151
|
Abstract
BACKGROUND Anal lesions in cases of Crohn's disease can give rise to adenocarcinoma of the anal canal; however, the oncologic outcomes in these patients have not yet been thoroughly investigated. OBJECTIVE This study aimed to clarify the influence of Crohn's disease on the oncologic outcomes in patients with adenocarcinoma of the anal canal. DESIGN This was a retrospective observational study from a prospectively collected database. SETTINGS The study was conducted at a single institution. PATIENTS This study included 102 patients with adenocarcinoma of the anal canal, including 34 (33.3%) with Crohn's disease-associated lesions and 68 (66.7%) with non-Crohn's disease-associated lesions. MAIN OUTCOME MEASURES Prognostic factors were detected using a Cox regression analysis, and the oncologic outcomes were calculated using the Kaplan-Meier method. RESULTS Crohn's disease-associated patients were significantly younger (45 vs 62 y; p < 0.001), had a high incidence of external/anal gland-type disease (61.8% vs 5.9%, p < 0.001) and had large tumors (7.1 ± 3.0 vs 4.7 ± 2.3 cm; p = 0.03) in comparison with non-Crohn's disease-associated patients. A Cox regression analysis showed that an advanced clinical T stage (T3 or T4; tumor size ≥5 cm) was an independent risk factor for 5-year local recurrence-free survival (HR = 3.49; p = 0.04), disease-free survival (HR = 2.82; p = 0.008), and overall survival (HR = 2.92; p = 0.006), and Crohn's disease association was an independent prognostic factor for local recurrence-free survival (HR = 2.29; p = 0.04) and overall survival (HR = 2.86; p = 0.04). The oncologic outcomes of patients who had the 2 abovementioned negative factors (cT3,4 Crohn's disease-associated patients) were significantly poorer than those of T3,4 non-Crohn's disease-associated patients (5-year local recurrence-free survival: 32.5% vs 70.4%, p = 0.001; disease-free survival: 15.9% vs 40.7%, p = 0.04; overall survival: 25.8% vs 71.0%, p = 0.007). LIMITATIONS This was a single-arm, retrospective study. CONCLUSIONS Significantly poorer oncologic outcomes were confirmed in Crohn's disease-associated patients with large tumors. Thus, it is important to perform careful surveillance of anal lesions in patients with Crohn's disease while taking these facts into consideration. See Video Abstract at http://links.lww.com/DCR/B449. RESULTADOS ONCOLGICOS ADVERSOS DEL ADENOCARCINOMA DEL CANAL ANAL EN PACIENTES CON ENFERMEDAD DE CROHN ANTECEDENTES:Las lesiones anales en casos de enfermedad de Crohn pueden dar lugar a un adenocarcinoma del canal anal; sin embargo, los resultados oncológicos en estos pacientes aún no se han investigado a fondo.OBJETIVOS:Este estudio tuvo como objetivo aclarar la influencia de la enfermedad de Crohn en los resultados oncológicos en pacientes con adenocarcinoma del canal anal.DISEÑO:Estudio observacional retrospectivo de una base de datos recopilada prospectivamente.ENTORNO CLINICO:El estudio se realizó en una sola institución.PACIENTES:Este estudio incluyó 102 pacientes con adenocarcinoma del canal anal, incluidos 34 (33,3%) con lesiones asociadas a la enfermedad de Crohn y 68 (66,7%) con lesiones no asociadas a la enfermedad de Crohn.PRINCIPALES MEDIDAS DE VOLARACION:Los factores pronósticos se detectaron mediante un análisis de regresión de Cox y los resultados oncológicos se calcularon utilizando el método de Kaplan-Meier.RESULTADOS:Los pacientes asociados a la enfermedad de Crohn eran significativamente más jóvenes (45 versus a 62 años, p <0,001), tenían una alta incidencia de enfermedad de tipo glandular externo/ anal (61,8% versus a 5,9%, p <0,001) y tumores grandes (7,1 ± 3,0 cm versus a 4,7 ± 2,3 cm, p = 0,03) en comparación con los pacientes no asociados a la enfermedad de Crohn. Un análisis de regresión de Cox mostró que un estadío clínico T avanzado (T3,4; tamaño del tumor ≥5 cm) era un factor de riesgo independiente para la supervivencia sin recidiva local (SLF) a 5 años (índice de riesgo [HR]: 3,49, p = 0,04), supervivencia libre de enfermedad (SSE) (HR: 2,82, p = 0,008) y supervivencia general (SG) (HR: 2,92, p = 0,006), y la enfermedad de Crohn asociada fue un factor pronóstico independiente para la SLF (HR: 2,29, p = 0,04) y SG (HR: 2,86, p = 0,04). Los resultados oncológicos de los pacientes que tenían los dos factores negativos mencionados anteriormente (pacientes asociados con la enfermedad de Crohn cT3,4) fueron significativamente peores que los de los pacientes no asociados con la enfermedad de Crohn con T3,4 (LFS a 5 años: 32,5% versus a 70,4 %, p = 0,001; SSE: 15,9% versus a 40,7%, p = 0,04; SG: 25,8% versus a 71,0%, p = 0,007).LIMITACIONES:Un estudio retrospectivo de un solo brazo.CONCLUSIONES:Se confirmaron resultados oncológicos significativamente peores en pacientes asociados con la enfermedad de Crohn con tumores grandes. Por lo tanto, es importante realizar una vigilancia cuidadosa de las lesiones anales en pacientes con enfermedad de Crohn. Consulte Video Resumen en http://links.lww.com/DCR/B449.
Collapse
|
152
|
Ferrari B, Roda E, Priori EC, De Luca F, Facoetti A, Ravera M, Brandalise F, Locatelli CA, Rossi P, Bottone MG. A New Platinum-Based Prodrug Candidate for Chemotherapy and Its Synergistic Effect With Hadrontherapy: Novel Strategy to Treat Glioblastoma. Front Neurosci 2021; 15:589906. [PMID: 33828444 PMCID: PMC8019820 DOI: 10.3389/fnins.2021.589906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.
Collapse
Affiliation(s)
- Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Federico Brandalise
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
153
|
Okazaki S, Shibuya K, Shiba S, Okamoto M, Miyasaka Y, Osu N, Kawashima M, Kakizaki S, Araki K, Shirabe K, Ohno T. Carbon ion radiotherapy for patients with hepatocellular carcinoma in the caudate lobe carbon ion radiotherapy for hepatocellular carcinoma in caudate lobe. Hepatol Res 2021; 51:303-312. [PMID: 33350034 DOI: 10.1111/hepr.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
AIM The treatment of hepatocellular carcinoma in the caudate lobe (HCCCL) is technically challenging. We aimed to investigate the efficacy and toxicity of carbon ion radiotherapy (C-ion RT) for HCCCL. METHODS Patients with HCCCL treated with C-ion RT at our hospital between January 2011 and December 2018 were evaluated. The total dose was 52.8 or 60 Gy (relative biological effectiveness) in four or 12 fractions depending on the distance between the tumor and the gastrointestinal tract. The survival outcome, the presence or absence of recurrence (local recurrence, intrahepatic recurrence outside the irradiation field, or extrahepatic recurrence), and acute/late adverse events were evaluated. RESULTS Nine patients were included. The median tumor size was 3.4 cm, and the median follow-up duration was 18.3 months for all patients. No patient developed local recurrence during follow-up. Five patients subsequently developed intrahepatic recurrence outside the irradiation field and two had extrahepatic metastasis. Five patients died of hepatocellular carcinoma. No acute adverse events of grade ≥2 were observed. Two patients experienced grade 2 or 3 late adverse events, including obstructive jaundice, hepatic encephalopathy, ascites, and edema. CONCLUSION Carbon ion radiotherapy for HCCCL achieved excellent local control with acceptable adverse events and can thus be a curative treatment option for HCCCL.
Collapse
Affiliation(s)
- Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Naoto Osu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Gunma, Japan
| | - Kenichiro Araki
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
154
|
Ebner DK, Frank SJ, Inaniwa T, Yamada S, Shirai T. The Emerging Potential of Multi-Ion Radiotherapy. Front Oncol 2021; 11:624786. [PMID: 33692957 PMCID: PMC7937868 DOI: 10.3389/fonc.2021.624786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Research into high linear energy transfer (LET) radiotherapy now spans over half a century, beginning with helium and deuteron treatment in 1952 and today ranging from fast neutrons to carbon-ions. Owing to pioneering work initially in the United States and thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers are in operation, with five under construction and three in planning. While the carbon-ion beam has demonstrated unique and promising suitability in laboratory and clinical trials toward the hypofractionated treatment of hypoxic and/or radioresistant cancer, substantial developmental potential remains. Perhaps most notable is the ability to paint LET in a tumor, theoretically better focusing damage delivery within the most resistant areas. However, the technique may be limited in practice by the physical properties of the beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution, and so a methodology combining the use of multiple ions into a uniform LET distribution within a tumor may allow for even greater treatment potential in radioresistant cancer.
Collapse
Affiliation(s)
- Daniel K Ebner
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taku Inaniwa
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
155
|
Sota Y, Einama T, Kobayashibayashi K, Fujinuma I, Tsunenari T, Takihata Y, Iwasaki T, Miyata Y, Okamoto K, Kajiwara Y, Shinto E, Tsujimoto H, Yasuda S, Isozaki Y, Yamada S, Yamamoto J, Ueno H, Kishi Y. Recurrent cholangiocarcinoma with long-term survival by multimodal treatment: A case report. Mol Clin Oncol 2021; 14:72. [PMID: 33732458 PMCID: PMC7907798 DOI: 10.3892/mco.2021.2234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Long-term outcomes after surgical resection of bile duct cancer remain unsatisfactory, and survival, particularly after tumor recurrence, is poor. Gemcitabine and cisplatin combination (GC) therapy is the standard first-line treatment; however, second-line approaches are yet to be established. Radiotherapy may prolong the survival of patients with advanced biliary tract cancer, and particle radiotherapy delivers a more concentrated dose than conventional radiotherapy to deeper tumors. The present report describes the long-term survival of a 65-year-old man with distal bile duct cancer of pathological stage IIA (T2N0M0; depth of invasion, 5.5 mm) following multimodal treatment. Following subtotal stomach-preserving pancreatoduodenectomy, multiple hepatic recurrences were identified 9 months later, and GC therapy was initiated. The tumors were no longer evident 18 months later, and GC therapy was discontinued at the patient's request. A computed tomography (CT) scan performed 30 months after surgery identified a new solitary hepatic recurrence and duke pancreatic monoclonal antigen type-2 (DUPAN-2) levels were increased. Further GC therapy was declined. Carbon ion radiotherapy (CIRT) at a dose of 60 Gy [relative biological effectiveness (RBE)-weighted absorbed dose] was then delivered in four fractions over 4 days [15 Gy (RBE)/day]. Tumor size decreased on CT, and fluorodeoxyglucose-positron emission tomography/CT revealed a decline in the standardized uptake value of the tumor after 2 months, with decreased DUPAN-2 levels. Following regrowth of the hepatic recurrence, CIRT was repeated at a dose of 66 Gy (RBE) in four fractions over 4 days [16.5 Gy (RBE)/day] and stable disease was maintained for 19 months. After 19 months, CT revealed tumor regrowth and another new metastatic lesion was identified in the left kidney. The patient received systematic chemotherapy again and died of the disease 81 months after the initial surgery. In conclusion, CIRT is a potential treatment option to control solitary recurrence of biliary tract cancer.
Collapse
Affiliation(s)
- Yuki Sota
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kazuki Kobayashibayashi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Ibuki Fujinuma
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Takazumi Tsunenari
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yasuhiro Takihata
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Toshimitsu Iwasaki
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoichi Miyata
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Koichi Okamoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Shigeo Yasuda
- Department of Gastrointestinal Oncology, QST Hospital International Therapy Research Center, Chiba 263-8555, Japan
| | - Yuka Isozaki
- Department of Gastrointestinal Oncology, QST Hospital International Therapy Research Center, Chiba 263-8555, Japan
| | - Shigeru Yamada
- Department of Gastrointestinal Oncology, QST Hospital International Therapy Research Center, Chiba 263-8555, Japan
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
156
|
Glowa C, Peschke P, Brons S, Debus J, Karger CP. Effectiveness of fractionated carbon ion treatments in three rat prostate tumors differing in growth rate, differentiation and hypoxia. Radiother Oncol 2021; 158:131-137. [PMID: 33587966 DOI: 10.1016/j.radonc.2021.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the fractionation dependence of carbon (12C) ions and photons in three rat prostate carcinomas differing in growth rate, differentiation and hypoxia. MATERIAL AND METHODS Three sublines (AT1, HI, H) of syngeneic rat prostate tumors (R3327) were treated with six fractions of either 12C-ions or 6 MV photons. Dose-response curves were determined for the endpoint local tumor control within 300 days. The doses at 50% control probability (TCD50) and the relative biological effectiveness (RBE) of 12C-ions were calculated and compared with the values from single and split dose studies. RESULTS Experimental findings for the three tumor sublines revealed (i) a comparably increased RBE (2.47-2.67), (ii) a much smaller variation of the radiation response for 12C-ions (TCD50: 35.8-43.7 Gy) than for photons (TCD50: 91.3-116.6 Gy), (iii) similarly steep (AT1) or steeper (HI, H) dose-response curves for 12C-ions than for photons, (iv) a larger fractionation effect for photons than for 12C-ions, and (v) a steeper increase of the RBE with decreasing fractional dose for the well-differentiated H- than for the less-differentiated HI- and AT1-tumors, reflected by (vi) the smallest α/β-value for H-tumors after photon irradiation. CONCLUSION 12C-ions reduce the radiation response heterogeneity between the three tumor sublines as well as within each subline relative to photon treatments, independently of fractionation. The dose dependence of the RBE varies between tumors of different histology. The results support the use of hypofractionated carbon ion treatments in radioresistant tumors.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
157
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
158
|
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:244-263. [PMID: 34337349 PMCID: PMC8323830 DOI: 10.20517/cdr.2020.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
- Correspondence Address: Dr. Jac A. Nickoloff, Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Ft. Collins, CO 80523-1681, USA. E-mail:
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| |
Collapse
|
159
|
Bao C, Sun Y, Dwarakanath B, Dong Y, Huang Y, Wu X, Guha C, Kong L, Lu JJ. Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-x. J Cancer 2021; 12:1520-1530. [PMID: 33531997 PMCID: PMC7847655 DOI: 10.7150/jca.46316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023] Open
Abstract
To explore the potential and mechanisms of necroptosis, a form of immunogenic cell death, induced by carbon ion as compared to photon beams in established photon resistant- (PR-) and sensitive nasopharyngeal carcinoma (NPC) cells. MLKL is considered a central executor of necroptosis and phosphorylation of MLKL (p-MLKL) was a critical event of necroptosis. The clonogenic survival and DNA microarray demonstrated that after repeated photon irradiation, radiosensitive NPC cells became apoptosis-resistant but could be effectively inhibited by carbon ion irradiation. The relative biologic effectiveness (RBE) at D10 and D37 were 2.15 and 2.78 for PR-NPC cells. Carbon ion induced delayed DNA damage repair, cell cycle arrest, cytogenetic damage, morphological change and cell necrosis, indicating the possibility of necroptosis in both PR- and sensitive NPC cell types. The lower expression of necroptotic inhibitors (caspase-8 and Bcl-x) and higher level of MLKL in PR-NPC cells showed it was relatively more predisposed to necroptosis compared to the sensitive cells. Subsequent experiments demonstrated the significant upregulation of p-MLKL in the PR-NPC cells treated by carbon ion (4 Gy) compared with photon irradiation at both physical (4 Gy) and RBE (10 Gy) doses (P≤0.0001). Moreover, carbon ion induced a robust (up to 28 folds) p-MLKL in the PR-NPC cells as well as sensitive cells (up to 6-fold) coupled with a lower level of BCL-x expression and increased GM-CSF implicated in resculputure of immune system. These results suggested that carbon ion could induce necroptosis of NPC cells, especially in PR-NPC cells, and its mechanisms involve BCL-x.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Bilikere Dwarakanath
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaodong Wu
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
160
|
Hartmann L, Schröter P, Osen W, Baumann D, Offringa R, Moustafa M, Will R, Debus J, Brons S, Rieken S, Eichmüller SB. Photon versus carbon ion irradiation: immunomodulatory effects exerted on murine tumor cell lines. Sci Rep 2020; 10:21517. [PMID: 33299018 PMCID: PMC7726046 DOI: 10.1038/s41598-020-78577-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
While for photon radiation hypofractionation has been reported to induce enhanced immunomodulatory effects, little is known about the immunomodulatory potential of carbon ion radiotherapy (CIRT). We thus compared the radio-immunogenic effects of photon and carbon ion irradiation on two murine cancer cell lines of different tumor entities. We first calculated the biological equivalent doses of carbon ions corresponding to photon doses of 1, 3, 5, and 10 Gy of the murine breast cancer cell line EO771 and the OVA-expressing pancreatic cancer cell line PDA30364/OVA by clonogenic survival assays. We compared the potential of photon and carbon ion radiation to induce cell cycle arrest, altered surface expression of immunomodulatory molecules and changes in the susceptibility of cancer cells to cytotoxic T cell (CTL) mediated killing. Irradiation induced a dose-dependent G2/M arrest in both cell lines irrespective from the irradiation source applied. Likewise, surface expression of the immunomodulatory molecules PD-L1, CD73, H2-Db and H2-Kb was increased in a dose-dependent manner. Both radiation modalities enhanced the susceptibility of tumor cells to CTL lysis, which was more pronounced in EO771/Luci/OVA cells than in PDA30364/OVA cells. Overall, compared to photon radiation, the effects of carbon ion radiation appeared to be enhanced at higher dose range for EO771 cells and extenuated at lower dose range for PDA30364/OVA cells. Our data show for the first time that equivalent doses of carbon ion and photon irradiation exert similar immunomodulating effects on the cell lines of both tumor entities, highlighted by an enhanced susceptibility to CTL mediated cytolysis in vitro.
Collapse
Affiliation(s)
- Laura Hartmann
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Philipp Schröter
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
| | - Daniel Baumann
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Heidelberg, Germany
- Department of Surgery, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Heidelberg, Germany
- Department of Surgery, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Mahmoud Moustafa
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Faculty of Medicine Heidelberg (MFHD), Division of Molecular and Translational Radiation Oncology, Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Rainer Will
- German Cancer Research Center (DKFZ), Genomics and Proteomics Core Facility, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Faculty of Medicine Heidelberg (MFHD), Division of Molecular and Translational Radiation Oncology, Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany.
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan B Eichmüller
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany.
| |
Collapse
|
161
|
Four-dimensional carbon-ion pencil beam treatment planning comparison between robust optimization and range-adapted internal target volume for respiratory-gated liver and lung treatment. Phys Med 2020; 80:277-287. [PMID: 33246187 DOI: 10.1016/j.ejmp.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 01/30/2023] Open
Abstract
We investigated the dose differences between robust optimization-based treatment planning (4DRO) and range-adapted internal target volume (rITV). We used 4DCT dataset of 20 lung cancer and 20 liver cancer patients, respectively, who had been treated with respiratory-gated carbon-ion pencil beam scanning therapy. 4DRO and rITV plans were created with the same clinical target volume (CTV) and organs at risk (OAR) contours. Four-dimensional dose distribution was calculated using deformable image registration. Dose metrics (e.g. D95, V20) were analyzed. Statistical significance was assessed by the Wilcoxon signed-rank test. For the lung cases, the mean CTV-D95 value for the rITV plan (=98.5%) was same as that for the 4DRO plan (=98.5%, P = 0.106), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.2%) was higher than that for the 4DRO plan (95.2%, P < 0.001). For the liver cases, the mean CTV-D95 value for the rITV plan (=98.1%) was slightly lower than that for the 4DRO plan (=98.5%, P < 0.01), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.0%) was higher than that for the 4DRO plan (94.1%, P < 0.001). For the doses to the organs at risk (OARs), the ipsilateral lung-V20/liver-V20 values for the rITV plan (=10.1%/19.7%) was significantly higher than that for the 4DRO plan (=8.6%/17.6, P < 0.001). Although the target coverage for 4DRO plan may be worse than that for rITV plan in the presence of the setup error, the 4DRO plan can improve OAR dose while preserving acceptable target dose coverage.
Collapse
|
162
|
Svajdova M, Sicak M, Dubinsky P, Slavik M, Slampa P, Kazda T. Recurrent Nasopharyngeal Cancer: Critical Review of Local Treatment Options Including Recommendations during the COVID-19 Pandemic. Cancers (Basel) 2020; 12:cancers12123510. [PMID: 33255751 PMCID: PMC7760235 DOI: 10.3390/cancers12123510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Options for the curative treatment of locally recurrent nasopharyngeal carcinoma include surgery or re-irradiation. Both approaches have been scientifically explored, yet there is no consensus on the indication or definitive preference of the above two salvage treatments. The aim of this review is to summarize the current evidence on the local treatment of recurrent nasopharyngeal carcinoma. The feasibility, safety, and efficacy of salvage surgery and radical re-irradiation are discussed. Recommendations on treatment modifications during the coronavirus disease 2019 pandemic are included as well. Abstract Recurrent nasopharyngeal carcinoma represents an extremely challenging therapeutic situation. Given the vulnerability of the already pretreated neurological structures surrounding the nasopharynx, any potential salvage retreatment option bears a significant risk of severe complications that result in high treatment-related morbidity, quality of life deterioration, and even mortality. Yet, with careful patient selection, long-term survival may be achieved after local retreatment in a subgroup of patients with local or regional relapse of nasopharyngeal cancer. Early detection of the recurrence represents the key to therapeutic success, and in the case of early stage disease, several curative treatment options can be offered to the patient, albeit with minimal support in prospective clinical data. In this article, an up-to-date review of published evidence on modern surgical and radiation therapy treatment options is summarized, including currently recommended treatment modifications of both therapeutic approaches during the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Michaela Svajdova
- Department of Radiation and Clinical Oncology, Central Military Hospital—Teaching Hospital Ruzomberok, 034 01 Ruzomberok, Slovakia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +421-911-618-265
| | - Marian Sicak
- Department of Otorhinolaryngology and Head and Neck Surgery, Central Military Hospital—Teaching Hospital, 034 01 Ruzomberok, Slovakia;
| | - Pavol Dubinsky
- Department of Radiation Oncology, East Slovakia Oncology Institute, 041 91 Kosice, Slovakia;
- Faculty of Health, Catholic University Ruzomberok, 034 01 Ruzomberok, Slovakia
| | - Marek Slavik
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (P.S.); (T.K.)
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (P.S.); (T.K.)
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (P.S.); (T.K.)
| |
Collapse
|
163
|
Karasawa K, Omatsu T, Shiba S, Irie D, Wakatsuki M, Fukuda S. A clinical study of curative partial breast irradiation for stage I breast cancer using carbon ion radiotherapy. Radiat Oncol 2020; 15:265. [PMID: 33187529 PMCID: PMC7666457 DOI: 10.1186/s13014-020-01713-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023] Open
Abstract
Background and purpose Our institute initiated carbon ion radiotherapy research for patients with stage I breast cancer in April 2013. The purpose of this article is to evaluate the treatment outcome of cases treated outside clinical trial up to May 2020. Materials and methods Eligibility criteria of the patients were having untreated stage I breast cancer and being unsuitable for operation for physical or mental reasons. The irradiated volume was defined as the gross tumor including intraductal components. The dose escalation study was initially conducted four times a week for a total of 52.8 Gy [relative biological efficacy (RBE)]. After confirming that adverse effects were within acceptable range, the total dose was increased to 60.0 Gy (RBE). Results Between April 2013 and November 2015, 14 cases were treated. The median follow up period was 61 months. No adverse toxicities were observed except for grade 1 acute skin reaction in 10 cases. The time required from carbonion radiotherapy to tumor disappearance was 3 months in 1 case, 6 months in 3 cases, 12 months in 4 cases, and 24 months in 5 cases. The third case developed local recurrence 6 months after radiotherapy. Twelve patients with luminal subtype received 5-year endocrine therapy. Thirteen of 14 tumors have been maintaining complete response with excellent cosmetic results. Conclusions The time from carbon ion radiotherapy to tumor disappearance was longer than expected, but complete tumor disappearance was observed except for one high-grade case. With careful patient selection, carbonion radiotherapy in patients with stage I breast cancer is deemed effective and safe, and further research is recommended.
Collapse
Affiliation(s)
- Kumiko Karasawa
- Department of Radiation Oncology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. .,National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.
| | - Tokuhiko Omatsu
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Shintaro Shiba
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.,Department of Radiation Oncology, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi City, Gunma, 371-8511, Japan
| | - Daisuke Irie
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.,Department of Radiation Oncology, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi City, Gunma, 371-8511, Japan
| | - Masaru Wakatsuki
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Shigekazu Fukuda
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| |
Collapse
|
164
|
Blakely EA. The 20th Gray lecture 2019: health and heavy ions. Br J Radiol 2020; 93:20200172. [PMID: 33021811 PMCID: PMC8519642 DOI: 10.1259/bjr.20200172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Particle radiobiology has contributed new understanding of radiation safety and underlying mechanisms of action to radiation oncology for the treatment of cancer, and to planning of radiation protection for space travel. This manuscript will highlight the significance of precise physical and biologically effective dosimetry to this translational research for the benefit of human health.This review provides a brief snapshot of the evolving scientific basis for, and the complex current global status, and remaining challenges of hadron therapy for the treatment of cancer. The need for particle radiobiology for risk planning in return missions to the Moon, and exploratory deep-space missions to Mars and beyond are also discussed. METHODS Key lessons learned are summarized from an impressive collective literature published by an international cadre of multidisciplinary experts in particle physics, radiation chemistry, medical physics of imaging and treatment planning, molecular, cellular, tissue radiobiology, biology of microgravity and other stressors, theoretical modeling of biophysical data, and clinical results with accelerator-produced particle beams. RESULTS Research pioneers, many of whom were Nobel laureates, led the world in the discovery of ionizing radiations originating from the Earth and the Cosmos. Six radiation pioneers led the way to hadron therapy and the study of charged particles encountered in outer space travel. Worldwide about 250,000 patients have been treated for cancer, or other lesions such as arteriovenous malformations in the brain between 1954 and 2019 with charged particle radiotherapy, also known as hadron therapy. The majority of these patients (213,000) were treated with proton beams, but approximately 32,000 were treated with carbon ion radiotherapy. There are 3500 patients who have been treated with helium, pions, neon or other ions. There are currently 82 facilities operating to provide ion beam clinical treatments. Of these, only 13 facilities located in Asia and Europe are providing carbon ion beams for preclinical, clinical, and space research. There are also numerous particle physics accelerators worldwide capable of producing ion beams for research, but not currently focused on treating patients with ion beam therapy but are potentially available for preclinical and space research. Approximately, more than 550 individuals have traveled into Lower Earth Orbit (LEO) and beyond and returned to Earth. CONCLUSION Charged particle therapy with controlled beams of protons and carbon ions have significantly impacted targeted cancer therapy, eradicated tumors while sparing normal tissue toxicities, and reduced human suffering. These modalities still require further optimization and technical refinements to reduce cost but should be made available to everyone in need worldwide. The exploration of our Universe in space travel poses the potential risk of exposure to uncontrolled charged particles. However, approaches to shield and provide countermeasures to these potential radiation hazards in LEO have allowed an amazing number of discoveries currently without significant life-threatening medical consequences. More basic research with components of the Galactic Cosmic Radiation field are still required to assure safety involving space radiations and combined stressors with microgravity for exploratory deep space travel. ADVANCES IN KNOWLEDGE The collective knowledge garnered from the wealth of available published evidence obtained prior to particle radiation therapy, or to space flight, and the additional data gleaned from implementing both endeavors has provided many opportunities for heavy ions to promote human health.
Collapse
|
165
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
166
|
Holm KM, Weber U, Simeonov Y, Krauss A, Jäkel O, Greilich S. 2D range modulator for high-precision water calorimetry in scanned carbon-ion beams. ACTA ACUST UNITED AC 2020; 65:215003. [DOI: 10.1088/1361-6560/aba6d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
167
|
Zhang J, Si J, Gan L, Guo M, Yan J, Chen Y, Wang F, Xie Y, Wang Y, Zhang H. Inhibition of Wnt signalling pathway by XAV939 enhances radiosensitivity in human cervical cancer HeLa cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:479-487. [PMID: 31975621 DOI: 10.1080/21691401.2020.1716779] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cervical cancer is the second most common malignant tumour threatening women's health. In recent years, heavy-ion beam therapy is becoming a newly emerging therapeutic mean of cancer; however, radio-resistance and radiation-induced damage constitute the main obstacles for curative treatment of cervical cancer. Therefore, to identify the radiosensitizers is essential. Here, we investigated the effects of Wnt signalling pathway on the response of 12C6+ radiation in HeLa cells. XAV939, an inhibitor of Wnt signalling pathway, was added two hours before 12C6+ radiation.12C6+ radiation inhibited the viability of HeLa cells in a time-dependent manner, and inhibiting Wnt signalling using XAV939 significantly intensified this stress. Meanwhile, 12C6+ radiation induced a significant increased cell apoptosis, G2/M phase arrest, and the number of γ-H2AX foci. Supplementation with XAV939 significantly increased the effects induced by 12C6+ radiation alone. Combining XAV939 with 12C6+ irradiation, the expression of apoptotic genes (p53, Bax, Bcl-2) was significantly increased, while the expression of Wnt-related genes (Wnt3a, Wnt5a, β-catenin, cyclin D1 and c-Myc) was significantly decreased. Overall, these findings suggested that blockage of the Wnt/β-catenin pathway effectively sensitizes HeLa cells to 12C6+ irradiation, and it may be a potential therapeutic approach in terms of increasing the clinical efficacy of 12C6+ beams.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Junfang Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xie
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
168
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
169
|
Patera V, Prezado Y, Azaiez F, Battistoni G, Bettoni D, Brandenburg S, Bugay A, Cuttone G, Dauvergne D, de France G, Graeff C, Haberer T, Inaniwa T, Incerti S, Nasonova E, Navin A, Pullia M, Rossi S, Vandevoorde C, Durante M. Biomedical Research Programs at Present and Future High-Energy Particle Accelerators. FRONTIERS IN PHYSICS 2020; 8:00380. [PMID: 33224942 PMCID: PMC7116397 DOI: 10.3389/fphy.2020.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biomedical applications at high-energy particle accelerators have always been an important section of the applied nuclear physics research. Several new facilities are now under constructions or undergoing major upgrades. While the main goal of these facilities is often basic research in nuclear physics, they acknowledge the importance of including biomedical research programs and of interacting with other medical accelerator facilities providing patient treatments. To harmonize the programs, avoid duplications, and foster collaboration and synergism, the International Biophysics Collaboration is providing a platform to several accelerator centers with interest in biomedical research. In this paper, we summarize the programs of various facilities in the running, upgrade, or construction phase.
Collapse
Affiliation(s)
- Vincenzo Patera
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, University “La Sapienza”, Rome, Italy
| | | | | | | | | | | | | | | | - Denis Dauvergne
- Université Grenoble-Alpes, CNRS/IN2P3, UMR5821, LPSC, GDR MI2B, LabEx PRIMES, Grenoble, France
| | | | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Sebastien Incerti
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d’Études Nucléaires de Bordeaux Gradignan, Gradignan, France
| | | | | | | | | | | | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
- Correspondence: Marco Durante,
| |
Collapse
|
170
|
Bitterman DS, Cagney DN, Singer LL, Nguyen PL, Catalano PJ, Mak RH. Master Protocol Trial Design for Efficient and Rational Evaluation of Novel Therapeutic Oncology Devices. J Natl Cancer Inst 2020; 112:229-237. [PMID: 31504680 PMCID: PMC7073911 DOI: 10.1093/jnci/djz167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Historically, the gold standard for evaluation of cancer therapeutics, including medical devices, has been the randomized clinical trial. Although high-quality clinical data are essential for safe and judicious use of therapeutic oncology devices, class II devices require only preclinical data for US Food and Drug Administration approval and are often not rigorously evaluated prior to widespread uptake. Herein, we review master protocol design in medical oncology and its application to therapeutic oncology devices, using examples from radiation oncology. Unique challenges of clinical testing of radiation oncology devices (RODs) include patient and treatment heterogeneity, lack of funding for trials by industry and health-care payers, and operator dependence. To address these challenges, we propose the use of master protocols to optimize regulatory, financial, administrative, quality assurance, and statistical efficiency of trials evaluating RODs. These device-specific master protocols can be extrapolated to other devices and encompass multiple substudies with the same design, statistical considerations, logistics, and infrastructure. As a practical example, we outline our phase I and II master protocol trial of stereotactic magnetic resonance imaging–guided adaptive radiotherapy, which to the best of our knowledge is the first master protocol trial to test a ROD. Development of more efficient clinical trials is needed to promote thorough evaluation of therapeutic oncology devices, including RODs, in a resource-limited environment, allowing more practical and rapid identification of the most valuable advances in our field.
Collapse
Affiliation(s)
- Danielle S Bitterman
- Harvard Radiation Oncology Program, Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel N Cagney
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lisa L Singer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Paul J Catalano
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Raymond H Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
171
|
Jones B. Clinical Radiobiology of Fast Neutron Therapy: What Was Learnt? Front Oncol 2020; 10:1537. [PMID: 33042798 PMCID: PMC7522468 DOI: 10.3389/fonc.2020.01537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
Neutron therapy was developed from neutron radiobiology experiments, and had identified a higher cell kill per unit dose and an accompanying reduction in oxygen dependency. But experts such as Hal Gray were sceptical about clinical applications, for good reasons. Gray knew that the increase in relative biological effectiveness (RBE) with dose fall-off could produce marked clinical limitations. After many years of research, this treatment did not produce the expected gains in tumour control relative to normal tissue toxicity, as predicted by Gray. More detailed reasons for this are discussed in this paper. Neutrons do not have Bragg peaks and so did not selectively spare many tissues from radiation exposure; the constant neutron RBE tumour prescription values did not represent the probable higher RBE values in late-reacting tissues with low α/β values; the inevitable increase in RBE as dose falls along a beam would also contribute to greater toxicity than in a similar megavoltage photon beam. Some tissues such as the central nervous system white matter had the highest RBEs partly because of the higher percentage hydrogen content in lipid-containing molecules. All the above factors contributed to disappointing clinical results found in a series of randomised controlled studies at many treatment centres, although at the time they were performed, neutron therapy was in a catch-up phase with photon-based treatments. Their findings are summarised along with their technical aspects and fractionation choices. Better understanding of fast neutron experiments and therapy has been gained through relatively simple mathematical models—using the biological effective dose concept and incorporating the RBEmax and RBEmin parameters (the limits of RBE at low and high dose, respectively—as shown in the Appendix). The RBE itself can then vary between these limits according to the dose per fraction used. These approaches provide useful insights into the problems that can occur in proton and ion beam therapy and how they may be optimised. This is because neutron ionisations in living tissues are mainly caused by recoil protons of energy proportional to the neutron energy: these are close to the proton energies that occur close to the Bragg peak region. To some extent, neutron RBE studies contain the highest RBE ranges found within proton and ion beams near Bragg peaks. In retrospect, neutrons were a useful radiobiological tool that has continued to inform the scientific and clinical community about the essential radiobiological principles of all forms of high linear energy transfer therapy. Neutron radiobiology and its implications should be taught on training courses and studied closely by clinicians, physicists, and biologists engaged in particle beam therapies.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, Department of Oncology, University of Oxford, Oxford, United Kingdom.,Green Templeton College, University of Oxford, Oxford, United Kingdom.,University College Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| |
Collapse
|
172
|
Saager M, Hahn EW, Peschke P, Brons S, Huber PE, Debus J, Karger CP. Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation. JOURNAL OF RADIATION RESEARCH 2020; 61:791-798. [PMID: 32657322 PMCID: PMC7482157 DOI: 10.1093/jrr/rraa042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/26/2020] [Indexed: 06/11/2023]
Abstract
To test the hypothesis that the use of an angiotensin-converting enzyme inhibitor (ACEi) during radiotherapy may be ameliorative for treatment-related normal tissue damage, a pilot study was conducted with the clinically approved (ACE) inhibitor ramipril on the outcome of radiation-induced myelopathy in the rat cervical spinal cord model. Female Sprague Dawley rats were irradiated with single doses of either carbon ions (LET 45 keV/μm) at the center of a 6 cm spread-out Bragg peak (SOBP) or 6 MeV photons. The rats were randomly distributed into 4 experimental arms: (i) photons; (ii) photons + ramipril; (iii) carbon ions and (iv) carbon ions + ramipril. Ramipril administration (2 mg/kg/day) started directly after irradiation and was maintained during the entire follow-up. Complete dose-response curves were generated for the biological endpoint radiation-induced myelopathy (paresis grade II) within an observation time of 300 days. Administration of ramipril reduced the rate of paralysis at high dose levels for photons and for the first time a similar finding for high-LET particles was demonstrated, which indicates that the effect of ramipril is independent from radiation quality. The reduced rate of myelopathy is accompanied by a general prolongation of latency time for photons and for carbon ions. Although the already clinical approved drug ramipril can be considered as a mitigator of radiation-induced normal tissue toxicity in the central nervous system, further examinations of the underlying pathological mechanisms leading to radiation-induced myelopathy are necessary to increase and sustain its mitigative effectiveness.
Collapse
Affiliation(s)
- Maria Saager
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Eric W Hahn
- Preclinical Imaging Section, Department of Radiology, The University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter E Huber
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
173
|
Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy. Radiother Oncol 2020; 153:272-278. [PMID: 32898559 DOI: 10.1016/j.radonc.2020.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Several studies have focused on increasing the linear energy transfer (LET) within tumours to achieve higher biological effects in carbon-ion radiotherapy (C-ion RT). However, it remains unclear whether LET affects late complications. We assessed whether physical dose and LET distribution can be specific factors for late rectal complications in C-ion RT. MATERIALS AND METHODS Overall, 134 patients with uterine carcinomas were registered and retrospectively analysed. Of 134 patients, 132 who were followed up for >6 months were enrolled. The correlations between the relative biological effectiveness (RBE)-weighted dose based on the Kanai model (the ostensible "clinical dose"), dose-averaged LET (LETd), or physical dose and rectal complications were evaluated. Rectal complications were graded according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. RESULTS Nine patients developed grade 3 or 4 late rectal complications. Linear regression analysis found that D2cc in clinical dose was the sole risk factor for ≥grade 3 late rectal complications (p = 0.012). The receiver operating characteristic analysis found that D2cc of 60.2 Gy (RBE) was a suitable cut-off value for predicting ≥grade 3 late rectal complications. Among 35 patients whose rectal D2cc was ≥60.2 Gy (RBE), no correlations were found between severe rectal toxicities and LETd alone or physical dose per se. CONCLUSION We demonstrated that severe rectal toxicities were related to the rectal D2cc of the clinical dose in C-ion RT. However, no correlations were found between severe rectal toxicities and LETd alone or physical dose per se.
Collapse
|
174
|
Durante M, Parodi K. Radioactive Beams in Particle Therapy: Past, Present, and Future. FRONTIERS IN PHYSICS 2020; 8:00326. [PMID: 33224941 PMCID: PMC7116396 DOI: 10.3389/fphy.2020.00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heavy ion therapy can deliver high doses with high precision. However, image guidance is needed to reduce range uncertainty. Radioactive ions are potentially ideal projectiles for radiotherapy because their decay can be used to visualize the beam. Positron-emitting ions that can be visualized with PET imaging were already studied for therapy application during the pilot therapy project at the Lawrence Berkeley Laboratory, and later within the EULIMA EU project, the GSI therapy trial in Germany, MEDICIS at CERN, and at HIMAC in Japan. The results show that radioactive ion beams provide a large improvement in image quality and signal-to-noise ratio compared to stable ions. The main hindrance toward a clinical use of radioactive ions is their challenging production and the low intensities of the beams. New research projects are ongoing in Europe and Japan to assess the advantages of radioactive ion beams for therapy, to develop new detectors, and to build sources of radioactive ions for medical synchrotrons.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Correspondence: Marco Durante,
| | - Katia Parodi
- Department of Experimental Physics—Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
175
|
Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. Br J Radiol 2020; 93:20200183. [PMID: 32795176 DOI: 10.1259/bjr.20200183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.
Collapse
Affiliation(s)
- Lukas Schaub
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
176
|
Mixed-beam approach for high-risk prostate cancer: Carbon-ion boost followed by photon intensity-modulated radiotherapy. Dosimetric and geometric evaluations (AIRC IG-14300). Phys Med 2020; 76:327-336. [PMID: 32750548 DOI: 10.1016/j.ejmp.2020.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim was to evaluate dosimetric uncertainties of a mixed beam approach for patients with high-risk prostate cancer (PCa). The treatment consists of a carbon ion radiotherapy (CIRT) boost followed by whole-pelvis intensity-modulated RT (IMRT). MATERIALS AND METHODS Patients were treated with a CIRT boost of 16.6 Gy/4 fractions followed by whole-pelvis IMRT of 50 Gy/25 fractions, with consequent long term androgen deprivation therapy. Deformable computed tomography image registration (DIR) was performed and corresponding doses were used for plan sum. A comparative IMRT photon plan was obtained as whole-pelvis IMRT of 50 Gy/25 fractions followed by a boost of 28 Gy/14 fractions. DIR performances were evaluated through structure-related and image characteristics parameters. RESULTS Until now, five patients out of ten total enrolled ended the treatment. Dosimetric parameters were lower in CIRT + IMRT than IMRT-only plans for all organs at risk (OARs) except femoral heads. Regarding DIR evaluation, femoral heads were the less deformed OAR. Penile bulb, bladder and anal canal showed intermediate deformation. Rectum was the most deformed. DIR algorithms were patient (P)-dependent, as performances were the highest for P3 and P4, intermediate for P2 and P5, and the lowest for P1. CONCLUSIONS CIRT allows better OARs sparing while increasing the efficacy due to the higher radio-biological effect of carbon ions. However, a mixed beam approach could introduce DIR problems in multi-centric treatments with different operative protocols. The development of this prospective trial will lead to more mature data concerning the clinical impact of implementing DIR procedures in dose accumulation applications for high-risk PCa treatments.
Collapse
|
177
|
Li C, Zhang Q, Li Z, Feng S, Luo H, Liu R, Wang L, Geng Y, Zhao X, Yang Z, Li Q, Yang K, Wang X. Efficacy and safety of carbon-ion radiotherapy for the malignant melanoma: A systematic review. Cancer Med 2020; 9:5293-5305. [PMID: 32524777 PMCID: PMC7402834 DOI: 10.1002/cam4.3134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant melanomas (MMs) were the fifth most common cancer in men and the sixth most common cancer in women in 2018, respectively. These are characterized by high metastatic rates and poor prognoses. We systematically reviewed safety and efficacy of carbon-ion radiotherapy (CIRT) for treating MMs. Eleven studies were eligible for review, and the data showed that MM patients showed better local control with low recurrence and mild toxicities after CIRT. Survival rates were slightly higher in patients with cutaneous or uveal MMs than in those with mucosal MMs. CIRT in combination with chemotherapy produced higher progression-free survival rates than CIRT only. In younger patients, higher rates of distant metastases of gynecological MMs were observed. The data indicated that CIRT is effective and safe for treating MMs; however, a combination with systemic therapy is recommended to ensure the best possible prognosis for MMs.
Collapse
Affiliation(s)
- Chengcheng Li
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Qiuning Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Lanzhou Heavy Ions HospitalLanzhouChina
| | - Zheng Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Shuangwu Feng
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Hongtao Luo
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Ruifeng Liu
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Lina Wang
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Yichao Geng
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Xueshan Zhao
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Zhen Yang
- Basic Medical CollegeLanzhou UniversityLanzhouChina
| | - Qiang Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Kehu Yang
- Evidence‐Based Medicine CenterSchool of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Xiaohu Wang
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Lanzhou Heavy Ions HospitalLanzhouChina
| |
Collapse
|
178
|
Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020; 27:82. [PMID: 32693792 PMCID: PMC7374898 DOI: 10.1186/s12929-020-00676-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine is becoming the standard of care in anti-cancer treatment. The personalized precision management of cancer patients highly relies on the improvement of new technology in next generation sequencing and high-throughput big data processing for biological and radiographic information. Systemic precision cancer therapy has been developed for years. However, the role of precision medicine in radiotherapy has not yet been fully implemented. Emerging evidence has shown that precision radiotherapy for cancer patients is possible with recent advances in new radiotherapy technologies, panomics, radiomics and dosiomics. This review focused on the role of precision radiotherapy in non-small cell lung cancer and demonstrated the current landscape.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan. .,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, No.1 Sec 1, Jen-Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
179
|
Shiba S, Parajuli RK, Sakai M, Oike T, Ohno T, Nakano T. Use of a Si/CdTe Compton Camera for In vivo Real-Time Monitoring of Annihilation Gamma Rays Generated by Carbon Ion Beam Irradiation. Front Oncol 2020; 10:635. [PMID: 32509570 PMCID: PMC7248380 DOI: 10.3389/fonc.2020.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 01/03/2023] Open
Abstract
The application of annihilation gamma-ray monitoring to the adaptive therapy of carbon ion radiotherapy (C-ion RT) requires identification of the peak intensity position and confirmation of activated elements with annihilation gamma-rays generated at the C-ion-irradiated site from those transported to unirradiated sites. Real-time monitoring of C-ion-induced annihilation gamma-rays was implemented using a Compton camera in a mouse model. An adult C57BL/6 mouse was anesthetized, and C-ion beams were directed into the abdomen at 1 × 109 particles/s for 20 s. The 511 keV annihilation gamma-rays, generated by the interaction between the irradiated C-ion beam and the target mouse, were detected using a silicon/cadmium telluride (Si/CdTe) Compton camera for 20 min immediately after irradiation. The irradiated site and the peak intensity position of 511 keV gamma emissions due to C-ion beam irradiation on a mouse were observed at the abdomen of the mouse by developing Compton images. Moreover, the positron emitter transport was observed by evaluating the range of gamma-ray emission after the C-ion beam irradiation on the mouse. Our data suggest that by confirming the peak intensity and beam range of C-ion RT with Si/CdTe-based Compton camera, it would be possible to reduce the intra-fractional and inter-fractional dose distribution degradation. Therefore, the results of this study would contribute to the future development of adaptive therapy with C-ion RT for humans.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Raj Kumar Parajuli
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| |
Collapse
|
180
|
Yamaguchi M, Liu CC, Huang HM, Yabe T, Akagi T, Kawachi N, Yamamoto S. Dose image prediction for range and width verifications from carbon ion-induced secondary electron bremsstrahlung x-rays using deep learning workflow. Med Phys 2020; 47:3520-3532. [PMID: 32335924 DOI: 10.1002/mp.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Imaging of the secondary electron bremsstrahlung (SEB) x rays emitted during particle-ion irradiation is a promising method for beam range estimation. However, the SEB x-ray images are not directly correlated to the dose images. In addition, limited spatial resolution of the x-ray camera and low-count situation may impede correctly estimating the beam range and width in SEB x-ray images. To overcome these limitations of the SEB x-ray images measured by the x-ray camera, a deep learning (DL) approach was proposed in this work to predict the dose images for estimating the range and width of the carbon ion beam on the measured SEB x-ray images. METHODS To prepare enough data for the DL training efficiently, 10,000 simulated SEB x-ray and dose image pairs were generated by our in-house developed model function for different carbon ion beam energies and doses. The proposed DL neural network consists of two U-nets for SEB x ray to dose image conversion and super resolution. After the network being trained with these simulated x-ray and dose image pairs, the dose images were predicted from simulated and measured SEB x-ray testing images for performance evaluation. RESULTS For the 500 simulated testing images, the average mean squared error (MSE) was 2.5 × 10-5 and average structural similarity index (SSIM) was 0.997 while the error of both beam range and width was within 1 mm FWHM. For the three measured SEB x-ray images, the MSE was no worse than 5.5 × 10-3 and SSIM was no worse than 0.980 while the error of the beam range and width was 2 mm and 5 mm FWHM, respectively. CONCLUSIONS We have demonstrated the advantages of predicting dose images from not only simulated data but also measured data using our deep learning approach.
Collapse
Affiliation(s)
- Mitsutaka Yamaguchi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science (QST), Takasaki, Japan
| | - Chih-Chieh Liu
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Takuya Yabe
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science (QST), Takasaki, Japan
| | - Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
181
|
Abi Jaoude J, Kouzy R, Nguyen ND, Lin D, Noticewala SS, Ludmir EB, Taniguchi CM. Radiation therapy for patients with locally advanced pancreatic cancer: Evolving techniques and treatment strategies. Curr Probl Cancer 2020; 44:100607. [PMID: 32471736 DOI: 10.1016/j.currproblcancer.2020.100607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Despite ongoing efforts, patients with locally advanced pancreatic cancer (LAPC) continue to have a dismal prognosis. Such tumors are unresectable, and optimal treatment with chemotherapy and/or radiation therapy is still not established. While chemotherapy is conventionally aimed at preventing metastatic spread of disease, radiation therapy acts locally, improving local control which can potentially improve overall survival and most importantly quality of life. Here, we aim to review the primary literature assessing the role of diverse radiation therapy strategies for patients with LAPC. Many radiation regimens can be considered, and no standard treatment has demonstrated a clear improvement in clinical outcomes. We advise that the modality of choice be dependent on the availability of equipment, the dose and fractionation of treatment, as well as the dose received by normal tissue. Moreover, a candid discussion with the patient concerning treatment goals is equally as essential. Three notable strategies for LAPC are intensity-modulated radiation therapy, volumetric modulated arc therapy, and proton. These radiation modalities tend to have improved dose distribution to the target volumes, while minimizing the radiation dose to surrounding normal tissues. Stereotactic body radiation therapy can also be considered in LAPC patients in cases where the tumor does not invade the duodenum or other neighboring structures. Because of the high doses delivered by stereotactic body radiation therapy, proper respiratory and tumor motion management should be implemented to reduce collateral radiation dosing. Despite improved clinical outcomes with modern radiation modalities, evolving techniques, and more accurate planning, future studies remain essential to elucidate the optimal role for radiation therapy among patients with LAPC.
Collapse
Affiliation(s)
| | - Ramez Kouzy
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Daniel Lin
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ethan B Ludmir
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
182
|
Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites D, Ahern V. Particle therapy toxicity outcomes: A systematic review. J Med Imaging Radiat Oncol 2020; 64:725-737. [PMID: 32421259 DOI: 10.1111/1754-9485.13036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Owing to its physical properties, particle therapy (PT), including proton beam therapy (PBT) and carbon ion therapy (CIT), can enhance the therapeutic ratio in radiation therapy. The major factor driving PT implementation is the reduction in exit and integral dose compared to photon plans, which is expected to translate to reduced toxicity and improved quality of life. This study extends the findings from a recent systematic review by the current authors which concentrated on tumour outcomes for PT, to now examine toxicity as a separate focus. Together, these reviews provide a comprehensive collation of the evidence relating to PT outcomes in clinical practice. Three major databases were searched by two independent researchers, and evidence quality was classified according to the National Health and Medical Research Council evidence hierarchy. One hundred and seventy-nine studies were included. Most demonstrated acceptable and favourable toxicity results. Comparative evidence reported reduced morbidities and improvement in quality of life in head and neck, paediatrics, sarcomas, adult central nervous system, gastrointestinal, ocular and prostate cancers compared to photon radiotherapy. This suggestion for reduced morbidity must be counterbalanced by the overall low quality of evidence. A concerted effort in the design of appropriate comparative clinical trials is needed which takes into account integration of PT's pace of technological advancements, including evolving delivery techniques, image guidance availability and sophistication of planning algorithms.
Collapse
Affiliation(s)
- Eun Ji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jacqueline Buck
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - David Thwaites
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| |
Collapse
|
183
|
Yu Z, Hong Z, Zhang Q, Lin LC, Shahnazi K, Wu X, Lu J, Jiang G, Wang Z. Proton and carbon ion radiation therapy for locally advanced pancreatic cancer: A phase I dose escalation study. Pancreatology 2020; 20:470-476. [PMID: 32033896 DOI: 10.1016/j.pan.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/25/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the maximum tolerated dose (MTD) of proton and carbon ion radiation therapy (PCRT) for locally advanced pancreatic cancer (LAPC). METHODS A single-institution, phase I dose escalation study was performed. The proton dose of 50.4 GyE in 28 fractions was delivered to clinical target volume, and carbon ion as a boost dose to gross tumor volume escalated from 12 GyE to 18 GyE with 3 GyE per fraction in 3 dose levels. The dose limiting toxicity (DLT) was defined as any treatment-related grade (G)3 or higher of non-hematological toxicity. The MTD was exceeded if ≥2 patients in a dose level developed DLT. RESULTS From May 2015 to July 2016, ten patients were enrolled, 3 in dose level 1, 4 in dose level 2, and 3 in dose level 3. With a median follow-up of 17.4 months, no patient developed a DLT, and the acute G1-2 of gastrointestinal (GI) and hepatic toxicity occurred in 40% of patients, and G1 of GI late toxicity, in 30%. The median overall survival was 17.3 months. CONCLUSION Higher than 50.4 GyE could be given by PCRT with slight toxicity and good tolerance for LAPC, and the tumor control and survival had been improved, but not significantly. Better outcome may be achieved using carbon ion radiation therapy with higher biological equivalent dose.
Collapse
Affiliation(s)
- Zhan Yu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lien-Chun Lin
- Department of Radiation Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Kambiz Shahnazi
- Department of Radiation Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xiaodong Wu
- Department of Radiation Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiade Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
| |
Collapse
|
184
|
Kim EH, Kim MS, Takahashi A, Suzuki M, Vares G, Uzawa A, Fujimori A, Ohno T, Sai S. Carbon-Ion Beam Irradiation Alone or in Combination with Zoledronic acid Effectively Kills Osteosarcoma Cells. Cancers (Basel) 2020; 12:cancers12030698. [PMID: 32187978 PMCID: PMC7140041 DOI: 10.3390/cancers12030698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone tumor in children and adolescents. The overall five-year survival rate for all bone cancers is below 70%; however, when the cancer has spread beyond the bone, it is about 15–30%. Herein, we evaluated the effects of carbon-ion beam irradiation alone or in combination with zoledronic acid (ZOL) on OSA cells. Carbon-ion beam irradiation in combination with ZOL significantly inhibited OSA cell proliferation by arresting cell cycle progression and initiating KHOS and U2OS cell apoptosis, compared to treatments with carbon-ion beam irradiation, X-ray irradiation, and ZOL alone. Moreover, we observed that this combination greatly inhibited OSA cell motility and invasion, accompanied by the suppression of the Pi3K/Akt and MAPK signaling pathways, which are related to cell proliferation and survival, compared to individual treatments with carbon-ion beam or X-ray irradiation, or ZOL. Furthermore, ZOL treatment upregulated microRNA (miR)-29b expression; the combination with a miR-29b mimic further decreased OSA cell viability via activation of the caspase 3 pathway. Thus, ZOL-mediated enhancement of carbon-ion beam radiosensitivity may occur via miR-29b upregulation; co-treatment with the miR-29b mimic further decreased OSA cell survival. These findings suggest that the carbon-ion beam irradiation in combination with ZOL has high potential to increase OSA cell death.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
- Correspondence: (E.H.K.); (S.S.); Tel.: +82-53-650-4480 (E.H.K.); +81-43-206-3231 (S.S.)
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son 904-0495, Okinawa, Japan;
| | - Akiko Uzawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
- Correspondence: (E.H.K.); (S.S.); Tel.: +82-53-650-4480 (E.H.K.); +81-43-206-3231 (S.S.)
| |
Collapse
|
185
|
Kawanami K, Matsuo T, Sato K, Imai R, Kamiya M, Wakao N, Hirasawa A, Deie M. Two cases of pelvic sarcoma in the acetabulum with >10-year follow-ups after carbon ion radiotherapy. J Orthop Sci 2020; 25:349-353. [PMID: 28818569 DOI: 10.1016/j.jos.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/05/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Katsuhisa Kawanami
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Toshihiro Matsuo
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Keiji Sato
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Reiko Imai
- Hospital of the National Institute of Radiological Sciences, Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage, Chiba 263-8555, Japan.
| | - Mitsuhiro Kamiya
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Norimitsu Wakao
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Atsuhiko Hirasawa
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Masataka Deie
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan.
| |
Collapse
|
186
|
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
187
|
Jäkel O. Physical advantages of particles: protons and light ions. Br J Radiol 2020; 93:20190428. [PMID: 31556333 PMCID: PMC7066975 DOI: 10.1259/bjr.20190428] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Proton and ion beam therapy has been introduced in the Lawrence Berkeley National Laboratory in the mid-1950s, when protons and helium ions have been used for the first time to treat patients. Starting in 1972, the scientists at Berkeley also were the first to use heavier ions (carbon, oxygen, neon, silicon and argon ions). The first clinical ion beam facility opened in 1994 in Japan and since then, the interest in radiotherapy with light ion beams has been increasing slowly but steadily, with 13 centers in clinical operation in 2019. All these centers are using carbon ions for clinical application.The article outlines the differences in physical properties of various light ions as compared to protons in view of the application in radiotherapy. These include the energy loss and depth dose properties, multiple scattering, range straggling and nuclear fragmentation. In addition, the paper discusses differences arising from energy loss and linear energy transfer with respect to their biological effects.Moreover, the paper reviews briefly the existing clinical data comparing protons and ions and outlines the future perspectives for the clinical use of ions like oxygen and helium.
Collapse
|
188
|
Chevalier F, Hamdi DH, Lepleux C, Temelie M, Nicol A, Austry JB, Lesueur P, Vares G, Savu D, Nakajima T, Saintigny Y. High LET Radiation Overcomes In Vitro Resistance to X-Rays of Chondrosarcoma Cell Lines. Technol Cancer Res Treat 2020; 18:1533033819871309. [PMID: 31495269 PMCID: PMC6732854 DOI: 10.1177/1533033819871309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chondrosarcomas are malignant tumors of the cartilage that are chemoresistant and
radioresistant to X-rays. This restricts the treatment options essential to surgery. In
this study, we investigated the sensitivity of chondrosarcoma to X-rays and C-ions
in vitro. The sensitivity of 4 chondrosarcoma cell lines (SW1353,
CH2879, OUMS27, and L835) was determined by clonogenic survival assays and cell cycle
progression. In addition, biomarkers of DNA damage responses were analyzed in the SW1353
cell line. Chondrosarcoma cells showed a heterogeneous sensitivity toward irradiation.
Chondrosarcoma cell lines were more sensitive to C-ions exposure compared to X-rays. Using
D10 values, the relative biological effectiveness of C-ions was higher (relative
biological effectiveness = 5.5) with cells resistant to X-rays (CH2879) and lower
(relative biological effectiveness = 3.7) with sensitive cells (L835). C-ions induced more
G2 phase blockage and micronuclei in SW1353 cells as compared to X-rays with the same
doses. Persistent unrepaired DNA damage was also higher following C-ions irradiation.
These results indicate that chondrosarcoma cell lines displayed a heterogeneous response
to conventional radiation treatment; however, treatment with C-ions irradiation was more
efficient in killing chondrosarcoma cells, compared to X-rays.
Collapse
Affiliation(s)
- Francois Chevalier
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | - Dounia Houria Hamdi
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | - Charlotte Lepleux
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | - Mihaela Temelie
- 1 CEA GANIL, Caen, France.,2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.,3 Centre Paul Strauss, Strasbourg, Alsace, France
| | - Anaïs Nicol
- 3 Centre Paul Strauss, Strasbourg, Alsace, France
| | | | - Paul Lesueur
- 4 Centre Francois Baclesse Centre de Lutte Contre le Cancer, Caen, France
| | - Guillaume Vares
- 5 Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan
| | - Diana Savu
- 2 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
| | | | | |
Collapse
|
189
|
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol 2020; 10:82. [PMID: 32117737 PMCID: PMC7010911 DOI: 10.3389/fonc.2020.00082] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the most widely used therapies for malignancies. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to advantageous physical and radiobiologic properties compared to photon based therapy. By taking advantage of these unique properties, carbon ion radiotherapy may allow dose escalation to tumors while reducing radiation dose to adjacent normal tissues. There are currently 13 centers treating with carbon ion radiotherapy, with many of these centers publishing promising safety and efficacy data from the first cohorts of patients treated. To date, carbon ion radiotherapy has been studied for almost every type of malignancy, including intracranial malignancies, head and neck malignancies, primary and metastatic lung cancers, tumors of the gastrointestinal tract, prostate and genitourinary cancers, sarcomas, cutaneous malignancies, breast cancer, gynecologic malignancies, and pediatric cancers. Additionally, carbon ion radiotherapy has been studied extensively in the setting of recurrent disease. We aim to provide a comprehensive review of the studies of each of these disease sites, with a focus on the current trials using carbon ion radiotherapy.
Collapse
|
190
|
Isozaki Y, Takiyama H, Bhattacharyya T, Ebner D, Kasuya G, Makishima H, Tsuji H, Kamada T, Yamada S. Heavy charged particles for gastrointestinal cancers. J Gastrointest Oncol 2020; 11:203-211. [PMID: 32175123 DOI: 10.21037/jgo.2019.03.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbon ion beams constitute the primary delivery method of heavy ion radiotherapy. It offers improved dose distribution, and enables concentration of dose within target volumes with minimal extraneous exposure of normal tissue, while delivering superior biological effect in comparison with photon and proton technologies. Here, we review the application of this technology to various gastrointestinal cancers.
Collapse
Affiliation(s)
- Yuka Isozaki
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tapesh Bhattacharyya
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniel Ebner
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Goro Kasuya
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
191
|
Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel) 2020; 11:E99. [PMID: 31952359 PMCID: PMC7017136 DOI: 10.3390/genes11010099] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Cells manage to survive, thrive, and divide with high accuracy despite the constant threat of DNA damage. Cells have evolved with several systems that efficiently repair spontaneous, isolated DNA lesions with a high degree of accuracy. Ionizing radiation and a few radiomimetic chemicals can produce clustered DNA damage comprising complex arrangements of single-strand damage and DNA double-strand breaks (DSBs). There is substantial evidence that clustered DNA damage is more mutagenic and cytotoxic than isolated damage. Radiation-induced clustered DNA damage has proven difficult to study because the spectrum of induced lesions is very complex, and lesions are randomly distributed throughout the genome. Nonetheless, it is fairly well-established that radiation-induced clustered DNA damage, including non-DSB and DSB clustered lesions, are poorly repaired or fail to repair, accounting for the greater mutagenic and cytotoxic effects of clustered lesions compared to isolated lesions. High linear energy transfer (LET) charged particle radiation is more cytotoxic per unit dose than low LET radiation because high LET radiation produces more clustered DNA damage. Studies with I-SceI nuclease demonstrate that nuclease-induced DSB clusters are also cytotoxic, indicating that this cytotoxicity is independent of radiogenic lesions, including single-strand lesions and chemically "dirty" DSB ends. The poor repair of clustered DSBs at least in part reflects inhibition of canonical NHEJ by short DNA fragments. This shifts repair toward HR and perhaps alternative NHEJ, and can result in chromothripsis-mediated genome instability or cell death. These principals are important for cancer treatment by low and high LET radiation.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (N.S.); (L.T.)
| | | | | |
Collapse
|
192
|
Fractionated carbon ion irradiations of the rat spinal cord: comparison of the relative biological effectiveness with predictions of the local effect model. Radiat Oncol 2020; 15:6. [PMID: 31900185 PMCID: PMC6942289 DOI: 10.1186/s13014-019-1439-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background To determine the relative biological effectiveness (RBE) and α/β-values after fractionated carbon ion irradiations of the rat spinal cord with varying linear energy transfer (LET) to benchmark RBE-model calculations. Material and methods The rat spinal cord was irradiated with 6 fractions of carbon ions at 6 positions within a 6 cm spread-out Bragg-peak (SOBP, LET: 16–99 keV/μm). TD50-values (dose at 50% complication probability) were determined from dose-response curves for the endpoint radiation induced myelopathy (paresis grade II) within 300 days after irradiation. Based on TD50-values of 15 MV photons, RBE-values were calculated and adding previously published data, the LET and fractional dose-dependence of the RBE was used to benchmark the local effect model (LEM I and IV). Results At six fractions, TD50-values decreased from 39.1 ± 0.4 Gy at 16 keV/μm to 17.5 ± 0.3 Gy at 99 keV/μm and the RBE increased accordingly from 1.46 ± 0.05 to 3.26 ± 0.13. Experimental α/β-ratios ranged from 6.9 ± 1.1 Gy to 44.3 ± 7.2 Gy and increased strongly with LET. Including all available data, comparison with model-predictions revealed that (i) LEM IV agrees better in the SOBP, while LEM I fits better in the entrance region, (ii) LEM IV describes the slope of the RBE within the SOBP better than LEM I, and (iii) in contrast to the strong LET-dependence, the RBE-deviations depend only weakly on fractionation within the measured range. Conclusions This study extends the available RBE data base to significantly lower fractional doses and performes detailed tests of the RBE-models LEM I and IV. In this comparison, LEM IV agrees better with the experimental data in the SOBP than LEM I. While this could support a model replacement in treatment planning, careful dosimetric analysis is required for the individual patient to evaluate potential clinical consequences.
Collapse
|
193
|
Alvarez-Ibarra A, Parise A, Hasnaoui K, de la Lande A. The physical stage of radiolysis of solvated DNA by high-energy-transfer particles: insights from new first principles simulations. Phys Chem Chem Phys 2020; 22:7747-7758. [DOI: 10.1039/d0cp00165a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electron dynamics simulations based on density functional theory are carried out on nanometric molecular systems to decipher the primary processes following irradiation of bio-macromolecules by high energy transfer charged particles.
Collapse
Affiliation(s)
| | - Angela Parise
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique UMR8000
- Orsay
- France
| | - Karim Hasnaoui
- Institut du Développement et des Ressources en Informatique Scientifique
- Rue John von Neumann
- Orsay
- France
- Maison de la Simulation
| | | |
Collapse
|
194
|
Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers (Basel) 2019; 12:cancers12010046. [PMID: 31877802 PMCID: PMC7016830 DOI: 10.3390/cancers12010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
The clinical application of different relative biological effectiveness (RBE) models for carbon ion RBE-weighted dose calculation hinders a global consensus in defining normal tissue constraints. This work aims to update the local effect model (LEM)-based constraints for the rectum using microdosimetric kinetic model (mMKM)-defined values, relying on RBE translation and the analysis of long-term clinical outcomes. LEM-optimized plans of treated patients, having suffered from prostate adenocarcinoma (n = 22) and sacral chordoma (n = 41), were recalculated with the mMKM using an in-house developed tool. The relation between rectum dose-volume points in the two RBE systems (DLEM|v and DMKM|v) was fitted to translate new LEM-based constraints. Normal tissue complication probability (NTCP) values, predicting late rectal toxicity, were obtained by applying published parameters. No late rectal toxicity events were reported within the patient cohort. The rectal toxicity outcome was confirmed using dosimetric analysis: DMKMVHs lay largely below original constraints; the translated DLEM|v values were 4.5%, 8.3%, 18.5%, and 35.4% higher than the nominal DMKM|v of the rectum volume, v-1%, 5%, 10% and 20%. The average NTCP value ranged from 5% for the prostate adenocarcinoma, to 0% for the sacral chordoma group. The redefined constraints, to be confirmed prospectively with clinical data, are DLEM|5cc ≤ 61 Gy(RBE) and DLEM|1cc ≤ 66 Gy(RBE).
Collapse
|
195
|
Molinelli S, Bonora M, Magro G, Casale S, Dale JE, Fossati P, Hasegawa A, Mirandola A, Ronchi S, Russo S, Preda L, Valvo F, Orecchia R, Ciocca M, Vischioni B. RBE-weighted dose in carbon ion therapy for ACC patients: Impact of the RBE model translation on treatment outcomes. Radiother Oncol 2019; 141:227-233. [DOI: 10.1016/j.radonc.2019.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022]
|
196
|
Yamada M, Sato H, Ieko Y, Miyasaka Y, Kanai T, Yano N, Ono T, Akamatsu H, Harada M, Ichikawa M, Teranishi Y, Kikuchi Y, Nemoto K. In silico comparison of the dosimetric impacts of a greater omentum spacer for abdominal and pelvic tumors in carbon-ion, proton and photon radiotherapy. Radiat Oncol 2019; 14:207. [PMID: 31752932 PMCID: PMC6868713 DOI: 10.1186/s13014-019-1411-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of this study was to compare carbon-ion (C-ion), proton and photon radiotherapy (RT) plans with regard to dose reduction of the gastrointestinal (GI) tract by using a greater omentum spacer (GO spacer). METHODS We retrospectively retrieved data for ten patients who received the GO spacer as surgical spacer placement for abdominal and pelvic tumors. Simulation plans were created on pre-spacer Computed Tomography (CT) and post-spacer CT for C-ion RT, proton RT and photon RT to compare the dose of the GI tract. The plans were normalized so that at least 95% of the planning target volume (PTV) received 70 Gy (relative biological effectiveness equivalent) delivered in 35 fractions. All plans were created with the lowest possible dose to the GI tract under conditions that meet the dose constraints for the PTV and spinal cord (maximum dose < 45 Gy). The part of the GI tract to be evaluated was defined as that most adjacent to the PTV. C-ion RT plans and proton RT plans were calculated by a spot scanning technique, and photon RT plans were calculated employing by fixed-field intensity-modulated radiation therapy. RESULTS D2 cc and V10-70 of the GI tract were significantly lower on post-spacer plans than on pre-spacer plans for all three RT modalities. Regarding post-spacer plans, D2 cc of the GI tract was significantly lower on C-ion RT plans and proton RT plans than on photon RT plans (C-ion vs photon p = 0.001, proton vs photon p = 0.002). However, there was no significant difference between C-ion RT plans and proton RT plans for D2 cc of the GI tract (C-ion vs proton p = 0.992). In the photon RT plan for one patient, D2 cc of the GI tract did not meet < 50 Gy. CONCLUSIONS The GO spacer shows a significant dose reduction effect on the GI tract.
Collapse
Affiliation(s)
- Masayoshi Yamada
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Hiraku Sato
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Yoshiro Ieko
- Department of Heavy Particle Medical Science, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Takayuki Kanai
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Natsuko Yano
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Takashi Ono
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Koriyama, Fukushima, Japan
| | - Hiroko Akamatsu
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Mayumi Harada
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Mayumi Ichikawa
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Yasushi Teranishi
- Department of General Surgery, Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Koriyama, Fukushima, Japan
| | - Yasuhiro Kikuchi
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Koriyama, Fukushima, Japan
| | - Kenji Nemoto
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, 2-2-2, Iida-Nishi, Yamagata, Japan
| |
Collapse
|
197
|
McFadden CH, Rahmanian S, Flint DB, Bright SJ, Yoon DS, O'Brien DJ, Asaithamby A, Abdollahi A, Greilich S, Sawakuchi GO. Isolation of time-dependent DNA damage induced by energetic carbon ions and their fragments using fluorescent nuclear track detectors. Med Phys 2019; 47:272-281. [PMID: 31677156 DOI: 10.1002/mp.13897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE High energetic carbon (C-) ion beams undergo nuclear interactions with tissue, producing secondary nuclear fragments. Thus, at depth, C-ion beams are composed of a mixture of different particles with different linear energy transfer (LET) values. We developed a technique to enable isolation of DNA damage response (DDR) in mixed radiation fields using beam line microscopy coupled with fluorescence nuclear track detectors (FNTDs). METHODS We imaged live cells on a coverslip made of FNTDs right after C-ion, proton or photon irradiation using an in-house built confocal microscope placed in the beam path. We used the FNTD to link track traversals with DNA damage and separated DNA damage induced by primary particles from fragments. RESULTS We were able to spatially link physical parameters of radiation tracks to DDR in live cells to investigate spatiotemporal DDR in multi-ion radiation fields in real time, which was previously not possible. We demonstrated that the response of lesions produced by the high-LET primary particles associates most strongly with cell death in a multi-LET radiation field, and that this association is not seen when analyzing radiation induced foci in aggregate without primary/fragment classification. CONCLUSIONS We report a new method that uses confocal microscopy in combination with FNTDs to provide submicrometer spatial-resolution measurements of radiation tracks in live cells. Our method facilitates expansion of the radiation-induced DDR research because it can be used in any particle beam line including particle therapy beam lines. CATEGORY Biological Physics and Response Prediction.
Collapse
Affiliation(s)
- Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shirin Rahmanian
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany
| | - David B Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David S Yoon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel J O'Brien
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amir Abdollahi
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center, Heidelberg University Hospital, 69120, Heidelberg, Germany.,German Cancer Consortium, 69120, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Steffen Greilich
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| |
Collapse
|
198
|
Sato K, Shimokawa T, Imai T. Difference in Acquired Radioresistance Induction Between Repeated Photon and Particle Irradiation. Front Oncol 2019; 9:1213. [PMID: 31799186 PMCID: PMC6863406 DOI: 10.3389/fonc.2019.01213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, advanced radiation therapy techniques, including stereotactic body radiotherapy and carbon–ion radiotherapy, have progressed to such an extent that certain types of cancer can be treated with radiotherapy alone. The therapeutic outcomes are particularly promising for early stage lung cancer, with results matching those of surgical resection. Nevertheless, patients may still experience local tumor recurrence, which might be exacerbated by the acquisition of radioresistance after primary radiotherapy. Notwithstanding the risk of tumors acquiring radioresistance, secondary radiotherapy is increasingly used to treat recurrent tumors. In this context, it appears essential to comprehend the radiobiological effects of repeated photon and particle irradiation and their underlying cellular and molecular mechanisms in order to achieve the most favorable therapeutic outcome. However, to date, the mechanisms of acquisition of radioresistance in cancer cells have mainly been studied after repeated in vitro X-ray irradiation. By contrast, other critical aspects of radioresistance remain mostly unexplored, including the response to carbon-ion irradiation of X-ray radioresistant cancer cells, the mechanisms of acquisition of carbon-ion resistance, and the consequences of repeated in vivo X-ray or carbon-ion irradiation. In this review, we discuss the underlying mechanisms of acquisition of X-ray and carbon-ion resistance in cancer cells, as well as the phenotypic differences between X-ray and carbon-ion-resistant cancer cells, the biological implications of repeated in vivo X-ray or carbon-ion irradiation, and the main open questions in the field.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, United States
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Takashi Imai
- Medical Databank, Department of Radiation Medicine, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
199
|
Bendinger AL, Seyler L, Saager M, Debus C, Peschke P, Komljenovic D, Debus J, Peter J, Floca RO, Karger CP, Glowa C. Impact of Single Dose Photons and Carbon Ions on Perfusion and Vascular Permeability: A Dynamic Contrast-Enhanced MRI Pilot Study in the Anaplastic Rat Prostate Tumor R3327-AT1. Radiat Res 2019; 193:34-45. [PMID: 31697210 DOI: 10.1667/rr15459.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We collected initial quantitative information on the effects of high-dose carbon (12C) ions compared to photons on vascular damage in anaplastic rat prostate tumors, with the goal of elucidating differences in response to high-LET radiation, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-AT1 rat prostate tumors received a single dose of either 16 or 37 Gy 12C ions or 37 or 85 Gy 6 MV photons (iso-absorbed and iso-effective doses, respectively). The animals underwent DCE-MRI prior to, and on days 3, 7, 14 and 21 postirradiation. The extended Tofts model was used for pharmacokinetic analysis. At day 21, tumors were dissected and histologically examined. The results of this work showed the following: 1. 12C ions led to stronger vascular changes compared to photons, independent of dose; 2. Tumor growth was comparable for all radiation doses and modalities until day 21; 3. Nonirradiated, rapidly growing control tumors showed a decrease in all pharmacokinetic parameters (area under the curve, Ktrans, ve, vp) over time; 4. 12C-ion-irradiated tumors showed an earlier increase in area under the curve and Ktrans than photon-irradiated tumors; 5. 12C-ion irradiation resulted in more homogeneous parameter maps and histology compared to photons; and 6. 12C-ion irradiation led to an increased microvascular density and decreased proliferation activity in a largely dose-independent manner compared to photons. Postirradiation changes related to 12C ions and photons were detected using DCE-MRI, and correlated with histological parameters in an anaplastic experimental prostate tumor. In summary, this pilot study demonstrated that exposure to 12C ions increased the perfusion and/or permeability faster and led to larger changes in DCE-MRI parameters resulting in increased vessel density and presumably less hypoxia at the end of the observation period when compared to photons. Within this study no differences were found between curative and sub-curative doses in either modality.
Collapse
Affiliation(s)
- Alina L Bendinger
- Departments of Medical Physics in Radiology.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Lisa Seyler
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Maria Saager
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Charlotte Debus
- Departments of Translational Radiation Oncology, National Center for Tumor Diseases (NCT).,Department of High-Performance Computing, Simulation and Software Technology, German Aerospace Center (DLR), Cologne, Germany
| | - Peter Peschke
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Jürgen Debus
- Departments of Clinical Cooperation Unit, Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Peter
- Departments of Medical Physics in Radiology
| | - Ralf O Floca
- Departments of Medical Image Computing.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christian P Karger
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christin Glowa
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
200
|
Huang Y, Dong Y, Zhao J, Zhang L, Kong L, Lu JJ. Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:542. [PMID: 31807524 DOI: 10.21037/atm.2019.09.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Accumulating evidence suggested that radiotherapy can activate anti-tumor immune responses by triggering immunogenic cell death (ICD) of tumor cells. Calreticulin is regarded as one of the most important markers of ICD. The cell surface translocation of calreticulin (ecto-CRT) serves as an "eat me" signal for phagocytosis of dying cells, which plays a pivotal role in activating anti-tumor immunity. However, there is limited knowledge describing the effects of proton and carbon-ion radiation on ecto-CRT exposure. Hence, we investigated ecto-CRT exposure in multiple human carcinoma cell lines irradiated by proton and carbon-ion in comparison to photon. Methods This study examined four human cancer cell lines including A549 (lung adenocarcinoma), U251MG (glioma), Tca8113 (tongue squamous carcinoma), and CNE-2 (nasopharyngeal carcinoma). Cell lines were irradiated with photon, proton or carbon-ion at 0, 2, 4, 10 Gy (physical dose). The ecto-CRT exposure level was analyzed by flow cytometry at 12, 24, and 48 h post-irradiation. The median fluorescence intensity was calculated by FlowJo. Results All three types of radial beam increased ecto-CRT exposure of the 4 tumor cell lines in a time-dependent manner. Ecto-CRT exposure significantly elevated 1.5-2.4 times over 48 h post-irradiation compared with controls (P<0.05). Proton and photon increased ecto-CRT exposure with dose escalation. Photon and proton at 10 Gy increased the most ecto-CRT exposure (P<0.05), while carbon-ion increased most ecto-CRT exposure at 4 Gy rather than 10 or 2 Gy. When compared with iso-physical dose at 48 h post-irradiation, proton showed a similar effectiveness with photon. While carbon-ion has significantly stronger effects on increasing ecto-CRT than proton and photon at 2 and 4 Gy, but changed oppositely at 10 Gy (P<0.05). Conclusions All the three types of radiation can increase the ecto-CRT exposure in a time-dependent manner. Proton and photon radiation were equally effective in inducing ecto-CRT exposure, while carbon-ion revealed a different effectiveness in comparison to photon and proton.
Collapse
Affiliation(s)
- Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Jingfang Zhao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China
| | - Lijia Zhang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
| |
Collapse
|