse
Affiliation(s)
- F M Akgür
- School of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
181
|
Wood JG, Johnson JS, Mattioli LF, Gonzalez NC. Systemic hypoxia promotes leukocyte-endothelial adherence via reactive oxidant generation. J Appl Physiol (1985) 1999; 87:1734-40. [PMID: 10562616 DOI: 10.1152/jappl.1999.87.5.1734] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that systemic hypoxia during reduced inspired PO(2) produces a rapid increase in leukocyte adherence to rat mesenteric venules. Evidence suggests that the mechanism of this response involves decreased nitric oxide (NO) levels. One possible pathway for NO depletion could involve increased reactive oxygen species (ROS) generation resulting in inactivation of NO. The overall goal of the present study was to examine the role of ROS in promoting leukocyte-endothelial adherence during systemic hypoxia. Experiments were designed to 1) evaluate changes in ROS generation in the mesenteric microcirculation during systemic hypoxia, 2) determine how the ROS signal changes when PO(2) levels return to normal after a period of systemic hypoxia, 3) assess the effect of antioxidants on ROS generation during hypoxia, and 4) utilize antioxidants to examine the functional relationship between ROS generation and leukocyte adherence during hypoxia. The major findings from this study are that systemic hypoxia increases ROS generation within the mesenteric microcirculation and that antioxidants prevent the increase in leukocyte-endothelial adhesive interactions observed in hypoxia.
Collapse
Affiliation(s)
- J G Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
182
|
Granger DN. Ischemia-reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation 1999. [PMID: 10501090 DOI: 10.1111/j.1549-8719.1999.tb00099.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endothelial cell function in all segments (arterioles, capillaries, and venules) of the microvasculature is compromised in tissues exposed to ischemia and reperfusion (I/R). This endothelial cell dysfunction is manifested as an impaired ability of arterioles to vasodilate, enhanced fluid filtration and leukocyte plugging in capillaries, and leukocyte-endothelial cell adhesion and increased protein extravasation in venules. An imbalance in the production of reactive oxygen species and nitric oxide contributes to most of these responses. The risk factors for cardiovascular disease, hypercholesterolemia, diabetes, and hypertension all appear to exacerbate the microvascular responses to I/R. A common feature of the deleterious effects of these risk factors is the enhanced oxidant stress experienced by endothelial cells, which appears to promote leukocyte-endothelial cell adhesion via transcription-independent (early response) and dependent (late response) processes. The exaggerated endothelial barrier dysfunction elicited by I/R in hypercholesterolemic animals is linked to the enhanced leukocyte recruitment, while the enhanced protein extravasation in postischemic venules of diabetic animals occurs independently of leukocyte recruitment.
Collapse
Affiliation(s)
- D N Granger
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
183
|
Kosonen O, Kankaanranta H, Malo-Ranta U, Moilanen E. Nitric oxide-releasing compounds inhibit neutrophil adhesion to endothelial cells. Eur J Pharmacol 1999; 382:111-7. [PMID: 10528145 DOI: 10.1016/s0014-2999(99)00581-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present work, we demonstrated that chemically different nitric oxide (NO)-releasing compounds inhibit tumor necrosis factor alpha (TNF-alpha)-induced polymorphonuclear leukocyte adhesion to endothelial cells in vitro. Two mesoionic oxatriazole derivatives GEA 3162 (1,2,3,4-oxatriazolium,5-amino-3(3, 4-dichlorophenyl)-chloride) and GEA 3175 (1,2,3,4-oxatriazolium, -3-(3-chloro-2-methylphenyl)-5-[[(4-methylphenyl)sulfonyl]amino]-, hydroxide inner salt) were compared to the earlier-known NO donor SIN-1 (3-morpholino-sydnonimine). GEA 3162 (3-10 microM) and GEA 3175 (10-30 microM) inhibited human polymorphonuclear leukocyte adhesion to B(4) endothelial cells in a dose-dependent manner being more potent than SIN-1. In the present model, leukocytes rather than endothelial cells seemed to be the target of the effect of NO. Flow cytometric analysis showed that NO-releasing compounds did not alter TNF-alpha induced CD11/CD18 surface expression in polymorphonuclear leukocytes. The inhibitory action of NO-releasing compounds on adhesion paralleled with the increased synthesis of cGMP in polymorphonuclear leukocytes. Analogues of cGMP inhibited polymorphonuclear leukocyte adhesion indicating a role for cGMP in the action of NO donors. The results suggest that exogenous NO in the form of NO-releasing compounds inhibits polymorphonuclear leukocyte adhesion to endothelial cells, which may be implicated in the regulation of leukocyte migration and leukocyte-mediated tissue injury.
Collapse
Affiliation(s)
- O Kosonen
- Medical School, University of Tampere, P.O. Box 607, FIN-33101, Tampere, Finland
| | | | | | | |
Collapse
|
184
|
Abstract
Nitric oxide (NO) has been implicated as a modulator of blood flow, motility, electrolyte and water transport, and the function of endothelial cells, platelets, mast cells, and macrophages within the digestive system. In addition, a number of reports have demonstrated that NO possesses potent anti-inflammatory properties, whereas results from an equally impressive number of studies suggest that NO may promote inflammation-induced cell and tissue dysfunction. Consideration of the physiologic chemistry of NO and its interaction with molecular oxygen and/or superoxide may allow us to identify which of the NO-dependent reactions are important in modulating physiologic and pathophysiologic responses in the gut.
Collapse
Affiliation(s)
- D Jourd'heuil
- Vascular Biology Research Group, MS 113, Department of Physiology and Cell Biology, Albany Medical College, 47 New Scotland Avenue (MC 8), Albany, NY 12208, USA
| | | | | |
Collapse
|
185
|
Fantel AG, Stamps LD, Tran TT, Mackler B, Person RE, Nekahi N. Role of free radicals in the limb teratogenicity of L-NAME (N(G)-nitro-(L)-arginine methyl ester): a new mechanistic model of vascular disruption. TERATOLOGY 1999; 60:151-60. [PMID: 10471900 DOI: 10.1002/(sici)1096-9926(199909)60:3<151::aid-tera11>3.0.co;2-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In continuing studies of limb effects resulting from fetal exposure to N(G)-nitro-(L)-arginine methyl ester (L-NAME), we examined the early time course of vascular changes and the effectiveness of fetal intraamniotic injection. Vascular engorgement and hemorrhage occurred within 4 hr of L-NAME treatment on gestational day (gd) 17, and direct injection appeared to be as effective as maternal intraperitoneal injection in inducing limb hemorrhage. Further studies examined protein nitration and electron transport inhibition in tissues of exposed fetuses. L-NAME caused significant increases in nitrotyrosine (NT) formation in limb but not in heart or brain, and reduced electron transport rates in limb. Three agents, alpha-phenyl-N-t-butylnitrone (PBN), a radical trap and inhibitor of inducible nitric oxide synthase (iNOS), allopurinol, an inhibitor of xanthine oxidase, and aminoguanidine, a relatively specific inhibitor of iNOS, significantly moderated limb hemorrhage and protein nitration in distal limb. These results suggest that L-NAME works directly on the fetal limb vasculature and indicate a cytotoxic role for peroxynitrite, a potent oxidant and nitrating agent that is the reaction product of nitric oxide and superoxide anion radical. We propose that L-NAME and other vasoactive toxicants disrupt the fetal limb in a sequential process. Initially, nitric oxide (NO) is depleted, causing hemorrhage and edema in the limb. Within hours, iNOS is induced, resulting in cytotoxic tissue concentrations of NO and reactive nitrogen species that induce apoptosis and/or necrosis in the limb. We suggest that L-NAME exposure may serve as a model of vascular disruptive limb malformations.
Collapse
Affiliation(s)
- A G Fantel
- Department of Pediatrics, University of Washington, Seattle, Washington 98195-6320, USA.
| | | | | | | | | | | |
Collapse
|
186
|
Pou S, Keaton L, Surichamorn W, Rosen GM. Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem 1999; 274:9573-80. [PMID: 10092643 DOI: 10.1074/jbc.274.14.9573] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (NOS I) in the absence of L-arginine has previously been shown to generate superoxide (O-2) (Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H., and Rosen, G. M. (1992) J. Biol. Chem. 267, 24173-24176). In the presence of L-arginine, NOS I produces nitric oxide (NO.). Yet the competition between O2 and L-arginine for electrons, and by implication formation of O-2, has until recently remained undefined. Herein, we investigated this relationship, observing O-2 generation even at saturating levels of L-arginine. Of interest was the finding that the frequently used NOS inhibitor NG-monomethyl L-arginine enhanced O-2 production in the presence of L-arginine because this antagonist attenuated NO. formation. Whereas diphenyliodonium chloride inhibited O-2, blockers of heme such as NaCN, 1-phenylimidazole, and imidazole likewise prevented the formation of O-2 at concentrations that inhibited NO. formation from L-arginine. Taken together these data demonstrate that NOS I generates O-2 and the formation of this free radical occurs at the heme domain.
Collapse
Affiliation(s)
- S Pou
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
187
|
Grisham MB, Jourd'Heuil D, Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites:implications in inflammation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G315-21. [PMID: 9950804 DOI: 10.1152/ajpgi.1999.276.2.g315] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The role of nitric oxide (NO) in inflammation represents one of the most studied yet controversial subjects in physiology. A number of reports have demonstrated that NO possesses potent anti-inflammatory properties, whereas an equally impressive number of studies suggest that NO may promote inflammation-induced cell and tissue dysfunction. The reasons for these apparent paradoxical observations are not entirely clear; however, we propose that understanding the physiological chemistry of NO and its metabolites will provide a blueprint by which one may distinguish the regulatory/anti-inflammatory properties of NO from its deleterious/proinflammatory effects. The physiological chemistry of NO is complex and encompasses numerous potential reactions. In an attempt to simplify the understanding of this chemistry, the physiological aspects of NO chemistry may be categorized into direct and indirect effects. This type of classification allows for consideration of timing, location, and rate of production of NO and the relevant targets likely to be affected. Direct effects are those reactions in which NO interacts directly with a biological molecule or target and are thought to occur under normal physiological conditions when the rates of NO production are low. Generally, these types of reactions may serve regulatory and/or anti-inflammatory functions. Indirect effects, on the other hand, are those reactions mediated by NO-derived intermediates such as reactive nitrogen oxide species derived from the reaction of NO with oxygen or superoxide and are produced when fluxes of NO are enhanced. We postulate that these types of reactions may predominate during times of active inflammation. Consideration of the physiological chemistry of NO and its metabolites will hopefully allow one to identify which of the many NO-dependent reactions are important in modulating the inflammatory response and may help in the design of new therapeutic strategies for the treatment of inflammatory tissue injury.
Collapse
Affiliation(s)
- M B Grisham
- Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|