151
|
Assi T, Mir O. Hyperprogressive disease in leiomyosarcoma: a threat to the use of single-agent anti-PD-(L)1 therapy? Immunotherapy 2022; 14:271-274. [DOI: 10.2217/imt-2021-0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tarek Assi
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Cancer Care, Gustave Roussy, Villejuif, France
| |
Collapse
|
152
|
O'Sullivan Coyne G, Kummar S, Hu J, Ganjoo K, Chow WA, Do KT, Zlott J, Bruns A, Rubinstein L, Foster JC, Juwara L, Meehan R, Piekarz R, Streicher H, Sharon E, Takebe N, Voth AR, Bottaro D, Costello R, Wright JJ, Doroshow JH, Chen AP. Clinical Activity of Single-Agent Cabozantinib (XL184), a Multi-receptor Tyrosine Kinase Inhibitor, in Patients with Refractory Soft-Tissue Sarcomas. Clin Cancer Res 2022; 28:279-288. [PMID: 34716194 PMCID: PMC8776602 DOI: 10.1158/1078-0432.ccr-21-2480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Soft-tissue sarcomas (STS) are a rare, heterogeneous group of mesenchymal tumors. For decades the mainstay of treatment for advanced, unresectable STS has been palliative chemotherapy. High levels of activated MET receptor have been reported in various sarcoma cell lines, together with elevated vascular endothelial growth factor (VEGF) levels in patients with STS, suggesting that dual targeting of the VEGF and MET pathways with the multi-receptor tyrosine kinase inhibitor cabozantinib would result in clinical benefit in this population. PATIENTS AND METHODS We performed an open-label, multi-institution, single-arm phase II trial of single-agent cabozantinib in adult patients with advanced STS and progressive disease after at least 1 standard line of systemic therapy. Patients received 60 mg oral cabozantinib once daily in 28-day cycles, and dual primary endpoints of overall response rate and 6-month progression-free survival (PFS) were assessed. Changes in several circulating biomarkers were assessed as secondary endpoints. RESULTS Six (11.1%; 95% CI, 4.2%-22.6%) of the 54 evaluable patients enrolled experienced objective responses (all partial responses). Six-month PFS was 49.3% (95% CI, 36.2%-67.3%), with a median time on study of 4 cycles (range, 1-99). The most common grade 3/4 adverse events were hypertension (7.4%) and neutropenia (16.7%). Patients' levels of circulating hepatocyte growth factor (HGF), soluble MET, and VEGF-A generally increased after a cycle of therapy, while soluble VEGFR2 levels decreased, regardless of clinical outcome. CONCLUSIONS Cabozantinib single-agent antitumor activity was observed in patients with selected STS histologic subtypes (alveolar soft-part sarcoma, undifferentiated pleomorphic sarcoma, extraskeletal myxoid chondrosarcoma, and leiomyosarcoma) highlighting the biomolecular diversity of STS.
Collapse
Affiliation(s)
- Geraldine O'Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Shivaani Kummar
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - James Hu
- University of Southern California, Los Angeles, California
| | - Kristen Ganjoo
- Stanford Cancer Center, Stanford University, Palo Alto, California
| | | | - Khanh T Do
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Jennifer Zlott
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Ashley Bruns
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Lawrence Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Jared C Foster
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Lamin Juwara
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert Meehan
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Howard Streicher
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Elad Sharon
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Donald Bottaro
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Rene Costello
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - John J Wright
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - James H Doroshow
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
153
|
Doshi SD, Oza J, Remotti H, Remotti F, Moy MP, Schwartz GK, Ingham M. Clinical Benefit From Immune Checkpoint Blockade in Sclerosing Epithelioid Fibrosarcoma: A Translocation-Associated Sarcoma. JCO Precis Oncol 2022; 5:1-5. [PMID: 34994591 DOI: 10.1200/po.20.00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sahil D Doshi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jay Oza
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Fabrizio Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Matthew P Moy
- Department of Radiology, Columbia University Irving Medical Center, New York, NY
| | - Gary K Schwartz
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Matthew Ingham
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
154
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
155
|
Zeng Y, Du X, Jiang W, Qiu Y. Measurement of VEGF Content in Exosomes and Subsequent Tumor Tubulogenesis and In Vivo Angiogenesis Functional Assays. Methods Mol Biol 2022; 2475:79-96. [PMID: 35451750 DOI: 10.1007/978-1-0716-2217-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vascular endothelial growth factor (VEGF) plays a vital role in angiogenesis, and is also involved in tumor cell growth and immunosuppression, showing very complex roles. VEGF-exosomes are released by tumor endothelial cells (ECs) following anti-angiogenesis therapies (AATs). Transwell assays enable the detection of migration and invasion capacities of tumor cells. Matrigel assays are used to evaluate the angiogenesis capacities of ECs. Here we describe the detection of VEGF content in exosomes by nano-flow cytometry, enzyme-linked immunosorbent assay (ELISA), and western blotting, and demonstrate the procedure for detection of the colon formation of tumor cells induced by exosomes, the angiogenesis of tumor cells co-cultured with ECs, the angiogenesis of tumor cells induced by exosomes in Matrigel assay in vitro and tumor xenografts.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
156
|
Okamoto M, Sato H, GAO X, Ohno T. Pembrolizumab following carbon ion radiotherapy for alveolar soft part sarcoma shows a remarkable abscopal effect: A case report. Adv Radiat Oncol 2022; 7:100893. [PMID: 35198839 PMCID: PMC8841365 DOI: 10.1016/j.adro.2021.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
|
157
|
Souza F, Cardoso FN, Cortes C, Rosenberg A, Subhawong TK. Soft Tissue Tumors. Radiol Clin North Am 2022; 60:283-299. [DOI: 10.1016/j.rcl.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
158
|
Wang J, Gao S, Yang Y, Liu X, Zhang P, Dong S, Wang X, Yao W. Clinical Experience with Apatinib and Camrelizumab in Advance Clear Cell Sarcoma: A Retrospective Study. Cancer Manag Res 2021; 13:8999-9005. [PMID: 34887682 PMCID: PMC8650770 DOI: 10.2147/cmar.s337253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Advanced clear cell sarcoma (CCS) is a rare subtype of sarcoma with few effective treatments. Evidence shows that apatinib is efficacious and safe for CCS. This study aimed to assess the safety and efficacy of apatinib and/or camrelizumab (a PD-1 inhibitor) in treating advanced CCS. Methods We retrospectively reviewed 12 patients with advanced CCS who received apatinib and/or camrelizumab therapy between November 2018 and July 2021. Standard descriptive statistics were employed for continuous variables and categorical variables (number and percentage). Results Of the 12 CCS patients, 3 had a partial response (PR), and 4 had stable disease (SD). Among the 5 patients treated with apatinib monotherapy, 1 PR and 2 SD were found, and the addition or replacement of camrelizumab after progressive disease (PD) did not work. In the 4 patients who received apatinib plus camrelizumab combination therapy, 1 PR and 1 SD were found. All 3 patients who received camrelizumab first had PD, and 1 PR and 1 SD were found after adding apatinib. Grade 3 or 4 adverse events were significantly more common in the apatinib plus camrelizumab combination therapy than in the apatinib or camrelizumab monotherapy, and these included increased aspartate aminotransferase and increased alanine aminotransferase levels. Conclusion Apatinib has promising effectiveness for CCS. Camrelizumab efficacy for the treatment of clear cell sarcoma is inconclusive. The efficacy of apatinib and PD-1 inhibitors in CCS need to be further investigated in prospective clinical trials.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Shilei Gao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Yonghao Yang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Xu Liu
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Peng Zhang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Shuping Dong
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Xin Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People's Republic of China
| |
Collapse
|
159
|
You Y, Guo X, Zhuang R, Zhang C, Wang Z, Shen F, Wang Y, Liu W, Zhang Y, Lu W, Hou Y, Wang J, Zhang X, Lu M, Zhou Y. Activity of PD-1 Inhibitor Combined With Anti-Angiogenic Therapy in Advanced Sarcoma: A Single-Center Retrospective Analysis. Front Mol Biosci 2021; 8:747650. [PMID: 34869583 PMCID: PMC8635153 DOI: 10.3389/fmolb.2021.747650] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) are employed to treat various cancers, including soft tissue sarcomas (STSs), and less than 20% of patients benefit from this treatment. Vascular endothelial growth factor (VEGF) promotes the immunosuppressive tumor microenvironment and contributes to ICI-resistant therapy. Anti-VEGF receptor tyrosine-kinase inhibitors (TKIs) combined with ICIs have shown antitumor activity in patients with alveolar soft-part sarcoma (ASPS). However, they have not been extensively studied to treat other STS subtypes, such as leiomyosarcoma (LMS), dedifferentiated liposarcoma (DDLPS), undifferentiated pleomorphic sarcoma (UPS), myxofibrosarcoma (MFS), and angiosarcoma (AS). Methods: In this retrospective study, we collected data from 61 patients who were diagnosed with advanced STS based on imaging and histology, including LMS, DDLPS, and UPS. Among them, 41 patients were treated with ICIs combined with TKIs and 20 patients received ICI therapy. The endpoints of progression-free survival (PFS) and overall response rate (ORR) were analyzed in the two groups, and the overall response [partial response (PR), stable disease (SD), and progressive disease (PD)] of each patient was determined using RECIST 1.1 evaluation criteria. Results: In total, 61 STS patients had the following subtypes: LMS (n = 20), DDLPS (n = 17), UPS (n = 8), ASPS (n = 7), MFS (n = 7), and AS (n = 2). The median PFS (mPFS) was significantly prolonged after ICI treatment in combination with TKIs (11.74 months, 95% CI 4.41–14.00) compared to ICI treatment alone (6.81 months, 95% CI 5.43–NA) (HR 0.5464, p = 0.043). The 12-month PFS rates of patients who received ICI–TKI treatment were increased from 20.26% (95% CI 0.08–0.53) to 42.90% (95% CI 0.27–0.68). In the combination therapy group, 12 patients (30%) achieved PR, 25 patients (62.5%) achieved SD, and 3 patients (7.5%) achieved PD for 3 months or longer. In the non-TKI-combination group, 2 patients (9.5%) achieved PR, 14 patients (66.7%) achieved SD, and 5 patients (23.8%) achieved PD within 3 months. The ORRs in the two groups were 30.0% (ICI–TKI combination) and 9.5% (ICI only), respectively. A notable ORR was observed in the ICI–TKI combination group, especially for subtypes ASPS (66.7%), MFS (42.9%), and UPS (33.3%). The PD-L1 expression (n = 33) and tumor mutation burden (TMB, n = 27) were determined for each patient. However, our results showed no significant difference in PFS or response rates between the two groups. Conclusion: This study suggests that ICI–TKI treatment has antitumor activity in patients with STS, particularly the ASPS and MFS subtypes. Moreover, effective biomarkers to predict clinical outcomes are urgently needed after combination therapy in the STS subtypes.
Collapse
Affiliation(s)
- Yang You
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Xi Guo
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | | | - Chenlu Zhang
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Zhiming Wang
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Feng Shen
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Yan Wang
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Wenshuai Liu
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Yong Zhang
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Weiqi Lu
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Yingyong Hou
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Jing Wang
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Xuan Zhang
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Minzhi Lu
- Oncology Department, Zhongshan Hospital, Shanghai, China
| | - Yuhong Zhou
- Oncology Department, Zhongshan Hospital, Shanghai, China
| |
Collapse
|
160
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
161
|
Yuan J, Li X, Yu S. Molecular targeted therapy for advanced or metastatic soft tissue sarcoma. Cancer Control 2021; 28:10732748211038424. [PMID: 34844463 PMCID: PMC8727831 DOI: 10.1177/10732748211038424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Soft tissue sarcomas are a form of rare and heterogeneous neoplasms with high recurrence rate and mortality. Over the past decades, less progress has been achieved. Surgical management with or without adjuvant/neoadjuvant radiotherapy is still the first-line treatment for localized soft tissue sarcomas, and chemotherapy is the additional option for those with high-risk. However, not all patients with advanced or metastatic soft tissue sarcomas benefit from conventional chemotherapy, targeted therapy takes the most relevant role in the management of those resistant to or failed to conventional chemotherapy. Heterogeneous soft tissue sarcomas vary from biological behavior, genetic mutations, and clinical presentation with a low incidence, indicating the future direction of histotype-based even molecule-based personalized therapy. Furthermore, increasing preclinical studies were carried out to investigate the pathogenesis and potential therapeutic targets of soft tissue sarcomas and increasing new drugs have been developed in recent years, which had started opening new doors for clinical treatment for patients with advanced/metastatic soft tissue sarcomas. Here we sought to summarize the concise characteristics and advance in the targeted therapy for the most common subtypes of soft tissue sarcomas.
Collapse
Affiliation(s)
- Jin Yuan
- Departments of Orthopedics, 71041National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Departments of Orthopedics, 71041National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, 71041National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
162
|
Fleuren EDG, Terry RL, Meyran D, Omer N, Trapani JA, Haber M, Neeson PJ, Ekert PG. Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors. Biomedicines 2021; 9:1798. [PMID: 34944614 PMCID: PMC8698536 DOI: 10.3390/biomedicines9121798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.
Collapse
Affiliation(s)
- Emmy D. G. Fleuren
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Randwick 2031, Australia
| | - Rachael L. Terry
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Inserm, Université de Paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75475 Paris, France
| | - Natacha Omer
- Translational Innate Immunotherapy, University of Queensland Diamantina Institute (UQDI), Brisbane 4102, Australia;
- Oncology Services Group, Queensland Children’s Hospital, Brisbane 4101, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick 2031, Australia; (R.L.T.); (M.H.); (P.G.E.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick 2052, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Randwick 2031, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia
| |
Collapse
|
163
|
Kataria B, Sharma A, Biswas B, Bakhshi S, Pushpam D. Pazopanib in rare histologies of metastatic soft tissue sarcoma. Ecancermedicalscience 2021; 15:1281. [PMID: 34824604 PMCID: PMC8580588 DOI: 10.3332/ecancer.2021.1281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background Uncommon histopathological subtypes account for less than 5% cases of soft tissue sarcoma (STS) and unclassified STSs comprise another 16%, these are often chemotherapy-resistant, with a dismal outcome in unresectable/metastatic disease. Prospective studies on the use of pazopanib in this cohort of patients are lacking in the literature. Here, we describe the safety and efficacy of pazopanib in rare histologies of advanced STS. Materials and methods We conducted a retrospective study at two tertiary cancer centres in India, evaluating 33 cases of rare subtypes of STS, who received pazopanib as per institutional protocol between January 2013 and December 2019. Patients who received pazopanib for unresectable/metastatic disease were enrolled in this study for clinicopathologic features, treatment outcome and evaluation of prognostic factors. Results Out of 33 patients, there were seven cases of undifferentiated pleomorphic sarcoma, four cases each of myxofibrosarcoma, epithelioid sarcoma and malignant peripheral nerve sheath tumour, three cases each of haemangiopericytoma and spindle cell sarcoma, two cases of haemangioendothelioma and a case each of clear cell sarcoma, retroperitoneal sarcoma, angiosarcoma and pleomorphic rhabdomyosarcoma-adult type. The objective response rate was 27%. Most of the patients (67%) received pazopanib in second or subsequent lines of therapy. The majority (70%) were started at a lower dose of 400/600 mg and only 43% of these (10/23) could be escalated to a full dose of 800 mg based on tolerance. On univariate analysis, pazopanib’s starting dose didn’t predict progression-free survival (PFS)/overall survival (OS)/response rate. At a median duration of follow-up of 18.8 months (range 1.9–150.4 months), the median PFS and median OS were 10.3 months (95% confidence interval (CI): 5.9–14.8) and 17.8 months (95% CI: 10.7–29.3), respectively. 27% of the patients experienced grade ¾ toxicities, 12% required dose modification of pazopanib and 21% needed permanent discontinuation due to toxicity. Conclusion Our study shows that pazopanib is active in rare subtypes of STS.
Collapse
Affiliation(s)
- Babita Kataria
- Department of Medical Oncology, National Cancer Institute, Badsa, Jhajjar, Haryana, 124105, India
| | - Aparna Sharma
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India.,Equally contributed to this work
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, DH Block(Newtown),Action area I, Kolkata, West Bengal, 700160, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| | - Deepam Pushpam
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| |
Collapse
|
164
|
Brohl AS, Sindiri S, Wei JS, Milewski D, Chou HC, Song YK, Wen X, Kumar J, Reardon HV, Mudunuri US, Collins JR, Nagaraj S, Gangalapudi V, Tyagi M, Zhu YJ, Masih KE, Yohe ME, Shern JF, Qi Y, Guha U, Catchpoole D, Orentas RJ, Kuznetsov IB, Llosa NJ, Ligon JA, Turpin BK, Leino DG, Iwata S, Andrulis IL, Wunder JS, Toledo SRC, Meltzer PS, Lau C, Teicher BA, Magnan H, Ladanyi M, Khan J. Immuno-transcriptomic profiling of extracranial pediatric solid malignancies. Cell Rep 2021; 37:110047. [PMID: 34818552 PMCID: PMC8642810 DOI: 10.1016/j.celrep.2021.110047] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches.
Collapse
Affiliation(s)
- Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Jun S Wei
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - Young K Song
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Xinyu Wen
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Hue V Reardon
- Advanced Biomedical Computational Science, Leidos Biomedical Research Inc., NCI Campus at Frederick, Frederick, MD 21702, USA
| | - Uma S Mudunuri
- Advanced Biomedical Computational Science, Leidos Biomedical Research Inc., NCI Campus at Frederick, Frederick, MD 21702, USA
| | - Jack R Collins
- Advanced Biomedical Computational Science, Leidos Biomedical Research Inc., NCI Campus at Frederick, Frederick, MD 21702, USA
| | - Sushma Nagaraj
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Manoj Tyagi
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Yuelin J Zhu
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Katherine E Masih
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Marielle E Yohe
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Yue Qi
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Daniel Catchpoole
- The Tumour Bank, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Rimas J Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Igor B Kuznetsov
- Cancer Research Center and Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Nicolas J Llosa
- Pediatric Oncology, John Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - John A Ligon
- Pediatric Oncology, John Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Brian K Turpin
- Division of Oncology, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Daniel G Leino
- Division of Oncology, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | | | - Irene L Andrulis
- Lunenfelf-Tanenbaum Research Institute, Sinai Health System; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jay S Wunder
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Silvia R C Toledo
- Support Group for Children and Adolescents with Cancer (GRAACC), Pediatric Oncology Institute (IOP), Universidade Federal de Sao Paulo, Sao Paulo, Brail
| | | | - Ching Lau
- The Jackson Laboratory, Farmington, CT 06032, USA
| | - Beverly A Teicher
- Molecular Pharmacology Branch, DCTD, NCI, NIH, Bethesda, MD 20892, USA
| | - Heather Magnan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Javed Khan
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
165
|
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021; 59:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth Perez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB) and Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
166
|
Wang DQ, Zhang JY, Li J, Ying JM, Wang X, Fan Y, Wang SL. Case Report: An Internal Mammary Rhabdomyosarcoma After Mastectomy and Systemic and Radiation Therapy in a Patient With Breast Cancer. Front Oncol 2021; 11:751758. [PMID: 34765557 PMCID: PMC8576335 DOI: 10.3389/fonc.2021.751758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023] Open
Abstract
Post-radiation soft tissue sarcomas (PRSTSs) are rare secondary malignancies. In this report, we describe the clinical presentation of a 52-year-old woman who underwent postmastectomy radiation therapy (PMRT) for left-sided breast cancer 2.7 years ago and presented with a left internal mammary mass and left interpectoral nodule on computed tomography. On further evaluation, she was diagnosed with internal mammary rhabdomyosarcoma and interpectoral nodal breast cancer relapse, and was treated with chemotherapy, followed by surgery and endocrine therapy. She developed left pleural metastases and is currently receiving targeted therapy. Internal mammary rhabdomyosarcomas are rare among PRSTSs and pose a diagnostic challenge for patients with breast cancer. Histological evaluation is important for the differential diagnosis of breast cancer relapses with secondary malignancies. The management of post-radiation thoracic rhabdomyosarcomas is challenging, and the prognosis is poor.
Collapse
Affiliation(s)
- Dan-Qiong Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Ming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
167
|
Srinivas S, Bajpai J. Checkpoint Inhibitors in Checkmating Rare Cancers. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:178-179. [PMID: 35665027 PMCID: PMC9138475 DOI: 10.36401/jipo-20-x10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Sujay Srinivas
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
168
|
Tian Z, Niu X, Yao W. Efficacy and Response Biomarkers of Apatinib in the Treatment of Malignancies in China: A Review. Front Oncol 2021; 11:749083. [PMID: 34676173 PMCID: PMC8525889 DOI: 10.3389/fonc.2021.749083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023] Open
Abstract
Apatinib is a multitarget tyrosine kinase inhibitor marketed in China for the treatment of advanced gastric cancer (GC) and hepatocellular carcinoma (HCC). It has also been used off-label for the treatment of many other malignancies. To comprehensively evaluate the efficacy of apatinib as a targeted therapy in the treatment of malignancies, we conducted systematic online and manual searches of the literature on apatinib in the treatment of malignancies. In this review, we first summarized the efficacy of apatinib against various malignancies based on clinical trials where results have been reported. In prospectively registered trials, apatinib has been proven to be effective against GC, HCC, lung cancer, breast cancer, sarcoma, esophageal cancer, colorectal cancer, ovarian cancer, cervical cancer, cholangiocarcinoma, diffuse large B-cell lymphoma, nasopharyngeal carcinoma, and differentiated thyroid cancer. The response biomarkers for apatinib were also reviewed. This review will serve as a good reference for the application of apatinib in clinical studies and the design of clinical trials.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
169
|
Janczak D, Szydełko T, Janczak D. Nine-Year Follow-Up of a Huge Retroperitoneal Alveolar Soft-Part Sarcoma: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932514. [PMID: 34669689 PMCID: PMC8544168 DOI: 10.12659/ajcr.932514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alveolar soft-part sarcoma is an uncommon mesenchymal tumor accounting for approximately 0.7% of soft tissue sarcomas in adults. It mainly affects young adults, with a peak incidence between 15 and 35 years old. Available data indicate that surgical resection with adjuvant therapy using tyrosine kinase inhibitor may be considered the standard treatment. The rarity of the disease and resultant data scarcity makes it difficult to establish treatment guidelines. CASE REPORT We present the 9-year follow-up of a 24-year-old patient with an initially advanced (stage IV), huge, 21-cm alveolar soft-part sarcoma of the retroperitoneum. During the observation period, the patient developed pulmonary, brain, and bone metastases. In the course of treatment, she underwent excision of the main tumor, excision of satellite tumors, and brain metastasectomies, and was treated with sunitinib, pazopanib, and radiotherapy. No similar case reports were found in the PubMed database. CONCLUSIONS Our multimodal approach resulted in a long period of stable disease. Late progression may occur; therefore, frequent and thorough imaging evaluation of such patients is crucial. Our case is one of the largest ASPS tumors reported, and her long-term successful treatment makes this report valuable, considering the scarcity of data regarding treatment of ASPS. Further large-cohort, multi-center studies are necessary to establish the best treatment.
Collapse
Affiliation(s)
- Dawid Janczak
- Division of Oncology and Palliative Care, Faculty of Health Science, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Szydełko
- Division of Oncology and Palliative Care, Faculty of Health Science, Wrocław Medical University, Wrocław, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
170
|
Roberts JL, Booth L, Poklepovic A, Dent P. Axitinib and HDAC Inhibitors Interact to Kill Sarcoma Cells. Front Oncol 2021; 11:723966. [PMID: 34604061 PMCID: PMC8483767 DOI: 10.3389/fonc.2021.723966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
We have extended our analyses of HDAC inhibitor biology in sarcoma. The multi-kinase inhibitor axitinib interacted with multiple HDAC inhibitors to kill sarcoma cells. Axitinib and HDAC inhibitors interacted in a greater than additive fashion to inactivate AKT, mTORC1 and mTORC2, and to increase Raptor S722/S792 phosphorylation. Individually, all drugs increased phosphorylation of ATM S1981, AMPKα T172, ULK1 S317 and ATG13 S318 and reduced ULK1 S757 phosphorylation; this correlated with enhanced autophagic flux. Increased phosphorylation of ULK1 S317 and of Raptor S722/S792 required ATM-AMPK signaling. ULK1 S757 is a recognized site for mTORC1 and knock down of either ATM or AMPKα reduced the drug-induced dephosphorylation of this site. Combined exposure of cells to axitinib and an HDAC inhibitor significantly reduced the expression of HDAC1, HDAC2, HDAC3, HDAC4, HDAC6 and HDAC7. No response was observed for HDACs 10 and 11. Knock down of ULK1, Beclin1 or ATG5 prevented the decline in HDAC expression, as did expression of a constitutively active mTOR protein. Axitinib combined with HDAC inhibitors enhanced expression of Class I MHCA and reduced expression of PD-L1 which was recapitulated via knock down studies, particularly of HDACs 1 and 3. In vivo, axitinib and the HDAC inhibitor entinostat interacted to significantly reduce tumor growth. Collectively our findings support the exploration of axitinib and HDAC inhibitors being developed as a novel sarcoma therapy.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
171
|
Petrelli F, Consoli F, Ghidini A, Perego G, Luciani A, Mercurio P, Berruti A, Grisanti S. Efficacy of Immune Checkpoint Inhibitors in Rare Tumours: A Systematic Review. Front Immunol 2021; 12:720748. [PMID: 34616395 PMCID: PMC8488393 DOI: 10.3389/fimmu.2021.720748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rare cancers, as defined by the European Union, occur in fewer than 15 out of 100,000 people each year. The International Rare Cancer Consortium defines rare cancer incidence as less than six per 100,000 per year. There is a growing number of reports of the efficacy of immune checkpoint inhibitor (ICI) therapy in patients with rare tumours, and hence, we conducted a comprehensive review to summarise and analyse the available literature. Methods A literature search of PubMed was performed on January 31, 2021, using the following ICI names as keywords: ipilimumab, tremelimumab, cemiplimab, nivolumab, pembrolizumab, avelumab, atezolizumab, and durvalumab. Studies on patients with rare tumours who were being treated with ICIs were included. We plotted the overall response rate against the corresponding median survival across a variety of cancer types using linear regression. Results From 1,255 publications retrieved during the primary search, 62 publications were selected (with a total of 4,620 patients). Only four were randomised trials. A minority were first-line studies, while the remaining were studies in which ICIs were delivered as salvage therapy in pretreated patients. There was a good correlation between response rate and overall survival (Spearman R2 >0.9) in skin cancers, mesothelioma, and sarcomas. Conclusions Treatment of advanced-stage rare tumours with ICI therapy was found to be associated with significant activity in some orphan diseases (e.g., Merkel cell carcinoma) and hepatocellular carcinoma. Several ongoing prospective clinical trials will expand the knowledge on the safety and efficacy of ICI therapy in patients with these rare cancers.
Collapse
Affiliation(s)
- Fausto Petrelli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - Francesca Consoli
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | | | | | - Andrea Luciani
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - Paola Mercurio
- Pathology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
172
|
Livingston MB, Jagosky MH, Robinson MM, Ahrens WA, Benbow JH, Farhangfar CJ, Foureau DM, Maxwell DM, Baldrige EA, Begic X, Symanowski JT, Steuerwald NM, Anderson CJ, Patt JC, Kneisl JS, Kim ES. Phase II Study of Pembrolizumab in Combination with Doxorubicin in Metastatic and Unresectable Soft-Tissue Sarcoma. Clin Cancer Res 2021; 27:6424-6431. [PMID: 34475102 DOI: 10.1158/1078-0432.ccr-21-2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Doxorubicin is standard therapy for advanced soft-tissue sarcoma (STS) with minimal improvement in efficacy and increased toxicity with addition of other cytotoxic agents. Pembrolizumab monotherapy has demonstrated modest activity and tolerability in previous advanced STS studies. This study combined pembrolizumab with doxorubicin to assess safety and efficacy in frontline and relapsed settings of advanced STS. METHODS This single-center, single-arm, phase II trial enrolled patients with unresectable or metastatic STS with no prior anthracycline therapy. Patients received pembrolizumab 200 mg i.v. and doxorubicin (60 mg/m2 cycle 1 with subsequent escalation to 75 mg/m2 as tolerated). The primary endpoint was safety. Secondary endpoints included overall survival (OS), objective response rate (ORR), and progression-free survival (PFS) based on RECIST v1.1 guidelines. RESULTS Thirty patients were enrolled (53.3% female; median age 61.5 years; 87% previously untreated) with 4 (13.3%) patients continuing treatment. The study met its primary safety endpoint by prespecified Bayesian stopping rules. The majority of grade 3+ treatment-emergent adverse events were hematologic (36.7% 3+ neutropenia). ORR was 36.7% [95% confidence interval (CI), 19.9-56.1%], with documented disease control in 80.0% (95% CI, 61.4-92.3%) of patients. Ten (33.3%) patients achieved partial response, 1 (3.3%) patient achieved complete response, and 13 (43.3%) patients had stable disease. Median PFS and OS were 5.7 months (6-month PFS rate: 44%) and 17 months (12-month OS rate: 62%), respectively. Programmed cell death ligand-1 (PD-L1) expression was associated with improved ORR, but not OS or PFS. CONCLUSIONS Combination pembrolizumab and doxorubicin has manageable toxicity and preliminary promising activity in treatment of patients with anthracycline-naive advanced STS.
Collapse
Affiliation(s)
- Michael B Livingston
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina.
| | - Megan H Jagosky
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Myra M Robinson
- Department of Biostatistics, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - William A Ahrens
- Carolinas Pathology Group, Atrium Health, Charlotte, North Carolina
| | - Jennifer H Benbow
- LCI Research Support, Clinical Trials Office, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Carol J Farhangfar
- Clinical and Translational Research, Division of Therapeutic Research and Development, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - David M Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Deirdre M Maxwell
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Emily A Baldrige
- LCI Research Support, Clinical Trials Office, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Xhevahire Begic
- LCI Research Support, Clinical Trials Office, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - James T Symanowski
- Department of Biostatistics, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Nury M Steuerwald
- The Molecular Biology and Genomics Laboratory, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Colin J Anderson
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina.,Department of Orthopedic Surgery, Musculoskeletal Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Joshua C Patt
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina.,Department of Orthopedic Surgery, Musculoskeletal Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Jeffrey S Kneisl
- Department of Solid Tumor Oncology, Levine Cancer Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina.,Department of Orthopedic Surgery, Musculoskeletal Institute, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina
| | - Edward S Kim
- Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
173
|
Tang B, Mo J, Yan X, Duan R, Chi Z, Cui C, Si L, Kong Y, Mao L, Li S, Zhou L, Lian B, Wang X, Bai X, Xu H, Li C, Dai J, Guo J, Sheng X. Real-world efficacy and safety of axitinib in combination with anti-programmed cell death-1 antibody for advanced mucosal melanoma. Eur J Cancer 2021; 156:83-92. [PMID: 34425407 DOI: 10.1016/j.ejca.2021.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE The combination of vascular endothelial growth factor receptor (VEGFR) inhibitor and programmed cell death-1 (PD-1) blockade provides promising therapeutic opportunities for advanced mucosal melanoma in early phase trials. The aim of this retrospective study was to evaluate the efficacy and safety of the combination regimen for advanced mucosal melanoma in the real world. METHODS Patients with advanced mucosal melanoma received an anti-PD-1 antibody plus the VEGFR inhibitor axitinib until confirmed disease progression or unacceptable toxicity. In addition, those with liver metastasis were allowed to take hepatic transcatheter arterial chemoembolisation (TACE). The primary endpoint was overall response rate (ORR). Secondary endpoints included disease control rate (DCR), time to treatment failure (TTF), duration of response (DOR), overall survival (OS) and treatment-related adverse events (TRAEs). RESULTS Eighty-one and sixty-six patients received axitinib plus immunotherapy as first-line and salvage therapy, respectively. Overall, ORR was 24.5% (95% CI, 17.3-31.6), DCR was 72.7% (95% CI, 65.3-80.1). Median TTF, DOR and OS were 5.2 months (95% CI, 3.7-6.6), 9.2 months (95% CI, 7.2-11.2) and 11.1 months (95% CI, 7.2-15.0). ORR was 30.0% (95% CI, 19.7-40.3) and 17.5% (95% CI, 7.8-27.1) as first-line and salvage therapy, respectively. No statistical difference among the primary sites was noted for ORR. The ORR of patients with liver metastasis with or without hepatic TACE was 26.1% (95% CI, 6.7-45.5) and 15.0% (95% CI, 2.1-32.1), respectively (P = 0.467). Elevated LDH and poor ECOG status are negative predictive factors. CONCLUSION This is the largest analysis of anti-PD-1 plus VEGFR inhibitor therapy for mucosal melanoma to date. Immunotherapy plus anti-angiogenesis is applicable for advanced mucosal melanoma, especially as front-line. Hepatic TACE might act synergistically with systemic immunotherapy and anti-angiogenesis.
Collapse
Affiliation(s)
- Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jiazhi Mo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Rong Duan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Huayan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Caili Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
174
|
van Oost S, Meijer DM, Kuijjer ML, Bovée JVMG, de Miranda NFCC. Linking Immunity with Genomics in Sarcomas: Is Genomic Complexity an Immunogenic Trigger? Biomedicines 2021; 9:1048. [PMID: 34440251 PMCID: PMC8391750 DOI: 10.3390/biomedicines9081048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Debora M. Meijer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Marieke L. Kuijjer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
- Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Noel F. C. C. de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| |
Collapse
|
175
|
Tang F, Tie Y, Wei YQ, Tu CQ, Wei XW. Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim Biophys Acta Rev Cancer 2021; 1876:188606. [PMID: 34371128 DOI: 10.1016/j.bbcan.2021.188606] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Sarcomas represent a distinct group of rare malignant tumors with high heterogeneity. Limited options with clinical efficacy for the metastatic or local advanced sarcoma existed despite standard therapy. Recently, targeted therapy according to the molecular and genetic phenotype of individual sarcoma is a promising option. Among these drugs, anti-angiogenesis therapy achieved favorable efficacy in sarcomas. Inhibitors targeting cyclin-dependent kinase 4/6, poly-ADP-ribose polymerase, insulin-like growth factor-1 receptor, mTOR, NTRK, metabolisms, and epigenetic drugs are under clinical evaluation for sarcomas bearing the corresponding signals. Immunotherapy represents a promising and favorable method in advanced solid tumors. However, most sarcomas are immune "cold" tumors, with only alveolar soft part sarcoma and undifferentiated pleomorphic sarcoma respond to immune checkpoint inhibitors. Cellular therapies with TCR-engineered T cells, chimeric antigen receptor T cells, tumor infiltrating lymphocytes, and nature killer cells transfer show therapeutic potential. Identifying tumor-specific antigens and exploring immune modulation factors arguing the efficacy of these immunotherapies are the current challenges. This review focuses on the mechanisms, advances, and potential strategies of targeted and immune-based therapies in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Qi Tu
- Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
176
|
Just MA, Van Mater D, Wagner LM. Receptor tyrosine kinase inhibitors for the treatment of osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 2021; 68:e29084. [PMID: 33894051 PMCID: PMC8238849 DOI: 10.1002/pbc.29084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Adjuvant chemotherapy for osteosarcoma and Ewing sarcoma consists of conventional cytotoxic regimens that have changed little over the past decades. There is an urgent need for agents that are more effective and have less long-term toxicity. Receptor tyrosine kinases regulate cell growth and proliferation of these tumors, and small-molecule inhibitors for many of these kinases are now available. In this article, we review published phase II trials for patients with recurrent disease and highlight the pathways targeted by available agents, as well as the toxicity and efficacy results seen to date. We also discuss the difficulties in identifying biomarkers to facilitate rational patient selection, as well as published and proposed strategies for how these inhibitors can be combined with conventional chemotherapy or other targeted agents. It is hoped future trials can capitalize on this growing experience to optimize the use of this exciting class of agents.
Collapse
Affiliation(s)
- Marissa A Just
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Lars M Wagner
- Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
177
|
Fortes-Andrade T, Almeida JS, Sousa LM, Santos-Rosa M, Freitas-Tavares P, Casanova JM, Rodrigues-Santos P. The Role of Natural Killer Cells in Soft Tissue Sarcoma: Prospects for Immunotherapy. Cancers (Basel) 2021; 13:cancers13153865. [PMID: 34359767 PMCID: PMC8345358 DOI: 10.3390/cancers13153865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Soft-tissue sarcomas (STS) represent about 80% of sarcomas, and are a heterogeneous group of rare and malignant tumors. Morphological evaluation has been the standard model for the diagnosis of sarcomas, and even in samples with similar characteristics, they present genetic differences, which further increases the diversity of sarcomas. This variety is one of the main challenges for the classification and understanding of STS patterns, as well as for the respective treatments, which further decreases patient survival (<5 years). Natural Killer (NK) cells have a fundamental role in the control and immune surveillance of cancer development, progression and metastases. Notwithstanding the scarcity of studies to characterize NK cells in STS, it is noteworthy that the progression of these malignancies is associated with altered NK cells. These findings support the additional need to explore NK cell-based immunotherapy in STS; some clinical trials, although very tentatively, are already underway. Abstract Soft-tissue sarcomas (STS) represent about 80% of sarcomas, and are a heterogeneous group of rare and malignant tumors. STS arise from mesenchymal tissues and can grow into structures such as adipose tissue, muscles, nervous tissue and blood vessels. Morphological evaluation has been the standard model for the diagnosis of sarcomas, and even in samples with similar characteristics, they present a diversity in cytogenetic and genetic sequence alterations, which further increases the diversity of sarcomas. This variety is one of the main challenges for the classification and understanding of STS patterns, as well as for their respective treatments, which further decreases patient survival (<5 years). Despite some studies, little is known about the immunological profile of STS. As for the immunological profile of STS in relation to NK cells, there is also a shortage of studies. Observations made in solid tumors show that the infiltration of NK cells in tumors is associated with a good prognosis of the disease. Notwithstanding the scarcity of studies to characterize NK cells, their receptors, and ligands in STS, it is noteworthy that the progression of these malignancies is associated with altered NK phenotypes. Despite the scarcity of information on the function of NK cells, their phenotypes and their regulatory pathways in STS, the findings of this study support the additional need to explore NK cell-based immunotherapy in STS further. Some clinical trials, very tentatively, are already underway. STS clinical trials are still the basis for adoptive NK-cell and cytokine-based therapy.
Collapse
Affiliation(s)
- Tânia Fortes-Andrade
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
| | - Jani Sofia Almeida
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
- Faculty of Medicine, Immunology Institute, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luana Madalena Sousa
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
| | - Manuel Santos-Rosa
- Faculty of Medicine, Immunology Institute, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Coimbra Hospital and University Center (CHUC), Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, 3000-075 Coimbra, Portugal;
| | - José Manuel Casanova
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Hospital and University Center (CHUC), Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, 3000-075 Coimbra, Portugal;
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
- Faculty of Medicine, Immunology Institute, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-85-77-77 (ext. 24-28-44)
| |
Collapse
|
178
|
Agulnik M, Schulte B, Robinson S, Hirbe AC, Kozak K, Chawla SP, Attia S, Rademaker A, Zhang H, Abbinanti S, Cehic R, Monga V, Milhem M, Okuno S, Van Tine BA. An open-label single-arm phase II study of regorafenib for the treatment of angiosarcoma. Eur J Cancer 2021; 154:201-208. [PMID: 34284255 DOI: 10.1016/j.ejca.2021.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Angiosarcomas represents a diverse group of aggressive high-grade vascular tumours with limited therapeutic options. We sought to determine the safety and efficacy of regorafenib, a small-molecule multikinase inhibitor, in the treatment of metastatic or locally advanced unresectable angiosarcoma. PATIENTS AND METHODS In this single-arm multicentre, open-label phase II clinical trial, 31 patients were enrolled and received regorafenib 160 mg PO daily for 21 days of a 28-day cycle. The primary endpoint for the study was progression-free survival at 4 months. Secondary endpoints included overall survival, response rate, and safety. Patients (≥18 years) with an Eastern Cooperative Oncology Group (ECOG) score of 0-1, a life expectancy of at least 4 months who had progressed on at least one but no more than 4 prior lines of therapy were eligible. RESULTS Of the 23 patients evaluable for efficacy, 2 had a complete response (8.7%), and 2 had a partial response (8.7%), for a total overall response rate of 17.4%. Median PFS was 5.5 months, and 12/23 patients (52.2%) had a PFS of greater than 4 months. 10/31 (32.3%) patients evaluable for toxicity had a grade 3 or higher adverse events. CONCLUSIONS Regorafenib is a safe and active treatment for refractory metastatic and unresectable angiosarcoma. Rates of adverse events were comparable to prior studies of regorafenib for other tumour types. Regorafenib, the single agent, could be considered as therapy for patients with metastatic or unresectable AS.
Collapse
Affiliation(s)
- Mark Agulnik
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago IL, USA.
| | - Brian Schulte
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Steven Robinson
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Angela C Hirbe
- Siteman Cancer Center, St Louis, MO, USA; Washington University in St. Louis School of Medicine, St Louis MO, USA; St Louis Children's Hospital, Department id Pediatrics, St Louis, MO, 63110, USA
| | - Kevin Kozak
- Department of Radiation Oncology, Mercy Health System, Janesville, WI, USA
| | | | - Steven Attia
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Susan Abbinanti
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Rasima Cehic
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Varun Monga
- Department of Hematology/Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Mohammed Milhem
- Department of Hematology/Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Scott Okuno
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Brian A Van Tine
- Siteman Cancer Center, St Louis, MO, USA; Washington University in St. Louis School of Medicine, St Louis MO, USA; St Louis Children's Hospital, Department id Pediatrics, St Louis, MO, 63110, USA
| |
Collapse
|
179
|
Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations. Spanish Group for Sarcoma research (GEIS -GROUP). Part II. Cancer Treat Rev 2021; 99:102260. [PMID: 34340159 DOI: 10.1016/j.ctrv.2021.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Among all Soft Tissue sarcomas there are some subtypes with low incidence and/or peculiar clinical behaviour, that need to be consider separately. Most of them are orphan diseases, whose biological characteristics imply a clearly different diagnostic and therapeutic approach from other more common sarcoma tumors. We present a brief and updated multidiciplinary review, focused on practical issues, aimed at helping clinicians in decision making. In this second part we review these subtypes: Alveolar Soft Part Sarcoma, Epithelioid Sarcoma, Clear Cell Sarcoma, Desmoplastic Small Round Cell Tumor, Rhabdoid Tumor, Phyllodes Tumor, Tenosynovial Giant Cell Tumors, Myoepithelial Tumor, Perivascular Epithelioid Cell Neoplasms (PEComas), Extraskeletal Myxoid Chondrosarcoma, NTRK-fusions Sarcomas. Most of them present their own radiological and histopathological feautures, that are essential to know in order to achieve early diagnosis. In some of them, molecular diagnosis is mandatory, not only in the diagnosis, but also to plan the treatment. On the other hand, and despite the low incidence, a great scientific research effort has been made to achieve new treatment opportunities for these patients even with approved indications. These include new treatments with targeted therapies and immunotherapy, which today represent possible therapeutic options. It is especially important to be attentive to new and potential avenues of research, and to promote the conduct of specific clinical trials for rare sarcomas.
Collapse
|
180
|
Anti-angiogenesis Revisited: Combination with Immunotherapy in Solid Tumors. Curr Oncol Rep 2021; 23:100. [PMID: 34269922 DOI: 10.1007/s11912-021-01099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Both anti-angiogenesis and immunotherapy are well-established therapeutic options in solid tumors. Here, we review the rationale as well as clinical evidence of combining these two approaches. RECENT FINDINGS There is strong rationale and substantial preclinical and clinical evidence that anti-angiogenesis plays a pivotal role in overcoming immunotherapy resistance. The combination of an anti-angiogenic agent and a checkpoint inhibitor offers a more robust treatment option in many clinical trials in a wide variety of solid tumor types. Combination of anti-angiogenesis and immunotherapy has emerged as a standard of care in some tumor types and the indication is expected to expand to more tumor types in the years to come.
Collapse
|
181
|
Bellantoni AJ, Wagner LM. Pursuing Precision: Receptor Tyrosine Kinase Inhibitors for Treatment of Pediatric Solid Tumors. Cancers (Basel) 2021; 13:3531. [PMID: 34298746 PMCID: PMC8303693 DOI: 10.3390/cancers13143531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases are critical for the growth and proliferation of many different cancers and therefore represent a potential vulnerability that can be therapeutically exploited with small molecule inhibitors. Over forty small molecule inhibitors are currently approved for the treatment of adult solid tumors. Their use has been more limited in pediatric solid tumors, although an increasing number of single-agent and combination studies are now being performed. These agents have been quite successful in certain clinical contexts, such as the treatment of pediatric tumors driven by kinase fusions or activating mutations. By contrast, only modest activity has been observed when inhibitors are used as single agents for solid tumors that do not have genetically defined alterations in the target genes. The absence of predictive biomarkers has limited the wider applicability of these drugs and much work remains to define the appropriate patient population and clinical situation in which receptor tyrosine kinase inhibitors are most beneficial. In this manuscript, we discuss these issues by highlighting past trials and identifying future strategies that may help add precision to the use of these agents for pediatric extracranial solid tumors.
Collapse
Affiliation(s)
| | - Lars M. Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
182
|
Tazzari M, Bergamaschi L, De Vita A, Collini P, Barisella M, Bertolotti A, Ibrahim T, Pasquali S, Castelli C, Vallacchi V. Molecular Determinants of Soft Tissue Sarcoma Immunity: Targets for Immune Intervention. Int J Mol Sci 2021; 22:ijms22147518. [PMID: 34299136 PMCID: PMC8303572 DOI: 10.3390/ijms22147518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a family of rare malignant tumors encompassing more than 80 histologies. Current therapies for metastatic STS, a condition that affects roughly half of patients, have limited efficacy, making innovative therapeutic strategies urgently needed. From a molecular point of view, STSs can be classified as translocation-related and those with a heavily rearranged genotype. Although only the latter display an increased mutational burden, molecular profiles suggestive of an “immune hot” tumor microenvironment are observed across STS histologies, and response to immunotherapy has been reported in both translocation-related and genetic complex STSs. These data reinforce the notion that immunity in STSs is multifaceted and influenced by both genetic and epigenetic determinants. Cumulative evidence indicates that a fine characterization of STSs at different levels is required to identify biomarkers predictive of immunotherapy response and to discover targetable pathways to switch on the immune sensitivity of “immune cold” tumors. In this review, we will summarize recent findings on the interplay between genetic landscape, molecular profiling and immunity in STSs. Immunological and molecular features will be discussed for their prognostic value in selected STS histologies. Finally, the local and systemic immunomodulatory effects of the targeted drugs imatinib and sunitinib will be discussed.
Collapse
Affiliation(s)
- Marcella Tazzari
- Immunotherapy-Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (T.I.)
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Marta Barisella
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Alessia Bertolotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (T.I.)
| | - Sandro Pasquali
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
- Correspondence:
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
| |
Collapse
|
183
|
O'Sullivan Coyne G, Naqash AR, Sankaran H, Chen AP. Advances in the management of alveolar soft part sarcoma. Curr Probl Cancer 2021; 45:100775. [PMID: 34284873 DOI: 10.1016/j.currproblcancer.2021.100775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Alveolar Soft Part Sarcoma is one of the less commonly diagnosed soft tissue sarcoma subtypes, an infrequent subtype within the already rare category of human malignancy of sarcoma. In this article we will summarize the histopathological features, natural history and distinct molecular and biological features that have become increasingly appreciated with newer technologies and precision oncology. We will discuss the contemporary management of this disease as well as emerging treatment options.
Collapse
Affiliation(s)
- Geraldine O'Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Abdul Rafeh Naqash
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hari Sankaran
- Biometric Research Program, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
184
|
Mittra A, Takebe N, Florou V, Chen AP, Naqash AR. The emerging landscape of immune checkpoint inhibitor based clinical trials in adults with advanced rare tumors. Hum Vaccin Immunother 2021; 17:1935-1939. [PMID: 33325769 PMCID: PMC8189105 DOI: 10.1080/21645515.2020.1854604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
"Rare cancers" are a diverse collection of cancers that collectively account for approximately 20% of all adult cancers in the United States. Their rarity has caused an underrepresentation of these cancers in preclinical research and clinical trials, leading to fewer (and often no) treatment options for patients backed by robust clinical evidence. The recent advent of immune checkpoint inhibitors (ICIs) into the oncologist's armamentarium, while revolutionizing the treatment of many common cancers, has also started to make gradual inroads into the treatment of certain rare cancers. One reason is that the efficacy of ICIs depends more on factors intrinsic to the tumor cells and the tumor microenvironment and less on tumor histology. Recent years have seen ICI approvals in many rare cancers, and many trials are being designed using ICIs as single agents or in combination. In this commentary, we present an overview of the emerging role of ICIs in some rare cancers.
Collapse
Affiliation(s)
- Arjun Mittra
- Division of Medical Oncology, The Ohio State University James Cancer Hospital, Columbus, OH, USA
| | - Naoko Takebe
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis. National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Vaia Florou
- Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alice P Chen
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis. National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Abdul Rafeh Naqash
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis. National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| |
Collapse
|
185
|
Shi D, Mu S, Pu F, Zhong B, Hu B, Liu J, He T, Zhang Z, Shao Z. Development of a Novel Immune Infiltration-Related ceRNA Network and Prognostic Model for Sarcoma. Front Cell Dev Biol 2021; 9:652300. [PMID: 34277600 PMCID: PMC8281254 DOI: 10.3389/fcell.2021.652300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the rarity and heterogeneity, it is challenging to explore and develop new therapeutic targets for patients with sarcoma. Recently, immune cell infiltration in the tumor microenvironment (TME) was widely studied, which provided a novel potential approach for cancer treatment. The competing endogenous RNA (ceRNA) regulatory network has been reported as a critical molecular mechanism of tumor development. However, the role of the ceRNA regulatory network in the TME of sarcoma remains unclear. In this study, gene expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) sarcoma datasets, and an immune infiltration-related ceRNA network was constructed, which comprised 14 lncRNAs, 13 miRNAs, and 23 mRNAs. Afterward, we constructed an immune infiltration-related risk score model based on the expression of IRF1, MFNG, hsa-miR-940, and hsa-miR-378a-5p, presenting a promising performance in predicting the prognosis of patients with sarcoma.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
186
|
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021; 13:cancers13123044. [PMID: 34207243 PMCID: PMC8233868 DOI: 10.3390/cancers13123044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histological subtypes with clinical and histopathological characteristics which are not always distinct. One of the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could help clinicians provide more effective clinical management. Abstract Soft tissue sarcomas (STSs) are a heterogeneous group of rare tumors. Although constituting only 1% of all human malignancies, STSs represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. Over 100 histologic subtypes have been characterized to date (occurring predominantly in the trunk, extremity, and retroperitoneum), and many more are being discovered due to molecular profiling. STS mortality remains high, despite adjuvant chemotherapy. New prognostic stratification markers are needed to help identify patients at risk of recurrence and possibly apply more intensive or novel treatments. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the most relevant cellular, molecular and metabolic biomarkers for STS, and highlight advances in STS-related biomarker research.
Collapse
Affiliation(s)
- Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Correspondence:
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Domenico Campanacci
- Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| |
Collapse
|
187
|
Immune checkpoint inhibitors in treatment of soft-tissue sarcoma: A systematic review and meta-analysis. Eur J Cancer 2021; 152:165-182. [PMID: 34107450 DOI: 10.1016/j.ejca.2021.04.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Soft-tissue sarcomas (STSs) are rare malignancies, accounting for approximately 1% of adult cancer. Metastatic disease carries a poor prognosis, and various efforts have been made to improve the prognosis of advanced STS, to date with little success. Immune checkpoint inhibitors (ICPIs) have substantially improved prognosis for many cancer types. Their role in the treatment of STS, however, remains unravelled. OBJECTIVE The objective of the study is to assess the activity of ICPIs in the treatment of STS. METHODS We performed a systematic review using MEDLINE, Embase and Cochrane Central Register of Controlled Trials. Furthermore, abstracts from European Society of Medical Oncology (ESMO), American Society of Clinical Oncology (ASCO) and Connective Tissue Society Oncology (CTOS) congress were searched from 2017 until 2020. Prospective clinical trials investigating ICPIs, either monotherapy or combination therapy, in STS were available for inclusion. The outcomes of interest were objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and major toxicity. Cut-off for clinical activity was defined as an ORR of ≥0.15. Subgroup analysis was carried out as per treatment category, disease setting and histologic subtype, using a random effects model. RESULTS We identified 27 studies, including a total of 1012 patients (range 6-85) with more than 25 histologic subtypes. The pooled ORR was 0.14 (95% confidence interval [CI] 0.09-0.18), DCR was 0.55 (95% CI 0.43-0.66), mean PFS range was 1.8-11.5 months and mean OS was 6.1-34.7 months. The pooled ORR as per treatment category was 0.14 for anti-programmed cell death 1 (anti-PD1) monotherapy (95% CI 0.07-0.23), 0.16 for anti-PD1 + anti-cytotoxic T-lymphocyte-associated protein 4 (95% CI 0.06-0.29), 0.20 for anti-PD1 + tyrosine kinase inhibitor (95% CI 0.06-0.38), 0.20 for anti-PD1 + chemo (95% CI 0.06-0.38) and 0.08 for anti-PD1 + immunomodulator (95% CI 0.01-0.19). The pooled ORR as per disease setting was as follows: neoadjuvant treatment, 0.09 (0.00-0.25); advanced disease first line, 0.23 (0.15-0.32) and advanced pretreated, 0.13 (0.09-0.19). High response rates were seen in classic Kaposi sarcoma (CKS), alveolar soft part sarcoma (ASPS) and undifferentiated pleomorphic sarcoma (UPS) with ORR of 0.69 (95% CI 0.51-0.82), 0.35 (95% CI 0.27-0.44) and 0.20 (95% CI 0.15-0.27), respectively. Activity was limited in gastrointestinal stromal tumour (ORR 0.01 [95% CI 0.0-0.08]), uterine leiomyosarcoma (ORR 0.06 [95% CI 0.02-0.18]), leiomyosarcoma (ORR 0.10 [95% CI 0.06-0.17]) and liposarcoma (ORR 0.11 [95% CI 0.07-0.17]). CONCLUSION Clinical activity of ICPIs in STS is highly variable and depends on histologic subtype, disease setting and concomitant treatment strategy. Activity was high in CKS, ASPS and UPS. Early incorporation of ICPIs in combination with chemotherapy seems a promising strategy that warrants further interest. Translational research integrating molecular profile, biological behaviour and response to ICPIs should determine their role in treatment of STS.
Collapse
|
188
|
Affiliation(s)
- Tarek Assi
- Department of Hematology-Oncology, Faculty of medicine, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
189
|
Rytlewski J, Milhem MM, Monga V. Turning 'Cold' tumors 'Hot': immunotherapies in sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1039. [PMID: 34277839 PMCID: PMC8267323 DOI: 10.21037/atm-20-6041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapies have an established role in the management of several advanced malignancies. Their responses are largely dependent on the presence of PD-L1, microsatellite instability (MSI), and high tumor mutation burden. Sarcomas are heterogenous tumors which comprise over 100 subtypes. They are broadly considered immunologically inert or “cold”. Immunotherapy as monotherapy has shown interesting responses in a certain handful of subtypes, such as undifferentiated pleomorphic sarcoma, dedifferentiated and pleomorphic liposarcoma, and alveolar soft part sarcoma. However, the mechanisms of action of immunotherapy agents in several sarcoma subtypes remains unknown. Several sarcoma types such as leiomyosarcoma have been shown to have an immunosuppressive microenvironment. Early clinical studies suggest the emergence of B cell infiltration in sarcoma tumor tissues as well as the role of PD-1 and PD-L1 as biomarkers of response. Immunotherapy combinations with conventional chemotherapies, radiation therapies, tyrosine kinase inhibitors and oncolytic viruses are showing promise in turning these “cold” tumors “hot”. Several novel agents as well as repurposing therapies with the potential to enhance immunotherapy responses are undergoing pre-clinical and clinical studies in other tumor types. Herein we review current clinical studies which have explored the use of immunotherapeutic agents in the management of sarcomas and discuss the challenges and future directions.
Collapse
Affiliation(s)
- Jeff Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Mohammed M Milhem
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Varun Monga
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
190
|
Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers (Basel) 2021; 13:cancers13102359. [PMID: 34068344 PMCID: PMC8153286 DOI: 10.3390/cancers13102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo- and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolutive. In most cases, the characteristic genetic signature is discouragingly defined as "undruggable", which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities.
Collapse
|
191
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
192
|
Darmusey L, Pérot G, Thébault N, Le Guellec S, Desplat N, Gaston L, Delespaul L, Lesluyes T, Darbo E, Gomez-Brouchet A, Richard E, Baud J, Leroy L, Coindre JM, Blay JY, Chibon F. ATRX Alteration Contributes to Tumor Growth and Immune Escape in Pleomorphic Sarcomas. Cancers (Basel) 2021; 13:2151. [PMID: 33946962 PMCID: PMC8124877 DOI: 10.3390/cancers13092151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Whole genome and transcriptome sequencing of a cohort of 67 leiomyosarcomas has been revealed ATRX to be one of the most frequently mutated genes in leiomyosarcomas after TP53 and RB1. While its function is well described in the alternative lengthening of telomeres mechanism, we wondered whether its alteration could have complementary effects on sarcoma oncogenesis. ATRX alteration is associated with the down-expression of genes linked to differentiation in leiomyosarcomas, and to immunity in an additional cohort of 60 poorly differentiated pleomorphic sarcomas. In vitro and in vivo models showed that ATRX down-expression increases tumor growth rate and immune escape by decreasing the immunity load of active mast cells in sarcoma tumors. These data indicate that an alternative to unsuccessful targeting of the adaptive immune system in sarcoma could target the innate system. This might lead to a better outcome for sarcoma patients in terms of ATRX status.
Collapse
Affiliation(s)
- Lucie Darmusey
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
- University of Toulouse 3, Paul Sabatier, 31000 Toulouse, France
| | - Gaëlle Pérot
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31000 Toulouse, France
| | - Noémie Thébault
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
| | - Sophie Le Guellec
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
| | - Nelly Desplat
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| | - Laëtitia Gaston
- CHU de Bordeaux, Department of Medical Genetics, 33000 Bordeaux, France;
| | - Lucile Delespaul
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- University of Bordeaux, 33000 Bordeaux, France
| | - Tom Lesluyes
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- University of Bordeaux, 33000 Bordeaux, France
| | - Elodie Darbo
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
- University of Bordeaux, 33000 Bordeaux, France
- CNRS UMR5800, LaBRI, 33400 Talence, France
| | - Anne Gomez-Brouchet
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31000 Toulouse, France
| | - Elodie Richard
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| | - Jessica Baud
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| | - Laura Leroy
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
| | - Jean-Michel Coindre
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
- Institut Bergonie, Department of Pathology, 33000 Bordeaux, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Department of Medical Oncology, 69000 Lyon, France;
- Inserm U1052, CNRS 5286, Cancer Research Center of Lyon, University Claude Bernard Lyon 1, 69000 Lyon, France
| | - Frédéric Chibon
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| |
Collapse
|
193
|
Damante MA, Huntoon KM, Palmer JD, Liebner DA, Elder JB. A case of multiple synchronously diagnosed brain metastases from alveolar soft part sarcoma without concurrent lung involvement. Surg Neurol Int 2021; 12:111. [PMID: 33880216 PMCID: PMC8053428 DOI: 10.25259/sni_554_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a propensity for early hematogenous dissemination to the lungs and frequent brain metastasis. The development of lung metastasis almost invariably precedes intracranial involvement. There are no previously reported cases in which a patient was synchronously diagnosed with ASPS and multiple brain metastasis without lung involvement. Case Description: A 29-year-old gentleman was found to have three intracranial lesions following the onset of generalized seizures. Staging studies identified a soft-tissue mass in the left thigh and an adjacent femoral lesion. Biopsy of the soft-tissue mass was consistent with ASPS. The patient then underwent neoadjuvant stereotactic radiotherapy to all three brain lesions, followed by en bloc resection of the dominant lesion. The patient was then started on a programmed death-ligand 1 (PD-L1) inhibitor. Subsequent surgical resection of the primary lesion and femur metastasis demonstrates a histopathologic complete response of the bony metastasis and partial response of the primary lesion. At present, the patient has received 14 cycles of atezolizumab without recurrence of the primary or bony lesions and the irradiated intracranial disease has remained stable without recurrence of the resected dominant lesion. Conclusion: While intracranial involvement is relatively common in ASPS, a case with multiple, synchronously diagnosed brain metastasis without concurrent lung metastasis has not been described. The presented case discusses the safety and efficacy of aggressive management of intracranial disease in the setting of atezolizumab. Prospective evaluation of the efficacy of checkpoint inhibitors and the prognostic value of PD-L1 expression in ASPS with brain metastasis are necessary.
Collapse
Affiliation(s)
- Mark A Damante
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Kristin M Huntoon
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Joshua D Palmer
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.,Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - David A Liebner
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - James Bradley Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
194
|
Spagnolo F, Boutros A, Cecchi F, Croce E, Tanda ET, Queirolo P. Treatment beyond progression with anti-PD-1/PD-L1 based regimens in advanced solid tumors: a systematic review. BMC Cancer 2021; 21:425. [PMID: 33865350 PMCID: PMC8052683 DOI: 10.1186/s12885-021-08165-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Treatment beyond progression with immunotherapy may be appropriate in selected patients based on the potential for late responses. The aim of this systematic review was to explore the impact of treatment beyond progression in patients receiving an anti-PD-1/PD-L1 based regimen for an advanced solid tumor. METHODS A systematic literature search was performed to identify prospective clinical trials reporting data on overall response rate by immune-related criteria and/or the number of patients treated beyond conventional criteria-defined PD and/or the number of patients achieving a clinical benefit after an initial PD with regimens including an anti-PD-1/PD-L1 agent which received the FDA approval for the treatment of an advanced solid tumor. RESULTS 254 (4.6%) responses after an initial RECIST-defined progressive disease were observed among 5588 patients, based on 35 trials included in our analysis reporting this information. The overall rate of patients receiving treatment beyond progressive disease was 30.2%, based on data on 5334 patients enrolled in 36 trials, and the rate of patients who achieved an unconventional response among those treated beyond progressive disease was 19.7% (based on 25 trials for a total of 853 patients). CONCLUSION The results of our systematic review support the clinical relevance of unconventional responses to anti-PD-1/PD-L1-based regimens; however, most publications provided only partial information regarding immune-related clinical activity, or did not provide any information at all, highlighting the need of a more comprehensive report of such data in trials investigating immunotherapy for the treatment of patients with advanced tumors.
Collapse
Affiliation(s)
- Francesco Spagnolo
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Andrea Boutros
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Federica Cecchi
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Elena Croce
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Enrica Teresa Tanda
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Paola Queirolo
- Melanoma, Sarcoma & Rare Tumors Division, European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
195
|
Nakata E, Fujiwara T, Kunisada T, Ito T, Takihira S, Ozaki T. Immunotherapy for sarcomas. Jpn J Clin Oncol 2021; 51:523-537. [PMID: 33611603 DOI: 10.1093/jjco/hyab005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a heterogeneous group of malignancies of mesenchymal origin; their molecular and genomic mechanisms differ with regard to histology. These characteristics lead to the presentation of varied immunological profiles based on the tumor microenvironment. Various immunotherapies are considered for the treatment of sarcoma. These treatments are performed either in isolation or in combination with other methods such as cytotoxic chemotherapy or the use of molecular target agents. Among these, two recently emerging immunotherapies include T-cell receptor gene therapy and immune checkpoint inhibitor therapy, which are expected to be effective for many types of sarcoma. A sarcoma with a disease-specific translocation and a limited number of mutations, such as synovial sarcoma, expresses high levels of self-antigens, like the New York esophageal squamous cell carcinoma 1, which has been targeted in T-cell receptor gene therapy. On the other hand, sarcomas with a greater number of mutations, such as undifferentiated pleomorphic sarcomas, myxofibrosarcoma and dedifferentiated liposarcomas, can be good candidates for immune checkpoint inhibitors. Among immune checkpoint inhibitor therapies, programmed cell death-1 blockade (nivolumab and pembrolizumab) and cytotoxic T-lymphocyte-associated antigen 4 blockade (ipilimumab) have been investigated most often in sarcoma. Although the sole use of immune checkpoint inhibitors provides limited efficacy, combined immunotherapy with immune checkpoint inhibitors or molecular target agents, especially antiangiogenic agents, has shown moderate results against some types of sarcoma, such as the alveolar soft part sarcoma. Several clinical trials utilizing immunotherapy, including T-cell receptor gene therapy and immune checkpoint inhibitors, in sarcomas are under progress. By clarifying the tumor microenvironment and biomarker-predictive capacity of immunotherapy in sarcomas, better clinical trials can be designed; this could lead to improved outcomes for immunotherapy in sarcoma.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Tastuo Ito
- Department of Hygiene, Kawasaki Medical University, Kurashiki City, Okayama, Japan
| | - Shota Takihira
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama City, Okayama, Japan
| |
Collapse
|
196
|
Gazouli I, Kyriazoglou A, Kotsantis I, Anastasiou M, Pantazopoulos A, Prevezanou M, Chatzidakis I, Kavourakis G, Economopoulou P, Kontogeorgakos V, Papagelopoulos P, Psyrri A. Systematic Review of Recurrent Osteosarcoma Systemic Therapy. Cancers (Basel) 2021; 13:1757. [PMID: 33917001 PMCID: PMC8067690 DOI: 10.3390/cancers13081757] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most frequent primary bone cancer, mainly affecting those of young ages. Although surgery combined with cytotoxic chemotherapy has significantly increased the chances of cure, recurrent and refractory disease still impose a tough therapeutic challenge. We performed a systematic literature review of the available clinical evidence, regarding treatment of recurrent and/or refractory osteosarcoma over the last two decades. Among the 72 eligible studies, there were 56 prospective clinical trials, primarily multicentric, single arm, phase I or II and non-randomized. Evaluated treatment strategies included cytotoxic chemotherapy, tyrosine kinase and mTOR inhibitors and other targeted agents, as well as immunotherapy and combinatorial approaches. Unfortunately, most treatments have failed to induce objective responses, albeit some of them may sustain disease control. No driver mutations have been recognized, to serve as effective treatment targets, and predictive biomarkers of potential treatment effectiveness are lacking. Hopefully, ongoing and future clinical and preclinical research will unlock the underlying biologic mechanisms of recurrent and refractory osteosarcoma, expanding the therapeutic choices available to pre-treated osteosarcoma patients.
Collapse
Affiliation(s)
- Ioanna Gazouli
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Anastasios Kyriazoglou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Ioannis Kotsantis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Maria Anastasiou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Anastasios Pantazopoulos
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Maria Prevezanou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Ioannis Chatzidakis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Georgios Kavourakis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Panagiota Economopoulou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| | - Vasileios Kontogeorgakos
- First Department of Orthopaedic Surgery, Attikon University General Hospital, Chaidari, 12462 Athens, Greece; (V.K.); (P.P.)
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedic Surgery, Attikon University General Hospital, Chaidari, 12462 Athens, Greece; (V.K.); (P.P.)
| | - Amanda Psyrri
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari, 12462 Athens, Greece; (I.K.); (M.A.); (A.P.); (M.P.); (I.C.); (G.K.); (P.E.); (A.P.)
| |
Collapse
|
197
|
Kyriazoglou A, Liontos M, Ntanasis-Stathopoulos I, Gavriatopoulou M. The systemic treatment of uterine leiomyosarcomas: A systematic review. No news is good news? Medicine (Baltimore) 2021; 100:e25309. [PMID: 33787622 PMCID: PMC8021365 DOI: 10.1097/md.0000000000025309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Uterine leiomyosarcomas are rare malignant mesenchymal tumors. The systemic treatment of these tumors includes chemotherapy and radiotherapy. However, there are still a lot of unanswered questions regarding the ideal therapeutic approach. METHODS We have conducted a systematic review of the treatment strategies of uterine leiomyosarcomas for the last ten years. RESULTS Adjuvant chemotherapy is still a matter of dilemma. Doxorubicin based chemotherapy or the combination of Gemcitabine-Docetaxel are the regimens of choice for the first line setting. Beyond the first line, there are several options;, including chemotherapy, targeted therapy, and recently efforts of introducing immunotherapy to the therapeutic armamentarium of clinicians treating uterine leiomyosarcomas. CONCLUSIONS Despite the efforts of the clinicians dealing with uterine leiomyosarcomas, the optimal therapeutic algorithm is yet to be described.
Collapse
|
198
|
Kim SK, Kim JH, Kim SH, Lee YH, Han JW, Baek W, Woo HY, Jeon MK, Kim HS. PD-L1 tumour expression is predictive of pazopanib response in soft tissue sarcoma. BMC Cancer 2021; 21:336. [PMID: 33789622 PMCID: PMC8011221 DOI: 10.1186/s12885-021-08069-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pazopanib, a multitargeted tyrosine kinase inhibitor, is recommended as the standard treatment for refractory soft tissue sarcoma (STS). However, there are comparatively few molecular determinants for predicting pazopanib efficacy. Based on correlative studies regarding the predictive impact of PD-L1, we investigated the clinical relevance of PD-L1 expression and evaluated its value for predicting pazopanib efficacy. Methods Tumour tissues from patients with advanced STS who went on to receive pazopanib were assessed for PD-L1 expression. Immunohistochemistry was performed using an anti-PD-L1 antibody, and the PD-L1 tumour proportion score (TPS) was calculated as the percentage of at least 100 viable cells with positive expression, defined as TPS ≥ 1%. Results Among the 67 patients, 8 (11.9%) achieved partial response and a median progression-free survival (PFS) of 4.8 months (95% CI 3.8–5.7). PD-L1 expression in tumour cells was detected in 13 (19.4%) cases and the TPS scores ranged from 1 to 100%, as follows: 0 (n = 54, 80.6%), 1–9% (n = 3, 4.5%), 10–49% (n = 9, 13.4%), and ≥ 50% (n = 1, 1.5%). PD-L1 positive tumours exhibited a poorer response to pazopanib treatment than the PD-L1 negative tumours (0% vs 14.8%, P = 0.07). PD-L1-positive tumours had significantly shorter PFS than the PD-L1-negative tumours (median PFS 2.8 vs 5.1 months, P = 0.003), and PD-L1 positivity was an independent predictor of poor response to pazopanib treatment (HR 2.77, 95% CI; 1.45–5.56, P = 0.006). Conclusion We identified that PD-L1 expression can help predict the clinical outcome of patients with advanced STS treated with pazopanib. Based on our study, stratification should be actively considered in order to identify patients who will benefit from pazopanib or further therapeutic strategies for future clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08069-z.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hyun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Han Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Woo Han
- Division of Pediatric Hemato-Oncology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Wooyeol Baek
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Ha Young Woo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Kyung Jeon
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
199
|
Su H, Yu C, Ma X, Song Q. Combined immunotherapy and targeted treatment for primary alveolar soft part sarcoma of the lung: case report and literature review. Invest New Drugs 2021; 39:1411-1418. [PMID: 33765213 DOI: 10.1007/s10637-021-01105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Primary acinar soft part sarcoma of the lung (ASPS) is a rare malignancy with unique cellular structure and clinical and genetic characteristics. Most patients do not exhibit clear clinical symptoms, with only a few developing respiratory symptoms. The typical histological characteristics are acinoid or organ-like structures. Immunofluorescence in situ hybridization suggests a rearrangement of the transcription factor E3 gene. Patients respond poorly to chemotherapy and are, thus, primarily treated with surgery and targeted therapy. We report herein a unique case of primary alveolar soft part sarcoma of the lung. The patient was a 24-year-old man with metastases to multiple organs, such as the brain, lungs, pancreas, and liver. The craniocerebral lesions attained partial remission after whole-brain radiotherapy and targeted combined immunotherapy, and other distant metastases completely disappeared after targeted combined immunotherapy (anlotinib and camrelizumab), indicating significant treatment efficacy. Anlotinib is an oral multi-target tyrosine kinase inhibitor (TKI) that exerts its anti-tumor effects by acting on various kinases. Camrelizumab is a humanized immunoglobulin G4 monoclonal antibody that can target PD-1 to block the interaction between PD-L1 and programmed death ligand 2, ultimately causing an anti-tumor effect. This is the first report of successful use of anlotinib combined with camrelizumab in the treatment of advanced primary ASPS. The treatment benefit provides preliminary evidence that targeted therapy, combined with immunotherapy, may be a safe and effective approach to treat primary pulmonary ASPS patients, thus warranting further investigation.
Collapse
Affiliation(s)
- Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China.,Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qingcui Song
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China.
| |
Collapse
|
200
|
Starzer AM, Berghoff AS, Hamacher R, Tomasich E, Feldmann K, Hatziioannou T, Traint S, Lamm W, Noebauer-Huhmann IM, Furtner J, Müllauer L, Amann G, Bauer S, Schildhaus HU, Preusser M, Heller G, Brodowicz T. Tumor DNA methylation profiles correlate with response to anti-PD-1 immune checkpoint inhibitor monotherapy in sarcoma patients. J Immunother Cancer 2021; 9:jitc-2020-001458. [PMID: 33762319 PMCID: PMC7993298 DOI: 10.1136/jitc-2020-001458] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Some sarcomas respond to immune checkpoint inhibition, but predictive biomarkers are unknown. We analyzed tumor DNA methylation profiles in relation to immunological parameters and response to anti-programmed cell death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy in patients with sarcoma. PATIENTS AND METHODS We retrospectively identified adult patients who had received anti-PD-1 ICI therapy for recurrent sarcoma in two independent centers. We performed (1) blinded radiological response evaluation according to immune response evaluation criteria in solid tumors (iRECIST) ; (2) tumor DNA methylation profiling of >850,000 probes using Infinium MethylationEPIC microarrays; (3) analysis of tumor-infiltrating immune cell subsets (CD3, CD8, CD45RO, FOXP3) and intratumoral expression of immune checkpoint molecules (PD-L1, PD-1, LAG-3) using immunohistochemistry; and (4) evaluation of blood-based systemic inflammation scores (neutrophil-to-lymphocyte ratio, leucocyte-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio). Response to anti-PD-1 ICI therapy was bioinformatically and statistically correlated with DNA methylation profiles and immunological data. RESULTS 35 patients (median age of 50 (23-81) years; 18 females, 17 males; 27 soft tissue sarcomas; 8 osteosarcomas) were included in this study. The objective response rate to anti-PD-1 ICI therapy was 22.9% with complete responses in 3 out of 35 and partial responses in 5 out of 35 patients. Adjustment of DNA methylation data for tumor-infiltrating immune cells resulted in identification of methylation differences between responders and non-responders to anti-PD-1 ICI. 2453 differentially methylated CpG sites (DMPs; 2043 with decreased and 410 with increased methylation) were identified. Clustering of sarcoma samples based on these DMPs revealed two main clusters: methylation cluster 1 (MC1) consisted of 73% responders and methylation cluster 2 (MC2) contained only non-responders to anti-PD-1 ICI. Median progression-free survival from anti-PD-1 therapy start of MC1 and MC2 patients was 16.5 and 1.9 months, respectively (p=0.001). Median overall survival of these patients was 34.4 and 8.0 months, respectively (p=0.029). The most prominent DNA methylation differences were found in pathways implicated in Rap1 signaling, focal adhesion, adherens junction Phosphoinositide 3-kinase (PI3K)-Akt signaling and extracellular matrix (ECM)-receptor interaction. CONCLUSIONS Our data demonstrate that tumor DNA methylation profiles may serve as a predictive marker for response to anti-PD-1 ICI therapy in sarcoma.
Collapse
Affiliation(s)
- Angelika M Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rainer Hamacher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Katharina Feldmann
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Traint
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Lamm
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Iris M Noebauer-Huhmann
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Amann
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Brodowicz
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|