151
|
Rosado A, Sohn EJ, Drakakaki G, Pan S, Swidergal A, Xiong Y, Kang BH, Bressan RA, Raikhel NV. Auxin-mediated ribosomal biogenesis regulates vacuolar trafficking in Arabidopsis. THE PLANT CELL 2010; 22:143-58. [PMID: 20061553 PMCID: PMC2828701 DOI: 10.1105/tpc.109.068320] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 12/07/2009] [Accepted: 12/19/2009] [Indexed: 05/19/2023]
Abstract
In plants, the mechanisms that regulate the transit of vacuolar soluble proteins containing C-terminal and N-terminal vacuolar sorting determinants (VSDs) to the vacuole are largely unknown. In a screen for Arabidopsis thaliana mutants affected in the trafficking of C-terminal VSD containing proteins, we isolated the ribosomal biogenesis mutant rpl4a characterized by its partial secretion of vacuolar targeted proteins and a plethora of developmental phenotypes derived from its aberrant auxin responses. In this study, we show that ribosomal biogenesis can be directly regulated by auxins and that the exogenous application of auxins to wild-type plants results in vacuolar trafficking defects similar to those observed in rpl4a mutants. We propose that the influence of auxin on ribosomal biogenesis acts as a regulatory mechanism for auxin-mediated developmental processes, and we demonstrate the involvement of this regulatory mechanism in the sorting of vacuolar targeted proteins in Arabidopsis.
Collapse
Affiliation(s)
- Abel Rosado
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Eun Ju Sohn
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Georgia Drakakaki
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Songqin Pan
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Alexandra Swidergal
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Yuqing Xiong
- Electron Microscopy and Bioimaging Lab, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32611
| | - Byung-Ho Kang
- Electron Microscopy and Bioimaging Lab, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32611
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Natasha V. Raikhel
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
- Address correspondence to
| |
Collapse
|
152
|
Taylor DJ, Devkota B, Huang AD, Topf M, Narayanan E, Sali A, Harvey SC, Frank J. Comprehensive molecular structure of the eukaryotic ribosome. Structure 2009; 17:1591-1604. [PMID: 20004163 PMCID: PMC2814252 DOI: 10.1016/j.str.2009.09.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/18/2009] [Indexed: 01/02/2023]
Abstract
Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than do bacterial ribosomes, which are implicated in extraribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2.
Collapse
Affiliation(s)
- Derek J Taylor
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | - Batsal Devkota
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Andrew D Huang
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Maya Topf
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Eswar Narayanan
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutical Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, Mission Bay Byers Hall, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Stephen C Harvey
- School of Biology and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
153
|
Lüders S, Fallet C, Franco-Lara E. Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 2009; 7:36. [PMID: 19772559 PMCID: PMC2758844 DOI: 10.1186/1477-5956-7-36] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 09/21/2009] [Indexed: 11/17/2022] Open
Abstract
In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37 degrees C and 47.5 degrees C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date.
Collapse
Affiliation(s)
- Svenja Lüders
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gausstrasse 17, 38106 Braunschweig, Germany
| | - Claas Fallet
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gausstrasse 17, 38106 Braunschweig, Germany
| | - Ezequiel Franco-Lara
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gausstrasse 17, 38106 Braunschweig, Germany
| |
Collapse
|
154
|
Kang B, Guo J, Yang H, Zhou R, Liu J, Li S, Dong C. Differential expression profiling of ovarian genes in prelaying and laying geese. Poult Sci 2009; 88:1975-83. [DOI: 10.3382/ps.2008-00519] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
155
|
Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kössler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schüller C, Carmona-Gutierrez D, Breitenbach-Koller L, Mück C, Jansen-Dürr P, Criollo A, Kroemer G, Madeo F, Breitenbach M. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 2009; 1:622-36. [PMID: 20157544 PMCID: PMC2806038 DOI: 10.18632/aging.100065] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/10/2009] [Indexed: 11/25/2022]
Abstract
Yeast
mother cell-specific aging constitutes a model of replicative aging as it
occurs in stem cell populations of higher eukaryotes. Here, we present a
new long-lived yeast deletion mutation,afo1 (for aging factor one),
that confers a 60% increase in replicative lifespan. AFO1/MRPL25
codes for a protein that is contained in the large subunit of the
mitochondrial ribosome. Double mutant experiments indicate that the
longevity-increasing action of the afo1 mutation is independent of
mitochondrial translation, yet involves the cytoplasmic Tor1p as well as
the growth-controlling transcription factor Sfp1p. In their final cell
cycle, the long-lived mutant cells do show the phenotypes of yeast
apoptosis indicating that the longevity of the mutant is not caused by an
inability to undergo programmed cell death. Furthermore, the afo1 mutation
displays high resistance against oxidants. Despite the respiratory
deficiency the mutant has paradoxical increase in growth rate compared to
generic petite mutants. A comparison of the single and double mutant
strains for afo1 and fob1 shows that the longevity phenotype
of afo1 is independent of the formation of ERCs (ribosomal DNA
minicircles). AFO1/MRPL25 function establishes a new connection
between mitochondria, metabolism and aging.
Collapse
Affiliation(s)
- Gino Heeren
- Department of Cell Biology, Division of Genetics, University of Salzburg, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Rohani MG, Beyer RP, Hacker BM, Dommisch H, Dale BA, Chung WO. Modulation of expression of innate immunity markers CXCL5/ENA-78 and CCL20/MIP3alpha by protease-activated receptors (PARs) in human gingival epithelial cells. Innate Immun 2009; 16:104-14. [PMID: 19567485 DOI: 10.1177/1753425909339233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors with an active role in host defense. The two most highly expressed members of the PAR family in gingival epithelial cells (GECs) are PAR1 and PAR2. The major virulence factors of periodontal pathogen Porphyromonas gingivalis are its proteases which can activate PAR2. However, little is known about the function of PARs in GECs when they are activated by their endogenous agonist enzymes. The purpose of this study was to characterize how the expression of innate immune markers is modulated when PAR1 and PAR2 are activated by their agonist enzymes, thrombin and trypsin, respectively. Here, we report that activation of PAR1 and PAR2 induces cell proliferation at low concentration. Activation of PAR via proteolytic activity of thrombin and trypsin induces expression of CXCL5/ENA-78 and CCL20/MIP3alpha in a concentration-dependent manner. Induction of CXCL5 via PAR1 was inhibited in the presence of PAR1 cleavage blocking antibodies and by PAR1 siRNA. The induction of CXCL5 and CCL20 via PAR2 was inhibited by PAR2 siRNA. These findings indicate an active role in innate immune responses by PAR1 and PAR2 in GECs. Modulation of innate immunity by PARs may contribute to co-ordinated and balanced immunosurveillance in GECs.
Collapse
Affiliation(s)
- Maryam G Rohani
- Department of Oral Biology, University of Washington, Seattle, Washington 98195-7132, USA
| | | | | | | | | | | |
Collapse
|
157
|
Abstract
Ribosomal proteins are ubiquitous, abundant, and RNA binding: prime candidates for recruitment to extraribosomal functions. Indeed, they participate in balancing the synthesis of the RNA and protein components of the ribosome itself. An exciting new story is that ribosomal proteins are sentinels for the self-evaluation of cellular health. Perturbation of ribosome synthesis frees ribosomal proteins to interface with the p53 system, leading to cell-cycle arrest or to apoptosis. Yet in only a few cases can we clearly identify the recruitment of ribosomal proteins for other extraribosomal functions. Is this due to a lack of imaginative evolution by cells and viruses, or to a lack of imaginative experiments by molecular biologists?
Collapse
|
158
|
Kurakin A. Scale-free flow of life: on the biology, economics, and physics of the cell. Theor Biol Med Model 2009; 6:6. [PMID: 19416527 PMCID: PMC2683819 DOI: 10.1186/1742-4682-6-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/05/2009] [Indexed: 02/01/2023] Open
Abstract
The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
159
|
Houmani JL, Ruf IK. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22. PLoS One 2009; 4:e5306. [PMID: 19390581 PMCID: PMC2668802 DOI: 10.1371/journal.pone.0005306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022] Open
Abstract
The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.
Collapse
Affiliation(s)
- Jennifer L. Houmani
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Ingrid K. Ruf
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
160
|
Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 2009; 84:445-58. [PMID: 19361613 DOI: 10.1016/j.ajhg.2009.03.011] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/02/2009] [Accepted: 03/17/2009] [Indexed: 11/18/2022] Open
Abstract
We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.
Collapse
Affiliation(s)
- Jennifer A Webster
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Filip AM, Klug J, Cayli S, Fröhlich S, Henke T, Lacher P, Eickhoff R, Bulau P, Linder M, Carlsson-Skwirut C, Leng L, Bucala R, Kraemer S, Bernhagen J, Meinhardt A. Ribosomal protein S19 interacts with macrophage migration inhibitory factor and attenuates its pro-inflammatory function. J Biol Chem 2009; 284:7977-85. [PMID: 19155217 PMCID: PMC2658091 DOI: 10.1074/jbc.m808620200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in the pathogenesis of inflammatory disorders such as infection, sepsis, and autoimmune disease. MIF exists preformed in cytoplasmic pools and exhibits an intrinsic tautomerase and oxidoreductase activity. MIF levels are elevated in the serum of animals and patients with infection or different inflammatory disorders. To elucidate how MIF actions are controlled, we searched for endogenous MIF-interacting proteins with the potential to interfere with key MIF functions. Using in vivo biotin-tagging and endogenous co-immunoprecipitation, the ribosomal protein S19 (RPS19) was identified as a novel MIF binding partner. Surface plasmon resonance and pulldown experiments with wild type and mutant MIF revealed a direct physical interaction of the two proteins (K(D) = 1.3 x 10(-6) m). As RPS19 is released in inflammatory lesions by apoptotic cells, we explored whether it affects MIF function and inhibits its binding to receptors CD74 and CXCR2. Low doses of RPS19 were found to strongly inhibit MIF-CD74 interaction. Furthermore, RPS19 significantly compromised CXCR2-dependent MIF-triggered adhesion of monocytes to endothelial cells under flow conditions. We, therefore, propose that RPS19 acts as an extracellular negative regulator of MIF.
Collapse
Affiliation(s)
- Ana-Maria Filip
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Medical Clinic II, and Department of Biochemistry, Justus-Liebig-University of Giessen, Giessen D-35385, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol Cell Biol 2009; 29:2489-504. [PMID: 19273598 DOI: 10.1128/mcb.01588-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypomorphic mutation in one allele of ribosomal protein l24 gene (Rpl24) is responsible for the Belly Spot and Tail (Bst) mouse, which suffers from defects of the eye, skeleton, and coat pigmentation. It has been hypothesized that these pathological manifestations result exclusively from faulty protein synthesis. We demonstrate here that upregulation of the p53 tumor suppressor during the restricted period of embryonic development significantly contributes to the Bst phenotype. However, in the absence of p53 a large majority of Rpl24(Bst/+) embryos die. We showed that p53 promotes survival of these mice via p21-dependent mechanism. Our results imply that activation of a p53-dependent checkpoint mechanism in response to various ribosomal protein deficiencies might also play a role in the pathogenesis of congenital malformations in humans.
Collapse
|
163
|
Lindström MS. Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun 2009; 379:167-70. [PMID: 19114035 DOI: 10.1016/j.bbrc.2008.12.083] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/17/2008] [Indexed: 12/15/2022]
|
164
|
Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H, Wahl MC. Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. Mol Cell 2009; 32:791-802. [PMID: 19111659 DOI: 10.1016/j.molcel.2008.10.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/24/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022]
Abstract
Protein S10 is a component of the 30S ribosomal subunit and participates together with NusB protein in processive transcription antitermination. The molecular mechanisms by which S10 can act as a translation or a transcription factor are not understood. We used complementation assays and recombineering to delineate regions of S10 dispensable for antitermination, and determined the crystal structure of a transcriptionally active NusB-S10 complex. In this complex, S10 adopts the same fold as in the 30S subunit and is blocked from simultaneous association with the ribosome. Mass spectrometric mapping of UV-induced crosslinks revealed that the NusB-S10 complex presents an intermolecular, composite, and contiguous binding surface for RNAs containing BoxA antitermination signals. Furthermore, S10 overproduction complemented a nusB null phenotype. These data demonstrate that S10 and NusB together form a BoxA-binding module, that NusB facilitates entry of S10 into the transcription machinery, and that S10 represents a central hub in processive antitermination.
Collapse
Affiliation(s)
- Xiao Luo
- Research Group X-Ray Crystallography, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc Natl Acad Sci U S A 2009; 106:864-9. [PMID: 19144914 DOI: 10.1073/pnas.0810205106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whereas ribosomal proteins (r-proteins) are known primarily as components of the translational machinery, certain of these r-proteins have been found to also have extraribosomal functions. Here we report the novel ability of an r-protein, L4, to regulate RNA degradation in Escherichia coli. We show by affinity purification, immunoprecipitation analysis, and E. coli two-hybrid screening that L4 interacts with a site outside of the catalytic domain of RNase E to regulate the endoribonucleolytic functions of the enzyme, thus inhibiting RNase E-specific cleavage in vitro, stabilizing mRNAs targeted by RNase E in vivo, and controlling plasmid DNA replication by stabilizing an antisense regulatory RNA normally attacked by RNase E. Broader effects of the L4-RNase E interaction on E. coli transcripts were shown by DNA microarray analysis, which revealed changes in the abundance of 65 mRNAs encoding the stress response proteins HslO, Lon, CstA, YjiY, and YaeL, as well as proteins involved in carbohydrate and amino acid metabolism and transport, transcription/translation, and DNA/RNA synthesis. Analysis of mRNA stability showed that the half lives of stress-responsive transcripts were increased by ectopic expression of L4, which normally increases along with other r-proteins in E. coli under stress conditions, and also by inactivation of RNase E. Our finding that L4 can inhibit RNase E-dependent decay may account at least in part for the elevated production of stress-induced proteins during bacterial adaptation to adverse environments.
Collapse
|
166
|
Wang M, Hu Y, Stearns ME. RPS2: a novel therapeutic target in prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:6. [PMID: 19138403 PMCID: PMC2633276 DOI: 10.1186/1756-9966-28-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/12/2009] [Indexed: 11/16/2022]
Abstract
Background A number of studies have previously shown that the over expression of different ribosomal proteins might play an important role in cancer (i.e. S3a, L10, L16). We have previously reported that RPS2, a 33 Kda ribosomal protein was over expressed in malignant prostate cancer cell lines and in archived tumor specimens. Thus, RPS2 or other aberrantly over-expressed ribosomal proteins might promote cancer and be excellent therapeutic targets for treatment of the disease. Methods Western blotting and RT-PCR have been used to measure and compare the levels of expression of RPS2 in a variety of malignant prostate cancer cell lines, plus normal and benign cells lines. We have developed a 'ribozyme-like' DNAZYM-1P '10–23' motif oligonucleotide and examined whether it targets RPS2 in different cell lines by RT-PCR and Western blots. Growth and apoptosis assays were carried out to measure whether DNAZYM-1P 'knock-down' of RPS2 influenced cell proliferation or survival. We have also developed a SCID mouse tumor model with PC-3ML cells to determine whether DNAZYM-1P targeting of RPS2 compromised tumor growth and mouse survival rates in vivo. Results Western blots showed that PC-3ML, LNCaP, CPTX-1532, and pBABE-cmyc stably transfected IBC-10a cells all over-expressed RPS2, whereas IBC-10a parent, NPTX-1532, and BPH-1 cells or mouse NIH-3T3 cells expressed barely detectable levels of RPS2. RT-PCR assays showed that DNAZYM-1P, which targeted RPS2, 'knocked-down' RPS2 expression in the malignant cells (i.e. PC-3ML cells) in vitro. The DNAZYM-1P also inhibited cell growth and induced apoptosis in the malignant prostate cells, but had little effect on the normal IBC-10a or NPTX-1532 cell lines. Finally, SCID mouse tumor modeling studies showed that DNAZYM-1P blocked tumor growth and metastasis by PC-3ML cells and eventually eradicated tumors following localized or systemic i.v. delivery. Mouse survival studies revealed that there was a dosage dependent increase in disease free survival rates in mice treated systemically with DNAZYM-1P (i.e. mouse survival increased from 0% to 100%). Conclusion In sum, we have shown for the first time that therapeutic targeting of RPS2 is an excellent approach for the eradication of prostate cancer in preclinical tumor modeling studies.
Collapse
Affiliation(s)
- Min Wang
- Department of Pathology, Drexel University College of Medicine, 15th and Vine Streets, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|
167
|
Chakraborty A, Uechi T, Higa S, Torihara H, Kenmochi N. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response. PLoS One 2009; 4:e4152. [PMID: 19129914 PMCID: PMC2612748 DOI: 10.1371/journal.pone.0004152] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022] Open
Abstract
Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs) play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants) displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6-7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development.
Collapse
Affiliation(s)
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Sayomi Higa
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Hidetsugu Torihara
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- * E-mail:
| |
Collapse
|
168
|
Dieci G, Ruotolo R, Braglia P, Carles C, Carpentieri A, Amoresano A, Ottonello S. Positive modulation of RNA polymerase III transcription by ribosomal proteins. Biochem Biophys Res Commun 2008; 379:489-93. [PMID: 19116144 DOI: 10.1016/j.bbrc.2008.12.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA(Ile)(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
169
|
Janus chaperones: Assistance of both RNA- and protein-folding by ribosomal proteins. FEBS Lett 2008; 583:88-92. [DOI: 10.1016/j.febslet.2008.11.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 01/18/2023]
|
170
|
Abstract
The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.
Collapse
|
171
|
Uechi T, Nakajima Y, Chakraborty A, Torihara H, Higa S, Kenmochi N. Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond-Blackfan anemia. Hum Mol Genet 2008; 17:3204-11. [PMID: 18653748 DOI: 10.1093/hmg/ddn216] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomes are responsible for protein synthesis in all cells. Ribosomal protein S19 (RPS19) is one of the 79 ribosomal proteins (RPs) in vertebrates. Heterozygous mutations in RPS19 have been identified in 25% of patients with Diamond-Blackfan anemia (DBA), but the relationship between RPS19 mutations and the pure red-cell aplasia of DBA is unclear. In this study, we developed an RPS19-deficient zebrafish by knocking down rps19 using a Morpholino antisense oligo. The RPS19-deficient animals showed a dramatic decrease in blood cells as well as deformities in the head and tail regions at early developmental stages. These phenotypes were rescued by injection of zebrafish rps19 mRNA, but not by injection of rps19 mRNAs with mutations that have been identified in DBA patients. Our results indicate that rps19 is essential for hematopoietic differentiation during early embryogenesis. The effects were specific to rps19, but knocking down the genes for three other RPs, rpl35, rpl35a and rplp2, produced similar phenotypes, suggesting that these genes might have a common function in zebrafish erythropoiesis. The RPS19-deficient zebrafish will provide a valuable tool for investigating the molecular mechanisms of DBA development in humans.
Collapse
Affiliation(s)
- Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
172
|
Montanaro L, Treré D, Derenzini M. Nucleolus, ribosomes, and cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:301-10. [PMID: 18583314 DOI: 10.2353/ajpath.2008.070752] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complex aspects linking the nucleolus and ribosome biogenesis to cancer are reviewed here. The available evidence indicates that the morphological and functional changes in the nucleolus, widely observed in cancer tissues, are a consequence of both the increased demand for ribosome biogenesis, which characterizes proliferating cells, and the changes in the mechanisms controlling cell proliferation. In fact, the loss or functional changes in the two major tumor suppressor proteins pRB and p53 cause an up-regulation of ribosome biogenesis in cancer tissues. In this context, the association in human carcinomas of nucleolar hypertrophy with bad prognoses is worthy of note. Further, an increasing amount of data coming from studies on both hepatitis virus-induced chronic liver diseases and a subset of rare inherited disorders, including X-linked dyskeratosis congenita, suggests an active role of the nucleolus in tumorigenesis. Both an up-regulation of ribosome production and changes in the ribosome structure might causally contribute to neoplastic transformation, by affecting the balance of protein translation, thus altering the synthesis of proteins that play an important role in the genesis of cancer.
Collapse
Affiliation(s)
- Lorenzo Montanaro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
173
|
Xue Y, Yun D, Esmon A, Zou P, Zuo S, Yu Y, He F, Yang P, Chen X. Proteomic dissection of agonist-specific TLR-mediated inflammatory responses on macrophages at subcellular resolution. J Proteome Res 2008; 7:3180-93. [PMID: 18572962 DOI: 10.1021/pr800021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Upon stimulation by distinct bacterial/viral products/agonists, APCs including macrophages tend to express particular TLR molecules to coordinate the signaling that ultimately target at chromatin and mediate the activity of downstream transcriptional factors in regulating characteristic sets of gene expression for innate immune response. To investigate largely unknown regulatory mechanism underlying agonist-specific TLR-mediated innate immune responses, at subcellular resolution, we first analyzed Pam3CSK4-induced proteome changes in living macrophages and identified the differentially expressed proteins in the cytosol and chromatin-associated fractions, respectively, by using AACT/SILAC-based quantitative proteomic approach. In the cytosol fraction, we found that the proteins with notable Pam3CSK4-induced expression changes were primarily involved in post-translational events, energy metabolism, protein transporting, and apoptosis. Among them, a ubiquitous and highly conserved iron-binding protein, Ferritin, was further characterized as a modulator for the expression of a TLR2-specific cytokine IL-10 in murine macrophage cells by using small-interfering RNA (siRNA). Interestingly, we simultaneously identified multiple apoptosis-related proteins showing opposite trend in their regulated expressions, which clearly indicated the existence of systems regulation in differentially modulating the signal for the cross-road balance between protecting cell from apoptosis and the apoptosis of infected cells. For those regulated proteins identified in the nuclear fraction, we integrated bioinformatics to find the interactions of certain chromatin-associated proteins, which suggested their interconnected involvements in proteasome-ubiquitin pathway, DNA replication, and post-translational activity upon Pam3CSK4 stimulation. Certain regulated proteins in our quantitative proteomic data set showed the similar trend of up-regulation in both Pam3CSK4- and LPS-stimulated macrophages (Nature 2007, 447, 972), suggesting their belonging to the recently identified class of pro-inflammatory genes. The regulatory discrepancy between both data sets for other set of genes indicated their agonist-specific nature in innate immune responses.
Collapse
Affiliation(s)
- Yan Xue
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression microarray in the analysis of 2 DBA patients with chromosome 3q deletions to identify RPL35A as a potential DBA gene. Sequence analysis of a cohort of DBA probands confirmed involvement RPL35A in DBA. shRNA inhibition shows that Rpl35a is essential for maturation of 28S and 5.8S rRNAs, 60S subunit biogenesis, normal proliferation, and cell survival. Analysis of pre-rRNA processing in primary DBA lymphoblastoid cell lines demonstrated similar alterations of large ribosomal subunit rRNA in both RPL35A-mutated and some RPL35A wild-type patients, suggesting additional large ribosomal subunit gene defects are likely present in some cases of DBA. These data demonstrate that alterations of large ribosomal subunit proteins cause DBA and support the hypothesis that DBA is primarily the result of altered ribosomal function. The results also establish that haploinsufficiency of large ribosomal subunit proteins contributes to bone marrow failure and potentially cancer predisposition.
Collapse
|
175
|
Degenhardt RF, Bonham-Smith PC. Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. PLANT PHYSIOLOGY 2008; 147:128-42. [PMID: 18322146 PMCID: PMC2330296 DOI: 10.1104/pp.107.111799] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/26/2008] [Indexed: 05/19/2023]
Abstract
Protein synthesis is catalyzed by the ribosome, a two-subunit enzyme comprised of four ribosomal RNAs and, in Arabidopsis (Arabidopsis thaliana), 81 ribosomal proteins (r-proteins). Plant r-protein genes exist as families of multiple expressed members, yet only one r-protein from each family is incorporated into any given ribosome, suggesting that many r-protein genes may be functionally redundant or development/tissue/stress specific. Here, we characterized the localization and gene-silencing phenotypes of a large subunit r-protein family, RPL23a, containing two expressed genes (RPL23aA and RPL23aB). Live cell imaging of RPL23aA and RPL23aB in tobacco with a C-terminal fluorescent-protein tag demonstrated that both isoforms accumulated in the nucleolus; however, only RPL23aA was targeted to the nucleolus with an N-terminal fluorescent protein tag, suggesting divergence in targeting efficiency of localization signals. Independent knockdowns of endogenous RPL23aA and RPL23aB transcript levels using RNA interference determined that an RPL23aB knockdown did not alter plant growth or development. Conversely, a knockdown of RPL23aA produced a pleiotropic phenotype characterized by growth retardation, irregular leaf and root morphology, abnormal phyllotaxy and vasculature, and loss of apical dominance. Comparison to other mutants suggests that the phenotype results from reduced ribosome biogenesis, and we postulate a link between biogenesis, microRNA-target degradation, and maintenance of auxin homeostasis. An additional RNA interference construct that coordinately silenced both RPL23aA and RPL23aB demonstrated that this family is essential for viability.
Collapse
Affiliation(s)
- Rory F Degenhardt
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2.
| | | |
Collapse
|
176
|
Kato Y, Li X, Amarnath D, Ushizawa K, Hashizume K, Tokunaga T, Taniguchi M, Tsunoda Y. Comparative gene expression analysis of bovine nuclear-transferred embryos with different developmental potential by cDNA microarray and real-time PCR to determine genes that might reflect calf normality. CLONING AND STEM CELLS 2008; 9:495-511. [PMID: 18154511 DOI: 10.1089/clo.2007.0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Collapse
Affiliation(s)
- Yoko Kato
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME. Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 2008; 135:1315-24. [DOI: 10.1242/dev.016469] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leaves are determinate organs that arise from the flanks of the shoot apical meristem as polar structures with distinct adaxial (dorsal) and abaxial(ventral) sides. Opposing regulatory interactions between genes specifying adaxial or abaxial fates function to maintain dorsoventral polarity. One component of this regulatory network is the Myb-domain transcription factor gene ASYMMETRIC LEAVES1 (AS1). The contribution of AS1 to leaf polarity varies across different plant species; however,in Arabidopsis, as1 mutants have only mild defects in leaf polarity,suggesting that alternate pathways exist for leaf patterning. Here, we describe three genes, PIGGYBACK1 (PGY1), PGY2 and PGY3, which alter leaf patterning in the absence of AS1. All three pgy mutants develop dramatic ectopic lamina outgrowths on the adaxial side of the leaf in an as1 mutant background. This leaf-patterning defect is enhanced by mutations in the adaxial HD-ZIPIII gene REVOLUTA (REV), and is suppressed by mutations in abaxial KANADI genes. Thus, PGY genes influence leaf development via genetic interactions with the HD-ZIPIII-KANADI pathway. PGY1, PGY2 and PGY3 encode cytoplasmic large subunit ribosomal proteins, L10a, L9 and L5, respectively. Our results suggest a role for translation in leaf dorsoventral patterning and indicate that ribosomes are regulators of key patterning events in plant development.
Collapse
Affiliation(s)
- Violaine Pinon
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | - Sarah A. Collier
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK
| | - Juana M. Arroyo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Mary E. Byrne
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
178
|
Piggott AM, Karuso P. Rapid Identification of a Protein Binding Partner for the Marine Natural Product Kahalalide F by Using Reverse Chemical Proteomics. Chembiochem 2008; 9:524-30. [DOI: 10.1002/cbic.200700608] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
179
|
Crystal Structure of Human Ribosomal Protein L10 Core Domain Reveals Eukaryote-Specific Motifs in Addition to the Conserved Fold. J Mol Biol 2008; 377:421-30. [DOI: 10.1016/j.jmb.2008.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/25/2007] [Accepted: 01/02/2008] [Indexed: 02/05/2023]
|
180
|
Chan YL, Wool IG. The integrity of the sarcin/ricin domain of 23 S ribosomal RNA is not required for elongation factor-independent peptide synthesis. J Mol Biol 2008; 378:12-9. [PMID: 18342885 DOI: 10.1016/j.jmb.2008.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/30/2008] [Accepted: 02/09/2008] [Indexed: 10/22/2022]
Abstract
The elongation stage of protein synthesis consists of repeated cycles of the binding of aminoacyl-tRNA, peptide bond formation, and translocation. The process is normally catalyzed by the elongation factors Tu and G; however, the reactions can proceed, at least in prescribed and limited circumstance, in the absence of the elongation factors, a finding that strongly implies that the chemistry of protein synthesis is inherent in the ribosome. The sarcin/ricin domain in 23 S rRNA, the site of inactivation of ribosomes by ribotoxins, is where the elongation factors bind. The question that arises is whether the sarcin/ricin domain is necessary for factor-independent peptide synthesis. The answer is that it is not. The disruption of the sarcin/ricin domain by covalent modification with either sarcin or pokeweed antiviral protein did not affect factor-independent peptide synthesis; nor did lethal mutations of nucleotides that abolish the binding of elongation factors. The results imply that the sole function of the sarcin/ricin domain is to provide a binding site for the elongation factors and, hence, to facilitate the elongation reactions. The results also raise the possibility of the co-evolution of the sarcin/ricin domain and the elongation factors.
Collapse
Affiliation(s)
- Yuen-Ling Chan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
181
|
Translation initiation factor a/eIF2(-gamma) counteracts 5' to 3' mRNA decay in the archaeon Sulfolobus solfataricus. Proc Natl Acad Sci U S A 2008; 105:2146-50. [PMID: 18245385 DOI: 10.1073/pnas.0708894105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trimeric translation initiation factor a/eIF2 of the crenarchaeon Sulfolobus solfataricus is pivotal for binding of initiator tRNA to the ribosome. Here, we present in vitro and in vivo evidence that the a/eIF2 gamma-subunit exhibits an additional function with resemblance to the eukaryotic cap-complex. It binds to the 5'-triphosphate end of mRNA and protects the 5' part from degradation. This unprecedented capacity of the archaeal initiation factor further indicates that 5' --> 3' directional mRNA decay is a pathway common to all domains of life.
Collapse
|
182
|
Umeda D, Yano S, Yamada K, Tachibana H. Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 2007; 283:3050-3058. [PMID: 18079119 DOI: 10.1074/jbc.m707892200] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the principal polyphenol in green tea, has been shown to be a potent chemopreventive agent. Recently, 67-kDa laminin receptor (67LR) has been identified as a cell surface receptor for EGCG that mediates the anticancer activity of EGCG. Indeed, expression of 67LR confers EGCG responsiveness to tumor cells; however, the molecular basis for the anticancer activity of EGCG in vivo is not entirely understood. Here we show that (i) using a direct genetic screen, eukaryotic translation elongation factor 1A (eEF1A) is identified as a component responsible for the anticancer activity of EGCG; (ii) through both eEF1A and 67LR, EGCG induces the dephosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) at Thr-696 and activates myosin phosphatase; and (iii) silencing of 67LR, eEF1A, or MYPT1 in tumor cells results in abrogation of EGCG-induced tumor growth inhibition in vivo. Additionally, we found that eEF1A is up-regulated by EGCG through 67LR. Overall, these findings implicate both eEF1A and MYPT1 in EGCG signaling for cancer prevention through 67LR.
Collapse
Affiliation(s)
- Daisuke Umeda
- Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Satomi Yano
- Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Koji Yamada
- Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hirofumi Tachibana
- Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
183
|
Morissette DC, Dauch A, Beech R, Masson L, Brousseau R, Jabaji-Hare S. Isolation of mycoparasitic-related transcripts by SSH during interaction of the mycoparasite Stachybotrys elegans with its host Rhizoctonia solani. Curr Genet 2007; 53:67-80. [PMID: 18058103 DOI: 10.1007/s00294-007-0166-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/31/2007] [Accepted: 11/13/2007] [Indexed: 11/25/2022]
Abstract
Mycoparasitism by antagonistic fungi involves changes in the biochemistry and physiology of both partners. Analysis of genes that are expressed during mycoparasite-host interaction represents a powerful strategy to obtain insight into the molecular events underlying these changes. The aim of this study is to identify genes whose expression is upregulated when the mycoparasite Stachybotrys elegans is in direct confrontation with its host Rhizoctonia solani. Suppression subtractive hybridization (SSH) was used to create a subtracted cDNA library, and differential screening was applied to identify the over-expressed transcripts. We report the analysis of 2,166 clones, among which 47% were upregulated during mycoparasitism. Two hundred and sixty-one clones were sequenced that corresponded to 94 unique genes. Forty-four of these were identified as novel genes, while the remainder showed similarity to a broad diversity of genes with putative functions related to toxin production, pathogenicity, and metabolism. As a result of mycoparasitism, 15 genes belonged to R. solani among which 9 genes were assigned putative functions. Quantitative RT-PCR was used to examine the upregulation of 12 genes during the course of mycoparasitism. Seven genes showed significant upregulation at least at one-time point during interaction of the mycoparasite with its host. This study describes a first step toward knowledge of S. elegans genome. The results present the useful application of EST analysis on S. elegans and provide preliminary indication of gene expression putatively involved in mycoparasitism.
Collapse
|
184
|
|
185
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
186
|
Barthélémy RM, Chenuil A, Blanquart S, Casanova JP, Faure E. Translational machinery of the chaetognath Spadella cephaloptera: a transcriptomic approach to the analysis of cytosolic ribosomal protein genes and their expression. BMC Evol Biol 2007; 7:146. [PMID: 17725830 PMCID: PMC2020476 DOI: 10.1186/1471-2148-7-146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 08/28/2007] [Indexed: 12/01/2022] Open
Abstract
Background Chaetognaths, or arrow worms, are small marine, bilaterally symmetrical metazoans. The objective of this study was to analyse ribosomal protein (RP) coding sequences from a published collection of expressed sequence tags (ESTs) from a chaetognath (Spadella cephaloptera) and to use them in phylogenetic studies. Results This analysis has allowed us to determine the complete primary structures of 23 out of 32 RPs from the small ribosomal subunit (SSU) and 32 out of 47 RPs from the large ribosomal subunit (LSU). Ten proteins are partially determined and 14 proteins are missing. Phylogenetic analyses of concatenated RPs from six animals (chaetognath, echinoderm, mammalian, insect, mollusc and sponge) and one fungal taxa do not resolve the chaetognath phylogenetic position, although each mega-sequence comprises approximately 5,000 amino acid residues. This is probably due to the extremely biased base composition and to the high evolutionary rates in chaetognaths. However, the analysis of chaetognath RP genes revealed three unique features in the animal Kingdom. First, whereas generally in animals one RP appeared to have a single type of mRNA, two or more genes are generally transcribed for one RP type in chaetognath. Second, cDNAs with complete 5'-ends encoding a given protein sequence can be divided in two sub-groups according to a short region in their 5'-ends: two novel and highly conserved elements have been identified (5'-TAATTGAGTAGTTT-3' and 5'-TATTAAGTACTAC-3') which could correspond to different transcription factor binding sites on paralog RP genes. And, third, the overall number of deduced paralogous RPs is very high compared to those published for other animals. Conclusion These results suggest that in chaetognaths the deleterious effects of the presence of paralogous RPs, such as apoptosis or cancer are avoided, and also that in each protein family, some of the members could have tissue-specific and extra-ribosomal functions. These results are congruent with the hypotheses of an allopolyploid origin of this phylum and of a ribosome heterogeneity.
Collapse
Affiliation(s)
- Roxane M Barthélémy
- E.R. Biodiversity and environnement, case 5, Pl. V. Hugo, Université de Provence, 13331, Marseille cedex 3, France
| | - Anne Chenuil
- UMR 6540 CNRS DIMAR, Centre d'Océanologie de Marseille, Station Marine d'Endoume, Ch. de la Batterie des Lions, 13007 Marseille, France
| | - Samuel Blanquart
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS-Université de Montpellier 2, 161, rue Ada, 34392 Montpellier Cedex 5, France
| | - Jean-Paul Casanova
- E.R. Biodiversity and environnement, case 5, Pl. V. Hugo, Université de Provence, 13331, Marseille cedex 3, France
| | - Eric Faure
- E.R. Biodiversity and environnement, case 5, Pl. V. Hugo, Université de Provence, 13331, Marseille cedex 3, France
| |
Collapse
|
187
|
Ozcan S, Yildirim V, Kaya L, Albrecht D, Becher D, Hecker M, Ozcengiz G. Phanerochaete chrysosporium soluble proteome as a prelude for the analysis of heavy metal stress response. Proteomics 2007; 7:1249-60. [PMID: 17366474 DOI: 10.1002/pmic.200600526] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A 2-D reference map in pI range 3-10 was constructed for the soluble protein fraction of Phanerochaete chrysosporium growing vegetatively under standard conditions. Functional annotation could be made for 517 spots out of 720 that were subjected to MALDI-TOF-MS analysis, according to the specific accession numbers from the P. chrysosporium genomic database. Further analysis of the data revealed 314 distinct ORFs, 118 of which yielded multiple spots on the master gel. Functional classification of the proteins was made according to the eukaryote orthologous groups defined in the organism's genome website. The functional class of PTMs, protein turnover and chaperones was represented with the highest number (63) of the identified ORFs. Six proteins were assigned to the hypothetical proteins and 29 were predicted to have a signal peptide sequence. Subcellular localization predictions were also made for the identified proteins. Of the protein spots detected on the master gel, 380 were found to be probably phosphorylated and 96 of these matched to the identified proteins. The reference map was efficiently used in the identification of the proteins differentially expressed under cadmium and copper stress. Three new ribosomal proteins as well as zinc-containing alcohol dehydrogenase, glucose-6-phosphate isomerase, flavonol/cinnamoyl-CoA reductase, H+-transporting two-sector ATPase, ribosomal protein S7, ribosomal protein S21e, elongation factor EF-1 alpha subunit were demonstrated as the most strongly induced.
Collapse
Affiliation(s)
- Servet Ozcan
- Department of Biology, Erciyes University, Kayseri, Turkey
| | | | | | | | | | | | | |
Collapse
|
188
|
Chabalier J, Mosser J, Burgun A. A transversal approach to predict gene product networks from ontology-based similarity. BMC Bioinformatics 2007; 8:235. [PMID: 17605807 PMCID: PMC1940024 DOI: 10.1186/1471-2105-8-235] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 07/02/2007] [Indexed: 01/19/2023] Open
Abstract
Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression.
Collapse
Affiliation(s)
- Julie Chabalier
- E.A 3888, Modélisation Conceptuelle des Connaissances Biomédicales, Faculté de Médecine, Université de Rennes 1, IFR 140, 35043 Rennes Cedex, France
| | - Jean Mosser
- CNRS UMR 6061 Génétique et Développement, Faculté de Médecine, Université de Rennes 1, IFR 140, 35043 Rennes Cedex, France
- OUEST-genopoletranscriptomic platform, Faculté de Médecine, Université de Rennes 1, IFR 140, 35043 Rennes, France
| | - Anita Burgun
- E.A 3888, Modélisation Conceptuelle des Connaissances Biomédicales, Faculté de Médecine, Université de Rennes 1, IFR 140, 35043 Rennes Cedex, France
| |
Collapse
|
189
|
Ameres SL, Shcherbakov D, Nikonova E, Piendl W, Schroeder R, Semrad K. RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition. Nucleic Acids Res 2007; 35:3752-63. [PMID: 17517772 PMCID: PMC1920258 DOI: 10.1093/nar/gkm318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA chaperone activity is defined as the ability of proteins to either prevent RNA from misfolding or to open up misfolded RNA conformations. One-third of all large ribosomal subunit proteins from E. coli display this activity, with L1 exhibiting one of the highest activities. Here, we demonstrate via the use of in vitro trans- and cis-splicing assays that the RNA chaperone activity of L1 is conserved in all three domains of life. However, thermophilic archaeal L1 proteins do not display RNA chaperone activity under the experimental conditions tested here. Furthermore, L1 does not exhibit RNA chaperone activity when in complexes with its cognate rRNA or mRNA substrates. The evolutionary conservation of the RNA chaperone activity among L1 proteins suggests a functional requirement during ribosome assembly, at least in bacteria, mesophilic archaea and eukarya. Surprisingly, rather than facilitating catalysis, the thermophilic archaeal L1 protein from Methanococcus jannaschii (MjaL1) completely inhibits splicing of the group I thymidylate synthase intron from phage T4. Mutational analysis of MjaL1 excludes the possibility that the inhibitory effect is due to stronger RNA binding. To our knowledge, MjaL1 is the first example of a protein that inhibits group I intron splicing.
Collapse
Affiliation(s)
- Stefan L. Ameres
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry Shcherbakov
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Ekaterina Nikonova
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Wolfgang Piendl
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Renée Schroeder
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Katharina Semrad
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- *To whom correspondence should be addressed. +43-1-4277-54694+43-1-4277-9522
| |
Collapse
|
190
|
Yoo JH, Shin SW, Kim JS, Kim CB, Kim JS, Koh SC. Identification of potential biomarkers for diazinon exposure to Japanese Medaka (Oryzias latipes) using annealing control primers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2007; 42:373-9. [PMID: 17474016 DOI: 10.1080/03601230701310526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A new differential display-polymerase chain reaction (PCR) method based on annealing control primers was used to screen and identify potential biomarkers from differentially expressed genes (DEGs) in medaka exposed to sub-lethal concentration of diazinon (100 ppb). Among the differentially expressed genes identified, the majority were in functional categories of protein biosynthesis, transport and metabolism according to the gene ontology classification. The differential expression of ribosomal protein genes was quantified by real time PCR. The genes encoding ribosomal proteins including L3 and S17 were selected as potential biomarkers for diazinon exposure in medaka fish.
Collapse
Affiliation(s)
- Jeong-Ha Yoo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
191
|
Delage L, Giegé P, Sakamoto M, Maréchal-Drouard L. Four paralogues of RPL12 are differentially associated to ribosome in plant mitochondria. Biochimie 2007; 89:658-68. [PMID: 17395357 DOI: 10.1016/j.biochi.2007.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
Ribosomal protein L12 is the only component present in four copies in the ribosome. In prokaryotes as well as in yeast and human mitochondria, all copies correspond to the same RPL12. By contrast, we present here evidence that plant mitochondria contain four different RPL12 proteins. Compared to E. coli RPL12, the four mature RPL12 variants show a conserved C-terminal region that contains all the functional domains of prokaryotic RPL12 but three of them present an additional N-terminal extension containing either an acidic or a basic domain and a high level of proline residues. All proteins have a potential mitochondrial N-terminal targeting sequence and were imported in vitro into isolated mitochondria. Using RPL12 antibodies, the four variants were shown to be present in a potato mitochondrial ribosome fraction. Moreover, the four proteins reacted differently to the destabilization of ribosomes. This suggests either a heterogeneous RPL12 composition among each ribosome and/or a heterogeneous population of plant mitochondrial ribosomes.
Collapse
Affiliation(s)
- Ludovic Delage
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR2357) Conventionné avec l'Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
192
|
McIntosh KB, Bonham-Smith PC. The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome 2007; 48:443-54. [PMID: 16121241 DOI: 10.1139/g05-007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arabidopsis thaliana ribosomal protein (r-protein) L23A (RPL23A) is a member of the conserved L23/L25 family of primary ribosomal RNA (rRNA) binding proteins. The 2 AtRPL23A isoforms, RPL23A-1 and RPL23A-2, are 94% identical at the amino acid level, yet RPL23A-1 and RPL23A-2 share only approximately 40-50% primary sequence identity within the 5' regulatory regions. While the RPL23A-1 and -2 5' regulatory regions share many similar predicted motifs, the arrangement and number of these motifs differs between the 2 genes. Differences in regulation between RPL23A-1 and -2 have been investigated via reverse transcription-PCR (RT-PCR) expression profiles. Overall, transcript abundance for RPL23A-1 and -2 varied slightly in specific tissues and under some abiotic stresses. The highest transcript abundance for both RPL23A genes was detected in mitotically active tissues such as bud, flower and elongating carpel, as well as in root and stem while the lowest transcript levels were found in mature leaf and bract. Hormone-treated seedlings showed increased RPL23A-1 and -2 transcript levels following IAA and BAP treatment while ABA treatment resulted in a transient lowering of transcript levels. Expression patterns differed between RPL23A-1 and -2 in cold-, wound-, and copper-stressed seedlings. In all tissues examined, RPL23A-2 transcript levels were consistently lower than those of RPL23A-1. This report shows differential transcriptional regulation of the 2 RPL23A genes, which should no longer be identified as "housekeeping" genes.
Collapse
Affiliation(s)
- Kerri B McIntosh
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
193
|
Schmidt MW, Houseman A, Ivanov AR, Wolf DA. Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe. Mol Syst Biol 2007; 3:79. [PMID: 17299416 PMCID: PMC1828747 DOI: 10.1038/msb4100117] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 12/13/2006] [Indexed: 02/04/2023] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a widely used model organism to study basic mechanisms of eukaryotic biology, but unlike other model organisms, its proteome remains largely uncharacterized. Using a shotgun proteomics approach based on multidimensional prefractionation and tandem mass spectrometry, we have detected ∼30% of the theoretical fission yeast proteome. Applying statistical modelling to normalize spectral counts to the number of predicted tryptic peptides, we have performed label-free quantification of 1465 proteins. The fission yeast protein data showed considerable correlations with mRNA levels and with the abundance of orthologous proteins in budding yeast. Functional pathway analysis indicated that the mRNA–protein correlation is strong for proteins involved in signalling and metabolic processes, but increasingly discordant for components of protein complexes, which clustered in groups with similar mRNA–protein ratios. Self-organizing map clustering of large-scale protein and mRNA data from fission and budding yeast revealed coordinate but not always concordant expression of components of functional pathways and protein complexes. This finding reaffirms at the protein level the considerable divergence in gene expression patterns of the two model organisms that was noticed in previous transcriptomic studies.
Collapse
Affiliation(s)
- Michael W Schmidt
- NIEHS Center for Environmental Health Proteomics Facility, Harvard School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
- Institute for Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Andres Houseman
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Alexander R Ivanov
- NIEHS Center for Environmental Health Proteomics Facility, Harvard School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 2093; Fax: +1 617 432 2059;
| | - Dieter A Wolf
- NIEHS Center for Environmental Health Proteomics Facility, Harvard School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 2093; Fax: +1 617 432 2059;
| |
Collapse
|
194
|
Choi SH, Kim SY, An JJ, Lee SH, Kim DW, Ryu HJ, Lee NI, Yeo SI, Jang SH, Won MH, Kang TC, Kwon HJ, Cho SW, Kim J, Lee KS, Park J, Eum WS, Choi SY. Human PEP-1-ribosomal protein S3 protects against UV-induced skin cell death. FEBS Lett 2006; 580:6755-62. [PMID: 17140567 DOI: 10.1016/j.febslet.2006.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/29/2006] [Accepted: 11/08/2006] [Indexed: 11/15/2022]
Abstract
The consequences of ultraviolet (UV) exposure are implicated in skin aging and cell death. The ribosomal protein S3 (rpS3) is one of the major proteins by which cells counteract the deleterious effects of UV and it plays a role in the repair of damaged DNA. In the present study, we investigated the protective effects of PEP-1-rpS3 fusion protein after UV-induced cell injury. A human rpS3 gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-rpS3 fusion protein. The expressed and purified fusion proteins were efficiently transduced into skin cells in a time- and dose-dependent manner. Once inside the cells, transduced PEP-1-rpS3 fusion protein was stable for 48h. We showed that transduced PEP-1-rpS3 fusion protein increased cell viability and dramatically reduced DNA lesions in the UV exposed skin cells. Immunohistochemical analysis revealed that PEP-1-rpS3 fusion protein efficiently penetrated the epidermis as well as the dermis of the subcutaneous layer when sprayed on animal skin. These results suggest that PEP-1-rpS3 fusion protein can be used in protein therapy for various disorders related to UV, including skin aging and cancer.
Collapse
Affiliation(s)
- Soo Hyun Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Millino C, Bellin M, Fanin M, Romualdi C, Pegoraro E, Angelini C, Lanfranchi G. Expression profiling characterization of laminin alpha-2 positive MDC. Biochem Biophys Res Commun 2006; 350:345-51. [PMID: 17010933 DOI: 10.1016/j.bbrc.2006.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/28/2022]
Abstract
In the Caucasian population, patients affected by the most frequent forms of congenital muscular dystrophies (MDC) are commonly divided into two groups. The first is characterized by mutations of the gene for the laminin alpha-2 (LAMA2). The second is positive for this protein, highly heterogeneous, and has no specific genetic defect associated yet. We studied the skeletal muscle transcriptome of four LAMA2 deficient and six LAMA2 positive MDC patients by cDNA microarrays. The expression profiling defined two patients groups: one mild and one severe phenotype. This result was in agreement with histopathological features but only partially with the clinical classification. The mild phenotype is characterized by a delayed maturation from slow to fast muscle fibers. Other muscle transcripts, such as telethonin, myosin light-chains 3 and 1V, are underexpressed in this group. We suggest that expression profiling will provide important information to improve our understanding of the molecular basis of laminin alpha-2 positive MDC.
Collapse
Affiliation(s)
- Caterina Millino
- CRIBI Biotechnology Center and Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
196
|
Panić L, Tamarut S, Sticker-Jantscheff M, Barkić M, Solter D, Uzelac M, Grabusić K, Volarević S. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol 2006; 26:8880-91. [PMID: 17000767 PMCID: PMC1636830 DOI: 10.1128/mcb.00751-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent ribosome biogenesis is required during cell growth. To gain insight into the importance of this process during mouse oogenesis and embryonic development, we deleted one allele of the ribosomal protein S6 gene in growing oocytes and generated S6-heterozygous embryos. Oogenesis and embryonic development until embryonic day 5.5 (E5.5) were normal. However, inhibition of entry into M phase of the cell cycle and apoptosis became evident post-E5.5 and led to perigastrulation lethality. Genetic inactivation of p53 bypassed this checkpoint and prolonged development until E12.5, when the embryos died, showing decreased expression of D-type cyclins, diminished fetal liver erythropoiesis, and placental defects. Thus, a p53-dependent checkpoint is activated during gastrulation in response to ribosome insufficiency to prevent improper execution of the developmental program.
Collapse
Affiliation(s)
- Linda Panić
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Angiogenesis, the generation of new blood vessels from pre-existing vessels, is an integral component of wound healing, responses to inflammation and other physiologic processes. It is also an essential part of tumor growth; in the absence of new vessel formation, tumors cannot expand beyond a small volume. Although much is known about angiogenesis and its regulation, there is no overall theory that describes or explains this process. It is here suggested that the intracrine hypothesis, which ascribes to certain extracellular signaling peptides (whether hormones, growth factors, DNA-binding proteins or enzymes) a role in both intracellular biology and extracellular signaling, can contribute to a more general understanding of angiogenesis. Intracrine factors participate in angiogenesis in the following ways: (1) they can act within the cells that synthesized them (type I intracrine action), (2) they can be secreted and then taken up by their cell of synthesis to act intracellularly (type II intracrine action ), or (3) they can be secreted and internalized by a distant target cell (type III intracrine action). The parallels between the intracrine growth factor mechanisms cancer cells employ in stimulating their own growth and the mechanisms operative in endothelial cell proliferation during angiogenesis ("intracrine reciprocity") are discussed. Collectively, these explorations lead to testable hypotheses regarding the regulation of normal and pathological angiogenesis, and point to similarities between tumor-induced angiogenesis and tissue differentiation.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|
198
|
Abstract
Gene products mutated in the inherited bone marrow failure syndromes dyskeratosis congenita (DC), cartilage-hair hypoplasia (CHH), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS) are all predicted to be involved in different aspects of ribosome synthesis. At this moment, however, it is unclear whether this link indicates a causal relationship. Although defective ribosome synthesis may contribute to each of these bone marrow failure syndromes (and perhaps others), precisely which feature of each disease is a consequence of failure to produce adequate amounts of ribosomes is obscured by the tendency of each gene product to have extraribosomal functions. Delineation of the precise role of each gene product in ribosomal biogenesis and in hematopoietic development may have both therapeutic and prognostic importance and perhaps even direct the search for new bone marrow failure genes.
Collapse
Affiliation(s)
- Johnson M Liu
- Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | | |
Collapse
|
199
|
Wang J, Jing W, Yuan S, Sheng Y, Jiang S, Jang S. The ribosomal protein L32-2 (RPL32-2) of S. pombe exhibits a novel extraribosomal function by acting as a potential transcriptional regulator. FEBS Lett 2006; 580:1827-32. [PMID: 16516201 DOI: 10.1016/j.febslet.2006.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 02/04/2006] [Accepted: 02/14/2006] [Indexed: 11/17/2022]
Abstract
Ribosomal proteins play important roles in stabilizing the rRNA structure to facilitate protein synthesis in ribosome. In the present study, we analyzed the potential extraribosomal function of the ribosomal protein L32-2 (RPL32-2), which was expressed by a gene clone isolated from a cDNA library of Schizosaccharomyces pombe (S. pombe). RPL32-2 fused with the GAL4 DNA-bind domain or the GAL4 transcriptional activating domain could, respectively, activate transcriptions of reporter genes in yeast strain AH109. The RPL32-2 mutants with truncation of either the N- or the C-terminal domain resulted in abolishment of this regulatory effect. The DNA binding site for RPL32-2 of S. pombe was identified by using a random oligonucleotide selection strategy and gel motility shift assay and Western blotting confirmed its binding specificity. Moreover, we found RPL32-2 was also able to interact with a to-be-identified AT sequence binding protein. These data suggest that RPL32-2 of S. pombe, besides its ribosomal function, may also act as a potential transcriptional regulator in nucleus.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Lab for Biodiversity and Biotechnology, NNU Key Lab of Microbial Technology, College of Life Science, Nanjing Normal University, 122 Ninghai Lu, Nanjing 210097, PR China
| | | | | | | | | | | |
Collapse
|
200
|
Parakhnevitch NM, Malygin AA, Karpova GG. Recombinant human ribosomal protein S16: expression, purification, refolding, and structural stability. BIOCHEMISTRY (MOSCOW) 2006; 70:777-81. [PMID: 16097941 DOI: 10.1007/s10541-005-0183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cDNA of human ribosomal protein S16 was cloned into the expression vector pET-15b. Large-scale production of the recombinant protein was carried out in E. coli cells and highly purified protein was isolated. A method for refolding the protein from inclusion bodies was optimized. The secondary structure content of the refolded protein was analyzed by CD spectroscopy. It was found that 21 +/- 4% of the amino acid sequence of the protein forms alpha-helices and 24 +/- 3% is in beta-strands. The protein structure stability was studied at various pH values and urea concentrations. The protein is quickly denatured at pH above 8.0, whereas increasing of urea concentration causes slow unfolding of the protein.
Collapse
Affiliation(s)
- N M Parakhnevitch
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|