151
|
Yang YC, Liu MH, Yang SM, Chan YH. Bimodal Multiplexed Detection of Tumor Markers in Non-Small Cell Lung Cancer with Polymer Dot-Based Immunoassay. ACS Sens 2021; 6:4255-4264. [PMID: 34788538 DOI: 10.1021/acssensors.1c02025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Semiconducting polymer nanoparticles (Pdots) have been demonstrated to be a promising class of probes for use in fluorometric immunochromatographic test strips (ICTS). The advantages of Pdots in ICTSs include ultrahigh brightness, minimal nonspecific adsorption, and multicolor availability, which together contribute to the high sensitivity, good specificity, and multiplexing ability. These unique properties can therefore circumvent several significant challenges of commercial ICTSs, including insufficient specificity/sensitivity and difficulty in quantitative and multiplexed detection. Here, we developed a colorimetric and fluorescent bimodal readout ICTS based on gold-Pdot nanohybrids for the determination of carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA 21-1) expressed abnormally in human blood of non-small-cell lung cancer (NSCLS). The vivid color from Au nanomaterials can be used for rapid qualitative screening (colorimetry) in 15 min, while the bright fluorescence of Pdots is ideal for the advanced quantitative measurements of CEA and CYFRA21-1 concentrations in whole blood samples. This bimodal ICTS platform possesses phenomenal detection sensitivity of 0.07 and 0.12 ng/mL for CYFRA21-1 and CEA, respectively. The accuracy and reliability of this ICTS platform were further evaluated with clinical serum samples from NSCLS patients at different stages, showing good consistency with the results from electrochemiluminescence immunoassay.
Collapse
Affiliation(s)
- Yu-Chi Yang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Shun-Mao Yang
- Department of Surgery, National Taiwan University Hospital, Hsinchu Branch, Hsinchu 30010, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
152
|
Ming T, Cheng Y, Xing Y, Luo J, Mao G, Liu J, Sun S, Kong F, Jin H, Cai X. Electrochemical Microfluidic Paper-Based Aptasensor Platform Based on a Biotin-Streptavidin System for Label-Free Detection of Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46317-46324. [PMID: 34546713 DOI: 10.1021/acsami.1c12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Timely and rapid detection of biomarkers is extremely important for the diagnosis and treatment of diseases. However, going to the hospital to test biomarkers is the most common way. People need to spend a lot of money and time on various tests for potential disease detection. To make the detection more convenient and affordable, we propose a paper-based aptasensor platform in this work. This device is based on a cellulose paper, on which a three-electrode system and microfluidic channels are fabricated. Meanwhile, novel nanomaterials consisting of amino redox graphene/thionine/streptavidin-modified gold nanoparticles/chitosan are synthesized and modified on the working electrode of the device. Through the biotin-streptavidin system, the aptamer whose 5'end is modified with biotin can be firmly immobilized on the electrode. The detection principle is that the current generated by the nanomaterials decreases proportionally to the concentration of targets owing to the combination of the biomarker and its aptamer. 17β-Estradiol (17β-E2), as one of the widely used diagnostic biomarkers of various clinical conditions, is adopted for verifying the performance of the platform. The experimental results demonstrated that this device enables the determination of 17β-E2 in a wide linear range of concentrations of 10 pg mL-1 to 100 ng mL-1 and the limit of detection is 10 pg mL-1 (S/N = 3). Moreover, it enables the detection of targets in clinical serum samples, demonstrating its potential to be a disposable and convenient integrated platform for detecting various biomarkers.
Collapse
Affiliation(s)
- Tao Ming
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Cheng
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Yu Xing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gang Mao
- Fourth People's Hospital of Jinan, Jinan 250031, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
153
|
Kang B, Choi S, Kim K, Jung HS, Kwak MK. Precise Microfluidic Luminescent Sensor Platform with Controlled Injection System. ACS OMEGA 2021; 6:23412-23420. [PMID: 34549140 PMCID: PMC8444323 DOI: 10.1021/acsomega.1c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Efforts have been devoted to screening various prevalent diseases, such as severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19). Real-time polymerase chain reaction (RT-PCR), which is currently the most widely used, has high accuracy, but it requires several facilities and takes a relatively long time to check; so, new testing technology is necessary for a higher test efficiency. A chemiluminescence (CL) sensor is a relatively simple device and suitable as an alternative because it can detect very precise specimens. However, in measurements via CL, the quantitative formulation of reagents that cause color development is important. In the case of mixing using micropipettes, precise analysis is possible, but this technique is limited by uncontrollable errors or deviations in detection amounts. In addition, in using a microfluidic chip to increase field applicability, a syringe pump or other quantification injection tools are required, so problems must be overcome for practical use. Therefore, in this study, a microchip was designed and manufactured to supply a sample of a certain volume by simply blowing air and injecting a sample into the chamber. By utilizing the luminescence reaction of luminol, CuSO4 and H2O2 the performance of the prepared chip was confirmed, and the desired amount of the sample could be injected with a simple device with an error rate of 2% or less. For feasible applications, an experiment was performed to quantitatively analyze thrombin, a biomarker of heart disease. Results demonstrated that biomarkers could be more precisely detected using the proposed microchips than using micropipettes.
Collapse
Affiliation(s)
- Bongsu Kang
- School
of Mechanical Engineering, Kyungpook National
University, Daegu 41566, South Korea
| | - Sunghak Choi
- Center
for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Keesung Kim
- Research
Inst. of Advanced Materials, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ho-Sup Jung
- Center
for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Moon Kyu Kwak
- School
of Mechanical Engineering, Kyungpook National
University, Daegu 41566, South Korea
| |
Collapse
|
154
|
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozge Surucu
- Department of Chemistry Faculty of Science Ege University 35040 Izmir Turkey
| | - Elif Öztürk
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| |
Collapse
|
155
|
Bagheri N, Cinti S, Nobile E, Moscone D, Arduini F. Multi-array wax paper-based platform for the pre-concentration and determination of silver ions in drinking water. Talanta 2021; 232:122474. [PMID: 34074442 DOI: 10.1016/j.talanta.2021.122474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
In this work, a wax-patterned chromatographic paper has been utilized as a holistic platform to 1) synthesize Prussian Blue Nanoparticles (sensing species), 2) load the reagents for the assay, 3) concentrate the sample through multistep, and 4) visualize the determination of silver ions. Waters are continuously affected by changes in the composition, thus the utilization of reagent-free analytical tools is of huge interest for smart drinking water monitoring. Herein, we report the characterization and application of a multi-array paper-based platform for the colorimetric determination of silver ions based on the conversion from Prussian Blue to its silver-based analogue, namely Ag4[Fe(CN)6]. In particular, the platform highlights the increase of sensitivity due to paper pre-concentration of sample, that can be easily adapted to the analytical necessities. Within the proposed experimental setup, Ag+ is visualized down to a detection limit of 0.9 μM, with high repeatability and satisfactory recoveries in the range comprised between 90 and 113%.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055, Naples, Italy.
| | - Eleonora Nobile
- BASF Italia SpA, Divisione Catalizzatori, Via di Salone 245, 00131, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy; SENSE4MED, 00128, Rome, Italy.
| |
Collapse
|
156
|
Zhou Q, Pan J, Deng S, Xia F, Kim T. Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008276. [PMID: 34245059 DOI: 10.1002/adma.202008276] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/15/2021] [Indexed: 05/14/2023]
Abstract
The rapid advances in the Internet of things and wearable devices have created a massive platform for sensor systems that detect chemical or biological agents. The accelerated development of these devices in recent years has simultaneously aggravated the power supply problems. Triboelectric nanogenerators (TENGs) represent a thriving renewable energy technology with the potential to revolutionize this field. In this review, the significance of TENG-based sensor systems in chemical or biological detection from the perspective of the development of power supply for biochemical sensors is discussed. Further, a range of TENGs are classified according to their roles as power supplies and/or self-powered active sensors. The TENG powered sensor systems are further discussed on the basis of their framework and applications. The working principles and structures of different TENG-based self-powered active sensors are presented, along with the classification of the sensors based on these factors. In addition, some representative applications are introduced, and the corresponding challenges are discussed. Finally, some perspectives for the future innovations of TENG-based sensor systems for chemical/biological detection are discussed.
Collapse
Affiliation(s)
- Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shujun Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
157
|
Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. BIOSENSORS 2021; 11:295. [PMID: 34562885 PMCID: PMC8466143 DOI: 10.3390/bios11090295] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Dinh Minh Pham
- GENTIS JSC, 249A, Thuy Khue, Tay Ho, Hanoi 100000, Vietnam;
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hui-Hsin Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| |
Collapse
|
158
|
Bhasin A, Choi EJ, Drago NP, Garrido JE, Sanders EC, Shin J, Andoni I, Kim DH, Fang L, Weiss GA, Penner RM. Enhancing the Sensitivity of the Virus BioResistor by Overoxidation: Detecting IgG Antibodies. Anal Chem 2021; 93:11259-11267. [PMID: 34347442 DOI: 10.1021/acs.analchem.1c02191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Virus BioResistor (VBR) is a biosensor capable of rapid and sensitive detection of small protein disease markers using a simple dip-and-read modality. For example, the bladder cancer-associated protein DJ-1 (22 kDa) can be detected in human urine within 1.0 min with a limit of detection (LOD) of 10 pM. The VBR uses engineered virus particles as receptors to recognize and selectively bind the protein of interest. These virus particles are entrained in a conductive poly(3,4-ethylenedioxythiophene) or PEDOT channel. The electrical impedance of the channel increases when the target protein is bound by the virus particles. But VBRs exhibit a sensitivity that is inversely related to the molecular weight of the protein target. Thus, large proteins, such as IgG antibodies (150 kDa), can be undetectable even at high concentrations. We demonstrate that the electrochemical overoxidation of the VBR's PEDOT channel increases its electrical impedance, conferring enhanced sensitivity for both small and large proteins. Overoxidation makes possible the detection of two antibodies, undetectable at a normal VBR, with a limit of detection of 40 ng/mL (250 pM), and a dynamic range for quantitation extending to 600 ng/mL.
Collapse
Affiliation(s)
- Apurva Bhasin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric J Choi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nicholas P Drago
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jason E Garrido
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Emily C Sanders
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Ilektra Andoni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, Xiasha, Hangzhou 310018, China
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
159
|
Naikoo GA, Awan T, Hassan IU, Salim H, Arshad F, Ahmed W, Asiri AM, Qurashi A. Nanomaterials-Based Sensors for Respiratory Viral Detection: A Review. IEEE SENSORS JOURNAL 2021; 21:17643-17656. [PMID: 35790098 PMCID: PMC8769020 DOI: 10.1109/jsen.2021.3085084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 06/15/2023]
Abstract
Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a real menace for public health and economic development worldwide. Therefore, timely diagnosis and treatments are the only life-saving strategy to overcome any epidemic and particularly the ongoing prevailing pandemic COVID-19 caused by SARS-CoV-2. A rapid identification, point of care, portable, highly sensitive, stable, and inexpensive device is needed which is exceptionally satisfied by sensor technology. Consequently, the researchers have directed their attention to employing sensors targeting multiple analyses of pathogenic detections across the world. Nanostructured materials (nanoparticles, nanowires, nanobundles, etc.), owing to their unique characteristics such as large surface-to-volume ratio and nanoscale interactions, are widely employed to fabricate facile sensors to meet all the immediate emerging challenges and threats. This review is anticipated to foster researchers in developing advanced nanomaterials-based sensors for the increasing number of COVID-19 cases across the globe. The mechanism of respiratory viral detection by nanomaterials-based sensors has been reported. Moreover, the advantages, disadvantages, and their comparison with conventional sensors are summarized. Furthermore, we have highlighted the challenges and future potential of these sensors for achieving efficient and rapid detection.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | | | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | - Fareeha Arshad
- Department of BiochemistryAligarh Muslim UniversityUttar Pradesh202002India
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnLN6 7TSU.K.
| | - Abdullah M. Asiri
- Department of ChemistryFaculty of ScienceKing Abdulaziz UniversityJeddahPC 21589Saudi Arabia
| | - Ahsanulhaq Qurashi
- Department of ChemistryKhalifa UniversityAbu DhabiPC 127788United Arab Emirates
| |
Collapse
|
160
|
Kavetskyy T, Alipour M, Smutok O, Mushynska O, Kiv A, Fink D, Farshchi F, Ahmadian E, Hasanzadeh M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
161
|
Integrated hand-held electrochemical sensor for multicomponent detection in urine. Biosens Bioelectron 2021; 193:113534. [PMID: 34343935 DOI: 10.1016/j.bios.2021.113534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023]
Abstract
Electrochemical sensors have shown great advantage and application potential in point-of-care testing (POCT) related scenarios. However, some fatal problems plague its widespread utilization, which include the susceptibility of sensors to interference in real samples (e.g. pH), the contradiction between the limited objects detectable for most sensors and the requirement of multi-target analysis in most cases, and the complicated procedures in sensor preparation as well as in routine use. This paper contributed a tip-like electrochemical sensor prototype. By integrated with a commercial pipettor, it fulfilled semi-automatic assay procedure of sampling, detection and rinsing, thus saving operational time and manual work. The tip sensor owns the property of simple fabrication and is free from any modification of extra bio/chem materials. Moreover, built on multiple electrochemical signal outputs including open circuit potential, peak current and potential of specific electrochemical reaction, this work established a novel multi-component sensing strategy, wherein detection of uric acid (UA), urea and pH in urine samples was realized by using one single working electrode. The detection range for the above targets is 5.0~600 μM for UA, 4.0~8.0 for pH and 0.5~7.0 mM for urea with the detection limits (S/N = 3) of 0.05 μM for UA and 5.4 μM for urea, and the sensitivity of pH assay is 73 mV/pH. Notably, as variation of sample pH has impact on electrochemical analysis, the pH-related parameter was introduced for calibration to diminish such interference. The developed tip sensor and the novel sensing strategy may open a new window for electrochemical technology and broaden its application in POCT.
Collapse
|
162
|
Alseed MM, Syed H, Onbasli MC, Yetisen AK, Tasoglu S. Design and Adoption of Low-Cost Point-of-Care Diagnostic Devices: Syrian Case. MICROMACHINES 2021; 12:mi12080882. [PMID: 34442504 PMCID: PMC8401864 DOI: 10.3390/mi12080882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.
Collapse
Affiliation(s)
- M. Munzer Alseed
- Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey;
| | - Hamzah Syed
- School of Medicine, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey;
| | - Mehmet Cengiz Onbasli
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey;
- Department of Electrical and Electronics Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Savas Tasoglu
- Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey;
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
163
|
de Lima LF, Ferreira AL, Torres MDT, de Araujo WR, de la Fuente-Nunez C. Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc Natl Acad Sci U S A 2021; 118:e2106724118. [PMID: 34244421 PMCID: PMC8325344 DOI: 10.1073/pnas.2106724118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
COVID-19 has led to over 3.47 million deaths worldwide and continues to devastate primarily middle- and low-income countries. High-frequency testing has been proposed as a potential solution to prevent outbreaks. However, current tests are not sufficiently low-cost, rapid, or scalable to enable broad COVID-19 testing. Here, we describe LEAD (Low-cost Electrochemical Advanced Diagnostic), a diagnostic test that detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 6.5 min and costs $1.50 per unit to produce using easily accessible and commercially available materials. LEAD is highly sensitive toward SARS-CoV-2 spike protein (limit of detection = 229 fg⋅mL-1) and displays an excellent performance profile using clinical saliva (100.0% sensitivity, 100.0% specificity, and 100.0% accuracy) and nasopharyngeal/oropharyngeal (88.7% sensitivity, 86.0% specificity, and 87.4% accuracy) samples. No cross-reactivity was detected with other coronavirus or influenza strains. Importantly, LEAD also successfully diagnosed the highly contagious SARS-CoV-2 B.1.1.7 UK variant. The device presents high reproducibility under all conditions tested and preserves its original sensitivity for 5 d when stored at 4 °C in phosphate-buffered saline. Our low-cost and do-it-yourself technology opens new avenues to facilitate high-frequency testing and access to much-needed diagnostic tests in resource-limited settings and low-income communities.
Collapse
Affiliation(s)
- Lucas F de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, São Paulo 13083-970, Brazil
| | - André L Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, São Paulo 13083-970, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - William R de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, São Paulo 13083-970, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104;
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
164
|
Singh B, Datta B, Ashish A, Dutta G. A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis. SENSORS INTERNATIONAL 2021; 2:100119. [PMID: 34766062 PMCID: PMC8302821 DOI: 10.1016/j.sintl.2021.100119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Without a doubt, the current global pandemic affects all walks of our life. It affected almost every age group all over the world with a disease named COVID-19, declared as a global pandemic by WHO in early 2020. Due to the high transmission and moderate mortality rate of this virus, it is also regarded as the panic-zone virus. This potentially deadly virus has pointed up the significance of COVID-19 research. Due to the rapid transmission of COVID-19, early detection is very crucial. Presently, there are different conventional techniques are available for coronavirus detection like CT-scan, PCR, Sequencing, CRISPR, ELISA, LFA, LAMP. The urgent need for rapid, accurate, and cost-effective detection and the requirement to cut off shortcomings of traditional detection methods, make scientists realize to advance new technologies. Biosensors are one of the reliable platforms for accurate, early diagnosis. In this article, we have pointed recent diagnosis approaches for COVID-19. The review includes basic virology of SARS-CoV-2 mainly clinical and pathological features. We have also briefly discussed different types of biosensors, their working principles, and current advancement for COVID-19 detection and prevention.
Collapse
Affiliation(s)
- Bishal Singh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Brateen Datta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Amlan Ashish
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
165
|
Li C, Li K, Xu X, Qi W, Hu X, Jin P. A pilot study for colorectal carcinoma screening by instant metabolomic profiles using conductive polymer spray ionization mass spectrometry. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166210. [PMID: 34246751 DOI: 10.1016/j.bbadis.2021.166210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The rapid and accurate discrimination of colorectal carcinoma (CRC) and polyps at the molecular level enables early intervention of CRC, which can greatly improve the 5-year survival rate of patients. Here we reported the potential of conductive polymer spray ionization mass spectrometry (CPSI-MS) in successfully screening CRC according to the serum metabolic profile. METHODS Trace intravenous blood (50 μL) was collected from 60 colorectal carcinoma (CRC) and 60 polyp patients, respectively. After centrifugation, serum (2 μL) was loaded onto the tip of conductive polymer to form a dried serum spot. When the 5 μL methanol-water (1:1, v/v) extraction solvent was spiked onto the dried serum spot followed with +4.5 kV high voltage applied on the polymer tip, the extracted components will be ionized and carried into the MS system for direct metabolic profiling. FINDINGS There were 51 metabolites discovered to be significantly changed in CRC serum compared to polyps. Combining these metabolites as the characteristic panel, the ideal diagnostic performance was achieved by Lasso regression model with the accuracy of 88.3%. INTERPRETATION This pilot study demonstrated the potential of CPSI-MS as a cost-effective tool in large-scale CRC screening in the high-risk population.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmacy, Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing 100730, China
| | - Kexin Li
- National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Clinical Trial Center, Beijing Hospital, Beijing 100730, China
| | - Xiaoyu Xu
- National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Clinical Trial Center, Beijing Hospital, Beijing 100730, China
| | - Wenyuan Qi
- National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Clinical Trial Center, Beijing Hospital, Beijing 100730, China
| | - Xin Hu
- Department of Pharmacy, Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing 100730, China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing 100730, China.
| |
Collapse
|
166
|
Bheemavarapu LP, Shah MI, Joseph J, Sivaprakasam M. IQVision: An Image-Based Evaluation Tool for Quantitative Lateral Flow Immunoassay Kits. BIOSENSORS-BASEL 2021; 11:bios11070211. [PMID: 34203515 PMCID: PMC8428085 DOI: 10.3390/bios11070211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
The development of quantitative lateral flow immunoassay test strips involves a lot of research from kit manufacturers’ standpoint. Kit providers need to evaluate multiple parameters, including the location of test regions, sample flow speed, required sample volumes, reaction stability time, etc. A practical visualization tool assisting manufacturers in this process is very much required for the design of more sensitive and reliable quantitative LFIA test strips. In this paper, we present an image-based quantitative evaluation tool determining the practical functionality of fluorescence-labelled LFIA test cartridges. Image processing-based algorithms developed and presented in this paper provide a practical analysis of sample flow rates, reaction stability times of samples under test, and detect any abnormalities in test strips. Evaluation of the algorithm is done with Glycated Hemoglobin (HbA1C) and Vitamin D test cartridges. Practical sample flow progress for HbA1C test cartridges is demonstrated. The reaction stability time of HbA1C test samples is measured to be 12 min, while that of Vitamin D test samples is 24 min. Experimental evaluation of the abnormality detection algorithm is carried out, and sample flow abnormalities are detected with 100% accuracy while membrane irregularities are detected with 96% accuracy.
Collapse
Affiliation(s)
- Lalitha Pratyusha Bheemavarapu
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; (J.J.); (M.S.)
- Correspondence:
| | - Malay Ilesh Shah
- Healthcare Technology Innovation Centre (HTIC), Indian Institute of Technology Madras, Chennai 600036, India;
| | - Jayaraj Joseph
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; (J.J.); (M.S.)
| | - Mohanasankar Sivaprakasam
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; (J.J.); (M.S.)
- Healthcare Technology Innovation Centre (HTIC), Indian Institute of Technology Madras, Chennai 600036, India;
| |
Collapse
|
167
|
Li Z, Li Y, Zhan L, Meng L, Huang X, Wang T, Li Y, Nie Z. Point-of-Care Test Paper for Exhaled Breath Aldehyde Analysis via Mass Spectrometry. Anal Chem 2021; 93:9158-9165. [PMID: 34162204 DOI: 10.1021/acs.analchem.1c01011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile organic compounds (VOCs) from exhaled breath (EB) are considered to be promising biomarkers for lung diseases. A convenient and sensitive point-of-care (POC) testing method for EB VOCs is essential. Here, we developed a POC test paper for the analysis of EB aldehydes, which are potential biomarkers for lung cancer. A probe molecule, 4-aminothiophenol (4-ATP), was anchored on a paper substrate to specifically capture gas-phase aldehydes through the Schiff base reaction. Meanwhile, thin-film reaction acceleration was utilized to increase capture efficiency. By directly coupling the test paper to a mass spectrometer through paper spray, high sensitivity (0.1 ppt) and a wide quantification linear range (from 10 ppt to 1 ppm) were obtained. Analysis of EB from lung cancer patients with the test paper showed a significant increase in several reported aldehyde markers compared to EB from healthy volunteers, indicating the potential of this method for sensitive, low-cost, and convenient lung cancer screening and diagnosis.
Collapse
Affiliation(s)
- Zhengzhou Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpeng Zhan
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
168
|
Li S, Huang S, Ke Y, Chen H, Dang J, Huang C, Liu W, Cui D, Wang J, Zhi X, Ding X. A HiPAD Integrated with rGO/MWCNTs Nano-Circuit Heater for Visual Point-of-Care Testing of SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2100801. [PMID: 34230825 PMCID: PMC8250055 DOI: 10.1002/adfm.202100801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Indexed: 05/03/2023]
Abstract
Nowadays, the main obstacle for further miniaturization and integration of nucleic acids point-of-care testing devices is the lack of low-cost and high-performance heating materials for supporting reliable nucleic acids amplification. Herein, reduced graphene oxide hybridized multi-walled carbon nanotubes nano-circuit integrated into an ingenious paper-based heater is developed, which is integrated into a paper-based analytical device (named HiPAD). The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still raging across the world. As a proof of concept, the HiPAD is utilized to visually detect the SARS-CoV-2 N gene using colored loop-mediated isothermal amplification reaction. This HiPAD costing a few dollars has comparable detection performance to traditional nucleic acids amplifier costing thousands of dollars. The detection range is from 25 to 2.5 × 1010 copies mL-1 in 45 min. The detection limit of 25 copies mL-1 is 40 times more sensitive than 1000 copies mL-1 in conventional real-time PCR instruments. The disposable paper-based chip could also avoid potential secondary transmission of COVID-19 by convenient incineration to guarantee biosafety. The HiPAD or easily expanded M-HiPAD (for multiplex detection) has great potential for pathogen diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Sijie Li
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Shiyi Huang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Yuqing Ke
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute518 Ziyue Road, Minhang DistrictShanghai200241China
| | - Jingqi Dang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Chengjie Huang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Wenjia Liu
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Daxiang Cui
- Shanghai Engineering Center for Intelligent Diagnosis and Treatment InstrumentSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University800 Dongchuan RD, Minghang DistrictShanghai200240China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and BiosecurityInstitute of Microbiology and Epidemiology20 Dongda Street, Fengtai DistrictBeijing100071China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| |
Collapse
|
169
|
ElDin NB, El-Rahman MKA, Zaazaa HE, Moustafa AA, Hassan SA. Microfabricated potentiometric sensor for personalized methacholine challenge tests during the COVID-19 pandemic. Biosens Bioelectron 2021; 190:113439. [PMID: 34166943 PMCID: PMC8197613 DOI: 10.1016/j.bios.2021.113439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/10/2021] [Indexed: 10/26/2022]
Abstract
The methacholine challenge test is considered to be the gold standard bronchoprovocation test used to diagnose asthma, and this test is always performed in pulmonary function labs or doctors' offices. Methacholine (MCH) acts by inducing airway tightening/bronchoconstriction, and more importantly, MCH is hydrolyzed by cholinesterase enzyme (ChE). Recently, the American Thoracic Society raised concerns about pulmonary function testing during the COVID-19 pandemic due to recently reported correlation between cholinesterase and COVID-19 pneumonia severity/mortality, and it was shown that cholinesterase levels are reduced in the acute phase of severe COVID-19 pneumonia. This work describes the microfabrication of potentiometric sensors using copper as the substrate and chemically polymerized graphene nanocomposites as the transducing layer for tracking the kinetics of MCH enzymatic degradation in real blood samples. The in-vitro estimation of the characteristic parameters of the MCH metabolism [Michaelis-Menten constant (Km) and reaction velocity (Vmax)] were found to be 241.041 μM and 56.8 μM/min, respectively. The proposed sensor is designed to be used as a companion diagnostic device that can (i) answer questions about patient eligibility to perform methacholine challenge tests, (ii) individualize/personalize medical dosing of methacholine, (iii) provide portable and inexpensive devices allowing automated readouts without the need for operator intervention (iv) recommend therapeutic interventions including intensive care during early stages and reflecting the disease state of COVID-19 pneumonia. We hope that this methacholine electrochemical sensor will help in assaying ChE activity in a "timely" manner and predict the severity and prognosis of COVID-19 to improve treatment outcomes and decrease mortality.
Collapse
Affiliation(s)
- Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt.
| | - Mohamed K Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Azza A Moustafa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Said A Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
170
|
A single snapshot multiplex immunoassay platform utilizing dense test lines based on engineered beads. Biosens Bioelectron 2021; 190:113388. [PMID: 34098362 PMCID: PMC8166042 DOI: 10.1016/j.bios.2021.113388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Co-circulation of coronavirus disease 2019 (COVID-19) and dengue fever has been reported. Accurate and timely multiplex diagnosis is required to prevent future pandemics. Here, we developed an innovative microfluidic chip that enables a snapshot multiplex immunoassay for timely on-site response and offers unprecedented multiplexing capability with an operating procedure similar to that of lateral flow assays. An open microchannel assembly of individually engineered microbeads was developed to construct nine high-density test lines, which can be imaged in a 1 mm2 field-of-view. Thus, simultaneous detection of multiple antibodies would be achievable in a single high-resolution snapshot. Next, we developed a novel pixel intensity-based imaging process to distinguish effective and non-specific fluorescence signals, thereby improving the reliability of this fluorescence-based immunoassay. Finally, the chip specifically identified and classified random combinations of arbovirus (Zika, dengue, and chikungunya viruses) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies within 30 min. Therefore, we believe that this snapshot multiplex immunoassay chip is a powerful diagnostic tool to control current and future pandemics.
Collapse
|
171
|
Sun BR, Zhou AG, Li X, Yu HZ. Development and Application of Mobile Apps for Molecular Sensing: A Review. ACS Sens 2021; 6:1731-1744. [PMID: 33955727 DOI: 10.1021/acssensors.1c00512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern smartphone-based sensing devices are generally standalone detection platforms that can transduce signals (via the built-in USB port, audio jack, or camera), perform analysis through mobile applications (apps), and display results on the screen/user interface. The advancement toward this ultimate form of on-site chemical analysis and point-of-care diagnosis is tied closely with the evolution of mobile technology. Previous reviews in the field mainly focused on the physical platforms while overlooking the role of mobile apps in such devices. There exist three general stages throughout the development: (1) early generation telemedicine, (2) mobile phone-assisted clinical diagnosis (without apps), and (3) mobile app-based sensing devices for various analytes. This review presents the key breakthroughs during each stage, recent development, remaining challenges, and future perspectives of the field. Representative examples, spanning from the pioneering point-of-care testing to the latest devices with integrated mobile apps, are classified by their sensing mechanisms. The review also discusses the scarcity of open-source apps dedicated to molecular sensing. With the introduction of more open-source and commercial apps, the mobile app-based detection system is anticipated to dominate point-of-care diagnosis and on-site molecular sensing in our opinion.
Collapse
Affiliation(s)
- Brigitta R. Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Alvin G. Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
172
|
Mahhengam N, Fahem Ghetran Khazaali A, Aravindhan S, Olegovna Zekiy A, Melnikova L, Siahmansouri H. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study. Crit Rev Anal Chem 2021; 52:1863-1877. [PMID: 34024197 DOI: 10.1080/10408347.2021.1922870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many cancer-related deaths are reported annually due to a lack of appropriate diagnosis and treatment strategies. Microfluidic technology, as new creativity has a great impact on automation and miniaturization via handling a small volume of materials and samples (in microliter to femtoliter range) to set up the system. Microfluidic devices not only detect various cancer-diagnostic factors from biological fluids but also can produce proper nanoparticles for drug delivery. With the contribution of microfluidics; multiple treatments for cancer such as chemotherapy, radiation therapy, and gene delivery can be implemented and studied. Hence, Microfluidics can be worth for the cancer field because of its high Throughput, high sensitivity, less material use, and low expense. In this review study, we intend to look at positive microfluidics prospects, features, benefits, and clinical applications.
Collapse
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus
| | | | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Lyubov Melnikova
- Business Analysis Department, Financial University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
173
|
Molinero-Fernández Á, López MÁ, Escarpa A. An on-chip microfluidic-based electrochemical magneto-immunoassay for the determination of procalcitonin in plasma obtained from sepsis diagnosed preterm neonates. Analyst 2021; 145:5004-5010. [PMID: 32520017 DOI: 10.1039/d0an00624f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel on-chip electrochemical magneto-immunoassay for the determination of procalcitonin (PCT) has been proposed. The strategy involved the on-line performing of the biorecognition event and detection on the thin-film microfluidic gold electrode chamber operating at E = -0.20 V (vs. Au). The complete assay was performed in less than 15 minutes using only 25 μL of the sample, covering the entire range of clinically relevant PCT concentrations in sepsis diagnosis with a limit of detection and quantification of 0.02 ng mL-1 and 0.05 ng mL-1, respectively (the sepsis diagnosis threshold: 0.5 ng mL-1). The on-chip electrochemical magneto-immunoassay provided excellent results in the analysis of very unique samples obtained from preterm neonates admitted with suspected sepsis, in which the sample volume is hardly available. These characteristics fulfill the POCT requirements for PCT determination in the whole clinically relevant concentration range. Because of the high clinical relevance and the important role of PCT in sepsis, this approach opens new perspectives for sepsis diagnosis and therapy guidance using low volume samples.
Collapse
Affiliation(s)
- Águeda Molinero-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala. Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala. Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain. and Chemical Engineering and Chemical Research Institute "Andres M. Del Rio", Universidad de Alcalá, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala. Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain. and Chemical Engineering and Chemical Research Institute "Andres M. Del Rio", Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
174
|
Perju A, Wongkaew N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal Bioanal Chem 2021; 413:5535-5549. [PMID: 33913001 PMCID: PMC8410735 DOI: 10.1007/s00216-021-03301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022]
Abstract
Lateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance. Graphical abstract ![]()
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
175
|
Yadav S, Sharma NN, Akhtar J. Nucleic acid analysis on paper substrates (NAAPs): an innovative tool for Point of Care (POC) infectious disease diagnosis. Analyst 2021; 146:3422-3439. [PMID: 33904559 DOI: 10.1039/d1an00214g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cost-effective rapid diagnosis of infectious diseases is an essential and important factor for curing such diseases in the global public health care picture. Owing to poor infrastructure and lack of sanitation, these diseases have an extreme impact on remote and rural areas, especially in developing countries, and there are unresolved challenges. Molecular diagnosis, such as nucleic acid analysis, plays a key role in the significant treatment of numerous infectious diseases. Current molecular diagnostic assays require a sophisticated laboratory setup with expensive components. Molecular diagnosis on a microfluidic point-of-care (POC) platform is attractive to researchers for disease detection with proper prevention. Compared to various microfluidic substrate materials, paper-based POC technologies offer significant cost-effective solutions over high-cost clinical instruments to fill the gap between the needs of users and affordability. Low-cost paper-based microfluidic POC technologies provide portable and disposable diagnostic systems for multiple disease detection that may be extremely useful in remote areas. This article presents a critical review of paper-based microfluidic device technology which has become an imminent platform to adjust the current health scenario for the detection of diseases using different stages of nucleic acid analysis, such as extraction, amplification and detection of nucleic acid, with future perspectives for paper substrates.
Collapse
Affiliation(s)
- Supriya Yadav
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Niti Nipun Sharma
- Department of Mechanical Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Jamil Akhtar
- Department of Electronics & Communication Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| |
Collapse
|
176
|
Uddin MJ, Bhuiyan NH, Hong JH, Shim JS. Smartphone-Based Fully Automated Optofluidic Device with Laser Irradiation-Induced Image Whitening. Anal Chem 2021; 93:6394-6402. [PMID: 33830748 DOI: 10.1021/acs.analchem.0c05387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we have developed a fully automated optofluidic device to execute enzyme-linked immunosorbent assay (ELISA) using an active 96-well hybrid lab-on-a-chip (LOC) device. To automate the solution loading into the reaction zone of the device and the post-assayed signal analysis, laser irradiation-induced image whitening was utilized with a smartphone-based optical platform. Two optical phenomena were utilized in our platform to detect the liquid in the reaction chamber using a smartphone. First, by Fresnel's equation, the refraction difference between air and water resulted in the intensity change of the reflected light from the reaction chamber. Therefore, when the liquid was entering into the reaction chamber, the intensity of the reflected light was changed. Second, when the light intensity increases, the smartphone-captured image whitens out due to saturation, even when the red color light was incident. Therefore, by measuring the RGB value of the smartphone image, the intensity changes by the liquid movement in the reaction chamber were successfully monitored. Our platform showed a low detection limit of 7.81 pg/mL for the detection of the NT-proBNP human cardiac biomarker with almost a half standard deviation, compared to the manually operated LOC-based ELISA. As a fully automated LOC adopting a conventional 96-well ELISA platform, we thus concluded that the developed platform can be widely applied for point-of-care clinical tests.
Collapse
Affiliation(s)
- M Jalal Uddin
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.,Department of Electrical and Electronic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Nabil H Bhuiyan
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Jun H Hong
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Joon S Shim
- Bio-IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.,BioGeneSys Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
177
|
Obino D, Vassalli M, Franceschi A, Alessandrini A, Facci P, Viti F. An Overview on Microfluidic Systems for Nucleic Acids Extraction from Human Raw Samples. SENSORS 2021; 21:s21093058. [PMID: 33925730 PMCID: PMC8125272 DOI: 10.3390/s21093058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Nucleic acid (NA) extraction is a basic step for genetic analysis, from scientific research to diagnostic and forensic applications. It aims at preparing samples for its application with biomolecular technologies such as isothermal and non-isothermal amplification, hybridization, electrophoresis, Sanger sequencing and next-generation sequencing. Multiple steps are involved in NA collection from raw samples, including cell separation from the rest of the specimen, cell lysis, NA isolation and release. Typically, this process needs molecular biology facilities, specialized instrumentation and labor-intensive operations. Microfluidic devices have been developed to analyze NA samples with high efficacy and sensitivity. In this context, the integration within the chip of the sample preparation phase is crucial to leverage the promise of portable, fast, user-friendly and economic point-of-care solutions. This review presents an overview of existing lab-on-a-chip (LOC) solutions designed to provide automated NA extraction from human raw biological fluids, such as whole blood, excreta (urine and feces), saliva. It mainly focuses on LOC implementation aspects, aiming to describe a detailed panorama of strategies implemented for different human raw sample preparations.
Collapse
Affiliation(s)
- Daniele Obino
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, James Watt South Building, Glasgow G128LT, UK;
| | | | - Andrea Alessandrini
- Nanoscience Institute, National Research Council, 41125 Modena, Italy;
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Facci
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
- Correspondence:
| | - Federica Viti
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| |
Collapse
|
178
|
Qu J, Chenier M, Zhang Y, Xu CQ. A Microflow Cytometry-Based Agglutination Immunoassay for Point-of-Care Quantitative Detection of SARS-CoV-2 IgM and IgG. MICROMACHINES 2021; 12:mi12040433. [PMID: 33919836 PMCID: PMC8070841 DOI: 10.3390/mi12040433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A rapid, sensitive and simple microflow cytometry-based agglutination immunoassay (MCIA) was developed for point-of-care (POC) quantitative detection of SARS-CoV-2 IgM and IgG antibodies. The antibody concentration was determined by using the transit time of beads aggregates. A linear relationship was established between the average transit time and the concentration of SARS-CoV-2 IgM and IgG, respectively. The limit of detection (LOD) of SARS-CoV-2 IgM and IgG by the MCIA measurement are 0.06 mg/L and 0.10 mg/L, respectively. The 10 µL sample consumption, 30 min assay time and the compact setup make this technique suitable for POC quantitative detection of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Jianxi Qu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
| | - Mathieu Chenier
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Yushan Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Correspondence: ; Tel.: +1-905-525-9140
| |
Collapse
|
179
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
180
|
Shin H, Seo H, Chung WG, Joo BJ, Jang J, Park JU. Recent progress on wearable point-of-care devices for ocular systems. LAB ON A CHIP 2021; 21:1269-1286. [PMID: 33704299 DOI: 10.1039/d0lc01317j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The eye is a complex sensory organ that contains abundant information for specific diseases and pathological responses. It has emerged as a facile biological interface for wearable healthcare platforms because of its excellent accessibility. Recent advances in electronic devices have led to the extensive research of point-of-care (POC) systems for diagnosing and monitoring diseases by detecting the biomarkers within the eye. Among these systems, contact lenses, which make direct contact with the ocular surfaces, have been utilized as one of the promising candidates for non-invasive POC testing of various diseases. The continuous and long-term measurement from the sensor allows the patients to manage their symptoms in an effective and convenient way. Herein, we review the progress of contact lens sensors in terms of the materials, methodologies, device designs, and target biomarkers. The anatomical structure and biological mechanisms of the eye are also discussed to provide a comprehensive understanding of the principles of contact lens sensors. Intraocular pressure and glucose, which are the representative biomarkers found in the eyes, can be measured with the biosensors integrated with contact lenses for the diagnosis of glaucoma and diabetes. Furthermore, contact lens sensors for various general pathologies as well as other ocular diseases are also considered, thereby providing the prospects for further developments of smart contact lenses as a future POC system.
Collapse
Affiliation(s)
- Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
181
|
Gao F, Liu Y, Lei C, Liu C, Song H, Gu Z, Jiang P, Jing S, Wan J, Yu C. The Role of Dendritic Mesoporous Silica Nanoparticles' Size for Quantum Dots Enrichment and Lateral Flow Immunoassay Performance. SMALL METHODS 2021; 5:e2000924. [PMID: 34927850 DOI: 10.1002/smtd.202000924] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Indexed: 06/14/2023]
Abstract
Using dendritic mesoporous silica nanoparticles (DMSNs) for quantum dots (QDs) enrichment and signal amplification is an emerging strategy for improving the detection sensitivity of lateral flow immunoassay (LFIA). In this study, a new and convenient approach is developed to prepare water-dispersible DMSNs-QDs. A series of DMSNs with various diameters (138, 251, 368, and 471 nm) are studied for loading QDs and LFIA applications. The resultant water-dispersible DMSNs-QDs exhibit a high fluorescence retention of 81.8%. The increase in particle size from 138 to 471 nm results in an increase in loading capacity of QDs and a decrease in binding quantity of the DMSNs-QDs in the test line of LFIA. This trade-off leads to an optimal DMSNs-QDs size of 368 nm with a limit of detection reaching 10 pg mL-1 (equivalent to 9.0 × 10-14 m) for the detection of C-reactive protein, which is nearly an order of magnitude more sensitive than the literature. To the best of the authors' knowledge, this study is the first to demonstrate the distinctive role of DMSN's size for QDs enrichment and LFIA. The strategy developed from this work is useful for the rational design of high-quality QDs-based nanoparticles for ultrasensitive detection.
Collapse
Affiliation(s)
- Fang Gao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yang Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Pei Jiang
- Shanghai Fosun Long March Medical Science Company Limited, Shanghai, 200444, P. R. China
| | - Sheng Jing
- Shanghai Fosun Long March Medical Science Company Limited, Shanghai, 200444, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
182
|
A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens Bioelectron 2021; 178:113027. [DOI: 10.1016/j.bios.2021.113027] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
|
183
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
184
|
Recent Advances of Hepatitis B Detection towards Paper-Based Analytical Devices. ScientificWorldJournal 2021; 2021:6643573. [PMID: 33727897 PMCID: PMC7937490 DOI: 10.1155/2021/6643573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/03/2023] Open
Abstract
Hepatitis B virus (HBV) still remains a major global public health problem. One-half to one-third of the total HBV infected people died due to late detection of HBV. Serological antigen and viral HBV detections can help in the diagnosis, referral, and treatment of HBV. Available methods for HBV detection mostly used bulky instruments. Miniaturization of devices for HBV detection has been started by narrowing down the size of the devices. Several methods have also been proposed to increase the selectivity and sensitivity of the miniaturized methods, such as sandwich recognition of the biomarkers and the use of nano- to micro-sized materials. This review presents recent HBV detections in the last two decades from laboratory-based instruments towards microfluidic paper-based analytical devices (µPADs) for point-of-care testing (POCT) purposes. Early and routine analysis to detect HBV as early as possible could be achieved by POCT, especially for areas with limited access to a central laboratory and/or medical facilities.
Collapse
|
185
|
Hall MP, Kincaid VA, Jost EA, Smith TP, Hurst R, Forsyth SK, Fitzgerald C, Ressler VT, Zimmermann K, Lazar D, Wood MG, Wood KV, Kirkland TA, Encell LP, Machleidt T, Dart ML. Toward a Point-of-Need Bioluminescence-Based Immunoassay Utilizing a Complete Shelf-Stable Reagent. Anal Chem 2021; 93:5177-5184. [PMID: 33730483 DOI: 10.1021/acs.analchem.0c05074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples. We utilized a ternary, split-NanoLuc luciferase complementation reporter consisting of two small peptides (11mer, 13mer) and a 17 kDa polypeptide combined with a luminogenic substrate to create a complete, shelf-stable add-and-read assay detection reagent. Directed evolution was used to optimize reporter constituent sequences to impart chemical and thermal stability, as well as solubility, while formulation optimization was applied to stabilize an all-in-one reagent that can be reconstituted in aqueous buffers or sample matrices. The result of these efforts is a robust, first-generation bioluminescence-based homogenous immunoassay reporter platform where all assay components can be configured into a stable lyophilized cake, supporting homogeneous, rapid, and sensitive one-step biomolecule quantification in complex human samples. This technology represents a promising alternative immunoassay format with significant potential to bring critical diagnostic molecular detection testing closer to the point-of-need.
Collapse
Affiliation(s)
- Mary P Hall
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Emily A Jost
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Thomas P Smith
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Robin Hurst
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Connor Fitzgerald
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | | | - Kris Zimmermann
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Dan Lazar
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Monika G Wood
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Keith V Wood
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Thomas A Kirkland
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Lance P Encell
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Melanie L Dart
- Promega Corporation, Madison, Wisconsin 53711, United States
| |
Collapse
|
186
|
Annese VF, Patil SB, Hu C, Giagkoulovits C, Al-Rawhani MA, Grant J, Macleod M, Clayton DJ, Heaney LM, Daly R, Accarino C, Shah YD, Cheah BC, Beeley J, Evans TRJ, Jones R, Barrett MP, Cumming DRS. A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. MICROSYSTEMS & NANOENGINEERING 2021; 7:21. [PMID: 34567735 PMCID: PMC8433377 DOI: 10.1038/s41378-021-00243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 05/18/2023]
Abstract
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary clinical study using l-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to revolutionize low-cost, rapid, point-of-care testing.
Collapse
Affiliation(s)
- Valerio F. Annese
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Samadhan B. Patil
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Chunxiao Hu
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Christos Giagkoulovits
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Mohammed A. Al-Rawhani
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Grant
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Martin Macleod
- Beatson West of Scotland Cancer Centre, Glasgow, G12 0YN UK
| | - David J. Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NF UK
| | - Liam M. Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU UK
| | - Ronan Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
| | - Claudio Accarino
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Yash D. Shah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Boon C. Cheah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Beeley
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Thomas R. Jeffry Evans
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Robert Jones
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - David R. S. Cumming
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
187
|
Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000049. [PMID: 33615315 PMCID: PMC7883073 DOI: 10.1002/anbr.202000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of nanomedicine has taken up the challenge and developed a plethora of strategies to fight infectious diseases with the help of various nanomaterials such as noble metal nanoparticles, liposomes, nanogels, and virus capsids. DNA nanotechnology represents a comparatively recent addition to the nanomedicine arsenal, which, over the past decade, has made great progress in the area of cancer diagnostics and therapy. However, the past few years have seen also an increasing number of DNA nanotechnology-related studies that particularly focus on the detection and inhibition of microbial and viral pathogens. Herein, a brief overview of this rather young research field is provided, successful concepts as well as potential challenges are identified, and promising directions for future research are highlighted.
Collapse
Affiliation(s)
- David M. Smith
- DNA Nanodevices UnitDepartment DiagnosticsFraunhofer Institute for Cell Therapy and Immunology IZI04103LeipzigGermany
- Peter Debye Institute for Soft Matter PhysicsFaculty of Physics and Earth SciencesUniversity of Leipzig04103LeipzigGermany
- Institute of Clinical ImmunologyUniversity of Leipzig Medical School04103LeipzigGermany
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar382 007India
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
188
|
Abstract
Gas-propelled biosensors display a simple gas-based signal amplification with quantitative detection features based on the target recognition event in combination with gas propulsion. Due to the liquid-gas conversion, the gas not only pushes the ink bar forward in the microchannel, but also serves as the power to propel the micromotors in the liquid. Thus, this continuous motion leads to a shift in distances which is associated with the target amount. Therefore, gas-propelled biosensors provide a visual quantification based on distance or speed signals without the need for expensive instruments. In this review, we focus on current developments in gas-propelled biosensors for quantitative analysis. First, we list the types of gas utilized as actuators in biosensors. Second, we review the representative gas-propelled biosensors, including the propulsion mechanisms and fabrication methods. Moreover, gas-propelled quantification based on distance and speed is summarized. Finally, we cover applications and provide a future perspective of gas-propelled biosensors.
Collapse
Affiliation(s)
- Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
189
|
Natarajan S, Jayaraj J, Prazeres DMF. A Cellulose Paper-Based Fluorescent Lateral Flow Immunoassay for the Quantitative Detection of Cardiac Troponin I. BIOSENSORS 2021; 11:49. [PMID: 33672906 PMCID: PMC7918919 DOI: 10.3390/bios11020049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
This paper presents a lateral flow assay (LFA) for the quantitative, fluorescence-based detection of the cardiac biomarker troponin I (cTnI) that features an analytical strip made of cellulose filter paper. The results show that the wicking and test time are comparable to those obtained with conventional nitrocellulose (NC)-based LFAs. Further, the cellulose paper provides an excellent background with no auto-fluorescence that is very adequate in detecting fluorescent lines. While fluorescence that was generated with cellulose strips was lower when compared to that generated in NC strips, signals could be improved by layering carbon nanofibers (CNF) on the cellulose. A nonlinear behavior of the concentration-response relationship was observed for the LFA architectures with NC, cellulose, and cellulose-CNF in the 0 to 200 ng/mL cTnI concentration range. The measurements were consistent and characterized by coefficients of variation lower than 2.5%. Detection and quantitation limits that were in the range 1.28-1.40 ng/mL and 2.10-2.75 ng/mL were obtained for LFA with cellulose and cellulose CNF strips that are equivalent to the limits obtained with the standard NC LFA. Overall, we showed that commercially available filter paper can be used in the analytical strip of LFA.
Collapse
Affiliation(s)
- Satheesh Natarajan
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600113, India; (S.N.); (J.J.)
| | - Joseph Jayaraj
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600113, India; (S.N.); (J.J.)
- Department of Electrical Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600113, India
| | - Duarte Miguel F. Prazeres
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
190
|
Frimpong R, Jang W, Kim JH, Driskell JD. Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics. Talanta 2021; 223:121739. [DOI: 10.1016/j.talanta.2020.121739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 01/09/2023]
|
191
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
192
|
Aktas GB, Ribera A, Skouridou V, Masip L. DNA immobilization and detection using DNA binding proteins. Anal Bioanal Chem 2021; 413:1929-1939. [PMID: 33501551 DOI: 10.1007/s00216-021-03162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The immobilization of sensing bioreceptors is a critical feature affecting the final performance of a biosensor. For DNA detection, the (strept)avidin-biotin affinity interaction is often used for the immobilization of biotin-labeled oligonucleotides or PCR amplicons. Herein, DNA binding proteins are proposed as alternative universal anchors for both DNA immobilization and detection, based on the strong and specific affinity interaction between certain DNA binding proteins and their respective dsDNA binding sites. These binding sites can be incorporated in the target DNA molecule during synthesis and by PCR, eliminating the need for post-synthesis chemical modification and resulting in lower costs. When scCro DNA binding protein was immobilized on microplates and nitrocellulose membrane, both ssDNA and dsDNA targets were successfully detected. The detection limits achieved were similar to those obtained with the streptavidin-biotin system. However, the scCro system resulted in higher signals while using less amount of protein. The adsorption properties of scCro were superior to streptavidin's, making scCro a viable alternative as an anchor biomolecule for the development of DNA assays and biosensors. Finally, a nucleic acid lateral flow assay based solely on two different DNA binding proteins, scCro and dHP, was developed for the detection of a PCR amplicon. Overall, the proposed system appears to be very promising and with potential use for multiplex detection using various DNA binding proteins with different sequence specificities. Further work is required to better understand the adsorption properties of these biomolecules on nitrocellulose, optimize the assays comprehensively, and achieve improved sensitivities.
Collapse
Affiliation(s)
- Gülsen Betül Aktas
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Arnau Ribera
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Vasso Skouridou
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Lluis Masip
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain.
| |
Collapse
|
193
|
Tortorella S, Cinti S. How Can Chemometrics Support the Development of Point of Need Devices? Anal Chem 2021; 93:2713-2722. [DOI: 10.1021/acs.analchem.0c04151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
- BAT Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli “Federico II”, 80055 Portici, Naples, Italy
| |
Collapse
|
194
|
Lee D, Kim D, Han J, Yun J, Lee KH, Kim GM, Kwon O, Lee J. Integrated, Automated, Fast PCR System for Point-Of-Care Molecular Diagnosis of Bacterial Infection. SENSORS 2021; 21:s21020377. [PMID: 33430443 PMCID: PMC7827619 DOI: 10.3390/s21020377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
We developed an integrated PCR system that performs automated sample preparation and fast polymerase chain reaction (PCR) for application in point-of care (POC) testing. This system is assembled from inexpensive 3D-printing parts, off-the-shelf electronics and motors. Molecular detection requires a series of procedures including sample preparation, amplification, and fluorescence intensity analysis. The system can perform automated DNA sample preparation (extraction, separation and purification) in ≤5 min. The variance of the automated sample preparation was clearly lower than that achieved using manual DNA extraction. Fast thermal ramp cycles were generated by a customized thermocycler designed to automatically transport samples between heating and cooling blocks. Despite the large sample volume (50 μL), rapid two-step PCR amplification completed 40 cycles in ≤13.8 min. Variations in fluorescence intensity were measured by analyzing fluorescence images. As proof of concept of this system, we demonstrated the rapid DNA detection of pathogenic bacteria. We also compared the sensitivity of this system with that of a commercial device during the automated extraction and fast PCR of Salmonella bacteria.
Collapse
Affiliation(s)
- Dongkyu Lee
- Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 42994, Korea; (D.L.); (D.K.); (J.H.); (J.Y.); (K.-H.L.)
| | - Deawook Kim
- Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 42994, Korea; (D.L.); (D.K.); (J.H.); (J.Y.); (K.-H.L.)
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Jounghyuk Han
- Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 42994, Korea; (D.L.); (D.K.); (J.H.); (J.Y.); (K.-H.L.)
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Jongsu Yun
- Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 42994, Korea; (D.L.); (D.K.); (J.H.); (J.Y.); (K.-H.L.)
| | - Kang-Ho Lee
- Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 42994, Korea; (D.L.); (D.K.); (J.H.); (J.Y.); (K.-H.L.)
| | - Gyu Man Kim
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Ohwon Kwon
- Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 42994, Korea; (D.L.); (D.K.); (J.H.); (J.Y.); (K.-H.L.)
- Correspondence: (O.K.); (J.L.)
| | - Jaejong Lee
- Nano-Mechanical Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Korea
- Correspondence: (O.K.); (J.L.)
| |
Collapse
|
195
|
Zhang H, Zhang B, Yang Y, Ye D, Chen R, Liao Q, Zhu X. A high power density paper-based zinc-air battery with a hollow channel structure. Chem Commun (Camb) 2021; 57:1258-1261. [PMID: 33427245 DOI: 10.1039/d0cc07687b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In light of the surging research interest in disposable electronics, great demands have been imposed on compact power sources. Herein, a paper-based zinc-air battery that takes advantage of a hollow channel structure is reported. Unlike conventional paper-based metal-air batteries and fuel cells that tightly immobilize the electrode on the paper channel, a hollow channel layer containing potassium hydroxide solution electrolyte is sandwiched between the electrodes and paper channel layer. This novel zinc-air battery is capable of delivering a peak power density of 102 mW cm-2, surpassing state-of-the-art paper-based power sources. The superior power density originates from the boosted electrochemically active surface area of the cathode, which enhances the oxygen reduction reaction kinetics.
Collapse
Affiliation(s)
- Haoran Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Biao Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and School of Energy and Power Engineering, Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| |
Collapse
|
196
|
RAO HH, LIU HX, LUO MY, XUE X, Ming-Ming W, XUE ZH. Progress of Simple Signal Readout-based Point-of-Care Testing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
197
|
Sullivan BP, Bender AT, Ngyuen DN, Zhang JY, Posner JD. Nucleic acid sample preparation from whole blood in a paper microfluidic device using isotachophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1163:122494. [PMID: 33401049 DOI: 10.1016/j.jchromb.2020.122494] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023]
Abstract
Nucleic acid amplification tests (NAATs) are a crucial diagnostic and monitoring tool for infectious diseases. A key procedural step for NAATs is sample preparation: separating and purifying target nucleic acids from crude biological samples prior to nucleic acid amplification and detection. Traditionally, sample preparation has been performed with liquid- or solid-phase extraction, both of which require multiple trained user steps and significant laboratory equipment. The challenges associated with sample preparation have limited the dissemination of NAAT point-of-care diagnostics in low resource environments, including low- and middle-income countries. We report on a paper-based device for purification of nucleic acids from whole blood using isotachophoresis (ITP) for point-of-care NAATs. We show successful extraction and purification of target nucleic acids from large volumes (33 µL) of whole human blood samples with no moving parts and few user steps. Our device utilizes paper-based buffer reservoirs to fully contain the liquid ITP buffers and does not require complex filling procedures, instead relying on the natural wicking of integrated paper membranes. We perform on-device blood fractionation via filtration to remove leukocytes and erythrocytes from our sample, followed by integrated on-paper proteolytic digestion of endogenous plasma proteins to allow for successful isotachophoretic extraction. Paper-based isotachophoresis purifies and concentrates target nucleic acids that are added directly to recombinase polymerase amplification (RPA) reactions. We show consistent amplification of input copy concentrations of as low as 3 × 103 copies nucleic acid per mL input blood with extraction and purification taking only 30 min. By employing a paper architecture, we are able to incorporate these processes in a single, robust, low-cost design, enabling the direct processing of large volumes of blood, with the only intermediate user steps being the removal and addition of tape. Our device represents a step towards a simple, fully integrated sample preparation system for nucleic acid amplification tests at the point-of-care.
Collapse
Affiliation(s)
- Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Duy N Ngyuen
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Jane Yuqian Zhang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA; Department of Family Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
198
|
Al Lawati HA, Hassanzadeh J. Dual-function 2D cobalt metal-organic framework embedded on paper as a point-of-care diagnostic device: Application for the quantification of glucose. Anal Chim Acta 2020; 1139:15-26. [DOI: 10.1016/j.aca.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022]
|
199
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
200
|
Huang D, Qian J, Shi Z, Zhao J, Fang M, Xu Z. CRISPR-Cas12a-Assisted Multicolor Biosensor for Semiquantitative Point-of-Use Testing of the Nopaline Synthase Terminator in Genetically Modified Crops by Unaided Eyes. ACS Synth Biol 2020; 9:3114-3123. [PMID: 33047952 DOI: 10.1021/acssynbio.0c00365] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Existing methods of detecting foreign genes and their expression products from genetically modified organisms (GMOs) suffer from the requirement of professional equipment and skillful operators. The same problem stays for the CRISPR-Cas12a system, although it has been emerging as a powerful tool for nucleic acid detection due to its remarkable sensitivity and specificity. In this report, a portable platform for the visible detection of GMOs based on CRISPR-Cas12a was established, which relies on a color change of gold nanorods (GNRs) caused by the invertase-glucose oxidase cascade reaction and the Fenton reaction for signal readout. A nopaline synthase (NOS) terminator was employed as a model target commonly existing in foreign genes of GMOs. With the help of recombinase-aided amplification, this platform achieved comparable sensitivity of DNA targets (1 aM) with that of a fluorescence reporting assay. As low as 0.1 wt % genetically modified (GM) content in Bt-11 maize was visually observed by unaided eyes, and the semiquantitation of GM ingredients can be obtained within the range of 0.1 to 40 wt % through the absorption measurement of GNRs. Furthermore, five real samples were tested by our method, and the results indicated that the GM ingredient percentages of GMO samples were 2.24 and 24.08 wt %, respectively, while the other three samples were GMO-free. With the advantages of a simple procedure, no need for large or professional instruments, high sensitivity, and selectivity, this platform is expected to provide reasonable technical support for the safe supervision of GMOs.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajie Qian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuwei Shi
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiarun Zhao
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|