151
|
Geue N, Bennett TS, Arama AAM, Ramakers LAI, Whitehead GFS, Timco GA, Armentrout PB, McInnes EJL, Burton NA, Winpenny REP, Barran PE. Disassembly Mechanisms and Energetics of Polymetallic Rings and Rotaxanes. J Am Chem Soc 2022; 144:22528-22539. [PMID: 36459680 PMCID: PMC9756338 DOI: 10.1021/jacs.2c07522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/04/2022]
Abstract
Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.
Collapse
Affiliation(s)
- Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University
of Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Tom S. Bennett
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | | | - Lennart A. I. Ramakers
- Michael
Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University
of Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Grigore A. Timco
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - P. B. Armentrout
- Department
of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| | - Eric J. L. McInnes
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Neil A. Burton
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University
of Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| |
Collapse
|
152
|
May JC, McLean JA. Integrating ion mobility into comprehensive multidimensional metabolomics workflows: critical considerations. Metabolomics 2022; 18:104. [PMID: 36472678 DOI: 10.1007/s11306-022-01961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.
Collapse
Affiliation(s)
- Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
153
|
May JC, Tomlinson ID, Soni S, McLean JA, Hercules DM. A method for the preparation and characterization of single molecular weight urethane oligomers: A preliminary ion mobility and mass spectrometry study. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
154
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
155
|
Roman-Hubers AT, Aeppli C, Dodds JN, Baker ES, McFarlin KM, Letinski DJ, Zhao L, Mitchell DA, Parkerton TF, Prince RC, Nedwed T, Rusyn I. Temporal chemical composition changes in water below a crude oil slick irradiated with natural sunlight. MARINE POLLUTION BULLETIN 2022; 185:114360. [PMID: 36413931 PMCID: PMC9741762 DOI: 10.1016/j.marpolbul.2022.114360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 05/25/2023]
Abstract
Photooxidation can alter the environmental fate and effects of spilled oil. To better understand this process, oil slicks were generated on seawater mesocosms and exposed to sunlight for 8 days. The molecular composition of seawater under irradiated and non-irradiated oil slicks was characterized using ion mobility spectrometry-mass spectrometry and polyaromatic hydrocarbons analyses. Biomimetic extraction was performed to quantify neutral and ionized constituents. Results show that seawater underneath irradiated oil showed significantly higher amounts of hydrocarbons with oxygen- and sulfur-containing by-products peaking by day 4-6; however, concentrations of dissolved organic carbon were similar. Biomimetic extraction indicated toxic units in irradiated mesocosms increased, mainly due to ionized components, but remained <1, suggesting limited potential for ecotoxicity. Because the experimental design mimicked important aspects of natural conditions (freshly collected seawater, natural sunlight, and relevant oil thickness and concentrations), this study improves our understanding of the effects of photooxidation during a marine oil spill.
Collapse
Affiliation(s)
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - James N Dodds
- North Carolina State University, Raleigh, NC, United States of America
| | - Erin S Baker
- North Carolina State University, Raleigh, NC, United States of America
| | - Kelly M McFarlin
- ExxonMobil Biomedical Sciences, Clinton, NJ, United States of America
| | - Daniel J Letinski
- ExxonMobil Biomedical Sciences, Clinton, NJ, United States of America
| | - Lin Zhao
- ExxonMobil Upstream Research Company, Spring, TX, United States of America
| | | | | | - Roger C Prince
- Stonybrook Apiary, Pittstown, NJ, United States of America
| | - Tim Nedwed
- ExxonMobil Upstream Research Company, Spring, TX, United States of America
| | - Ivan Rusyn
- Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
156
|
Belova L, Celma A, Van Haesendonck G, Lemière F, Sancho JV, Covaci A, van Nuijs ALN, Bijlsma L. Revealing the differences in collision cross section values of small organic molecules acquired by different instrumental designs and prediction models. Anal Chim Acta 2022; 1229:340361. [PMID: 36156233 DOI: 10.1016/j.aca.2022.340361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The number of open access databases containing experimental and predicted collision cross section (CCS) values is rising and leads to their increased use for compound identification. However, the reproducibility of reference values with different instrumental designs and the comparison between predicted and experimental CCS values is still under evaluation. This study compared experimental CCS values of 56 small molecules (Contaminants of Emerging Concern) acquired by both drift tube (DT) and travelling wave (TW) ion mobility mass spectrometry (IM-MS). The TWIM-MS included two instrumental designs (Synapt G2 and VION). The experimental TWCCSN2 values obtained by the TWIM-MS systems showed absolute percent errors (APEs) < 2% in comparison to experimental DTIMS data, indicating a good correlation between the datasets. Furthermore, TWCCSN2 values of [M - H]- ions presented the lowest APEs. An influence of the compound class on APEs was observed. The applicability of prediction models based on artificial neural networks (ANN) and multivariate adaptive regression splines (MARS), both built using TWIM-MS data, was investigated for the first time for the prediction of DTCCSN2 values. For [M+H]+ and [M - H]- ions, the 95th percentile confidence intervals of observed APEs were comparable to values reported for both models indicating a good applicability for DTIMS predictions. For the prediction of DTCCSN2 values of [M+Na]+ ions, the MARS based model provided the best results with 73.9% of the ions showing APEs below the threshold reported for [M+Na]+. Finally, recommendations for database transfer and applications of prediction models for future DTIMS studies are made.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avinguda de Vicent Sos Baynat, 12006, Castelló, Spain
| | - Glenn Van Haesendonck
- Biomolecular & Analytical Mass Spectrometry (BAMS) Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Filip Lemière
- Biomolecular & Analytical Mass Spectrometry (BAMS) Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avinguda de Vicent Sos Baynat, 12006, Castelló, Spain
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | | | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avinguda de Vicent Sos Baynat, 12006, Castelló, Spain.
| |
Collapse
|
157
|
Feuerstein ML, Hernández-Mesa M, Kiehne A, Le Bizec B, Hann S, Dervilly G, Causon T. Comparability of Steroid Collision Cross Sections Using Three Different IM-HRMS Technologies: An Interplatform Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1951-1959. [PMID: 36047677 PMCID: PMC9545150 DOI: 10.1021/jasms.2c00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Steroids play key roles in various biological processes and are characterized by many isomeric variants, which makes their unambiguous identification challenging. Ion mobility-mass spectrometry (IM-MS) has been proposed as a suitable platform for this application, particularly using collision cross section (CCS) databases obtained from different commercial IM-MS instruments. CCS is seen as an ideal additional identification parameter for steroids as long-term repeatability and interlaboratory reproducibility of this measurand are excellent and matrix effects are negligible. While excellent results were demonstrated for individual IM-MS technologies, a systematic comparison of CCS derived from all major commercial IM-MS technologies has not been performed. To address this gap, a comprehensive interlaboratory comparison of 142 CCS values derived from drift tube (DTIM-MS), traveling wave (TWIM-MS), and trapped ion mobility (TIM-MS) platforms using a set of 87 steroids was undertaken. Besides delivering three instrument-specific CCS databases, systematic comparisons revealed excellent interlaboratory performance for 95% of the ions with CCS biases within ±1% for TIM-MS and within ±2% for TWIM-MS with respect to DTIM-MS values. However, a small fraction of ions (<1.5%) showed larger biases of up to 7% indicating that differences in the ion conformation sampled on different instrument types need to be further investigated. Systematic differences between CCS derived from different IM-MS analyzers and implications on the applicability for nontargeted analysis are critically discussed. To the best of our knowledge, this is the most comprehensive interlaboratory study comparing CCS from three different IM-MS technologies for analysis of steroids and small molecules in general.
Collapse
Affiliation(s)
- Max L. Feuerstein
- Department
of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | | - Andrea Kiehne
- Bruker
Daltonics GmbH & Co. KG, 28359 Bremen, Germany
| | | | - Stephan Hann
- Department
of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | | - Tim Causon
- Department
of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
158
|
Butler KE, Baker ES. A High-Throughput Ion Mobility Spectrometry-Mass Spectrometry Screening Method for Opioid Profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1904-1913. [PMID: 36136315 PMCID: PMC9616473 DOI: 10.1021/jasms.2c00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2017, the United States Department of Health and Human Services declared the widespread misuse and abuse of prescription and illicit opioids an epidemic. However, this epidemic dates back to the 1990s when opioids were extensively prescribed for pain management. Currently, opioids are still recommended for pain management, and given their abuse potential, rapid screening is imperative for patient treatment. Of particular importance is assessing pain management patient compliance, where evaluating drug use is crucial for preventing opioid abuse and potential overdoses. In this work, we utilized drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) to develop a rapid screening method for 33 target opioids and opioid urinary metabolites. Collision cross section values were determined for all target molecules using a flow-injection DTIMS-MS method, and clear differentiation of 27 out of the 33 opioids without prior chromatographic separation was observed when utilizing a high resolution demultiplexing screening approach. An automated solid phase extraction (SPE) platform was then coupled to DTIMS-MS for 10 s sample-to-sample analyses. This SPE-IMS-MS approach enabled the rapid screening of urine samples for opioids and presents a major improvement in sample throughput compared to traditional chromatographic analyses coupled with MS, which routinely take several minutes per sample. Overall, this vast reduction in analysis time facilitates a faster turn-around for patient samples, providing great benefits to clinical applications.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
159
|
Leyva D, Jaffé R, Courson J, Kominoski JS, Tariq MU, Saeed F, Fernandez-Lima F. Molecular level characterization of DOM along a freshwater-to-estuarine coastal gradient in the Florida Everglades. AQUATIC SCIENCES 2022; 84:63. [PMID: 39917543 PMCID: PMC11800925 DOI: 10.1007/s00027-022-00887-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/20/2022] [Indexed: 02/09/2025]
Abstract
Understanding dissolved organic matter (DOM) export to the ocean is needed to assess the impact of climate change on the global carbon cycle. The molecular-level characterization of DOM compositional variability and complexity in aquatic ecosystems has been analytically challenging. Advanced analytical studies based on ultra-high resolution mass spectrometry (FT ICR MS) have proven highly successful to better understand the dynamics of DOM in coastal ecosystems. In this work, the molecular signature of DOM along a freshwater-to-estuarine gradient in the Harney River, Florida Everglades was analyzed for the first time using a novel approach based on tandem high resolution ion mobility and ultra-high resolution mass spectrometry (ESI-TIMS-FT ICR MS). This method enhances traditional DOM molecular characterization by including the molecular isomeric complexity. An average of six and up to 12 isomers were observed per chemical formula and characteristic isomers to each section of the freshwater-to-estuarine gradient were successfully identified. We measured a decrease in the chemical complexity and diversity (both in the number of molecular formulas and number of isomers per chemical formula) with increasing salinity; this trend is representative of the biogeochemical transformations of DOM during transport and along source variations, showing both clear degradation products and formation of new components along the salinity transect. The inclusion of the isomeric content at the molecular formula allowed to differentiate isomeric species that are present along the transect (mainly lignin-type components) and responsible for the DOM refractory nature. DOM isomeric fingerprints characteristic of the molecular variability along the Everglades freshwater-to-estuarine gradient are also described.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Rudolf Jaffé
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Jessica Courson
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - John S. Kominoski
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Muhammad Usman Tariq
- School of Computing and Information Science, Florida International University, Miami, FL 33199, USA
| | - Fahad Saeed
- School of Computing and Information Science, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
160
|
Yang F, van Herwerden D, Preud’homme H, Samanipour S. Collision Cross Section Prediction with Molecular Fingerprint Using Machine Learning. Molecules 2022; 27:6424. [PMID: 36234961 PMCID: PMC9572128 DOI: 10.3390/molecules27196424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
High-resolution mass spectrometry is a promising technique in non-target screening (NTS) to monitor contaminants of emerging concern in complex samples. Current chemical identification strategies in NTS experiments typically depend on spectral libraries, chemical databases, and in silico fragmentation tools. However, small molecule identification remains challenging due to the lack of orthogonal sources of information (e.g., unique fragments). Collision cross section (CCS) values measured by ion mobility spectrometry (IMS) offer an additional identification dimension to increase the confidence level. Thanks to the advances in analytical instrumentation, an increasing application of IMS hybrid with high-resolution mass spectrometry (HRMS) in NTS has been reported in the recent decades. Several CCS prediction tools have been developed. However, limited CCS prediction methods were based on a large scale of chemical classes and cross-platform CCS measurements. We successfully developed two prediction models using a random forest machine learning algorithm. One of the approaches was based on chemicals' super classes; the other model was direct CCS prediction using molecular fingerprint. Over 13,324 CCS values from six different laboratories and PubChem using a variety of ion-mobility separation techniques were used for training and testing the models. The test accuracy for all the prediction models was over 0.85, and the median of relative residual was around 2.2%. The models can be applied to different IMS platforms to eliminate false positives in small molecule identification.
Collapse
Affiliation(s)
- Fan Yang
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM-UMR5254), E2S UPPA, CNRS, 64000 Pau, France
| | - Denice van Herwerden
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hugues Preud’homme
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM-UMR5254), E2S UPPA, CNRS, 64000 Pau, France
| | - Saer Samanipour
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- UvA Data Science Center, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
161
|
Sarkar D, Sinclair E, Lim SH, Walton-Doyle C, Jafri K, Milne J, Vissers JP, Richardson K, Trivedi DK, Silverdale M, Barran P. Paper Spray Ionization Ion Mobility Mass Spectrometry of Sebum Classifies Biomarker Classes for the Diagnosis of Parkinson's Disease. JACS AU 2022; 2:2013-2022. [PMID: 36186554 PMCID: PMC9516698 DOI: 10.1021/jacsau.2c00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and identification of robust biomarkers to complement clinical diagnosis will accelerate treatment options. Here, we demonstrate the use of direct infusion of sebum from skin swabs using paper spray ionization coupled with ion mobility mass spectrometry (PS-IM-MS) to determine the regulation of molecular classes of lipids in sebum that are diagnostic of PD. A PS-IM-MS method for sebum samples that takes 3 min per swab was developed and optimized. The method was applied to skin swabs collected from 150 people and elucidates ∼4200 features from each subject, which were independently analyzed. The data included high molecular weight lipids (>600 Da) that differ significantly in the sebum of people with PD. Putative metabolite annotations of several lipid classes, predominantly triglycerides and larger acyl glycerides, were obtained using accurate mass, tandem mass spectrometry, and collision cross section measurements.
Collapse
Affiliation(s)
- Depanjan Sarkar
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | - Eleanor Sinclair
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | - Sze Hway Lim
- Department
of Neurology, Salford Royal Foundation Trust, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Caitlin Walton-Doyle
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | - Kaneez Jafri
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | - Joy Milne
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | | | - Keith Richardson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Drupad K. Trivedi
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | - Monty Silverdale
- Department
of Neurology, Salford Royal Foundation Trust, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Perdita Barran
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
162
|
Czekner J, Schneider EK, Weis P, Kappes MM. Quantitation of Enantiomeric Excess in an Achiral Environment Using Trapped Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1692-1696. [PMID: 36018317 DOI: 10.1021/jasms.2c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a novel, straightforward method to determine the enantiomeric excess (ee) of tryptophan (Trp) and N-tert-butyloxycarbonyl-O-benzylserine (BBS) solutions without chiral additives. For this, lithium carbonate, sodium carbonate, or silver acetate was added to solutions of Trp or BBS. Singly negatively charged dimer and trimer clusters were then formed by electrospray ionization and analyzed using trapped ion mobility spectrometry (TIMS) and time-of-flight mass spectrometry. When a solution contains both enantiomers, homo- and heterochiral clusters are generated which can be separated in the TIMS-tunnel based on their different mobilities using a nitrogen buffer gas. The ratio of homochiral to heterochiral clusters shows a binomial distribution and can be calibrated with solutions of known ee to yield ee measurements of samples with better than 1% accuracy. Samples can be prepared rapidly, and measurements are completed in less than 5 min. Current instrumental limitations restrict this method to rigid molecules with large functional groups adjacent to the chiral centers. Nevertheless, we expect this method to be applicable to many pharmaceuticals and provide the example of 1-methyltryptophan to demonstrate this.
Collapse
Affiliation(s)
- Joseph Czekner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Erik K Schneider
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
163
|
Heravi T, Arslanian AJ, Johnson SD, Dearden DV. Ion Mobility and Fourier Transform Ion Cyclotron Resonance Collision Cross Section Techniques Yield Long-Range and Hard-Sphere Results, Respectively. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1644-1652. [PMID: 35960880 DOI: 10.1021/jasms.2c00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We determined collision cross section (CCS) values for singly and doubly charged cucurbit[n]uril (n = 5-7), decamethylcucurbit[5]uril, and cyclohexanocucurbit[5]uril complexes of alkali metal cations (Li+-Cs+). These hosts are relatively rigid. CCS values calculated using the projection approximation (PA) for computationally modeled structures of a given host are nearly identical for +1 and +2 complexes, with weak metal ion dependence, whereas trajectory method (TM) calculations of CCS for the same structures consistently yield values 7-10% larger for the +2 complexes than for the corresponding +1 complexes and little metal ion dependence. Experimentally, we measured relative CCS values in SF6 for pairs of +1 and +2 complexes of the cucurbituril hosts using the cross-sectional areas by Fourier transform ion cyclotron resonance ("CRAFTI") method. At center-of-mass collision energies <∼30 eV, CRAFTI CCS values are sensitive to the relative binding energies in the +1 and +2 complexes, but at collision energies >∼40 eV (sufficient that ion decoherence occurs on essentially every collision) that dependence is not evident. Consistent with the PA calculations, these experiments found that the +2 complex ions have CCS values ranging between 94 and 105% of those of their +1 counterparts (increasing with metal ion size). In contrast, but consistent with the TM CCS calculations, ion mobility measurements of the same complexes at close to thermal energies in much less polarizable N2 find the CCS of +2 complexes to be in all cases 9-12% larger than those of the corresponding +1 complexes, with little metal ion dependence.
Collapse
Affiliation(s)
- Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Spencer D Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
164
|
Velosa DC, Dunham AJ, Rivera ME, Neal SP, Chouinard CD. Improved Ion Mobility Separation and Structural Characterization of Steroids using Derivatization Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1761-1771. [PMID: 35914213 DOI: 10.1021/jasms.2c00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Collapse
Affiliation(s)
- Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Andrew J Dunham
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Marcus E Rivera
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
165
|
Erausquin E, Morán-Garrido M, Sáiz J, Barbas C, Dichiara-Rodríguez G, Urdiciain A, López-Sagaseta J. Identification of a broad lipid repertoire associated to the endothelial cell protein C receptor (EPCR). Sci Rep 2022; 12:15127. [PMID: 36068249 PMCID: PMC9448719 DOI: 10.1038/s41598-022-18844-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Evidence is mounting that the nature of the lipid bound to the endothelial cell protein C receptor (EPCR) has an impact on its biological roles, as observed in anticoagulation and more recently, in autoimmune disease. Phosphatidylethanolamine and phosphatidylcholine species dominate the EPCR lipid cargo, yet, the extent of diversity in the EPCR-associated lipid repertoire is still unknown and remains to be uncovered. We undertook mass spectrometry analyses to decipher the EPCR lipidome, and identified species not yet described as EPCR ligands, such as phosphatidylinositols and phosphatidylserines. Remarkably, we found further, more structurally divergent lipids classes, represented by ceramides and sphingomyelins, both in less abundant quantities. In support of our mass spectrometry results and previous studies, high-resolution crystal structures of EPCR in three different space groups point to a prevalent diacyl phospholipid moiety in EPCR’s pocket but a mobile and ambiguous lipid polar head group. In sum, these studies indicate that EPCR can associate with varied lipid classes, which might impact its properties in anticoagulation and the onset of autoimmune disease.
Collapse
Affiliation(s)
- Elena Erausquin
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain.,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain.,Navarra University Hospital, 31008, Pamplona, Navarra, Spain
| | - María Morán-Garrido
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Gilda Dichiara-Rodríguez
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain.,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain.,Navarra University Hospital, 31008, Pamplona, Navarra, Spain
| | - Alejandro Urdiciain
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain.,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain.,Navarra University Hospital, 31008, Pamplona, Navarra, Spain
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain. .,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain. .,Navarra University Hospital, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
166
|
Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines. Se Pu 2022; 40:782-787. [PMID: 36156624 PMCID: PMC9516353 DOI: 10.3724/sp.j.1123.2022.01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
离子淌度质谱(IM-MS)是一种将离子淌度分离与质谱分析相结合的新型分析技术。IM-MS的主要优势不仅是在质谱检测前提供了基于气相离子形状、大小、电荷数等因素的多一维分离,而且能够提供碰撞截面积、漂移时间等质谱信息进而辅助化合物鉴定。近年来,随着IM-MS技术的不断发展,该技术在中药化学成分分析中受到越来越多的关注。首先,IM-MS已成功应用于改善中药复杂成分尤其是同分异构体或等量异位素等成分的分离;其次,IM-MS可通过多重碎裂模式辅助高质量中药小分子质谱信息的获取;此外,IM-MS提供的高维质谱数据信息还可促进中药复杂体系多成分的整合分析。该文在对IM-MS分类和基本原理进行概述的基础上,从分离能力及分离策略、多重碎裂模式、多维质谱数据处理策略3个方面,重点综述了IM-MS在中药化学成分分析中的应用,以期为IM-MS在中药化学成分研究提供参考。
Collapse
|
167
|
Kuo ST, Tang S, Russell DH, Yan X. Characterization of lipid carbon-carbon double-bond isomerism via ion mobility-mass spectrometry (IMS-MS) combined with cuprous ion-induced fragmentation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 479:116889. [PMID: 37577146 PMCID: PMC10421641 DOI: 10.1016/j.ijms.2022.116889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Characterization of phospholipid isomers is challenging due to their identical masses and similarities in structures. Here, we report that copper (I) ion complexed with phospholipids can be used to characterize both carbon-carbon double-bond (C=C bond) positional and geometric isomers. We investigate the distinct fragmentation patterns induced by the π-Cu+ interaction and developed strategies to rapidly characterize the isomerism of phospholipids. The multi-stage fragmentation of Cu+-adducted lipids by collision-induced dissociation can generate diagnostic ions to locate C=C bonds in unsaturated lipids. Furthermore, the collision cross sections of Cu+-adducted parent lipids and product ions can be used as molecular descriptors in distinguishing C=C bond geometric isomers. A bovine heart lipid extract containing Z-configuration lipids spiked with an E-configuration lipid was analyzed to demonstrate rapidness and effectiveness of the method in distinguishing lipid geometric isomers from a real sample.
Collapse
Affiliation(s)
| | | | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
168
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
169
|
Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. MASS SPECTROMETRY REVIEWS 2022; 41:695-721. [PMID: 33492707 DOI: 10.1002/mas.21685] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| | - Estelle Rathahao-Paris
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, 91191, France
| | - Sandra Alves
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| |
Collapse
|
170
|
A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry. Anal Chim Acta 2022; 1226:340236. [DOI: 10.1016/j.aca.2022.340236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022]
|
171
|
Liu W, Zhang WD, Li T, Zhou Z, Luo M, Chen X, Cai Y, Zhu ZJ. Four-Dimensional Untargeted Profiling of N-Acylethanolamine Lipids in the Mouse Brain Using Ion Mobility–Mass Spectrometry. Anal Chem 2022; 94:12472-12480. [DOI: 10.1021/acs.analchem.2c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenbin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-dong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingdu Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Road, Pudong, Shanghai 201210, China
| |
Collapse
|
172
|
Feuerstein ML, Hernández-Mesa M, Valadbeigi Y, Le Bizec B, Hann S, Dervilly G, Causon T. Critical evaluation of the role of external calibration strategies for IM-MS. Anal Bioanal Chem 2022; 414:7483-7493. [PMID: 35960317 PMCID: PMC9482903 DOI: 10.1007/s00216-022-04263-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
The major benefits of integrating ion mobility (IM) into LC-MS methods for small molecules are the additional separation dimension and especially the use of IM-derived collision cross sections (CCS) as an additional ion-specific identification parameter. Several large CCS databases are now available, but outliers in experimental interplatform IM-MS comparisons are identified as a critical issue for routine use of CCS databases for identity confirmation. We postulate that different routine external calibration strategies applied for traveling wave (TWIM-MS) in comparison to drift tube (DTIM-MS) and trapped ion mobility (TIM-MS) instruments is a critical factor affecting interplatform comparability. In this study, different external calibration approaches for IM-MS were experimentally evaluated for 87 steroids, for which TWCCSN2, DTCCSN2 and TIMCCSN2 are available. New reference CCSN2 values for commercially available and class-specific calibrant sets were established using DTIM-MS and the benefit of using consolidated reference values on comparability of CCSN2 values assessed. Furthermore, use of a new internal correction strategy based on stable isotope labelled (SIL) internal standards was shown to have potential for reducing systematic error in routine methods. After reducing bias for CCSN2 between different platforms using new reference values (95% of TWCCSN2 values fell within 1.29% of DTCCSN2 and 1.12% of TIMCCSN2 values, respectively), remaining outliers could be confidently classified and further studied using DFT calculations and CCSN2 predictions. Despite large uncertainties for in silico CCSN2 predictions, discrepancies in observed CCSN2 values across different IM-MS platforms as well as non-uniform arrival time distributions could be partly rationalized.
Collapse
Affiliation(s)
- Max L Feuerstein
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | | - Younes Valadbeigi
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | | - Tim Causon
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
173
|
Ben Faleh A, Warnke S, Bansal P, Pellegrinelli RP, Dyukova I, Rizzo TR. Identification of Mobility-Resolved N-Glycan Isomers. Anal Chem 2022; 94:10101-10108. [PMID: 35797429 PMCID: PMC9310030 DOI: 10.1021/acs.analchem.2c01181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Glycan analysis has
evolved considerably during the last decade.
The advent of high-resolution ion-mobility spectrometry has enabled
the separation of isomers with only the slightest of structural differences.
However, the ability to separate such species raises the problem of
identifying all the mobility-resolved peaks that are observed, especially
when analytical standards are not available. In this work, we report
an approach based on the combination of IMSn with cryogenic
vibrational spectroscopy to identify N-glycan reducing-end
anomers. By identifying the reducing-end α and β anomers
of diacetyl-chitobiose, which is a disaccharide that forms part of
the common core of all N-glycans, we are able to
assign mobility peaks to reducing anomers of a selection of N-glycans of different sizes, starting from trisaccharides
such as Man-1 up to glycans containing nine monosaccharide units,
such as G2. By building an infrared fingerprint database of the identified N-glycans, our approach allows unambiguous identification
of mobility peaks corresponding to reducing-end anomers and distinguishes
them from positional isomers that might be present in a complex mixture.
Collapse
Affiliation(s)
- Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Priyanka Bansal
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Robert P Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Irina Dyukova
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
174
|
Rose B, May JC, Reardon AR, McLean JA. Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1229-1237. [PMID: 35653638 PMCID: PMC9516683 DOI: 10.1021/jasms.2c00067] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Structures for lossless ion manipulation-based high-resolution ion mobility (HRIM) interfaced with mass spectrometry has emerged as a powerful tool for the separation and analysis of many isomeric systems. IM-derived collision cross section (CCS) is increasingly used as a molecular descriptor for structural analysis and feature annotation, but there are few studies on the calibration of CCS from HRIM measurements. Here, we examine the accuracy, reproducibility, and practical applicability of CCS calibration strategies for a broad range of lipid subclasses and develop a straightforward and generalizable framework for obtaining high-resolution CCS values. We explore the utility of using structurally similar custom calibrant sets as well as lipid subclass-specific empirically derived correction factors. While the lipid calibrant sets lowered overall bias of reference CCS values from ∼2-3% to ∼0.5%, application of the subclass-specific correction to values calibrated with a broadly available general calibrant set resulted in biases <0.4%. Using this method, we generated a high-resolution CCS database containing over 90 lipid values with HRIM. To test the applicability of this method to a broader class range typical of lipidomics experiments, a standard lipid mix was analyzed. The results highlight the importance of both class and arrival time range when correcting or scaling CCS values and provide guidance for implementation of the method for more general applications.
Collapse
|
175
|
A rapid and robust method for amino acid quantification using a simple N-hydroxysuccinimide ester derivatization and liquid chromatography-ion mobility-mass spectrometry. Anal Bioanal Chem 2022; 414:5549-5559. [PMID: 35338375 DOI: 10.1007/s00216-022-03993-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/01/2022]
Abstract
The vast majority of mass spectrometry (MS)-based metabolomics studies employ reversed-phase liquid chromatography (RPLC) to separate analytes prior to MS detection. Highly polar metabolites, such as amino acids (AAs), are poorly retained by RPLC, making quantitation of these key species challenging across the broad concentration ranges typically observed in biological specimens, such as cell extracts. To improve the detection and quantitation of AAs in microglial cell extracts, the implementation of a 4-dimethylaminobenzoylamido acetic acid N-hydroxysuccinimide ester (DBAA-NHS) derivatization agent was explored for its ability to improve both analyte retention and detection limits in RPLC-MS. In addition to the introduction of the DBAA-NHS labeling reagent, a uniformly (U) 13C-labeled yeast extract was also introduced during the sample preparation workflow as an internal standard (IS) to eliminate artifacts and to enable targeted quantitation of AAs, as well as untargeted amine submetabolome profiling. To improve method sensitivity and selectivity, multiplexed drift-tube ion mobility (IM) was integrated into the LC-MS workflow, facilitating the separation of isomeric metabolites, and improving the structural identification of unknown metabolites. Implementation of the U-13C-labeled yeast extract during the multiplexed LC-IM-MS analysis enabled the quantitation of 19 of the 20 common AAs, supporting a linear dynamic range spanning up to three orders of magnitude in concentration for microglial cell extracts, in addition to reducing the required cell count for reliable quantitation from 10 to 5 million cells per sample.
Collapse
|
176
|
Hupin S, Tognetti V, Rosu F, Renaudineau S, Proust A, Izzet G, Gabelica V, Afonso C, Lavanant H. Lennard-Jones interaction parameters of Mo and W in He and N 2 from collision cross-sections of Lindqvist and Keggin polyoxometalate anions. Phys Chem Chem Phys 2022; 24:16156-16166. [PMID: 35748666 DOI: 10.1039/d2cp00823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drift tube ion mobility spectrometry (DTIMS) coupled with mass spectrometry was used to determine the collision cross-sections (DTCCS) of polyoxometalate anions in helium and nitrogen. As the geometry of the ion, more than its mass, determines the collision cross-section with a given drift gas molecule, we found that both Lindqvist ions Mo6O192- and W6O192- had a DTCCSHe value of 103 ± 2 Å2, and both Keggin ions PMo12O403- and PW12O403- had a DTCCSHe value of 170 ± 2 Å2. Similarly, ion mobility experiments in N2 led to DTCCSN2 values of 223 ± 2 Å2 and 339 ± 4 Å2 for Lindqvist and Keggin anions, respectively. Using optimized structures and partial charges determined from density functional theory calculations, followed by CCS calculations via the trajectory method, we determined Lennard-Jones 6-12 potential parameters ε, σ of 5.60 meV, 3.50 Å and 3.75 meV, 4.40 Å for both Mo and W atoms interacting with He and N2, respectively. These parameters reproduced the CCS of polyoxometalates within 2% accuracy.
Collapse
Affiliation(s)
- Sébastien Hupin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Vincent Tognetti
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Frédéric Rosu
- CNRS, University of Bordeaux and INSERM, Institut Européen de Chimie et Biologie (IECB, UMS3033, US001), 2 rue Robert Escarpit, 33600 Pessac, France
| | - Séverine Renaudineau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, F-75005 Paris, France
| | - Anna Proust
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, F-75005 Paris, France
| | - Guillaume Izzet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, F-75005 Paris, France
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), site IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Hélène Lavanant
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
177
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
178
|
Izquierdo-Sandoval D, Fabregat-Safont D, Lacalle-Bergeron L, Sancho JV, Hernández F, Portoles T. Benefits of Ion Mobility Separation in GC-APCI-HRMS Screening: From the Construction of a CCS Library to the Application to Real-World Samples. Anal Chem 2022; 94:9040-9047. [PMID: 35696365 PMCID: PMC9974067 DOI: 10.1021/acs.analchem.2c01118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The performance of gas chromatography (GC) combined with the improved identification properties of ion mobility separation coupled to high-resolution mass spectrometry (IMS-HRMS) is presented as a promising approach for the monitoring of (semi)volatile compounds in complex matrices. The soft ionization promoted by an atmospheric pressure chemical ionization (APCI) source designed for GC preserves the molecular and/or quasi-molecular ion information enabling a rapid, sensitive, and efficient wide-scope screening. Additionally, ion mobility separation (IMS) separates species of interest from coeluting matrix interferences and/or resolves isomers based on their charge, shape, and size, making IMS-derived collision cross section (CCS) a robust and matrix-independent parameter comparable between instruments. In this way, GC-APCI-IMS-HRMS becomes a powerful approach for both target and suspect screening due to the improvements in (tentative) identifications. In this work, mobility data for 264 relevant multiclass organic pollutants in environmental and food-safety fields were collected by coupling GC-APCI with IMS-HRMS, generating CCS information for molecular ion and/or protonated molecules and some in-source fragments. The identification power of GC-APCI-IMS-HRMS for the studied compounds was assessed in complex-matrix samples, including fish feed extracts, surface waters, and different fruit and vegetable samples.
Collapse
|
179
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
180
|
Moran-Garrido M, Camunas-Alberca SM, Gil-de-la Fuente A, Mariscal A, Gradillas A, Barbas C, Sáiz J. Recent developments in data acquisition, treatment and analysis with ion mobility-mass spectrometry for lipidomics. Proteomics 2022; 22:e2100328. [PMID: 35653360 DOI: 10.1002/pmic.202100328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Lipids are involved in many biological processes and their study is constantly increasing. To identify a lipid among thousand requires of reliable methods and techniques. Ion Mobility (IM) can be coupled with Mass Spectrometry (MS) to increase analytical selectivity in lipid analysis of lipids. IM-MS has experienced an enormous development in several aspects, including instrumentation, sensitivity, amount of information collected and lipid identification capabilities. This review summarizes the latest developments in IM-MS analyses for lipidomics and focusses on the current acquisition modes in IM-MS, the approaches for the pre-treatment of the acquired data and the subsequent data analysis. Methods and tools for the calculation of Collision Cross Section (CCS) values of analytes are also reviewed. CCS values are commonly studied to support the identification of lipids, providing a quasi-orthogonal property that increases the confidence level in the annotation of compounds and can be matched in CCS databases. The information contained in this review might be of help to new users of IM-MS to decide the adequate instrumentation and software to perform IM-MS experiments for lipid analyses, but also for other experienced researchers that can reconsider their routines and protocols. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Moran-Garrido
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Sandra M Camunas-Alberca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Alberto Gil-de-la Fuente
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.,Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Antonio Mariscal
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.,Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
181
|
Roman-Hubers AT, Cordova AC, Rohde AM, Chiu WA, McDonald TJ, Wright FA, Dodds JN, Baker ES, Rusyn I. Characterization of Compositional Variability in Petroleum Substances. FUEL (LONDON, ENGLAND) 2022; 317:123547. [PMID: 35250041 PMCID: PMC8896784 DOI: 10.1016/j.fuel.2022.123547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the process of registration of substances of Unknown or Variable Composition, Complex Reaction Products or Biological Materials (UVCBs), information sufficient to enable substance identification must be provided. Substance identification for UVCBs formed through petroleum refining is particularly challenging due to their chemical complexity, as well as variability in refining process conditions and composition of the feedstocks. This study aimed to characterize compositional variability of petroleum UVCBs both within and across product categories. We utilized ion mobility spectrometry (IMS)-MS as a technique to evaluate detailed chemical composition of independent production cycle-derived samples of 6 petroleum products from 3 manufacturing categories (heavy aromatic, hydrotreated light paraffinic, and hydrotreated heavy paraffinic). Atmospheric pressure photoionization and drift tube IMS-MS were used to identify structurally related compounds and quantified between- and within-product variability. In addition, we determined both individual molecules and hydrocarbon blocks that were most variable in samples from different production cycles. We found that detailed chemical compositional data on petroleum UVCBs obtained from IMS-MS can provide the information necessary for hazard and risk characterization in terms of quantifying the variability of the products in a manufacturing category, as well as in subsequent production cycles of the same product.
Collapse
Affiliation(s)
- Alina T. Roman-Hubers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Alexandra C. Cordova
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Arlean M. Rohde
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas J. McDonald
- Departments of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, United States
| | - Fred A. Wright
- Departments of Statistics and Biological Sciences, Raleigh, North Carolina 27695, United States
| | - James N. Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
182
|
Ross D, Seguin RP, Krinsky AM, Xu L. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1061-1072. [PMID: 35548857 PMCID: PMC9165597 DOI: 10.1021/jasms.2c00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drug metabolite identification is a bottleneck of drug metabolism studies due to the need for time-consuming chromatographic separation and structural confirmation. Ion mobility-mass spectrometry (IM-MS), on the other hand, separates analytes on a rapid (millisecond) time scale and enables the measurement of collision cross section (CCS), a unique physical property related to an ion's gas-phase size and shape, which can be used as an additional parameter for identification of unknowns. A current limitation to the application of IM-MS to the identification of drug metabolites is the lack of reference CCS values. In this work, we assembled a large-scale database of drug and drug metabolite CCS values using high-throughput in vitro drug metabolite generation and a rapid IM-MS analysis with automated data processing. Subsequently, we used this database to train a machine learning-based CCS prediction model, employing a combination of conventional 2D molecular descriptors and novel 3D descriptors, achieving high prediction accuracies (0.8-2.2% median relative error on test set data). The inclusion of 3D information in the prediction model enables the prediction of different CCS values for different protomers, conformers, and positional isomers, which is not possible using conventional 2D descriptors. The prediction models, dmCCS, are available at https://CCSbase.net/dmccs_predictions.
Collapse
Affiliation(s)
| | | | | | - Libin Xu
- . Tel: (206) 543-1080. Fax: (206) 685-3252
| |
Collapse
|
183
|
Zlibut E, May JC, McLean JA. Enantiomer Differentiation of Amino Acid Stereoisomers by Structural Mass Spectrometry Using Noncovalent Trinuclear Copper Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:996-1002. [PMID: 35580025 DOI: 10.1021/jasms.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous work has demonstrated that copper complexation strategies can be used with tandem MS (MS/MS) and, more recently, ion mobility-mass spectrometry (IM-MS) to differentiate chiral isomers based upon enantiomeric-specific binding. In this study, we investigate the separation of chiral amino acids (AAs) forming trinuclear complexes that can be directly resolved by IM-MS analyses. Twenty standard AAs of both d- and l-chirality were investigated. Specific AAs including d/l-histidine, d/l-proline, d/l-glutamine, d/l-tyrosine, and d/l-tryptophan were evaluated as "chiral selectors" that, when combined with copper, were found to promote selective complexation with specific AA enantiomers. Significant enantiomer differentiation was observed in the IM spectra for hydrophobic AAs acids with peak-to-peak resolutions ranging from 0.63 to 1.15. Among the chiral selectors investigated, histidine provided the best enantioselectivity, followed by tryptophan, suggesting the aromatic structure plays an important role in forming chiral-specific ion complexes. Unlike MS/MS methods where chiral selectors with l-stereochemistry enhance the differentiation, the chirality of the selector was found to have no significant effect on observed IM separation with both d- and l-selectors providing similar resolutions but with inverted IM arrival time ordering. To investigate the structural differences between resolvable chiral complexes, a combination of MS/MS, collision cross-section (CCS) measurements, and molecular mechanics techniques was used. Candidate trinuclear structures of the stoichiometry [(Cu2+)3(d/lIle)3(lHis)2 - 5H]+ were constructed with guidance from empirical MS/MS results. Of the 48 theoretical structures generated, one enantiomeric cluster pair yielded close correlation (<1%) with experimental CCS measurements, suggesting the most enantioselective ion complexes observed in this work are bridged by three coppers.
Collapse
Affiliation(s)
- Emanuel Zlibut
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235 United States
| |
Collapse
|
184
|
te Brinke E, Arrizabalaga-Larrañaga A, Blokland MH. Insights of ion mobility spectrometry and its application on food safety and authenticity: A review. Anal Chim Acta 2022; 1222:340039. [DOI: 10.1016/j.aca.2022.340039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
|
185
|
Manz C, Götze M, Frank C, Zappe A, Pagel K. Dextran as internal calibrant for N-glycan analysis by liquid chromatography coupled to ion mobility-mass spectrometry. Anal Bioanal Chem 2022; 414:5023-5031. [PMID: 35614231 PMCID: PMC9234027 DOI: 10.1007/s00216-022-04133-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
LC-MS is one of the most important tools for the comprehensive characterization of N-glycans. Despite many efforts to speed up glycan analysis via optimized sample preparation (e.g., faster enzyme digestion in combination with instant or rapid labeling dyes), a major bottleneck remains the rather long measurement times of HILIC chromatography. Further complication arises from the necessity to concomitantly calibrate with an external standard to allow for accurate retention times and the conversion into more robust GU values. Here we demonstrate the use of an internal calibration strategy for HILIC chromatography to speed up glycan analysis. By reducing the number of utilized dextran oligosaccharides, the calibrant can be spiked directly into the sample such that external calibration runs are no longer required. The minimized dextran ladder shows accurate GU calibration with a minor deviation of well below 1% and can be applied without modifications in sample preparation or data processing. We further demonstrate the simultaneous use of the minimized dextran ladder as calibrant for the estimation of CCS values in traveling wave ion mobility spectrometry. In both cases, the minimized dextran ladder enables the measurement of calibrant and sample in a single HPLC run without losing information or accuracy.
Collapse
Affiliation(s)
- Christian Manz
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.,Analytical Chemistry, CMC, Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Götze
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany
| | - Clemens Frank
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany
| | - Andreas Zappe
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany. .,Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.
| |
Collapse
|
186
|
Rose BS, May JC, Picache JA, Codreanu SG, Sherrod SD, McLean JA. Improving confidence in lipidomic annotations by incorporating empirical ion mobility regression analysis and chemical class prediction. Bioinformatics 2022; 38:2872-2879. [PMID: 35561172 PMCID: PMC9306740 DOI: 10.1093/bioinformatics/btac197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Mass spectrometry-based untargeted lipidomics aims to globally characterize the lipids and lipid-like molecules in biological systems. Ion mobility increases coverage and confidence by offering an additional dimension of separation and a highly reproducible metric for feature annotation, the collision cross-section (CCS). RESULTS We present a data processing workflow to increase confidence in molecular class annotations based on CCS values. This approach uses class-specific regression models built from a standardized CCS repository (the Unified CCS Compendium) in a parallel scheme that combines a new annotation filtering approach with a machine learning class prediction strategy. In a proof-of-concept study using murine brain lipid extracts, 883 lipids were assigned higher confidence identifications using the filtering approach, which reduced the tentative candidate lists by over 50% on average. An additional 192 unannotated compounds were assigned a predicted chemical class. AVAILABILITY AND IMPLEMENTATION All relevant source code is available at https://github.com/McLeanResearchGroup/CCS-filter. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bailey S Rose
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Jaqueline A Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Simona G Codreanu
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Stacy D Sherrod
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
187
|
Kwantwi-Barima P, Harrilal CP, Garimella SVB, Attah IK, Smith RD, Ibrahim YM. Effect of Traveling Waveform Profiles on Collision Cross Section Measurements in Structures for Lossless Ion Manipulations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:783-792. [PMID: 35437008 PMCID: PMC10634343 DOI: 10.1021/jasms.1c00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We evaluated the effect of four different waveform profiles (Square, Sine, Triangle, and asymmetric Sawtooth) on the accuracy of collision cross section (CCS) measurements using traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM). The effects of the waveform profiles on the accuracy of the CCS measurements were evaluated for four classes of compounds (lipids, peptides, steroids, and nucleosides) at different TW speeds (126-206 m/s) and amplitudes (15-89 V). For the lipids and peptides, the TWIMS-based CCS (TWCCS) deviations from the corresponding drift-tube-based CCS (DTCCS) measurements were significantly lower in experiments conducted using the Sawtooth waveform compared to the square waveform. This observation can be rationalized by the lower maximum electric field experienced by ions with a Sawtooth waveform, as compared to the other waveforms, resulting in a lower probability for significant ion heating. We also observed that given approximately comparable resolution for all four waveforms, the Sawtooth waveform resulted in lower TWCCS error and a better agreement with DTCCS values than the Square waveform. In addition, for the steroids and nucleosides, an opposite TWCCS trend was observed, with higher errors with the Sawtooth waveform and lower with the Square waveform, suggesting that these molecules tend to become slightly more compact under ion heating conditions. Under optimum conditions, all TWCCS measurements on the SLIM platform were within 0.5% of those measured in the drift tube ion mobility spectrometry.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
188
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
189
|
Colby SM, Chang CH, Bade JL, Nunez JR, Blumer MR, Orton DJ, Bloodsworth KJ, Nakayasu ES, Smith RD, Ibrahim YM, Renslow RS, Metz TO. DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data. Anal Chem 2022; 94:6130-6138. [PMID: 35430813 PMCID: PMC9047447 DOI: 10.1021/acs.analchem.1c05017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step.
Collapse
Affiliation(s)
- Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Christine H. Chang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Jessica L. Bade
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Jamie R. Nunez
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Madison R. Blumer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Daniel J. Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Kent J. Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Ryan S. Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
190
|
Butler KE, Dodds JN, Flick T, Campuzano IDG, Baker ES. High-Resolution Demultiplexing (HRdm) Ion Mobility Spectrometry-Mass Spectrometry for Aspartic and Isoaspartic Acid Determination and Screening. Anal Chem 2022; 94:6191-6199. [PMID: 35421308 PMCID: PMC9635094 DOI: 10.1021/acs.analchem.1c05533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isomeric peptide analyses are an analytical challenge of great importance to therapeutic monoclonal antibody and other biotherapeutic product development workflows. Aspartic acid (Asp, D) to isoaspartic acid (isoAsp, isoD) isomerization is a critical quality attribute (CQA) that requires careful control, monitoring, and quantitation during the drug discovery and production processes. While the formation of isoAsp has been implicated in a variety of disease states such as autoimmune diseases and several types of cancer, it is also understood that the formation of isoAsp results in a structural change impacting efficacy, potency, and immunogenic properties, all of which are undesirable. Currently, lengthy ultrahigh-performance liquid chromatography (UPLC) separations are coupled with MS for CQA analyses; however, these measurements often take over an hour and drastically limit analysis throughput. In this manuscript, drift tube ion mobility spectrometry-mass spectrometry (DTIMS-MS) and both a standard and high-resolution demultiplexing approach were utilized to study eight isomeric Asp and isoAsp peptide pairs. While the limited resolving power associated with the standard DTIMS analysis only separated three of the eight pairs, the application of HRdm distinguished seven of the eight and was only unable to separate DL and isoDL. The rapid high-throughput HRdm DTIMS-MS method was also interfaced with both flow injection and an automated solid phase extraction system to present the first application of HRdm for isoAsp and Asp assessment and demonstrate screening capabilities for isomeric peptides in complex samples, resulting in a workflow highly suitable for biopharmaceutical research needs.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tawnya Flick
- Pivotal Attribute Sciences, Amgen Process Development, Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, Thousand Oaks, California 91320, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
191
|
Song XC, Canellas E, Dreolin N, Goshawk J, Nerin C. A Collision Cross Section Database for Extractables and Leachables from Food Contact Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4457-4466. [PMID: 35380813 PMCID: PMC9011387 DOI: 10.1021/acs.jafc.2c00724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The chemicals in food contact materials (FCMs) can migrate into food and endanger human health. In this study, we developed a database of traveling wave collision cross section in nitrogen (TWCCSN2) values for extractables and leachables from FCMs. The database contains a total of 1038 TWCCSN2 values from 675 standards including those commonly used additives and nonintentionally added substances in FCMs. The TWCCSN2 values in the database were compared to previously published values, and 85.7, 87.7, and 64.9% [M + H]+, [M + Na]+, and [M - H]- adducts showed deviations <2%, with the presence of protomers, post-ion mobility spectrometry dissociation of noncovalent clusters and inconsistent calibration are possible sources of CCS deviations. Our experimental TWCCSN2 values were also compared to CCS values from three prediction tools. Of the three, CCSondemand gave the most accurate predictions. The TWCCSN2 database developed will aid the identification and differentiation of chemicals from FCMs in targeted and untargeted analysis.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
- . Phone: +34 976761873
| |
Collapse
|
192
|
Schäfer A, Vetsova VA, Schneider EK, Kappes M, Seitz M, Daumann LJ, Weis P. Ion Mobility Studies of Pyrroloquinoline Quinone Aza-Crown Ether-Lanthanide Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:722-730. [PMID: 35300493 DOI: 10.1021/jasms.2c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide-dependent enzymes and their biomimetic complexes have arisen as an interesting target of research in the past decade. These enzymes, specifically, pyrroloquinoline quinone (PQQ)-bearing methanol dehydrogenases, efficiently convert alcohols to the respective aldehydes. To rationally design bioinspired alcohol dehydrogenation catalysts, it is imperative to understand the species involved in catalysis. However, given the extremely flexible coordination sphere of lanthanides, it is often difficult to assess the number and nature of the active species. Here, we show how such questions can be addressed by using a combination of ion mobility spectrometry, mass spectrometry, and quantum-chemical calculations to study the test systems PQQ and lanthanide-PQQ-crown ether ligand complexes. Specifically, we determine the gas-phase structures of [PQQH2]-, [PQQH2+H2O]-, [PQQH2+MeOH]-, [PQQ-15c5+H]+, and [PQQ-15c5+Ln+NO3]2+ (Ln = La to Lu, except Pm). In the latter case, a trend to smaller collision cross sections across the lanthanide series is clearly observable, in line with the well-known lanthanide contraction. We hope that in the future such investigations will help to guide the design and understanding of lanthanide-based biomimetic complexes optimized for catalytic function.
Collapse
Affiliation(s)
- Alexander Schäfer
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
| | - Violeta A Vetsova
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstraße 5-13, 81377 Munich, Germany
| | - Erik K Schneider
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
| | - Manfred Kappes
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
- Karlsruhe Institute of Technology Institute of Nanotechnology Hermann von Helmholtz Pl 1,76344 Eggenstein Leopoldshafen, Germany
| | - Michael Seitz
- University of Tübingen Institute of Inorganic Chemistry Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Lena J Daumann
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstraße 5-13, 81377 Munich, Germany
| | - Patrick Weis
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
| |
Collapse
|
193
|
Schneider EK, Weis P, Münzfeld L, Roesky PW, Kappes MM. Anionic Stacks of Alkali-Interlinked Yttrium and Dysprosium Bicyclooctatetraenes in Isolation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:695-703. [PMID: 35298159 DOI: 10.1021/jasms.1c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrospray ionization of THF solutions of preformed [K(18-c-6)][M(COT)2] (M = Dy(III), Y(III); COT = C8H82-,18-c-6 = C12H24O6) yields the isolated species [(M(COT)2)n+1 + nK]- with n = 0-3. High-resolution ion mobility spectrometry combined with density functional theory calculations performed for the n = 0-2 aggregates indicate that anionic multidecker stacks interlinked by potassium cations are formed. The alternating metal ions are aligned linearly: COT2--M3+-COT2--K+-COT2--M3+-COT2-. The different M3+ ionic radii lead to slight but resolvable changes in mobility and thus collision cross sections indicative of different overall heights of the multidecker stacks. CID measurements show that the aggregates fragment by cleavage at the K+ interconnections.
Collapse
Affiliation(s)
- Erik K Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 12, 76131 Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 12, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
194
|
Neal SP, Wilson KM, Velosa DC, Chouinard CD. “Targeted Glucocorticoid Analysis using Ion Mobility-Mass Spectrometry (IM-MS)”. J Mass Spectrom Adv Clin Lab 2022; 24:50-56. [PMID: 35469203 PMCID: PMC9034309 DOI: 10.1016/j.jmsacl.2022.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) for glucocorticoids. Determination of collision cross sections (CCS) for isomers. Different cation adducts shifted mobility and improved IM separation. Changing drift gas (He, Ar, CO2) shifted mobility and improved resolution.
Introduction Ion mobility-mass spectrometry (IM-MS) is an emerging technique in the -omics fields that has broad potential applicability to the clinical lab. As a rapid, gas-phase structure-based separation technique, IM-MS offers promise in isomer separations and can be easily combined with existing LC-MS methods (i.e., LC-IM-MS). Several experimental conditions, including analyte cation adducts and drift composition further provide a means to tune separations for global and/or targeted applications. Objectives The primary objective of this study was to demonstrate the utility of IM-MS under a range of experimental conditions for detection of glucocorticoids, and specifically for the separation of several isomeric pairs. Methods LC-IM-MS was used to characterize 16 glucocorticoids including three isomer pairs: cortisone/prednisolone, betamethasone/dexamethasone, and flunisolide/triamcinolone acetonide. Collision cross section (CCS) values were measured for all common adducts (e.g., protonated and sodiated) using both step-field and single-field methods. Alternative alkali, alkaline earth, and transition metals were introduced, such that their adducts could also be measured. Finally, four different drift gases (helium, nitrogen, argon, and carbon dioxide) were compared for their relative separation capability. Results LC-IM-MS offered a robust, multidimensional separation technique that allowed for the 16 glucocorticoids to be analyzed and separated in three-dimensions (retention time, CCS, and m/z). Despite the relatively modest resolution of isomer pairs under standard conditions (i.e., nitrogen drift gas, sodiated ions, etc.), improvements were observed for alkaline earth and transition metals (notable barium adducts) and in carbon dioxide drift gas. Conclusion In summary, LC-IM-MS offers potential as a clinical method due to its ease of coupling with traditional LC-MS methods and its promise for tuning separations to better resolve targeted and/or global isomers in complex biological samples.
Collapse
|
195
|
Chatterjee P, Dutta SS, Chakraborty T. Tautomers and Rotamers of Curcumin: A Combined UV Spectroscopy, High-Performance Liquid Chromatography, Ion Mobility Mass Spectrometry, and Electronic Structure Theory Study. J Phys Chem A 2022; 126:1591-1604. [PMID: 35239351 DOI: 10.1021/acs.jpca.1c08612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The structures of tautomers and rotameric forms of curcumin, the bioactive compound present in spice plant turmeric, have been investigated using ion mobility mass spectrometry (IMMS) in conjunction with high-performance liquid chromatography (HPLC) and UV-visible spectroscopy. Two tautomeric forms of this β-diketone compound, keto-enol and diketo, have been chromatographically separated, and the electronic absorption spectra for these two tautomeric forms in methanol solution have been recorded separately for the first time. The molecular identity of the HPLC-separated solution fractions is established unambiguously by recording the mass and fragmentation spectra simultaneously. The ion mobility spectrum for the deprotonated curcumin anion, [Cur-H]-, corresponding to the diketo tautomer, displays only one peak (P), and the collision cross-section (CCS) value is measured to be 185.9 Å2. However, the ion mobility spectrum corresponding to the HPLC-separated keto-enol tautomer shows three distinctly separated peaks, P, Q, and R, with CCS values of 185.9, 194.8, and 203.4 Å2, respectively, whereby peak R appears to be the most intense one, followed by peaks P and Q. The theoretically calculated CCS values of different isomers of [Cur-H]-, optimized by electronic structure theory methods, display satisfactory correlation with the experimentally observed values, corroborating our assignments. The spectral attributes also indicate the occurrence of structural rearrangements in the electrospray ionization process. With the aid of the electronic structure calculation, low-energy pathways for the occurrence of the structural isomerization to surpass the energy barrier are suggested, which are consistent with the assignments of the peaks observed in the IM spectra.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
196
|
Masike K, de Villiers A, de Beer D, Joubert E, Stander MA. Application of direct injection-ion mobility spectrometry-mass spectrometry (DI-IMS-MS) for the analysis of phenolics in honeybush and rooibos tea samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
197
|
Ion Mobility Mass Spectrometry for Structural Elucidation of Petroleum Compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
198
|
Odenkirk M, Horman BM, Dodds JN, Patisaul HB, Baker ES. Combining Micropunch Histology and Multidimensional Lipidomic Measurements for In-Depth Tissue Mapping. ACS MEASUREMENT SCIENCE AU 2022; 2:67-75. [PMID: 35647605 PMCID: PMC9139744 DOI: 10.1021/acsmeasuresciau.1c00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While decades of technical and analytical advancements have been utilized to discover novel lipid species, increase speciation, and evaluate localized lipid dysregulation at subtissue, cellular, and subcellular levels, many challenges still exist. One limitation is that the acquisition of both in-depth spatial information and comprehensive lipid speciation is extremely difficult, especially when biological material is limited or lipids are at low abundance. In neuroscience, for example, it is often desired to focus on only one brain region or subregion, which can be well under a square millimeter for rodents. Herein, we evaluate a micropunch histology method where cortical brain tissue at 2.0, 1.25, 1.0, 0.75, 0.5, and 0.25 mm diameter sizes and 1 mm depth was collected and analyzed with multidimensional liquid chromatography, ion mobility spectrometry, collision induced dissociation, and mass spectrometry (LC-IMS-CID-MS) measurements. Lipid extraction was optimized for the small sample sizes, and assessment of lipidome coverage for the 2.0 to 0.25 mm diameter sizes showed a decline from 304 to 198 lipid identifications as validated by all 4 analysis dimensions (~35% loss in coverage for ~88% less tissue). While losses were observed, the ~200 lipids and estimated 4630 neurons contained within the 0.25 punch still provided in-depth characterization of the small tissue region. Furthermore, while localization routinely achieved by mass spectrometry imaging (MSI) and single cell analyses is greater, this diameter is sufficiently small to isolate subcortical, hypothalamic, and other brain regions in adult rats, thereby increasing the coverage of lipids within relevant spatial windows without sacrificing speciation. Therefore, micropunch histology enables in-depth, region-specific lipid evaluations, an approach that will prove beneficial to a variety of lipidomic applications.
Collapse
Affiliation(s)
- Melanie
T. Odenkirk
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brian M. Horman
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - James N. Dodds
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Heather B. Patisaul
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
199
|
Yatsyna V, Abikhodr AH, Ben Faleh A, Warnke S, Rizzo TR. High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform. Anal Chem 2022; 94:2912-2917. [PMID: 35113536 PMCID: PMC8851427 DOI: 10.1021/acs.analchem.1c04843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022]
Abstract
Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Ali H. Abikhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
200
|
Dodds JN, Wang L, Patti GJ, Baker ES. Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses. Anal Chem 2022; 94:2527-2535. [PMID: 35089687 PMCID: PMC8934380 DOI: 10.1021/acs.analchem.1c04430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the combination of liquid chromatography and tandem mass spectrometry (LC-MS/MS) is commonly used for feature annotation in untargeted omics experiments, ensuring these prioritized features originate from endogenous metabolism remains challenging. Isotopologue workflows, such as isotopic ratio outlier analysis (IROA), mass isotopomer ratio analysis of U-13C labeled extracts (MIRACLE), and credentialing incorporate isotopic labels directly into metabolic precursors, guaranteeing that all features of interest are unequivocal byproducts of cellular metabolism. Furthermore, comprehensive separation and annotation of small molecules continue to challenge the metabolomics field, particularly for isomeric systems. In this paper, we evaluate the analytical utility of incorporating ion mobility spectrometry (IMS) as an additional separation mechanism into standard LC-MS/MS isotopologue workflows. Since isotopically labeled molecules codrift in the IMS dimension with their 12C versions, LC-IMS-CID-MS provides four dimensions (LC, IMS, MS, and MS/MS) to directly investigate the metabolic activity of prioritized untargeted features. Here, we demonstrate this additional selectivity by showcasing how a preliminary data set of 30 endogeneous metabolites are putatively annotated from isotopically labeled Escherichia coli cultures when analyzed by LC-IMS-CID-MS. Metabolite annotations were based on several molecular descriptors, including accurate mass measurement, carbon number, annotated fragmentation spectra, and collision cross section (CCS), collectively illustrating the importance of incorporating IMS into isotopologue workflows. Overall, our results highlight the enhanced separation space and increased annotation confidence afforded by IMS for metabolic characterization and provide a unique perspective for future developments in isotopically labeled MS experiments.
Collapse
Affiliation(s)
| | | | - Gary J. Patti
- Departments of Chemistry and Medicine, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, Missouri 63130, United States
| | - Erin S. Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|