151
|
Zhang W, Chen L, Cui M, Xie L, Xi Z, Wang Y, Shen X, Xu L. Successively triggered Rod-shaped protocells for enhanced tumor Chemo-Photothermal therapy. Eur J Pharm Biopharm 2021; 169:1-11. [PMID: 34461213 DOI: 10.1016/j.ejpb.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Abundant existence of extracellular matrix biological hydrogels in solid tumors precludes most therapeutics to arrive at intracellular target sites, which is probably one of the threatened reasons of pancreatic ductal adenocarcinoma (PDAC) for public health. In this study, we designed a rod-shaped protocell nanoparticle loading with doxorubicin hydrochloride (Dox) and indocyanine green (ICG), denoted as Dox/ICG-RsPNs, for enhanced chemo-photothermal PDAC treatment. The enhanced therapeutic efficacy was achieved by successively enhancing penetration across matrix hydrogels, endocytosis, increasing local temperature under laser irradiation and hyperthermia-triggered Dox release to nucleus. We found that RsPNs with rod shape could easily penetrate across matrix hydrogel, exerting excellent tumor accumulation. Then RsPNs was internalized effectively by BxPC-3 cells via a caveolin-mediated endocytosis pathway. In addition, ICG endowed the Dox/ICG-RsPNs with photothermal effect and the photothermal conversion efficiency was calculated for 16.2%. Under irradiation, a great number of Dox transported to the nucleus via hyperthermia-induced release. Furthermore, we found that the relative tumor volume of Dox/ICG-RsPNs was merely 1.37 under irradiation at the end of pharmacodynamic studies, which was significantly lower than that of other groups. These findings will provide a promise on the rational design of drug delivery system for effective chemo-photothermal combination therapy to treat PDAC.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshu Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Luyao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuwen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohan Shen
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi 315300, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
152
|
Jia M, Zhang D, Zhang C, Li C. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. J Nanobiotechnology 2021; 19:384. [PMID: 34809634 PMCID: PMC8607729 DOI: 10.1186/s12951-021-01134-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant tumors with a low survival rate, partly because the tumor microenvironment (TME), which consists of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), immune cells, and vascular systems, prevents effective drug delivery and chemoradiotherapy. Thus, modulating the microenvironment of pancreatic cancer is considered a promising therapeutic approach. Since nanoparticles are one of the most effective cancer treatment strategies, several nano-delivery platforms have been developed to regulate the TME and enhance treatment. Here, we summarize the latest advances in nano-delivery systems that alter the TME in pancreatic cancer by depleting ECM, inhibiting CAFs, reversing immunosuppression, promoting angiogenesis, or improving the hypoxic environment. We also discuss promising new targets for such systems. This review is expected to improve our understanding of how to modulate the pancreatic cancer microenvironment and guide the development of new therapies.
Collapse
Affiliation(s)
- Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
153
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
154
|
Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021; 13:1917. [PMID: 34834332 PMCID: PMC8622285 DOI: 10.3390/pharmaceutics13111917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gas therapy has received widespread attention from the medical community as an emerging and promising therapeutic approach to cancer treatment. Among all gas molecules, nitric oxide (NO) was the first one to be applied in the biomedical field for its intriguing properties and unique anti-tumor mechanisms which have become a research hotspot in recent years. Despite the great progress of NO in cancer therapy, the non-specific distribution of NO in vivo and its side effects on normal tissue at high concentrations have impaired its clinical application. Therefore, it is important to develop facile NO-based nanomedicines to achieve the on-demand release of NO in tumor tissue while avoiding the leakage of NO in normal tissue, which could enhance therapeutic efficacy and reduce side effects at the same time. In recent years, numerous studies have reported the design and development of NO-based nanomedicines which were triggered by exogenous stimulus (light, ultrasound, X-ray) or tumor endogenous signals (glutathione, weak acid, glucose). In this review, we summarized the design principles and release behaviors of NO-based nanomedicines upon various stimuli and their applications in synergistic cancer therapy. We also discuss the anti-tumor mechanisms of NO-based nanomedicines in vivo for enhanced cancer therapy. Moreover, we discuss the existing challenges and further perspectives in this field in the aim of furthering its development.
Collapse
Affiliation(s)
- Yijun Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Yongjun Peng
- The Department of Medical Imaging, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| |
Collapse
|
155
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
156
|
Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
157
|
Iorio M, Umesh Ganesh N, De Luise M, Porcelli AM, Gasparre G, Kurelac I. The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215447. [PMID: 34771610 PMCID: PMC8582418 DOI: 10.3390/cancers13215447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known about the impact of metabolism-targeting drugs on the non-malignant tumor components. Here we provide a general overview of the links between cancer cell metabolism and tumor microenvironment (TME), particularly focusing on the emerging literature reporting TME-specific effects of metabolic therapies.
Collapse
Affiliation(s)
- Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Nikkitha Umesh Ganesh
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2088-418
| |
Collapse
|
158
|
Shin S, Lee J, Han J, Li F, Ling D, Park W. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med 2021; 19:205-219. [PMID: 34674182 DOI: 10.1007/s13770-021-00403-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the major diseases that threaten human life worldwide. Despite advances in cancer treatment techniques, such as radiation therapy, chemotherapy, targeted therapy, and immunotherapy, it is still difficult to cure cancer because of the resistance mechanism of cancer cells. Current understanding of tumor biology has revealed that resistance to these anticancer therapies is due to the tumor microenvironment (TME) represented by hypoxia, acidity, dense extracellular matrix, and immunosuppression. This review demonstrates the latest strategies for effective cancer treatment using functional nanoparticles that can modulate the TME. Indeed, preclinical studies have shown that functional nanoparticles can effectively modulate the TME to treat refractory cancer. This strategy of using TMEs with controllable functional nanoparticles is expected to maximize cancer treatment efficiency in the future by combining it with various modern cancer therapeutics.
Collapse
Affiliation(s)
- Seungyong Shin
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jieun Han
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wooram Park
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea. .,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.
| |
Collapse
|
159
|
Kaduri M, Sela M, Kagan S, Poley M, Abumanhal-Masarweh H, Mora-Raimundo P, Ouro A, Dahan N, Hershkovitz D, Shklover J, Shainsky-Roitman J, Buganim Y, Schroeder A. Targeting neurons in the tumor microenvironment with bupivacaine nanoparticles reduces breast cancer progression and metastases. SCIENCE ADVANCES 2021; 7:eabj5435. [PMID: 34613777 PMCID: PMC8494443 DOI: 10.1126/sciadv.abj5435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurons within the tumor microenvironment promote cancer progression; thus, their local targeting has potential clinical benefits. We designed PEGylated lipid nanoparticles loaded with a non-opioid analgesic, bupivacaine, to target neurons within breast cancer tumors and suppress nerve-to-cancer cross-talk. In vitro, 100-nm nanoparticles were taken up readily by primary neurons, trafficking from the neuronal body and along the axons. We demonstrate that signaling between triple-negative breast cancer cells (4T1) and neurons involves secretion of cytokines stimulating neurite outgrowth. Reciprocally, neurons stimulated 4T1 proliferation, migration, and survival through secretion of neurotransmitters. Bupivacaine curbs neurite growth and signaling with cancer cells, inhibiting cancer cell viability. In vivo, bupivacaine-loaded nanoparticles intravenously administered suppressed neurons in orthotopic triple-negative breast cancer tumors, inhibiting tumor growth and metastatic dissemination. Overall, our findings suggest that reducing nerve involvement in tumors is important for treating cancer.
Collapse
Affiliation(s)
- Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Mor Sela
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Shaked Kagan
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Hanan Abumanhal-Masarweh
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Developmental Biology and Cancer Research and The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Nitsan Dahan
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Dov Hershkovitz
- Pathology Institute, Sourasky Medical Center, Tel Aviv, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research and The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Corresponding author.
| |
Collapse
|
160
|
Li Y, Wu J, Hu X, Ding T, Tang T, Xiang D. Biomimetic Liposome with Surface-Bound Elastase for Enhanced Tumor Penetration and Chemo-Immumotherapy. Adv Healthc Mater 2021; 10:e2100794. [PMID: 34160137 DOI: 10.1002/adhm.202100794] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Indexed: 01/01/2023]
Abstract
Dense extracellular matrix (ECM) in the tumor stroma has been a challenge for drug penetration and cytotoxic T lymphocyte (CTL) infiltration. Neutrophil elastase (NE), in surface-bound form, can destruct ECM rapidly, may be used for remodeling tumor ECM, and overcoming tumor stromal barrier. Focusing on elastosis in triple-negative breast tumor, biomimetic liposomes with chimeric cell membrane proteins (LMP) are developed and for the first time, it is demonstrated that LMP with surface-bound elastase (NE-LMP) can target and degrade ECM effectively in tumor stroma, with minimal toxicity to normal tissues. The pretreatment of NE-LMP increases the accumulation of chemotherapeutics at the tumor site and enhances antitumor effects. Also, NE-LMP facilitates CTL infiltration in tumors and exhibits enhanced chemo-immunotherapy in combination of PD-1 immune checkpoint blockade treatment in orthotopic 4T1 tumor-bearing mice, with significantly prolonged survival. Moreover, the remodeling of the tumor ECM by NE-LMP shows inhibiting effects on metastasis in the lung. Findings from this study suggest that NE-LMP holds promise for enhancing deep penetration of drug and infiltration of CTL in desmoplastic tumor by effective degrading ECM in the tumor stroma.
Collapse
Affiliation(s)
- Yong‐Jiang Li
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Jun‐Yong Wu
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Xiong‐Bin Hu
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Tianjinhao Ding
- Department of Breast and Thyroid Surgery the Third Xiangya Hospital of Central South University Changsha 410013 China
| | - Tiantian Tang
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Da‐Xiong Xiang
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| |
Collapse
|
161
|
Zhao X, Yang X, Wang X, Zhao X, Zhang Y, Liu S, Anderson GJ, Kim SJ, Li Y, Nie G. Penetration Cascade of Size Switchable Nanosystem in Desmoplastic Stroma for Improved Pancreatic Cancer Therapy. ACS NANO 2021; 15:14149-14161. [PMID: 34478262 DOI: 10.1021/acsnano.0c08860] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells are surrounded by a dense extracellular matrix (ECM), which greatly restricts the access of therapeutic agents, resulting in poor clinical response to chemotherapy. Transforming growth factor-β1 (TGF-β1) signaling plays a crucial role in construction of the desmoplastic stroma and provides potential targets for PDAC therapy. To surmount the pathological obstacle, we developed a size switchable nanosystem based on PEG-PLGA nanospheres encapsulated within liposomes for the combined delivery of vactosertib (VAC), a TGF-β1 receptor kinase inhibitor, and the cytotoxic drug paclitaxel (TAX). By surface modification of the liposomes with a peptide, APTEDB, the nanosystem can be anchored to abundant tumor-associated fibronectin in PDAC stroma and decreases its size by releasing encapsulated TAX-loaded nanospheres, as well as VAC after collapse of the liposomes. The inhibition of ECM hyperplasia by VAC allows TAX more ready access to the cancer cells in addition to its small size, thereby shrinking pancreatic tumor xenografts more effectively than a combination of the free drugs. This size switchable nanosystem enables sequential delivery of drugs at a fixed dose combination with simplified administration and provides an encouraging cascade approach of drug penetration for enhanced chemotherapy in cancers with a dense desmoplastic stroma.
Collapse
Affiliation(s)
- Xiaozheng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Republic of Korea
- Medpacto Inc., 92 Myeongdal-ro, Seocho-gu, Seoul 06668, Republic of Korea
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
162
|
Lu T, Prakash J. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. Int J Nanomedicine 2021; 16:6313-6328. [PMID: 34552327 PMCID: PMC8450289 DOI: 10.2147/ijn.s279192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with one of the worst survival rates due to its insidious onset and resistance to therapies. Most therapeutics show a desired anticancer effect in vitro; however, very poor efficacy in vivo because of the limited drug delivery and penetration into pancreatic tumors attributed to the abundance of the tumor stroma, ie, the fibrotic tumor microenvironment surrounding the cancer cells. For a better understanding of the challenges posed by the pancreatic tumor stroma, we outline the key features of the tumor microenvironment. Then we highlight major strategies used to tackle the challenges to improve drug penetration into the tumor and achieve enhanced efficacy (pre)clinically. Furthermore, we describe nanomedicine strategies to modulate the tumor stroma, degrade the extracellular matrix, and co-deliver multi-functional drugs, to improve the chemotherapeutics delivery and penetration into pancreatic tumors.
Collapse
Affiliation(s)
- Tao Lu
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
163
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
164
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
165
|
Pan Y, Song X, Wang Y, Wei J. Firing up the Tumor Microenvironment with Nanoparticle-Based Therapies. Pharmaceutics 2021; 13:pharmaceutics13091338. [PMID: 34575414 PMCID: PMC8472427 DOI: 10.3390/pharmaceutics13091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Therapies mobilizing host immunity against cancer cells have profoundly improved prognosis of cancer patients. However, efficacy of immunotherapies depends on local immune conditions. The "cold" tumor, which is characterized by lacking inflamed T cells, is insensitive to immunotherapy. Current strategies of improving the "cold" tumor microenvironment are far from satisfying. Nanoparticle-based therapies provide novel inspiration in firing up the tumor microenvironment. In this review, we presented progress and limitations of conventional immunotherapies. Then, we enumerate advantages of nanoparticle-based therapies in remodeling the "cold" tumor microenvironment. Finally, we discuss the prospect of nanoparticle-based therapies in clinical application.
Collapse
Affiliation(s)
- Yunfeng Pan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
| | - Xueru Song
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210008, China
- Correspondence:
| |
Collapse
|
166
|
Ezzeldeen Y, Swidan S, ElMeshad A, Sebak A. Green Synthesized Honokiol Transfersomes Relieve the Immunosuppressive and Stem-Like Cell Characteristics of the Aggressive B16F10 Melanoma. Int J Nanomedicine 2021; 16:5693-5712. [PMID: 34465990 PMCID: PMC8402984 DOI: 10.2147/ijn.s314472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Honokiol (HK) is a natural bioactive compound with proven antineoplastic properties against melanoma. However, it shows very low bioavailability when administered orally. Alternatively, topical administration may offer a promising route. The objective of the current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. As an ultradeformable carrier system, transfersomes can overcome the physiological barriers to topical treatment of melanoma: the stratum corneum and the anomalous tumor microenvironment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were the main interest of this study. METHODS TFs were prepared using the modified scalable heating method. A three-factor, three-level Box-Behnken design was utilized for the optimization of the process and formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in nonactivated and stromal cell-activated B16F10 melanoma cells to investigate the influence of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western blot were performed to evaluate the expression levels of TGF-β and clusters of differentiation (CD47 and CD133, respectively). RESULTS The optimized formula exhibited a mean size of 190 nm, highly negative surface charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via downregulation of TGF-β signaling. In addition, HKTs reduced expression of the "do not eat me" signal - CD47. Moreover, HKTs possessed additional interesting potential to reduce the expression of the stem-like cell marker CD133. These outcomes were boosted upon combination with metformin, an antihyperglycemic drug recently reported to possess different functions in cancer, while combination with collagenase, an extracellular matrix-depleting enzyme, produced detrimental effects. CONCLUSION HKTs represent a promising scalable formulation for treatment of the aggressive B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Collapse
Affiliation(s)
- Yasmeen Ezzeldeen
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Aliaa ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Bio Nano, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
167
|
Jin M, Hou Y, Quan X, Chen L, Gao Z, Huang W. Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice. Int J Nanomedicine 2021; 16:5479-5494. [PMID: 34413645 PMCID: PMC8370882 DOI: 10.2147/ijn.s313339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background The dual-loaded nano-delivery system can realize chemotherapeutic drug and small interfering RNA (siRNA) co-loading as well as enhance the therapeutic effect of drugs on tumors through a synergistic effect, while reducing their toxic and side effects on normal tissues. Methods Previously, we developed layered smart nanoparticles (NPs) to co-deliver survivin siRNA as well as small molecule drugs for lung cancer. In this study, we used such smart NPs to co-deliver paclitaxel (PTX) and siRNA against vascular endothelial growth factor (VEGF) gene for breast cancer therapy in mice models. For the prepared NPs, characterizations such as particle size, zeta potential, gel electrophoresis imaging and in vitro stability were investigated. Then, 4T1 cells were used to evaluate the in vitro VEGF silencing capacity, tumor cell inhibitory and anti-apoptotic abilities. Finally, an orthotopic model of mouse breast cancer was established to evaluate the in vivo antitumor effects and safety properties of PTX-siRNAVEGF-NPs. Results We prepared PTX-siRNAVEGF-NPs with particle size of 85.25 nm, PDI of 0.261, and zeta potential of 5.25 mV. The NPs with VEGF siRNA effectively knocked down the expression of VEGF mRNA. Cell counting kit-8 (CCK-8) and apoptosis assays revealed that the PTX-siRNAVEGF-NPs exhibited antiproliferation effect of PTX on 4T1 cells. The in vivo anti-tumor study indicated that PTX-siRNAVEGF-NPs could exert an antitumor effect by inhibiting the formation and development of new blood vessels in tumor tissues, thereby cutting off nutrient and blood supplies required for tumor tissue growth. Both the anti-tumor efficacy and in vivo safety of the PTX-siRNAVEGF-NPs group were better than that of the PTX-NPs and siRNAVEGF-NPs groups. Conclusion The combination of PTX and VEGF siRNA exerts good antitumor effect on 4T1 tumor cells. This study provides a theoretical and practical basis for breast cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Department of Pharmacy, Yanbian University, Yanji, Jilin, 133000, People's Republic of China
| | - Xiuquan Quan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Department of Emergency Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, People's Republic of China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
168
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
169
|
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021; 11:2265-2285. [PMID: 34522587 PMCID: PMC8424218 DOI: 10.1016/j.apsb.2021.03.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai Shi
- Corresponding author. Tel./fax: +86 24 43520557.
| |
Collapse
|
170
|
Yang Y, Hua S, Suo W, Wang W, Wang L, Chen Z, Liu K, Zhao J. A Novel Bionic Catalyst-Mediated Drug Delivery System for Enhanced Sonodynamic Therapy. Front Bioeng Biotechnol 2021; 9:699737. [PMID: 34395406 PMCID: PMC8361452 DOI: 10.3389/fbioe.2021.699737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT) proves itself to be a formidable tool in the fight against cancer, due to its large spectrum of uses as a non-invasive therapeutic measure, while also demonstrating itself to be a certain improvement upon traditional SDT therapeutics. However, tumor hypoxia remains to be a major challenge for oxygen-dependent SDT. This study describes the development of an innovative, multi-use, catalyst-based and improved SDT targeting cancer, through the employment of a sonosensitizing curcumin (Cur) load embedded within a MnO2 core, together with an extraneous tumor cell membrane component. The latter allows for efficient tumor recognition properties. Hollowed-out MnO2 allows for efficient drug delivery, together with catalyzing oxygen generation from hydrogen peroxide present in tumor tissue, leading to enhanced SDT efficacy through the induction of a reduced hypoxic state within the tumor. In addition, Cur acts as a cytotoxic agent in its own right. The results deriving from in vivo studies revealed that such a biomimetic approach for drug-delivery actually led to a reduced hypoxic state within tumor tissue and a raised tumor-inhibitory effect within mouse models. Such a therapeutic measure attained a synergic SDT-based tumor sensitization treatment option, together with the potential use of such catalysis-based therapeutic formulations in other medical conditions having hypoxic states.
Collapse
Affiliation(s)
- Yiling Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaohua Hua
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weilong Suo
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, China
| | - Wenbin Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Longhao Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Zhengguang Chen
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kefeng Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| |
Collapse
|
171
|
Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer Leading to Reductions in Immunosuppressive Subsets and Tumor Growth. Cancers (Basel) 2021; 13:cancers13143565. [PMID: 34298778 PMCID: PMC8306875 DOI: 10.3390/cancers13143565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) can be attributed, in part, to a dense extracellular matrix containing excessive collagen deposition. Here, we describe a novel Salmonella typhimurium (ST) vector expressing the bacterial collagenase Streptomyces omiyaensis trypsin (SOT), a serine protease known to hydrolyze collagens I and IV, which are predominantly found in PDAC. Utilizing aggressive models of PDAC, we show that ST-SOT selectively degrades intratumoral collagen leading to decreases in immunosuppressive subsets, tumor proliferation and viability. Ultimately, we found that ST-SOT treatment significantly modifies the intratumoral immune landscape to generate a microenvironment that may be more conducive to immunotherapy.
Collapse
|
172
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
173
|
Tong QS, Miao WM, Huang H, Luo JQ, Liu R, Huang YC, Zhao DK, Shen S, Du JZ, Wang J. A Tumor-Penetrating Nanomedicine Improves the Chemoimmunotherapy of Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101208. [PMID: 34145747 DOI: 10.1002/smll.202101208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a low survival rate. The therapeutic effect of chemotherapy and immunotherapy for PDAC is disappointing due to the presence of dense tumor stroma and immunosuppressive cells in the tumor microenvironment (TME). Herein, a tumor-penetrating nanoparticle is reported to modulate the deep microenvironment of PDAC for improved chemoimmunotherapy. The tumor pH-sensitive polymer is synthesized by conjugating N,N-dipentylethyl moieties and monomethoxylpoly(ethylene glycol) onto PAMAM dendrimer, into whose cavity a hydrophobic gemcitabine (Gem) prodrug is accommodated. They self-assemble into nanoparticles (denoted as SPN@Pro-Gem) with the size around 120 nm at neutral pH, but switch into small particles (≈8 nm) at tumor site to facilitate deep delivery of Gem into the tumor parenchyma. In addition to killing cancer cells that resided deeply in the tumor tissue, SPN@Pro-Gem could modulate the TME by reducing the abundance of tumor-associated macrophages and myeloid-derived suppressor cells as well as upregulating the expression level of PD-L1 of tumor cells. This collectively facilitates the infiltration of cytotoxic T cells into the tumors and renders checkpoint inhibitors more effective in previously unresponsive PDAC models. This study reveals a promising strategy for improving the chemoimmunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Qi-Song Tong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Wei-Min Miao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hua Huang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Jia-Qi Luo
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Cong Huang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jin-Zhi Du
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
174
|
Chen J, Li S, Liu X, Liu S, Xiao C, Zhang Z, Li S, Li Z, Yang X. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. NANOSCALE 2021; 13:9989-10001. [PMID: 34076013 DOI: 10.1039/d1nr01552d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is frequently used in cancer treatment in clinical settings. However, its applications in stroma-rich solid tumors, e.g., triple negative breast cancer, are limited by abnormal mechanical microenvironments. Solid stress accumulated in stroma-rich solid tumors compresses tumor blood vessels, hampers the delivery of photosensitizers (PSs) in tumor tissues, and poses a major challenge for potent PDT. Here, we report a novel combination strategy to augment PDT based cancer therapy by combining hydroxyethyl starch-chlorin e6 conjugate self-assembled nanoparticles (HES-Ce6 NPs) with the transforming growth factor-β (TGFβ) inhibitor LY2157299 (LY). HES-Ce6 conjugates, as synthesized by one step esterification reaction, could self-assemble into uniform HES-Ce6 NPs, which exhibited enhanced photostability and generated more reactive oxygen species (ROS) under 660 nm laser irradiation than free Ce6. Prior to PDT, intragastric administration of LY decreased collagen deposition, alleviated solid stress, and decompressed tumor blood vessels. As a result, the reconstructed tumor mechanical microenvironment promoted accumulation and penetration of HES-Ce6 NPs into tumor tissues, contributing to augmented antitumor efficacy of HES-Ce6 NP mediated PDT. Modulating tumor mechanical microenvironments using TGFβ blockade to enhance the delivery of PSs in tumors with excessive extracellular matrix represents an efficient strategy for treating stroma-rich solid tumors.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Biomarkers in Pancreatic Cancer as Analytic Targets for Nanomediated Imaging and Therapy. MATERIALS 2021; 14:ma14113083. [PMID: 34199998 PMCID: PMC8200189 DOI: 10.3390/ma14113083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
As the increase in therapeutic and imaging technologies is swiftly improving survival chances for cancer patients, pancreatic cancer (PC) still has a grim prognosis and a rising incidence. Practically everything distinguishing for this type of malignancy makes it challenging to treat: no approved method for early detection, extended asymptomatic state, limited treatment options, poor chemotherapy response and dense tumor stroma that impedes drug delivery. We provide a narrative review of our main findings in the field of nanoparticle directed treatment for PC, with a focus on biomarker targeted delivery. By reducing drug toxicity, increasing their tumor accumulation, ability to modulate tumor microenvironment and even improve imaging contrast, it seems that nanotechnology may one day give hope for better outcome in pancreatic cancer. Further conjugating nanoparticles with biomarkers that are overexpressed amplifies the benefits mentioned, with potential increase in survival and treatment response.
Collapse
|
176
|
Giustarini G, Pavesi A, Adriani G. Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Front Bioeng Biotechnol 2021; 9:689245. [PMID: 34150739 PMCID: PMC8207137 DOI: 10.3389/fbioe.2021.689245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnologies are rapidly increasing their role in immuno-oncology in line with the need for novel therapeutic strategies to treat patients unresponsive to chemotherapies and immunotherapies. The tumor immune microenvironment (TIME) has emerged as critical for tumor classification and patient stratification to design better treatments. Notably, the tumor infiltration of effector T cells plays a crucial role in antitumor responses and has been identified as the primary parameter to define hot, immunosuppressed, excluded, and cold tumors. Organic and inorganic nanoparticles (NPs) have been applied as carriers of new targeted therapies to turn cold or altered (i.e., immunosuppressed or excluded) tumors into more therapeutically responsive hot tumors. This mini-review discusses the significant advances in NP-based approaches to turn immunologically cold tumors into hot ones.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
177
|
Wang J, Wu Q, Wang Y, Xiang L, Feng J, Zhou Z, Fu Q, Zhang L. Collagenase-loaded pH-sensitive nanocarriers efficiently remodeled tumor stroma matrixes and improved the enrichment of nanomedicines. NANOSCALE 2021; 13:9402-9414. [PMID: 34002757 DOI: 10.1039/d1nr00950h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dense extracellular matrix (ECM) in tumor tissue severely hinders the penetration and enrichment of antitumor nanomedicines, which could significantly affect their efficiency. In this study, we used pH-sensitive nanocarriers loaded with collagenase (Col) to remold the tumor microenvironment (TME). Furthermore, we combined the collagenase delivery system with a nanomedicine to improve its penetration and enrichment in the tumor, thereby improving efficacy. We synthesized acetalated dextran (Ace-DEX) with an ideal pH-sensitivity as the carrier material of collagenase. Under mild preparation conditions, collagenase was loaded into Ace-DEX nanoparticles (NPs) with a high loading capacity (>4%) and remained highly active (>90%). Col-carrying NPs (Col-NPs) significantly reduced the tumor collagen content by 15.1%. Pretreatment with Col-NPs increased the accumulation of doxorubicin (DOX)-loaded liposome (DOX-Lipo) in the tumor by 2.8-fold. There were no safety concerns as the Col-NP showed no significant toxicity and reduced Col-induced damage to healthy tissues. Additionally, the number of circulating tumor cells remained unchanged after Col-NP treatment, suggesting no increased risk of tumor metastasis. Because the Col-NP acts essentially independent of the subsequent treatment, it has considerable potential for enhancing many existing delivery systems and drugs for cancer treatment. It may also be used for treating other collagen-related diseases.
Collapse
Affiliation(s)
- Jiading Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Qingsi Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanfang Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Xiang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiaxing Feng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaojie Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
178
|
Estaras M, Gonzalez-Portillo MR, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernandez G, Lopez-Guerra D, Roncero V, Salido GM, González A. Melatonin Induces Apoptosis and Modulates Cyclin Expression and MAPK Phosphorylation in Pancreatic Stellate Cells Subjected to Hypoxia. Int J Mol Sci 2021; 22:5555. [PMID: 34074034 PMCID: PMC8197391 DOI: 10.3390/ijms22115555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In certain diseases of the pancreas, pancreatic stellate cells form an important part of fibrosis and are critical for the development of cancer cells. A hypoxic condition develops within the tumor, to which pancreatic stellate cells adapt and are able to proliferate. The consequence is the growth of the tumor. Melatonin, the product of the pineal gland, is gaining attention as an agent with therapeutic potential against pancreatic cancers. Its actions on tumor cells lead, in general, to a reduction in cell viability and proliferation. However, its effects on pancreatic stellate cells subjected to hypoxia are less known. In this study, we evaluated the actions of pharmacological concentrations of melatonin (1 mM-1 µM) on pancreatic stellate cells subjected to hypoxia. The results show that melatonin induced a decrease in cell viability at the highest concentrations tested. Similarly, the incorporation of BrdU into DNA was diminished by melatonin. The expression of cyclins A and D also was decreased in the presence of melatonin. Upon treatment of cells with melatonin, increases in the expression of major markers of ER stress, namely BIP, phospho-eIF2α and ATF-4, were detected. Modulation of apoptosis was noticed as an increase in caspase-3 activation. In addition, changes in the phosphorylated state of p44/42, p38 and JNK MAPKs were detected in cells treated with melatonin. A slight decrease in the content of α-smooth muscle actin was detected in cells treated with melatonin. Finally, treatment of cells with melatonin decreased the expression of matrix metalloproteinases 2, 3, 9 and 13. Our observations suggest that melatonin, at pharmacological concentrations, diminishes the proliferation of pancreatic stellate cells subjected to hypoxia through modulation of cell cycle, apoptosis and the activation of crucial MAPKs. Cellular responses might involve certain ER stress regulator proteins. In view of the results, melatonin could be taken into consideration as a potential therapeutic agent for pancreatic fibrosis.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Manuel R. Gonzalez-Portillo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Miguel Fernandez-Bermejo
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Jose M. Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Gerardo Blanco-Fernandez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Gines M. Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| |
Collapse
|
179
|
Cruz-Acuña R, Vunjak-Novakovic G, Burdick JA, Rustgi AK. Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics. iScience 2021; 24:102475. [PMID: 34027324 PMCID: PMC8131321 DOI: 10.1016/j.isci.2021.102475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent engineering technologies have transformed traditional perspectives of cancer to include the important role of the extracellular matrix (ECM) in recapitulating the malignant behaviors of cancer cells. Novel biomaterials and imaging technologies have advanced our understanding of the role of ECM density, structure, mechanics, and remodeling in tumor cell-ECM interactions in cancer biology and have provided new approaches in the development of cancer therapeutics. Here, we review emerging technologies in cancer ECM biology and recent advances in engineered systems for evaluating cancer therapeutics and provide new perspectives on how engineering tools present an opportunity for advancing the modeling and treatment of cancer. This review offers the cell biology and cancer cell biology communities insight into how engineering tools can improve our understanding of cancer ECM biology and therapeutic development.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
180
|
Liang T, Zhang B, Xing Z, Dong Y, Xu H, Chen X, Jiang L, Zhu J, Min Q. Adapting and Remolding: Orchestrating Tumor Microenvironment Normalization with Photodynamic Therapy by Size Transformable Nanoframeworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingxizi Liang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Benhua Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuxiang Dong
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
181
|
Liang T, Zhang B, Xing Z, Dong Y, Xu H, Chen X, Jiang L, Zhu JJ, Min Q. Adapting and Remolding: Orchestrating Tumor Microenvironment Normalization with Photodynamic Therapy by Size Transformable Nanoframeworks. Angew Chem Int Ed Engl 2021; 60:11464-11473. [PMID: 33751758 DOI: 10.1002/anie.202102180] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Abnormal tumor microenvironment (TME) facilitates tumor proliferation and metastasis and establishes physiological barriers for effective transport of therapeutics inside the tumor, posing great challenges for cancer treatment. We designed a core-satellite size transformable nanoframework (denoted as T-PFRT) that can synchronously adapt to and remold TME for augmenting photodynamic therapy to inhibit tumor growth and prevent tumor metastasis. Upon matrix metalloproteinase 2 (MMP2)-responsive dissociation of the nanoframework in TME, the core structure loaded with TGFβ signaling pathway inhibitor and oxygen-carrying hemoglobin aims to stroma remodeling and hypoxia relief, allowing photosensitizer-encapsulated satellite particles to penetrate to deep-seated tumor for oxygen-fueled photodynamic therapy. T-PFRT could overcome the stroma and hypoxia barriers for delivering therapeutics and gain excellent therapeutic outcomes in the treatment of primary and metastatic tumors.
Collapse
Affiliation(s)
- Tingxizi Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Benhua Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxiang Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
182
|
Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021; 172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Remarkable advances in nano delivery systems have provided new hope for tumor prevention, diagnosis and treatment. However, only limited clinical therapeutic effects against solid tumors were achieved. One of the main reasons is the presence of abundant physiological and pathological barriers in vivo that impair tumoral penetration and distribution of the nanodrugs. These barriers are related to the components of tumor microenvironment (TME) including abnormal tumor vasculature, rich composition of the extracellular matrix (ECM), and abundant stroma cells. Herein, we review the advanced strategies of TME remodeling to overcome these biological obstacles against nanodrug delivery. This review aims to offer a perspective guideline for the implementation of promising approaches to facilitate intratumoral permeation of nanodrugs through alleviation of biological barriers. At the same time, we analyze the advantages and disadvantages of the corresponding methods and put forward possible directions for the future researches.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qiang Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yue Jia
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Feiyang Geng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
183
|
Zinger A, Sushnitha M, Naoi T, Baudo G, De Rosa E, Chang J, Tasciotti E, Taraballi F. Enhancing Inflammation Targeting Using Tunable Leukocyte-Based Biomimetic Nanoparticles. ACS NANO 2021; 15:6326-6339. [PMID: 33724785 PMCID: PMC8155322 DOI: 10.1021/acsnano.0c05792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/22/2021] [Indexed: 05/02/2023]
Abstract
Biomimetic nanoparticles aim to effectively emulate the behavior of either cells or exosomes. Leukocyte-based biomimetic nanoparticles, for instance, incorporate cell membrane proteins to transfer the natural tropism of leukocytes to the final delivery platform. However, tuning the protein integration can affect the in vivo behavior of these nanoparticles and alter their efficacy. Here we show that, while increasing the protein:lipid ratio to a maximum of 1:20 (w/w) maintained the nanoparticle's structural properties, increasing protein content resulted in improved targeting of inflamed endothelium in two different animal models. Our combined use of a microfluidic, bottom-up approach and tuning of a key synthesis parameter enabled the synthesis of reproducible, enhanced biomimetic nanoparticles that have the potential to improve the treatment of inflammatory-based conditions through targeted nanodelivery.
Collapse
Affiliation(s)
- Assaf Zinger
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Manuela Sushnitha
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department
of Bioengineering, Rice University, Houston, Houston, Texas 77030, United States
| | - Tomoyuki Naoi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Gherardo Baudo
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Enrica De Rosa
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Jenny Chang
- Houston
Methodist Cancer Center, Houston Methodist
Hospital, Houston, Texas 77030, United
States
| | - Ennio Tasciotti
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
- Biotechnology
Program, San Raffaele University and IRCCS
San Raffaele Pisana, 00166 Roma RM, Italy
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
184
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
185
|
Zhao Y, Zheng X, Zheng Y, Chen Y, Fei W, Wang F, Zheng C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front Oncol 2021; 11:650453. [PMID: 33968752 PMCID: PMC8100244 DOI: 10.3389/fonc.2021.650453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
Collapse
Affiliation(s)
- Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
186
|
Estaras M, Gonzalez-Portillo MR, Martinez R, Garcia A, Estevez M, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernández G, Lopez-Guerra D, Roncero V, Salido GM, Gonzalez A. Melatonin Modulates the Antioxidant Defenses and the Expression of Proinflammatory Mediators in Pancreatic Stellate Cells Subjected to Hypoxia. Antioxidants (Basel) 2021; 10:577. [PMID: 33918063 PMCID: PMC8070371 DOI: 10.3390/antiox10040577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic stellate cells (PSC) play a major role in the formation of fibrotic tissue in pancreatic tumors. On its side, melatonin is a putative therapeutic agent for pancreatic cancer and inflammation. In this work, the actions of melatonin on PSC subjected to hypoxia were evaluated. Reactive oxygen species (ROS) generation reduced (GSH) and oxidized (GSSG) levels of glutathione, and protein and lipid oxidation were analyzed. The phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and the regulatory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα) was studied. The expression of Nrf2-regulated antioxidant enzymes, superoxide dismutase (SOD) enzymes, cyclooxygenase 2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also studied. Total antioxidant capacity (TAC) was assayed. Finally, cell viability was studied. Under hypoxia and in the presence of melatonin generation of ROS was observed. No increases in the oxidation of proteins or lipids were detected. The phosphorylation of Nrf2 and the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1, heme oxygenase-1, SOD1, and of SOD2 were augmented. The TAC was increased. Protein kinase C was involved in the effects of melatonin. Melatonin decreased the GSH/GSSG ratio at the highest concentration tested. Cell viability dropped in the presence of melatonin. Finally, melatonin diminished the phosphorylation of NF-kB and the expression of COX-2, IL-6, and TNF-α. Our results indicate that melatonin, at pharmacological concentrations, modulates the red-ox state, viability, and the expression of proinflammatory mediators in PSC subjected to hypoxia.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Manuel R. Gonzalez-Portillo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Alfredo Garcia
- Department of Animal Production, CICYTEX-La Orden, 06187 Badajoz, Spain;
| | - Mario Estevez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres, Spain;
| | - Miguel Fernandez-Bermejo
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Jose M. Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Gines M. Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| |
Collapse
|
187
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
188
|
Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res 2021; 11:345-352. [PMID: 33585972 PMCID: PMC7882236 DOI: 10.1007/s13346-021-00929-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
The field of nanotechnology and personalised medicine is undergoing drastic changes in the approach and efficiency of experimentation. The COVID-19 pandemic has spiralled into mass stagnation of major laboratories around the globe and led to increased investment into remote systems for nanoparticle experiments. A significant number of laboratories now operate using automated systems; however, the extension to nanoparticle preparation and artificial intelligence-dependent databases holds great translational promise. The strive to combine automation with artificial intelligence (AI) grants the ability to optimise targeted therapeutic nanoparticles for unique cell types and patients. In this perspective, the current and future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods.
Collapse
Affiliation(s)
- Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Calvin Pieters
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Hila Korach-Rechtman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
189
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
190
|
Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073571. [PMID: 33808235 PMCID: PMC8036762 DOI: 10.3390/ijms22073571] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.
Collapse
|
191
|
Luo J, Zhang Z, Zeng Y, Dong Y, Ma L. Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis. Carbohydr Polym 2021; 263:117964. [PMID: 33858569 DOI: 10.1016/j.carbpol.2021.117964] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Components of the extracellular matrix (ECM) are overexpressed in fibrotic liver. Collagen is the main component of the liver fibrosis stroma. Here we demonstrate that chondroitin sulfate coated multilayered 50-nm nanoparticles encapsulating collagenase and silibinin (COL + SLB-MLPs) break down the dense collagen stroma, while silibinin inhibits activated hepatic stellate cells. The nanoparticles were taken up to a much greater extent by hepatic stellate cells than by normal hepatocytes, and they down-regulated production of type I collagen. In addition, chondroitin sulfate protected the collagenase from premature deactivation. COL + SLB-MLPs were delivered to the cirrhotic liver, and the collagenase and silibinin synergistically inhibited fibrosis in mice. Immunofluorescence staining of liver tissues revealed that CD44, mediated by chondroitin sulfate, delivered the nanoparticles to hepatic stellate cells. This strategy holds promise for degrading extracellular stroma and thereby facilitating drug penetration into fibrotic liver and related diseases such as liver cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingchun Zeng
- School of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Chengdu, 610500, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
192
|
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. NANO-MICRO LETTERS 2021; 13:92. [PMID: 34138315 PMCID: PMC8006526 DOI: 10.1007/s40820-021-00622-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 05/02/2023]
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear 'cold' tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
193
|
Vetvicka D, Sivak L, Jogdeo CM, Kumar R, Khan R, Hang Y, Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J Control Release 2021; 331:246-259. [PMID: 33482273 DOI: 10.1016/j.jconrel.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Despite intensive research efforts and development of numerous new anticancer drugs and treatment strategies over the past decades, there has been only very limited improvement in overall patient survival and in effective treatment options for pancreatic cancer. Current chemotherapy improves survival in terms of months and death rates in pancreatic cancer patients are almost equivalent to incidence rates. It is imperative to develop new therapeutic approaches. Among them, gene silencing shows promise of effectiveness in both tumor cells and stromal cells by inhibiting tumor-promoting genes. This review summarizes potential targets for gene silencing in both pancreatic cancer cells and abundant stromal cells focusing on non-viral delivery systems for small RNAs and discusses the potential immunological implications. The review concludes with the importance of multifactorial therapy of pancreatic cancer.
Collapse
Affiliation(s)
- David Vetvicka
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, Prague 2 12000, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-61300, Czech Republic
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
194
|
Liu X, Hao Y, Popovtzer R, Feng L, Liu Z. Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. Adv Healthc Mater 2021; 10:e2001167. [PMID: 32985139 DOI: 10.1002/adhm.202001167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Enzymes play pivotal roles in regulating and maintaining the normal functions of all living systems, and some of them are extensively employed for diagnosis and treatment of diverse diseases. More recently, several kinds of enzymes with unique catalytic activities have been found to be promising options to directly suppress tumor growth and/or augment the therapeutic efficacy of other treatments by modulating the hostile tumor microenvironment (TME), which is reported to negatively impair the therapeutic efficacy of different cancer treatments. In this review, first a summary is presented on the chemical approaches utilized for the construction of distinct enzyme nanoreactors with well-retained catalytic performance and reduced immunogenicity. Then, the utilization of such enzyme nanoreactors in attenuating tumor hypoxia, modulating extracellular matrix, and amplifying tumor oxidative stress is discussed in depth. Afterward, some perspectives are presented on the future development of such enzyme nanoreactors in TME modulation and enhanced cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Liu
- Clinical Translational Center for Targeted Drug Department of Pharmacology School of Medicine Jinan University Guangzhou Guangdong Province 510632 China
| | - Yu Hao
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 52900 Israel
| | - Liangzhu Feng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
195
|
Brundel DH, Feeney OM, Nowell CJ, Suys EJ, Gracia G, Kaminskas LM, McIntosh MM, Kang DW, Porter CJ. Depolymerization of hyaluronan using PEGylated human recombinant hyaluronidase promotes nanoparticle tumor penetration. Nanomedicine (Lond) 2021; 16:275-292. [PMID: 33560142 DOI: 10.2217/nnm-2020-0433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Delivery of nanoparticles (NPs) to tumors can be impeded by high levels of hyaluronan (HA) in the stroma. Enzymatic depolymerization of HA with PEGylated hyaluronidase (PEGPH20) improves the delivery of antibodies to tumors. However, it is unknown whether NP delivery is enhanced by this strategy. Methods: The impact of PEGPH20 pretreatment on the uptake and tumor penetration of model PEGylated polystyrene NPs was studied in mice with orthotopic breast cancers. Results: Tumor oxygenation and NP penetration, but not overall tumor uptake, of 50 nm NPs, was significantly enhanced by PEGPH20 pre-administration. Conclusion: PEGPH20 has the potential to improve intratumoral penetration of NP-based drug delivery systems and enhance access to cancer cells in poorly vascularized regions of the tumor.
Collapse
Affiliation(s)
- Daniel Hs Brundel
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Estelle Ja Suys
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, QLD, St Lucia, 4072, Australia
| | - Michelle M McIntosh
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David W Kang
- Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Christopher Jh Porter
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
196
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
197
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
198
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
199
|
Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials 2021; 270:120680. [PMID: 33588140 DOI: 10.1016/j.biomaterials.2021.120680] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.
Collapse
|
200
|
García-Olmo D, Villarejo Campos P, Barambio J, Gomez-Heras SG, Vega-Clemente L, Olmedillas-Lopez S, Guadalajara H, Garcia-Arranz M. Intraperitoneal collagenase as a novel therapeutic approach in an experimental model of colorectal peritoneal carcinomatosis. Sci Rep 2021; 11:503. [PMID: 33436728 PMCID: PMC7803982 DOI: 10.1038/s41598-020-79721-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
The usefulness of local collagenase in therapeutic approaches to solid tumors has been tested recently. In this study, we evaluate the safety and efficacy of intraperitoneal collagenase associated or not to mitomycin for treatment of colorectal peritoneal metastases in an experimental rat model. Using a fixed-dose procedure, we found that a dose of collagenase of 37 IU/mL administered for 15 min with a hyperthermia pump at 37.5 °C, both in isolation or associated to sequential treatment with intraperitoneal mitomycin, led to a macroscopic decrease in tumor volume as evaluated by the modified peritoneal cancer index (mPCI). Concerning the safety of the procedure, the animals showed no physiological or behavioral disorders during 8 weeks of follow-up. Local treatment for peritoneal metastases of colorectal origin with intraperitoneal collagenase has proved safe and effective in an experimental murine model. Therefore, the stroma-first approach by enzymatic breakdown of collagen from the tumor's extracellular matrix provides a new therapeutic target for colorectal peritoneal metastases.
Collapse
Affiliation(s)
- D García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28034, Madrid, Spain
| | - P Villarejo Campos
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - J Barambio
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - S Garcia Gomez-Heras
- Department of Human Histology, Universidad Rey Juan Carlos, Avda de Atenas s/n, 28922, Alcorcón, Spain
| | - L Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - S Olmedillas-Lopez
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - H Guadalajara
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28034, Madrid, Spain
| | - M Garcia-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28034, Madrid, Spain
| |
Collapse
|