151
|
Hong YH, Narwane M, Liu LYM, Huang YD, Chung CW, Chen YH, Liao BW, Chang YH, Wu CR, Huang HC, Hsu IJ, Cheng LY, Wu LY, Chueh YL, Chen Y, Lin CH, Lu TT. Enhanced Oral NO Delivery through Bioinorganic Engineering of Acid-Sensitive Prodrug into a Transformer-like DNIC@MOF Microrod. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3849-3863. [PMID: 35019259 DOI: 10.1021/acsami.1c21409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an endogenous gasotransmitter regulating alternative physiological processes in the cardiovascular system. To achieve translational application of NO, continued efforts are made on the development of orally active NO prodrugs for long-term treatment of chronic cardiovascular diseases. Herein, immobilization of NO-delivery [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-2) onto MIL-88B, a metal-organic framework (MOF) consisting of biocompatible Fe3+ and 1,4-benzenedicarboxylate (BDC), was performed to prepare a DNIC@MOF microrod for enhanced oral delivery of NO. In simulated gastric fluid, protonation of the BDC linker in DNIC@MOF initiates its transformation into a DNIC@tMOF microrod, which consisted of DNIC-2 well dispersed and confined within the BDC-based framework. Moreover, subsequent deprotonation of the BDC-based framework in DNIC@tMOF under simulated intestinal conditions promotes the release of DNIC-2 and NO. Of importance, this discovery of transformer-like DNIC@MOF provides a parallel insight into its stepwise transformation into DNIC@tMOF in the stomach followed by subsequent conversion into molecular DNIC-2 in the small intestine and release of NO in the bloodstream of mice. In comparison with acid-sensitive DNIC-2, oral administration of DNIC@MOF results in a 2.2-fold increase in the oral bioavailability of NO to 65.7% in mice and an effective reduction of systolic blood pressure (SBP) to a ΔSBP of 60.9 ± 4.7 mmHg in spontaneously hypertensive rats for 12 h.
Collapse
Affiliation(s)
- Yong-Huei Hong
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Manmath Narwane
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Lawrence Yu-Min Liu
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu 300044, Taiwan
| | - Yi-Da Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Wen Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Hsiang Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Cheng-Ru Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Ling-Yun Cheng
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Liang-Yi Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yu-Lun Chueh
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116059, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
152
|
Wang M, Liu Y, Liu Y, Xia Z. MOFs and PDA-supported immobilization of BSA in open tubular affinity capillary electrochromatography: Prediction and study on drug-protein interactions. Talanta 2022; 237:122959. [PMID: 34736684 DOI: 10.1016/j.talanta.2021.122959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
Owing to the satisfactory properties such as high specific surface area, finely tunable chemical composition, large yet adjustable pore sizes, and diverse architecture, metal-organic frameworks (MOFs) have the potential to be used as a stable, efficient, reusable and protective biomacromolecule immobilization carrier in capillary electrophoresis. Herein, a novel immobilized receptor open-tubular affinity capillary electrochromatography (OT-ACEC) strategy was developed for the first time to rapidly investigate the interactions between a set of drugs and bovine serum albumin (BSA). To further increase the amount of immobilized BSA and maintain the bioactivity of BSA, BSA was immobilized on the inner capillary surface by using polydopamine (PDA) as the adhesion layer and surface functionalization agent, a MOF namely dresden university of technology-5 (DUT-5) as supporting platform and biomacromolecule immobilization carrier, respectively. The amount of immobilized BSA on the capillary surface of the BSA@capillary and the PDA/MOFs/BSA@capillary column are separately calculated as 0.00756 nmol and 0.01812 nmol. Besides, the PDA/MOFs/BSA@capillary column was applied to investigate the interactions between BSA and flavonoids, fluoroquinolones. Under the optimal interaction conditions, three flavonoids and three fluoroquinolones are able to achieve baseline separation in the PDA/MOFs/BSA@capillary column (with resolution values of three flavonoids, 5.78 and 4.13; three fluoroquinolones, 1.72 and 1.68). The PDA/MOFs/BSA@capillary column shows good stability and reproducibility over 100 runs (relative standard deviation (RSD)<5%). In addition, the normalized capacity factor (KRCE) in this method replaced the binding constant and was used as an evaluation index to fast predict the activities of 20 drugs, some of which have not yet been reported for their interactions with BSA. Spectroscopy and molecular docking further illuminated the binding mechanism.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yi Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; Chongqing Chemical Industry Vocational College, Chongqing, 401228, China
| | - Yao Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
153
|
Demirci S, Sahiner N. Thermo‐responsive macroporous p(
NIPAM
) cryogel affords enhanced thermal stability and activity for ɑ‐glucosidase enzyme by entrapping in situ. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences and Arts Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale TURKEY
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences and Arts Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale TURKEY
- Nanoscience and Technology Research and Application Center Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale TURKEY
- Department of Chemical and Biomolecular Engineering University of South Florida Tampa FL USA
- Department of Ophthalmology Morsani College of Medicine, University of South Florida, 12901 B. Downs Blvd., MDC 21 Tampa FL USA
| |
Collapse
|
154
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
155
|
Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126720. [PMID: 34343883 DOI: 10.1016/j.jhazmat.2021.126720] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/24/2023]
Abstract
An emerging global necessity for alternative resources combined with maximum catalytic efficiency, low cost, and eco-friendly composite remains a hotspot in the scientific society. Hereby, a novel protocol is approached to design a heterostructure of Zinc MOF decorated on the surface of 2D activated carbon (AC) through a simplistic approach. To begin with, analytical, morphological and spectroscopical studies were performed to identify the functional moieties, cruciate-flower like morphology and oxidative state of atoms present in the composite Zn-MOF @AC. The photocatalytic material aids in degrading both cationic and anionic dye in a UV (254 nm) irradiated environment at a rate of 86.4% and 77.5% within 90 mins. Subsequently, the hybrid materials are coated on the carbon substrate to evaluate the catalytic activity using oxygen evolution and reduction reaction process. The mechanical insight for the catalytic activity relies on the electronic transitions of atoms on the edges of the sheets ascribing to d-d energy levels between the interfacial electron movement. Our composite exhibits an overpotential of 0.7 V and a Tafel slope of 70 mV/dec for the oxygen reduction reaction. This study proposes an alternate approach for developing MOF decorated carbon-based composites for photocatalytic degradability and energy necessity.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | | | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
156
|
Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
157
|
Tang J, Zhou S, Huang M, Liang Z, Su S, Wen Y, Zhu QL, Wu X. Two isomeric metal-organic frameworks bearing stilbene moieties for high volatile iodine uptake. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient, green, and economical removal of radioactive iodine (I2) has drawn worldwide attention in the safe development of nuclear energy. Metal-organic frameworks (MOFs) have been demonstrated to be a...
Collapse
|
158
|
Shen H, Shi H, Yang Y, Song J, Ding C, Yu S. Highly Efficient Synergistic Biocatalysis Driven by Stably Loaded Enzymes within Hierarchically Porous Iron/Cobalt Metal-Organic Framework via Biomimetic Mineralization. J Mater Chem B 2022; 10:1553-1560. [DOI: 10.1039/d1tb02596a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of multimodal chemo-/bio-catalysis for efficient cascade reactions has long provided broad prospects in the field of biotechnology for ages. In this work, we describe the synthesis of a...
Collapse
|
159
|
Kulandaivel S, Lin CH, Yeh YC. The bi-metallic MOF-919 (Fe-Cu) nanozyme capable of bifunctional enzyme-mimicking catalytic activity. Chem Commun (Camb) 2021; 58:569-572. [PMID: 34913054 DOI: 10.1039/d1cc05908d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we report on a bi-metal organic framework, MOF-919 (Fe-Cu), capable of bifunctional-enzyme mimicking activity with oxidase- and peroxidase-like activities. The catalytic activities were examined by using o-phenylenediamine (OPD) as a chromogenic substrate to study oxidase- and peroxidase-like mimetics. Based on our findings, we developed a simple epinephrine colorimetric biosensor with a broad linear range (1-100 μM) and a low detection limit (0.298 μM). This approach provides evidence for transition metal-based pristine bi-metallic MOFs capable of reproducing both oxidase-peroxidase properties, which could be applied as new nanosensors.
Collapse
Affiliation(s)
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
160
|
Wang C, Liao K. Recent Advances in Emerging Metal- and Covalent-Organic Frameworks for Enzyme Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56752-56776. [PMID: 34809426 DOI: 10.1021/acsami.1c13408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme catalysis enables complex biotransformation to be imitated. This biomimetic approach allows for the application of enzymes in a variety of catalytic processes. Nevertheless, enzymes need to be shielded by a support material under challenging catalytic conditions due to their intricate and delicate structures. Specifically, metal-organic frameworks and covalent-organic frameworks (MOFs and COFs) are increasingly popular for use as enzyme-carrier platforms because of their excellent tunability in structural design as well as remarkable surface modification. These porous organic framework capsules that host enzymes not only protect the enzymes against harsh catalytic conditions but also facilitate the selective diffusion of guest molecules through the carrier. This review summarizes recent progress in MOF-enzyme and COF-enzyme composites and highlights the pore structures tuned for enzyme encapsulation. Furthermore, the critical issues associated with interactions between enzymes and pore apertures on MOF- and COF-enzyme composites are emphasized, and perspectives regarding the development of high-quality MOF and COF capsules are presented.
Collapse
Affiliation(s)
- Cuie Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kaiming Liao
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
161
|
Luo Y, Jin D, He W, Huang J, Chen A, Qi F. A SiO 2 Microcarrier with an Opal-like Structure for Cross-Linked Enzyme Immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14147-14156. [PMID: 34793174 DOI: 10.1021/acs.langmuir.1c02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The opal-like SiO2 microcarriers with different pore diameters named opal-SiO2I and opal-SiO2II were synthesized and utilized as microcarriers to immobilize Rhizopus oryzae lipase (ROL) and Aspergillus oryzae α-amylases (AOA). ROL and AOA can be more stably immobilized on the cross-linked SiO2 opals by neopentyl glycol diglycidyl ether (NGDE), which is the first attempt to use it as a cross-linking agent compared with glutaraldehyde. According to the morphology analysis, multiple layers of SiO2 monodisperse microspheres were regularly packed and formed an opal-like structure, and enzymes were well scattered and immobilized throughout the SiO2 opals. The results showed that the performance of enzymes immobilized on opal-SiO2II with a larger specific surface area was much better than that of opal-SiO2I. The enzyme activity of ROL@opal-SiO2II and AOA@opal-SiO2II cross-linked with 1% NGDE increased 5.32 and 9.32 times compared with their free counterpart, respectively. Furthermore, pH and thermal stability and reusability of ROL/AOA@opal-SiO2II were significantly improved and higher than those of ROL/AOA@opal-SiO2I and free enzymes. This study provides an easily obtained microcarrier opal-SiO2II, which shows potential for efficient different enzyme immobilizations and further industrial applications.
Collapse
Affiliation(s)
- Yixian Luo
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Dou Jin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Wenjin He
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Aicheng Chen
- Fujian Province University Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
162
|
Davis R, Urbanowski RA, Gaharwar AK. 2D layered nanomaterials for therapeutics delivery. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
163
|
Wang Z, Li Y, Li M, Zhang X, Ji Q, Zhao X, Bi Y, Luo S. Immobilized Fe 3O 4-Polydopamine- Thermomyces lanuginosus Lipase-Catalyzed Acylation of Flavonoid Glycosides and Their Analogs: An Improved Insight Into Enzymic Substrate Recognition. Front Bioeng Biotechnol 2021; 9:798594. [PMID: 34869302 PMCID: PMC8636704 DOI: 10.3389/fbioe.2021.798594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The conversion of flavonoid glycosides and their analogs to their lipophilic ester derivatives was developed by nanobiocatalysts from immobilizing Thermomyces lanuginosus lipase (TLL) on polydopamine-functionalized magnetic Fe3O4 nanoparticles (Fe3O4-PDA-TLL). The behavior investigation revealed that Fe3O4-PDA-TLL exhibits a preference for long chain length fatty acids (i.e., C10 to C14) with higher reaction rates of 12.6-13.9 mM/h. Regarding the substrate specificity, Fe3O4-PDA-TLL showed good substrate spectrum and favorably functionalized the primary OH groups, suggesting that the steric hindrances impeded the secondary or phenolic hydroxyl groups of substrates into the bonding site of the active region of TLL to afford the product.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | | |
Collapse
|
164
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
165
|
Nazemi SA, Olesińska M, Pezzella C, Varriale S, Lin CW, Corvini PFX, Shahgaldian P. Immobilisation and stabilisation of glycosylated enzymes on boronic acid-functionalised silica nanoparticles. Chem Commun (Camb) 2021; 57:11960-11963. [PMID: 34705002 DOI: 10.1039/d1cc04916j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a method of glycosylated enzymes' surface immobilisation and stabilisation. The enzyme is immobilised at the surface of silica nanoparticles through the reversible covalent binding of vicinal diols of the enzyme glycans with a surface-attached boronate derivative. A soft organosilica layer of controlled thickness is grown at the silica surface, entrapping the enzyme and thus avoiding enzyme leaching. We demonstrate that this approach results not only in high and durable activity retention but also enzyme stabilisation.
Collapse
Affiliation(s)
- Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Magdalena Olesińska
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Cinzia Pezzella
- Biopox, Viale Maria Bakunin, 12 - CAP 80125 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100 80055 Portici, NA, Italy
| | | | - Chia-Wei Lin
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | - Philippe F-X Corvini
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| |
Collapse
|
166
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
167
|
Zhang J, Jin N, Ji N, Chen X, Shen Y, Pan T, Li L, Li S, Zhang W, Huo F. The Encounter of Biomolecules in Metal-Organic Framework Micro/Nano Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52215-52233. [PMID: 34369162 DOI: 10.1021/acsami.1c09660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, biochemical reactions often take place in confined spaces, as typically exemplified by cells. As numerous cellular reactors can be integrated to maintain the living system, researchers have made constant efforts to construct cell-like structures for achieving similar transformations in vitro. Micro/nano reactors engineered by polymers and colloids are becoming popular and being applied in many fields, especially there has been an increasing trend toward constructing metal-organic framework (MOF) micro/nano reactors with the thriving of MOF nanotechnologies. Because of the uniform pores of MOFs, the transmission of substances can be regulated more accurately. Along with properties of large specific surface area, functional diversity and precise control of the particle size, MOFs are also ideal platforms for building distinct microenvironments for biological substances. Compared with traditional polymersomes and colloidosomes, the unique characteristics of MOFs render them potent micro/nano reactor shell materials, mimicking cells for applications in enzymatic catalysis, sensing, nanotherapy, vaccine, biodegradation, etc. This review highlights recent signs of progress on the design of MOF micro/nano reactors and their applications in biology, discusses the existing problems, and prospects their promising properties for smarter multifunctional applications.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xinyi Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
168
|
Li ZJ, Ju Y, Zhang Z, Lu H, Li Y, Zhang N, Du XL, Guo X, Zhang ZH, Qian Y, He MY, Wang JQ, Lin J. Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metal-Organic Frameworks. Chemistry 2021; 27:17586-17594. [PMID: 34734437 DOI: 10.1002/chem.202103062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/12/2022]
Abstract
Polymorphism control of metal-organic frameworks is highly desired for elucidating structure-property relationships, but remains an empirical process and is usually done in a trial-and-error approach. We adopted the rarely used actinide cation Th4+ and a ditopic linker to construct a series of thorium-organic frameworks (TOFs) with a range of polymorphs. The extraordinary coordination versatility of Th4+ cations and clusters, coupled with synthetic modulation, gives five distinct phases, wherein the highest degree of interpenetration (threefold) and porosity (75.9 %) of TOFs have been achieved. Notably, the O atom on the capping site of the nine-coordinated Th4+ cation can function as a bridging unit to interconnect neighboring secondary building units (SBUs), affording topologies that are undocumented for other tetravalent-metal-containing MOFs. Furthermore, for the first time HCOOH has been demonstrated as a bridging unit of SBUs to further induce structural complexity. The resulting TOFs exhibit considerably different adsorption behaviors toward organic dyes, thus suggesting that TOFs represent an exceptional and promising platform for structure-property relationship study.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Yu Ju
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou, 213164, P. R. China
| | - Zeya Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou, 213164, P. R. China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of, Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
| | - Ningjin Zhang
- Instrumental Analysis Centre, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xian-Long Du
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Fulmer 630, Pullman, WA 99164-4630, USA
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou, 213164, P. R. China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou, 213164, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| |
Collapse
|
169
|
Dong J, Liu Y, Cui Y. Artificial Metal-Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales. J Am Chem Soc 2021; 143:17316-17336. [PMID: 34618443 DOI: 10.1021/jacs.1c08487] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The exploration of chiral crystalline porous materials, such as metal-organic complexes (MOCs) or metal-organic frameworks (MOFs), has been one of the most exciting recent developments in materials science owing to their widespread applications in enantiospecific processes. However, achieving specific tight-affinity binding and remarkable enantioselectivity toward important biomolecules is still challenging. Perhaps most critically, the lack of adaptability, compatibility, and processability in these materials severely impedes practical applications in chemical engineering and biological technology. In this Perspective, artificial metal-peptide assemblies (MPAs), which are achieved by the assembly of peptides and metals with nanometer-sized cavities or pores, is a new development that could address the current bottlenecks of chiral porous materials. Bioinspired assembly of pore-forming MPAs is not foreign to biological systems and has granted scientists an unprecedented level of control over the chiral recognition sites, conformational flexibility, cavity sizes, and hydrophilic segments through ultrafine-tuning of peptide-derived linkers. We will specifically discuss exemplary MPAs including structurally well-defined metal-peptide complexes and highly crystalline metal-peptide frameworks. With insights from these structures, the peptide assembly and folding by the closer cooperation of metal coordination and noncovalent interactions can create adaptable protein-like nanocavities undergoing a myriad of conformational variations that is reminiscent of enzymatic pockets. We also consider challenges to advancing the field, where the deployment of side-chain groups and manipulation of amino acid sequences are more likely to access the programmable, genetically encodable peptide-mediated porous materials, thus contributing to the enhanced enantioselective recognition as well as enabling key biochemical processes in next-generation versatile biomimetic materials.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
170
|
Zhao L, Yang J, Gong M, Li K, Gu J. Specific Screening of Prostate Cancer Individuals Using an Enzyme-Assisted Substrate Sensing Platform Based on Hierarchical MOFs with Tunable Mesopore Size. J Am Chem Soc 2021; 143:15145-15151. [PMID: 34494833 DOI: 10.1021/jacs.1c05674] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid and specific identification of tumor metabolic markers is of great significance. Herein, a convenient, reliable and specific strategy was proposed to screen prostate cancer (PCa) individuals through indirectly quantifying sarcosine, an early indicator of PCa, in the clinical urine samples. The success roots in the rational design of a cascade response model, which takes integrated sarcosine oxidase (SOX) as a specific recognition unit and oxygen-sensitive molecule as a signal reporter. The newly developed hierarchical mesoporous Zr-based metal-organic frameworks with continuously tunable mesopore size ensure the synergetic work of the SOX and response unit spatially separated in their neighboring mesoporous and microporous domains, respectively. The large mesopore up to 12.1 nm not only greatly enhances the loading capacity of SOX but also spares enough space for the free diffusion of sarcosine. On this basis, the probe is competent to specifically check out the tiny concentration change of sarcosine in the urine sample between PCa patients and healthy humans. Such a concept of enzyme-assisted substrate sensing could be simply extended by altering the type of immobilized enzymes, hopefully setting a guideline for the rational design of multiple probes to quantify specific biomarkers in complex biological samples.
Collapse
Affiliation(s)
- Liwei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ke Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
171
|
Li Q, Pan Y, Li H, Lenertz M, Reed K, Jordahl D, Bjerke T, Ugrinov A, Chen B, Yang Z. Cascade/Parallel Biocatalysis via Multi-enzyme Encapsulation on Metal-Organic Materials for Rapid and Sustainable Biomass Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43085-43093. [PMID: 34478257 DOI: 10.1021/acsami.1c12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple-enzyme cooperation simultaneously is an effective approach to biomass conversion and biodegradation. The challenge, however, lies in the interference of the involved enzymes with each other, especially when a protease is needed, and thus, the difficulty in reusing the enzymes; while extracting/synthesizing new enzymes costs energy and negative impact on the environment. Here, we present a unique approach to immobilize multiple enzymes, including a protease, on a metal-organic material (MOM) via co-precipitation in order to enhance the reusability and sustainability. We prove our strategy on the degradation of starch-containing polysaccharides (require two enzymes to degrade) and food proteins (require a protease to digest) before the quantification of total dietary fiber. As compared to the widely adopted "official" method, which requires the sequential addition of three enzymes under different conditions (pH/temperature), the three enzymes can be simultaneously immobilized on the surface of our MOM crystals to allow for contact with the large substrates (starch), while MOMs offer sufficient protection to the enzymes so that the reusability and long-term storage are improved. Furthermore, the same biodegradation can be carried out without adjusting the reaction condition, further reducing the reaction time. Remarkably, the simultaneous presence of all enzymes enhances the reaction efficiency by a factor of ∼3 as compared to the official method. To our best knowledge, this is the first experimental demonstration of using aqueous-phase co-precipitation to immobilize multiple enzymes for large-substrate biocatalysis. The significantly enhanced efficiency can potentially impact the food industry by reducing the labor requirement and enhancing enzyme cost efficiency, leading to reduced food cost. The reduced energy cost of extracting enzymes and adjusting reaction conditions minimize the negative impact on the environment. The strategy to prevent protease damage in a multi-enzyme system can be adapted to other biocatalytic reactions involving proteases.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kailyn Reed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Taylor Bjerke
- Sheyenne High School, West Fargo, North Dakota 58078, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
172
|
Meena J, Gupta A, Ahuja R, Singh M, Panda AK. Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
173
|
Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
174
|
C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213998] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
175
|
Abstract
Biocatalysis refers to the utilization of enzymes, either in purified form, or existed as part of crude cell lysate or intact cells, to catalyze single- or multi-step chemical reactions, converting synthetic molecules or natural metabolites into high-value products [...]
Collapse
|
176
|
Abstract
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligible protein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
Collapse
|
177
|
Sharma S, Dutta S, Dam GK, Ghosh SK. Neutral Nitrogen Donor Ligand-based MOFs for Sensing Applications. Chem Asian J 2021; 16:2569-2587. [PMID: 34324257 DOI: 10.1002/asia.202100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Neutral nitrogen donor (N-donor) ligand-based MOFs, with their enticing features inclusive of facile synthesis, labile metal-ligand bond, framework flexibility, atomic level tunability renders them appealing in molecular recognition-based studies. Intriguingly, the flexibility in such systems (owing to weaker metal-nitrogen bonds) promote maximization of host-analyte interactions, which is critical for the manifestation of a signaling response. Such host-analyte interactions can be tapped by discerning any change in the physical properties associated with the system, such as optical, fluorometric, chemiresistive, magnetic, dielectric constant, mass. This minireview presents a brief discussion on the various types of signal transduction pathways unveiled hitherto using neutral N-donor ligand-based MOFs and the fundamental insight into the signal's origin. Moreover, an elaborate compilation of the recent examples in this field has been presented. Also, the untapped prospects have been highlighted, which may serve as a beacon to drive future research.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
178
|
Pan Y, Li H, Li Q, Lenertz M, Schuster I, Jordahl D, Zhu X, Chen B, Yang Z. Protocol for resolving enzyme orientation and dynamics in advanced porous materials via SDSL-EPR. STAR Protoc 2021; 2:100676. [PMID: 34308381 PMCID: PMC8287244 DOI: 10.1016/j.xpro.2021.100676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enzyme encapsulation in metal-organic frameworks (MOFs)/covalent-organic frameworks (COFs) provides advancement in biocatalysis, yet the structural basis underlying the catalytic performance is challenging to probe. Here, we present an effective protocol to determine the orientation and dynamics of enzymes in MOFs/COFs using site-directed spin labeling and electron paramagnetic resonance spectroscopy. The protocol is demonstrated using lysozyme and can be generalized to other enzymes. For complete information on the generation and use of this protocol, please refer to Pan et al. (2021a). A protocol to resolve protein orientation/dynamics in porous materials is provided Site-directed spin labeling is combined with electron paramagnetic resonance Principles of protein labeling and key data acquisition steps are summarized Spectral simulation details with troubleshooting procedures are detailed
Collapse
Affiliation(s)
- Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Isabelle Schuster
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Xiao Zhu
- Research Computing, Information Technology at Purdue (ITaP), Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
179
|
Sha F, Chen Y, Drout RJ, Idrees KB, Zhang X, Farha OK. Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. iScience 2021; 24:102641. [PMID: 34151233 PMCID: PMC8192563 DOI: 10.1016/j.isci.2021.102641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 01/30/2023] Open
Abstract
Enzymes are promising catalysts with high selectivity and activity under mild reaction conditions. However, their practical application has largely been hindered by their high cost and poor stability. Metal-organic frameworks (MOFs) as host materials show potential in protecting proteins against denaturing conditions, but a systematic study investigating the stabilizing mechanism is still lacking. In this study, we stabilized enzyme cytochrome c (cyt c) by encapsulating it in a hierarchical mesoporous zirconium-based MOF, NU-1000 against denaturing organic solvents. Cyt c@NU-1000 showed a significantly enhanced activity compared to the native enzyme, and the composite retained this enhanced activity after treatment with five denaturing organic solvents. Moreover, the composite was recyclable without activity loss for at least three cycles. Our cyt c@NU-1000 model system demonstrates that enzyme@MOF composites prepared via post-synthetic encapsulation offer a promising route to overcome the challenges of enzyme stability and recyclability that impede the widespread adoption of biocatalysis.
Collapse
Affiliation(s)
- Fanrui Sha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yijing Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Riki J. Drout
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Karam B. Idrees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
180
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
181
|
|
182
|
Xu W, Jiao L, Wu Y, Hu L, Gu W, Zhu C. Metal-Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005172. [PMID: 33893661 DOI: 10.1002/adma.202005172] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Multiple enzymes-induced biological cascade catalysis guides efficient and selective substrate transformations in vivo. The biomimetic cascade systems, as ingenious strategies for signal transduction and amplification, have a wide range of applications in biosensing. However, the fragile nature of enzymes greatly limits their wide applications. In this regard, metal-organic frameworks (MOFs) with porous structures, unique nano/microenvironments, and good biocompatibility have been skillfully used as carriers to immobilize enzymes for shielding them against hash surroundings and improving the catalytic efficiency. For another, nanomaterials with enzyme-like properties and brilliant stabilities (nanozymes), have been widely applied to ameliorate the low stability of the enzymes. Inheriting the abovementioned merits of MOFs, the performances of MOFs-immboilized nanozymes could be significantly enhanced. Furthermore, in addition to carriers, some MOFs can also serve as nanozymes, expanding their applications in cascade systems. Herein, recent advances in the fabrication of efficient MOFs-involving enzymes/nanozymes cascade systems and biosensing applications are highlighted. Integrating diversified signal output modes, including colorimetry, electrochemistry, fluorescence, chemiluminescence, and surface-enhanced Raman scattering, sensitive detection of various targets (including biological molecules, environmental pollutants, enzyme activities, and so on) are realized. Finally, challenges and opportunities about further constructions and applications of MOFs-involving cascade reaction systems are briefly put forward.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
183
|
Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun J. Hierarchically Porous Organic Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mingming Hua
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Shuping Wang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 P. R. China
| | - Jian‐Ke Sun
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing P. R. China
| |
Collapse
|
184
|
Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun JK. Hierarchically Porous Organic Cages. Angew Chem Int Ed Engl 2021; 60:12490-12497. [PMID: 33694301 DOI: 10.1002/anie.202100849] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Imparting mesopores to organic cages of an intrinsic microporous nature to build up hierarchically porous cage soft materials is a grand challenge and will reshape the property and application scope of traditional organic cage molecules. Herein, we discovered how to engineer mesopores into microporous organic cages via their host-guest interactions with long chain ionic surfactants. Equally important, the ionic head of surfactants equips the supramolecularly assembled porous structures with charge-selective uptake and release function in solution. Interestingly, such hierarchically porous organic cage can serve as a nanoreactor once trapping enzymes within the cavity, which show 5-fold enhanced activity of enzymatic catalysis when compared with the free enzymes.
Collapse
Affiliation(s)
- Mingming Hua
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Shuping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
185
|
|
186
|
Ghasemi S, Yousefi M, Nikseresht A, Omidi H. Covalent binding and in-situ immobilization of lipases on a flexible nanoporous material. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
187
|
Guo F, Xu Z, Zhang W, Wang T, Di X, Zhang Q, Zhu Z. Facile synthesis of catalase@ZIF-8 composite by biomimetic mineralization for efficient biocatalysis. Bioprocess Biosyst Eng 2021; 44:1309-1319. [PMID: 33640996 DOI: 10.1007/s00449-021-02540-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Enzymes immobilized in metal-organic frameworks (MOFs) have attracted great attention as a promising hybrid material. In the study, a novel biomimetic mineralization encapsulation process for a highly stable and easily reusable catalase (CAT)@ZIF-8 composite has been designed. This immobilization process provides a high enzyme loading of 70 wt %. The CAT@ZIF-8 composites exhibited a much lower Km value and better enzyme activity than those of free CAT, exhibiting good stability against enzymatic hydrolysis and protein denaturation under harsh conditions. The inhibitory effects of pesticides such as pH, temperature, solvent (i.e., methanol, dimethyl sulfoxide and tetrahydrofuran) and storage at room temperature (6 months) on the activity of free and immobilized catalase enzyme were investigated. The CAT@MOF composites also exhibited excellent reusability, an obvious advantage for treating a wastewater from food processing. The CAT@MOF developed is promising for the efficient removal of H2O2 under harsh conditions.
Collapse
Affiliation(s)
- Feng Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China.
| | - Zhonghao Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China
| | - Wendong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China
| | - Tongxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China
| | - Xiaoxuan Di
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China
| | - Qian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China
| | - Zihan Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Ministry of Education, Panjin, 124221, China
| |
Collapse
|
188
|
Zhong H, Li Y, Huang Y, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:862-873. [PMID: 33543184 DOI: 10.1039/d0ay02193h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal-organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
189
|
Ozyilmaz E, Ascioglu S, Yilmaz M. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. Int J Biol Macromol 2021; 175:79-86. [PMID: 33548316 DOI: 10.1016/j.ijbiomac.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Metal organic frameworks (MOFs) are hybrid organic inorganic materials with unique properties such as well-defined pore structure, extremely high surface area, excellent chemical-thermal stability. MOFs-based constructs have been extensively engineered and used for applications, such as enzyme immobilization for bio-catalysis. To obtained a zeolitic imidazole framework-8 (ZIF-8) for enzyme immobilization, Candida rugosa lipase (CRL) was pretreated with calix [4]arene tetracarboxylic acid (Calix) and reacted with Zn and imidazole by co-precipitation method. The prepared biocomposite was characterized by SEM, EDX, FT-IR, and XRD. The prepared CRL@Calix-ZIF-8 with high encapsulation efficiency showed improved resistance to alkali and thermal conditions. The CRL@Calix-ZIF-8 with the biocatalytic activity was 2-folds higher than that of the CRL@ZIF-8 (without Calix). The free lipase lost its catalytic activity completely at 60 °C after 100 min, while the CRL@Calix-ZIF-8 and CRL@ZIF-8 retained about 84% and 73%. It was found that CRL@Calix-ZIF-8 and CRL@ZIF-8 still retained ~83 and 67% of catalytic activity after its 6th use, respectively. The kinetic resolution of the immobilized lipases was examined for enantioselective hydrolysis of racemic naproxen methyl ester. CRL@Calix-ZIF-8 showed enantioselectivity against the racemic naproxen methyl ester, with E = 183 and 131 compared to the CRL@ZIF-8.
Collapse
Affiliation(s)
- Elif Ozyilmaz
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey.
| | - Sebahat Ascioglu
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
| |
Collapse
|
190
|
Hu Y, Zhou H, Dai L, Liu D, Al-Zuhair S, Du W. Lipase Immobilization on Macroporous ZIF-8 for Enhanced Enzymatic Biodiesel Production. ACS OMEGA 2021; 6:2143-2148. [PMID: 33521453 PMCID: PMC7841922 DOI: 10.1021/acsomega.0c05225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Immobilization of enzyme on metal-organic frameworks (MOFs) has drawn increasing interest owing to their many well-recognized characteristics. However, the pore sizes of MOFs (mostly micropores and mesopores) limit their application for enzyme immobilization to a great extent owing to the large size of enzyme molecules. Synthesis of MOFs with macropores would therefore solve this problem, typically encountered with conventional MOFs. In this work, macroporous zeolitic imidazolate frameworks (ZIF-8), referred to as M-ZIF-8, were synthesized and used for immobilization of Aspergillus niger lipase (ANL). Immobilization efficiency using M-ZIF-8 and enzymatic catalytic performance for biodiesel preparation were investigated. The immobilized ANL on M-ZIF-8 (ANL@M-ZIF-8) showed higher enzymatic activity (6.5-fold), activity recovery (3.8-fold), thermal stability (1.4- and 3.4-fold at 80 and 100 °C, respectively), reusability (after five cycles, 68% of initial activity was maintained), and porosity than ANL on conventional ZIF-8 (ANL/ZIF-8). In addition, by using ANL@M-ZIF-8 for catalyzing a biodiesel production reaction, a higher fatty acid methyl ester yield was achieved.
Collapse
Affiliation(s)
- Yingli Hu
- Key
Laboratory for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Zhou
- Key
Laboratory for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingmei Dai
- Key
Laboratory for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key
Laboratory for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua
Innovation Center in Dongguan, Dongguan, Guangdong 523808, China
| | - Sulaiman Al-Zuhair
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University, Al Ain 15551, UAE
| | - Wei Du
- Key
Laboratory for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua
Innovation Center in Dongguan, Dongguan, Guangdong 523808, China
| |
Collapse
|
191
|
Chen H, Hu T, Fan L, Zhang X. One Robust Microporous Tm III-Organic Framework for Highly Catalytic Activity on Chemical CO 2 Fixation and Knoevenagel Condensation. Inorg Chem 2021; 60:1028-1036. [PMID: 33382244 DOI: 10.1021/acs.inorgchem.0c03134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In terms of documented references, multifunctional MOFs with high catalytic performance could be constructed from the combination of metal cations and polycarboxyl-pyridine ligands, which could efficiently endow crystallized porous frameworks with the coexisting Lewis acid-base properties. Thus, by employing a ligand-directed synthetic strategy, the exquisite combination of wave-like inorganic chains of [Tm(CO2)3(OH2)]n and mononuclear units of [Tm(CO2)4(OH2)2] with the aid of the specially designed ligand of 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) generates one highly robust microporous framework of {(Me2NH2)[Tm3(BDCP)2)(H2O)3]·4DMF·H2O}n (simplified as NUC-25), which contains near-rectangular nanochannels and large solvent-residing voids. Furthermore, the activated state of NUC-25 with the removal of associated water molecules is a rarely reported bifunctional heterogeneous catalyst due to the coexistence of Lewis acid-base sites including 6-coordinated Tm3+ ions, uncoordinated carboxyl oxygen atoms, and Npyridine atoms. Just as expected, NUC-25 exhibits greatly high catalytic activity for the cycloaddition reaction of epoxides with CO2 into alkyl cyclic carbonates under bland solvent-free conditions, which should be ascribed to the polarity of nitrogen-containing pyridine heterocycles as Lewis base sites on the inner surface of nano-caged voids except for recognized Lewis acid sites of rare earth cations. Moreover, the excellent pore-size-dependent catalytic property for Knoevenagel condensation reactions confirms that NUC-25 can be viewed as a recyclable bifunctional heterogeneous catalyst. Therefore, these results strongly demonstrate that microporous MOFs assembled from pre-designed polycarboxyl-heterocyclic ligands display better catalytic performance not only for chemical CO2 fixation but also for Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
192
|
Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ. Metal–Organic Framework-Based Enzyme Biocomposites. Chem Rev 2021; 121:1077-1129. [DOI: 10.1021/acs.chemrev.0c01029] [Citation(s) in RCA: 354] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weibin Liang
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
193
|
Huang S, Chen G, Ye N, Kou X, Zhang R, Shen J, Ouyang G. Iron-Mineralization-Induced Mesoporous Metal-Organic Frameworks Enable High-Efficiency Synergistic Catalysis of Natural/Nanomimic Enzymes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57343-57351. [PMID: 33296162 DOI: 10.1021/acsami.0c16689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have become a promising accommodation for enzyme immobilization and protection. However, the integration of multienzymes into MOFs may result in compromise of individual enzymatic activity. In this work, we report an iron mineralization strategy to facilely construct a mesoporous MOF, possessing excellent peroxidase-mimic bioactivity. Furthermore, the feasibility of in situ encapsulating natural enzymes within the developed mesoporous MOF nanozymes endows these natural/nanomimic enzyme hybrids with remarkably enhanced synergistic catalysis ability. Such activity enhancement is mainly due to (1) the fast flux rate of substances through the interconnected mesoporous channels and (2) the simultaneously increased loading amount of enzymes and iron within the MOFs caused by the iron mineralization process.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zhang
- Department of Biliary-Pancreas Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
194
|
Chen H, Fan L, Zhang X. Highly Robust 3s-3d {CaZn}-Organic Framework for Excellent Catalytic Performance on Chemical Fixation of CO 2 and Knoevenagel Condensation Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54884-54892. [PMID: 33231426 DOI: 10.1021/acsami.0c18267] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In terms of ligand-directed synthetic strategy, multifunctional metal-organic frameworks (MOFs) could be assembled by employing organic ligands with nitrogen-containing heterocycles, which could serve as Lewis base sites in crystallized porous frameworks. Here, the acidic one-pot hydrothermal reaction of CaCl2, Zn(NO3)2, and 2,4,6-tri(2,4-dicarboxyphenyl)pyridine (H6TDP) generates one robust honeycomb-shaped double-walled material of {[(CH3)2NH2]2[CaZn(TDP)(H2O)]·3DMF·3H2O}n (NUC-21), which has the excellent physicochemical characteristics of nanoscopic channels, high porosity (58.3%), large specific surface area, and high heat/water-resisting property. To the best of our knowledge, this is the first 3s-3d dinuclear [CaZn(CO2)6(OH2)]-based nanoporous host framework, whose activated state possesses the coexistence of Lewis acid-base sites including four-coordinated Zn2+ ions, four-coordinated Ca2+ ions, uncoordinated carboxyl oxygen atoms, and Npyridine atoms. As expected, because of the coexistence of Lewis acid-base nature, desolvated NUC-21 displays satisfactory catalytic activity on the chemical cycloaddition of various epoxides with CO2 into the corresponding alkyl carbonates under comparatively mild conditions. Furthermore, the efficient conversion of benzaldehydes and malononitrile confirms that NUC-21 is simultaneously a bifunctional heterogeneous catalyst for Knoevenagel condensation reactions. Hence, the achievements broaden the way for assembling nanoporous multifunctional MOFs by employing ligand-directed synthetic strategy, which can accelerate the transformation from simple structural research to socially demanding applications.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|