151
|
Zhou Z, Zhu Y, Fernández-García JM, Wei Z, Fernández I, Petrukhina MA, Martín N. Stepwise reduction of a corannulene-based helical molecular nanographene with Na metal. Chem Commun (Camb) 2022; 58:5574-5577. [PMID: 35353101 DOI: 10.1039/d2cc00971d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemical reduction of a corannulene-based molecular nanographene, C76H64 (1), with Na metal in the presence of 18-crown-6 afforded the doubly-reduced state of 1. This reduction provokes a distortion of the helicene core and has a significant impact on the aromaticity of the system.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA. .,School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Yikun Zhu
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA.
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA.
| | - Israel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA.
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain. .,IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
152
|
Duan C, Zhang J, Xiang J, Yang X, Gao X. Azulene-Embedded [n]Helicenes (n=5, 6 and 7). Angew Chem Int Ed Engl 2022; 61:e202201494. [PMID: 35191154 DOI: 10.1002/anie.202201494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/29/2022]
Abstract
Azulene is a non-benzenoid aromatic building block with unique chemical structure and physicochemical properties. By using the "bottom-up" synthetic strategy, we synthesized three azulene-embedded [n]helicenes ([n]AzHs, n=5, 6 and 7), in which one terminal azulene subunit was fused with n-2 benzene rings. P- and M-enantiomers were observed in the packing diagrams of [5]-, and [6]AzHs. However, P- and M-[7]AzHs could be isolated by recrystallization of the racemic mixture. These [n]AzHs were endowed with new properties through the azulene moiety such as low-lying first electric state (S1 ), small optical energy gap and anti-Kasha emission. [6]-, and [7]AzHs exhibit strong chiroptical responses with high absorption dissymmetry factor (gabs ) maxima of about 0.02, which is among the highest |gabs | values of helicenes in the visible range. These azulene-embedded [n]helicenes contribute to the non-benzenoid helicene library and allow the structure-property relationships to be better understood.
Collapse
Affiliation(s)
- Chao Duan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianwei Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junjun Xiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
153
|
Radenković S, Tomović Ž. Tuning the structure and properties of N-doped positively charged polycyclic aromatic hydrocarbons. Chemphyschem 2022; 23:e202200125. [PMID: 35404503 DOI: 10.1002/cphc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Indexed: 11/11/2022]
Abstract
A detailed study of the geometry, aromatic character, electronic and magnetic properties for a series of positively charged N-doped PAHs was performed. Magnetic properties of the examined molecules were analyzed by means of the magnetically induced current density calculated using the diamagnetic-zero version of the continuous transformation of origin of current density (CTOCD-DZ) method. The comparative study of the local aromaticity of the studied molecules was performed using several different indices: energy effect (ef), harmonic oscillator model of aromaticity (HOMA) index, six centre delocalization index (SCI) and nucleus independent chemical shifts (NICS). The presence of N-atoms in the inner rings was found to cause a planarity distortion in the studied N-doped systems. The geometric changes and charged nature of the studied N-doped systems do not significantly influence the current density and the local aromaticity distribution in comparison with the corresponding parent benzenoid hydrocarbons. The present study demonstrates how quantum chemical calculations can be used for rational design of novel PAHs and fine tuning of their properties.
Collapse
Affiliation(s)
- Slavko Radenković
- University of Kragujevac: Univerzitet u Kragujevcu, Department of Chemistry, 12 Radoja Domanovića, P.O. Box 60, 34000, Kragujevac, SERBIA
| | - Željko Tomović
- Eindhoven University of Technology: Technische Universiteit Eindhoven, Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, NETHERLANDS
| |
Collapse
|
154
|
Hou ICY, Hinaut A, Scherb S, Meyer E, Narita A, Müllen K. Synthesis of Giant Dendritic Polyphenylenes with 366 and 546 Carbon Atoms and their High-vacuum Electrospray Deposition. Chem Asian J 2022; 17:e202200220. [PMID: 35381624 PMCID: PMC9321752 DOI: 10.1002/asia.202200220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a “layer‐by‐layer” extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique. Scanning probe microscopy imaging provides valuable information on the possible thermally induced partial planarization of such giant dendritic PPs on a metal surface.
Collapse
Affiliation(s)
- Ian Cheng-Yi Hou
- Max-Planck-Institut fur Polymerforschung, synthetic chemitry, GERMANY
| | - Antoine Hinaut
- University of Basel: Universitat Basel, physics, GERMANY
| | | | - Ernst Meyer
- University of Basel: Universitat Basel, physics, GERMANY
| | - Akimitsu Narita
- Max-Planck-Institut für Polymerforschung: Max-Planck-Institut fur Polymerforschung, synthetic chemistry, GERMANY
| | - Klaus Müllen
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, GERMANY
| |
Collapse
|
155
|
Du X, Ma T, Ge T, Chang Q, Liu X, Cheng X. Molecular design directs self-assembly of DPP polycatenars into 2D and 3D complex nanostructures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
156
|
Zhang Y, Li G, Wang L, Huang T, Wei J, Meng G, Wang X, Zeng X, Zhang D, Duan L. Fusion of Multi‐Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly BT2020 Green Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuewei Zhang
- Tsinghua University Department of Chemistry CHINA
| | - Guomeng Li
- Tsinghua University Department of Chemistry CHINA
| | - Lu Wang
- Tsinghua University Department of Chemistry CHINA
| | - Tianyu Huang
- Tsinghua University Department of Chemistry CHINA
| | - Jinbei Wei
- Chinese Academy of Sciences Insititute of Chemeistry CHINA
| | - Guoyun Meng
- Tsinghua University Department of Chemistry CHINA
| | - Xiang Wang
- Tsinghua University Department of Chemistry CHINA
| | - Xuan Zeng
- Tsinghua University Department of Chemistry CHINA
| | | | - Lian Duan
- Tsinghua University Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China 100084 Beijing CHINA
| |
Collapse
|
157
|
Passaretti P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front Mol Biosci 2022; 9:774097. [PMID: 35372519 PMCID: PMC8965154 DOI: 10.3389/fmolb.2022.774097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Graphene and its derivatives have been widely employed in the manufacturing of novel composite nanomaterials which find applications across the fields of physics, chemistry, engineering and medicine. There are many techniques and strategies employed for the production, functionalization, and assembly of graphene with other organic and inorganic components. These are characterized by advantages and disadvantages related to the nature of the specific components involved. Among many, biomolecules and biopolymers have been extensively studied and employed during the last decade as building blocks, leading to the realization of graphene-based biomaterials owning unique properties and functionalities. In particular, biomolecules like nucleic acids, proteins and enzymes, as well as viruses, are of particular interest due to their natural ability to self-assemble via non-covalent interactions forming extremely complex and dynamic functional structures. The capability of proteins and nucleic acids to bind specific targets with very high selectivity or the ability of enzymes to catalyse specific reactions, make these biomolecules the perfect candidates to be combined with graphenes, and in particular graphene oxide, to create novel 3D nanostructured functional biomaterials. Furthermore, besides the ease of interaction between graphene oxide and biomolecules, the latter can be produced in bulk, favouring the scalability of the resulting nanostructured composite materials. Moreover, due to the presence of biological components, graphene oxide-based biomaterials are more environmentally friendly and can be manufactured more sustainably compared to other graphene-based materials assembled with synthetic and inorganic components. This review aims to provide an overview of the state of the art of 3D graphene-based materials assembled using graphene oxide and biomolecules, for the fabrication of novel functional and scalable materials and devices.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, School of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
158
|
Sturm L, Aribot F, Soliman L, Bock H, Durola F. The Perkin Strategy for the synthesis of large carboxy‐substituted polycyclic aromatic compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ludmilla Sturm
- University of Bordeaux: Universite de Bordeaux CRPP: Centre de Recherche Paul Pascal FRANCE
| | - Frédéric Aribot
- University of Bordeaux: Universite de Bordeaux CRPP: Centre de Recherche Paul Pascal FRANCE
| | - Luc Soliman
- University of Bordeaux: Universite de Bordeaux CRPP: Centre de Recherche Paul Pascal FRANCE
| | - Harald Bock
- CNRS: Centre National de la Recherche Scientifique CRPP: Centre de Recherche Paul Pascal FRANCE
| | - Fabien Durola
- CNRS Centre de Recherche Paul Pascal 115 avenue Schweitzer 33600 Pessac FRANCE
| |
Collapse
|
159
|
Liu T, Tonnelé C, Zhao S, Rondin L, Elias C, Medina-Lopez D, Okuno H, Narita A, Chassagneux Y, Voisin C, Campidelli S, Beljonne D, Lauret JS. Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots. NANOSCALE 2022; 14:3826-3833. [PMID: 35194627 DOI: 10.1039/d1nr08279e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene quantum dots, atomically precise nanopieces of graphene, are promising nano-objects with potential applications in various domains such as photovoltaics, quantum light emitters and bio-imaging. Despite their interesting prospects, precise reports on their photophysical properties remain scarce. Here, we report on a study of the photophysics of C96H24(C12H25) graphene quantum dots. A combination of optical studies down to the single molecule level with advanced molecular modelling demonstrates the importance of coupling to vibrations in the emission process. Optical fingerprints for H-like aggregates are identified. Our combined experimental-theoretical investigations provide a comprehensive description of the light absorption and emission properties of nanographenes, which not only represents an essential step towards precise control of sample production but also paves the way for new exciting physics focused on twisted graphenoids.
Collapse
Affiliation(s)
- Thomas Liu
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | | | - Shen Zhao
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | - Loïc Rondin
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | - Christine Elias
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| | - Daniel Medina-Lopez
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Hanako Okuno
- University Grenoble Alpes, CEA INAC-MEM, F-38000 Grenoble, France
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yannick Chassagneux
- LPENS, PSL, CNRS, Université de Paris, Sorbonne Université, 75005 Paris, France
| | - Christophe Voisin
- LPENS, PSL, CNRS, Université de Paris, Sorbonne Université, 75005 Paris, France
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | | | - Jean-Sébastien Lauret
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LuMIn, Orsay, France.
| |
Collapse
|
160
|
Joby JP, Das S, Pinapati P, Rogez B, Baffou G, Tiwari DK, Cherukulappurath S. Optically-assisted thermophoretic reversible assembly of colloidal particles and E. coli using graphene oxide microstructures. Sci Rep 2022; 12:3657. [PMID: 35256647 PMCID: PMC8901786 DOI: 10.1038/s41598-022-07588-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/02/2023] Open
Abstract
Optically-assisted large-scale assembly of nanoparticles have been of recent interest owing to their potential in applications to assemble and manipulate colloidal particles and biological entities. In the recent years, plasmonic heating has been the most popular mechanism to achieve temperature hotspots needed for extended assembly and aggregation. In this work, we present an alternative route to achieving strong thermal gradients that can lead to non-equilibrium transport and assembly of matter. We utilize the excellent photothermal properties of graphene oxide to form a large-scale assembly of silica beads. The formation of the assembly using this scheme is rapid and reversible. Our experiments show that it is possible to aggregate silica beads (average size 385 nm) by illuminating thin graphene oxide microplatelet by a 785 nm laser at low intensities of the order of 50-100 µW/µm2. We further extend the study to trapping and photoablation of E. coli bacteria using graphene oxide. We attribute this aggregation process to optically driven thermophoretic forces. This scheme of large-scale assembly is promising for the study of assembly of matter under non-equilibrium processes, rapid concentration tool for spectroscopic studies such as surface-enhanced Raman scattering and for biological applications.
Collapse
Affiliation(s)
| | - Suman Das
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Praveenkumar Pinapati
- School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Benoît Rogez
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Dhermendra K Tiwari
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Sudhir Cherukulappurath
- School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
161
|
Chemical Interactions of Nano Islandic Graphene Grown on Titanium Dioxide Substrates by Chemical Vapor Deposition. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
162
|
Duan C, Zhang J, Xiang J, Yang X, Gao X. Azulene‐Embedded [
n
]Helicenes (
n
=5, 6 and 7). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Duan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai 200032 China
| | - Jianwei Zhang
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Junjun Xiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai 200032 China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
163
|
Chaitanya NK, Rao YNS, Choutipalli VSK, Mainkar PS, Subramanian V, Chandrasekhar S. Cascade aryne insertion/vinylogous aldol reaction of vinyl-substituted β-keto/enol carbonyls. Chem Commun (Camb) 2022; 58:3178-3181. [PMID: 35171160 DOI: 10.1039/d1cc06810e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic and acyclic vinyl substituted β-keto/enol carbonyl substrates, on reaction with arynes, result in differentially substituted naphthyl carbocycles, hitherto difficult to synthesize with existing protocols. While the substitutions on the arynes have no role, the ring size of the cyclic β-keto/enol esters has a profound influence on the product formation.
Collapse
Affiliation(s)
- Nandikolla Krishna Chaitanya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Y N Sambasiva Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkata Surya Kumar Choutipalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
164
|
Tanaka T. Synthesis of Novel Heteronanographenes via Fold-in Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
165
|
Webster IJ, Beckham JL, Johnson ND, Duncan MA. Photochemical Synthesis and Spectroscopy of Covalent PAH Dimers. J Phys Chem A 2022; 126:1144-1157. [PMID: 35152698 DOI: 10.1021/acs.jpca.1c10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laser photochemistry of pressed-pellet samples of polycyclic aromatic hydrocarbons (PAHs) produces covalently bonded dimers and some higher polymers. This chemistry was discovered initially via laser desorption time-of-flight mass spectrometry experiments, which produced masses (m/z) of 2M-2 and 2M-4 (where M is the monomer parent mass). Dimers are believed to be formed from photochemical dehydrogenation and radical polymerization chemistry in the desorption plume. Replication of these ablation conditions at higher throughput allowed PAH dimers of pyrene, perylene, and coronene to be produced and collected in milligram quantities. Differential sublimation provided purification of the dimers and elimination of residual monomers. The purified dimers were investigated with UV-visible, IR, and Raman spectroscopy, complemented by computational studies using density functional theory at the CAM-B3LYP/def2-TZV level. Calculations and predicted spectra were calibrated by comparison with the corresponding monomers and used to determine the lowest energy dimer structures. Infrared and Raman spectroscopy provided few distinctive signatures, but UV-visible spectra detected new transitions for each dimer. The comparison of simulated and experimental spectra allows determination of the most prevalent structures for the PAH dimers. The work presented here provides interesting insights into the spectroscopy of extended aromatic systems and a new strategy for the photochemical synthesis of large PAH dimers.
Collapse
Affiliation(s)
- Ian J Webster
- Department of Chemistry, University of Georgia, Athens 30602-2556, Georgia
| | - Jacob L Beckham
- Department of Chemistry, University of Georgia, Athens 30602-2556, Georgia
| | - Natalie D Johnson
- Department of Chemistry, University of Georgia, Athens 30602-2556, Georgia
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens 30602-2556, Georgia
| |
Collapse
|
166
|
Fernández-García JM, Izquierdo-García P, Buendía M, Filippone S, Martín N. Synthetic chiral molecular nanographenes: the key figure of the racemization barrier. Chem Commun (Camb) 2022; 58:2634-2645. [PMID: 35139140 DOI: 10.1039/d1cc06561k] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chirality is one of the most intriguing concepts of chemistry, involving living systems and, more recently, materials science. In particular, the bottom-up synthesis of molecular nanographenes endowed with one or several chiral elements is a current challenge for the chemical community. The wilful introduction of defects in the sp2 honeycomb lattice of molecular nanographenes allows the preparation of chiral molecules with tuned band-gaps and chiroptical properties. There are two requirements that a system must fulfill to be chiral: (i) lack of inversion elements (planes or inversion centres) and (ii) to be configurationally stable. The first condition is inherently established by the symmetry group of the structure, however, the limit between conformational and configurational isomers is not totally clear. In this feature article, the chirality and dynamics of synthetic molecular nanographenes, with special emphasis on their racemization barriers and, therefore, the stability of their chiroptical properties are discussed. The general features of nanographenes and their bottom-up synthesis, including the main defects inducing chirality in molecular nanographenes are firstly discussed. In this regard, the most common topological defects of molecular NGs as well as the main techniques used for determining their energy barriers are presented. Then, the manuscript is structured according to the dynamics of molecular nanographenes, classifying them in four main groups, depending on their respective isomerization barriers, as flexible, detectable, isolable and rigid nanographenes. In these sections, the different strategies used to increase the isomerization barrier of chiral molecular nanographenes that lead to configurationally stable nanographenes with defined chiroptical properties are discussed.
Collapse
Affiliation(s)
- Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| | - Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| | - Manuel Buendía
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| | - Salvatore Filippone
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
167
|
Saravanan B, Prabhu S, Arulperumjothi M, Julietraja K, Siddiqui MK. Molecular Structural Characterization of Supercorenene and Triangle-Shaped Discotic Graphene. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- B. Saravanan
- Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, India
| | - Savari Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai, India
| | - M. Arulperumjothi
- Department of Mathematics, Saveetha Engineering College, Chennai, India
| | - K. Julietraja
- Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India
| | | |
Collapse
|
168
|
Chan P, Baratay C, Li W, Mathiew M, Yu L, Kyne S, Rao W. Gold‐ and Brønsted Acid‐Catalysed Deacyloxylative Cycloaromatisation of 1,6‐Diyne Esters to 11H‐Benzo[a]fluorenes and 13H‐Indeno[1,2‐l]phenanthrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Wenhai Li
- China Pharmaceutical University CHINA
| | | | - Lei Yu
- Monash University AUSTRALIA
| | | | | |
Collapse
|
169
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
170
|
Ajayakumar MR, Ma J, Feng X. π‐Extended peri‐Acenes: Recent Progress in Synthesis and Characterization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. R. Ajayakumar
- Dresden University of Technology: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry Dresden GERMANY
| | - Ji Ma
- Dresden University of Technology: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry 01069 Dresden GERMANY
| | - Xinliang Feng
- Technische Universitaet Dresden Chair for Molecular Functional Materials Mommsenstrasse 4 01062 Dresden GERMANY
| |
Collapse
|
171
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene‐Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2‐Phenyl Migration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
172
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O
2
Sensitization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Ashutosh Sahoo
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
173
|
Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The important and perspective molecular building blocks composed of hexaphenylbenzenes (HPBs) or their oxidized derivatives, hexa-peri-hexabenzocoronenes (HBCs), and metalloporphyrins have recently received significant attention of the researchers. In this study, motivated by recent findings, we have addressed the modifications of structures and properties of HBC-porphyrin compounds by using instead of aromatic porphyrins antiaromatic 20π isophlorin derivatives of thiophene or selenophene. We have reported the first comparative computational investigation of the following systems: (i) HBC with one non-metallated aromatic porphyrin, P(N4H2), unit, HBC-P(N4H2), (ii) HBC with one S-core-modified antiaromatic porphyrin (S-isophlorin), PS4, unit, HBC-PS4, and (iii) HBC with one Se-core-modified antiaromatic porphyrin (Se-isophlorin), PSe4, unit, HBC-PSe4. The study has been done employing the B3LYP/6-31G* approach (in the gas phase and in the implicit solvents, benzene and dichloromethane), and comparison with the B3LYP/6-31G** and B3LYP/6-311G* approaches was performed, where relevant. The effects of the core-modified antiaromatic isophlorins on the structures, electronic, and other properties, potentially including reactivity, of the whole building block HBC-isophlorin have been shown to be quite pronounced and to be noticeably stronger than the effects of the original aromatic non-metallated porphyrin. Thus, we have demonstrated theoretically that the complete porphyrin core-modification with other elements, this time with S and Se leading to the formation of the antiaromatic isophlorins, should be considered as a promising way for modifying and tuning structures, electronic properties and reactivity of the hexabenzocoronene-porphyrin(s) building blocks.
Collapse
|
174
|
Li Q, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang‐Qiang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
175
|
Wang M, So CM. Inverting Conventional Chemoselectivity in the Sonogashira Coupling Reaction of Polyhalogenated Aryl Triflates with TMS-Arylalkynes. Org Lett 2022; 24:681-685. [PMID: 34978819 DOI: 10.1021/acs.orglett.1c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A newly developed phosphine ligand with a C2-cyclohexyl group on the indole ring was successfully applied in a chemoselective Sonogashira coupling reaction with excellent chemoselectivity, affording an inversion of the conventional chemoselectivity order of C-Br > C-Cl > C-OTf. This study also provided an efficient approach to the synthesis of polycyclic aromatic hydrocarbons (PAHs) and the natural product analogue trimethyl-selaginellin L by merging of chemoselective Sonogashira and Suzuki-Miyaura coupling reactions.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
176
|
Johnson MA, Martin M, Cocq K, Ferguson M, Jux N, Tykwinski RR. Acylation of Hexaphenylbenzene for the Synthesis of [5]Cumulenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Max Martin
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry GERMANY
| | - Kévin Cocq
- University of Alberta Department of Chemistry CANADA
| | | | - Norbert Jux
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry GERMANY
| | - Rik R. Tykwinski
- University of Alberta Department of Chemistry T6G 2G2 Edmonton CANADA
| |
Collapse
|
177
|
Rison S, Mathew AT, George L, Maiyalagan T, Hegde G, Varghese A. Pt Nanospheres Decorated Graphene-β-CD Modified Pencil Graphite Electrode for the Electrochemical Determination of Vitamin B6. Top Catal 2022. [DOI: 10.1007/s11244-021-01559-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
178
|
Chalifoux WA, Sitaula P, Malone RJ, Longhi G, Abbate S, Gualtieri E, Lucotti A, Tommasini M, Franzini R, Villani C, Catalano VJ. π‐Extended Helical Nanographenes: Synthesis and Photophysical Properties of Naphtho[1,2‐a]pyrenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wesley A. Chalifoux
- University of Nevada, Reno Chemistry 1664 N. Virginia StreetDepartment of Chemistry, MS216 89557 Reno UNITED STATES
| | | | | | - Giovanna Longhi
- Università degli Studi di Brescia Dipartimento di Medicina Molecolare e Traslazionale: Universita degli Studi di Brescia Dipartimento di Medicina Molecolare e Traslazionale Dipartimento di Medicina Molecolare e Traslazionale ITALY
| | - Sergio Abbate
- Università degli Studi di Brescia Dipartimento di Medicina Molecolare e Traslazionale: Universita degli Studi di Brescia Dipartimento di Medicina Molecolare e Traslazionale Dipartimento di Medicina Molecolare e Traslazionale ITALY
| | - Eva Gualtieri
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta Materiali e Ingegneria Chimica "G. Natta" ITALY
| | - Andrea Lucotti
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta" ITALY
| | - Matteo Tommasini
- Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta" ITALY
| | - Roberta Franzini
- University of Rome La Sapienza Department of Chemistry: Universita degli Studi di Roma La Sapienza Dipartimento di Chimica Dipartimento di Chimica e Tecnologie del Farmaco ITALY
| | - Claudio Villani
- University of Rome: Universita degli Studi di Roma La Sapienza Dipartimento di Chimica e Tecnologie del Farmaco ITALY
| | | |
Collapse
|
179
|
Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, Feng X, Urgel JI. Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:224. [PMID: 35055243 PMCID: PMC8780648 DOI: 10.3390/nano12020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Lin Yang
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - Ji Ma
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, CZ-16253 Praha, Czech Republic;
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain;
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, CZ-16253 Praha, Czech Republic;
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, CZ-77146 Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - José I. Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| |
Collapse
|
180
|
Benedini S, Zheng Y, Nitti A, Mazza MMA, Dondi D, Raymo FM, Pasini D. Large polarization of push–pull “Cruciforms” via coordination with lanthanide ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj04358g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
“Bent” or “cruciform” shaped conjugated push–pull compounds exhibit striking differences in their supramolecular recognition of lanthanide cations, with in an outstanding supramolecular polarization.
Collapse
Affiliation(s)
- Sara Benedini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 10 – 27100 Pavia, Italy
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 10 – 27100 Pavia, Italy
| | - Mercedes M. A. Mazza
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Daniele Dondi
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 10 – 27100 Pavia, Italy
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 10 – 27100 Pavia, Italy
| |
Collapse
|
181
|
Deng WJ, Liu S, Lin H, Zhao KX, Bai XY, Zhao KQ, Hu P, Wang BQ, Monobe H, Donnio B. Ditriphenylenothiophene butterfly-shape liquid crystals. The influence of polyarene core topology on self-organization, fluorescence and photoconductivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj00655c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two series of regio-isomeric mesomorphous, luminescent and conductive compounds, based on a ditriphenylenothiophene core (α/β-DTPT), were successfully synthesized by the Suzuki–Miyaura cross-coupling/Scholl cyclo-dehydrogenation reactions tandem.
Collapse
Affiliation(s)
- Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Hang Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Xiao Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiao-Yan Bai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Hirosato Monobe
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 5638577, Japan
| | - Bertrand Donnio
- Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), Strasbourg, 67034, France
| |
Collapse
|
182
|
Duan C, Zhang J, Xiang J, Yang X, Gao X. Design, Synthesis and Properties of Azulene-Based BN-[4]Helicenes※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
183
|
Shoji Y, Kobayashi M, Kosaka A, Haruki R, Kumai R, Adachi SI, Kajitani T, Fukushima T. Design of discotic liquid crystal enabling complete switching between and memory of two alignment states over a large area. Chem Sci 2022; 13:9891-9901. [PMID: 36128239 PMCID: PMC9430577 DOI: 10.1039/d2sc03677k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
The alignment control of discotic columnar liquid crystals (LCs), featuring a low motility of the constituent molecules and thus having a large viscosity, is a challenging task. Here we show that triphenylene hexacarboxylic ester, when functionalized with hybrid side chains consisting of alkyl and perfluoroalkyl groups in an appropriate ratio, gives a hexagonal columnar (Colh) LC capable of selectively forming large-area uniform homeotropic or homogeneous alignments, upon cooling from its isotropic melt or upon application of a shear force at its LC temperature, respectively. In addition to the alignment switching ability, each alignment state remains persistent unless the LC is heated to its melting temperature. In situ X-ray diffraction analysis under the application of a shear force, together with polarized optical microscopy observations, revealed how the columnar assembly is changed during the alignment-switching process. The remarkable behavior of the discotic LC is discussed in terms of its rheological properties. A columnar liquid crystal consisting of a triphenylene hexacarboxylic ester mesogen and semifluoroalkyl side chains shows complete switching between homeotropic and homogeneous alignments, each of which remains persistent up to its melting point.![]()
Collapse
Affiliation(s)
- Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Miki Kobayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
184
|
Farajpour B, Alizadeh A. Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Org Biomol Chem 2022; 20:8366-8394. [DOI: 10.1039/d2ob01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides a review of the applications of α,α-dicyanoolefins as versatile vinylogous nucleophiles in the synthesis of various cyclic compounds, covering the literature from the past 13 years.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
185
|
Kothalawala NL, Kim SW, Kim N, Henderson CJ, Seol M, Yang F, Kwak SY, Hwang KY, Son WJ, Shin HJ, Choi H, Kim BS, Kim DY. Identifying molecular fluorophore impurities in the synthesis of low-oxygen-content, carbon nanodots derived from pyrene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determination of the formation of bright molecular fluorphores during the synthesis of pyrene-derived CNDs, through extensive separation and systematic characterization.
Collapse
Affiliation(s)
| | - Sang Won Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Namhee Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Collan J. Henderson
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Minsu Seol
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Seung-Yeon Kwak
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Kyu Young Hwang
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Won-Joon Son
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Hyeon-Jin Shin
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Byeong-Su Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd, Suwon, 16678, Republic of Korea
| | - Doo Young Kim
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA
| |
Collapse
|
186
|
Zhao H, Xu X, Zhou L, Hu Y, Huang Y, Narita A. Water-Soluble Nanoparticles with Twisted Double [7]Carbohelicene for Lysosome-Targeted Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105365. [PMID: 34741415 DOI: 10.1002/smll.202105365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Helicene-based therapeutic agents for organelle-targeted photodynamic therapy (PDT) involving both type I and II are challenging and still underexplored. Herein, water-soluble nanoparticles containing twisted double [7]carbohelicene (D7H-NPs) are prepared through self-assembly with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] by a nanoprecipitation method. D7H-NPs display high water solubility with an average size of 46 ± 2 nm. Notably, D7H-NPs can generate efficient singlet oxygen (1 O2 ) and superoxide anion (O2· - ) upon white light irradiation, forming the basis of PDT. Moreover, the typical accumulation in lysosomes of 4T1 cancer cells paves the way to use D7H-NPs for lysosome-targeted cancer phototherapeutics. This paper reports a promising helicene-based phototherapeutic agent involving both type I and II PDT for organelle-targeted biotherapy.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
187
|
Krompiec S, Kurpanik-Wójcik A, Matussek M, Gołek B, Mieszczanin A, Fijołek A. Diels-Alder Cycloaddition with CO, CO 2, SO 2, or N 2 Extrusion: A Powerful Tool for Material Chemistry. MATERIALS (BASEL, SWITZERLAND) 2021; 15:172. [PMID: 35009318 PMCID: PMC8745824 DOI: 10.3390/ma15010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Phenyl, naphthyl, polyarylphenyl, coronene, and other aromatic and polyaromatic moieties primarily influence the final materials' properties. One of the synthetic tools used to implement (hetero)aromatic moieties into final structures is Diels-Alder cycloaddition (DAC), typically combined with Scholl dehydrocondensation. Substituted 2-pyranones, 1,1-dioxothiophenes, and, especially, 1,3-cyclopentadienones are valuable substrates for [4 + 2] cycloaddition, leading to multisubstituted derivatives of benzene, naphthalene, and other aromatics. Cycloadditions of dienes can be carried out with extrusion of carbon dioxide, carbon oxide, or sulphur dioxide. When pyranones, dioxothiophenes, or cyclopentadienones and DA cycloaddition are aided with acetylenes including masked ones, conjugated or isolated diynes, or polyynes and arynes, aromatic systems are obtained. This review covers the development and the current state of knowledge regarding thermal DA cycloaddition of dienes mentioned above and dienophiles leading to (hetero)aromatics via CO, CO2, or SO2 extrusion. Particular attention was paid to the role that introduced aromatic moieties play in designing molecular structures with expected properties. Undoubtedly, the DAC variants described in this review, combined with other modern synthetic tools, constitute a convenient and efficient way of obtaining functionalized nanomaterials, continually showing the potential to impact materials sciences and new technologies in the nearest future.
Collapse
Affiliation(s)
| | - Aneta Kurpanik-Wójcik
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007 Katowice, Poland; (S.K.); (B.G.); (A.M.); (A.F.)
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007 Katowice, Poland; (S.K.); (B.G.); (A.M.); (A.F.)
| | | | | | | |
Collapse
|
188
|
Delouche T, Taifour G, Cordier M, Roisnel T, Tondelier D, Manzhi P, Geffroy B, Le Guennic B, Jacquemin D, Hissler M, Bouit PA. Si-containing polycyclic aromatic hydrocarbons: synthesis and opto-electronic properties. Chem Commun (Camb) 2021; 58:88-91. [PMID: 34873602 DOI: 10.1039/d1cc06309j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a straightforward synthesis of Si-containing Polycyclic Aromatic Hydrocarbons (PAHs). The impact of π-extension and exocyclic modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. By taking advantage of the solid-state luminescence of these derivatives, electroluminescent devices are prepared. Such preliminary opto-electronic results highlight that these heteroatom-containing PAHs are promising building blocks for organic electronics.
Collapse
Affiliation(s)
| | | | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes 35000, France.
| | | | - Denis Tondelier
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| | - Payal Manzhi
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, 91191, France
| | - Bernard Geffroy
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, 91191, France
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, University of Nantes, Nantes 44322, France.
| | - Muriel Hissler
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes 35000, France.
| | | |
Collapse
|
189
|
Abstract
Rearrangements in Scholl reaction are mostly serendipitous. The design of molecular precursors is what seems to guide the course of rearrangement. This review consolidates different classes of precursors used in Scholl reaction and their accompanying rearrangements that include aryl migration, migration followed by cyclization and skeletal rearrangements involving ring expansion, ring contraction and both, under the reaction conditions. The attempt in collating heretofore-reported examples in this review is to guide designing appropriate precursors to predictably achieve complex molecular structures or nanographenes or defect-nanographenes via rearrangement.
Collapse
Affiliation(s)
| | - Nagaraju Ponugoti
- Indian Institute of Technology Madras, Chemistry, Adyar, 600036, Chennai, INDIA
| |
Collapse
|
190
|
Ju H, Duan J, Lu H, Xu W. Cross-Linking With Diamine Monomers to Prepare Graphene Oxide Composite Membranes With Varying D-Spacing for Enhanced Desalination Properties. Front Chem 2021; 9:779304. [PMID: 34900938 PMCID: PMC8660854 DOI: 10.3389/fchem.2021.779304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
As a new type of membrane material, graphene oxide (GO) can easily form sub-nanometer interlayer channels, which can effectively screen salt ions. The composite membrane and structure with a high water flux and good ion rejection rate were compared by the cross-linking of GO with three different diamine monomers: ethylenediamine (EDA), urea (UR), and p-phenylenediamine (PPD). X-ray photoelectron spectroscopy (XPS) results showed that unmodified GO mainly comprises π-π interactions and hydrogen bonds, but after crosslinking with diamine, both GO and mixed cellulose (MCE) membranes are chemically bonded to the diamine. The GO-UR/MCE membrane achieved a water flux similar to the original GO membrane, while the water flux of GO-PPD/MCE and GO-EDA/MCE dropped. X-ray diffraction results demonstrated that the covalent bond between GO and diamine can effectively inhibit the extension of d-spacing during the transition between dry and wet states. The separation performance of the GO-UR/MCE membrane was the best. GO-PPD/MCE had the largest contact angle and the worst hydrophilicity, but its water flux was still greater than GO-EDA/MCE. This result indicated that the introduction of different functional groups during the diamine monomer cross-linking of GO caused some changes in the performance structure of the membrane.
Collapse
Affiliation(s)
- Hong Ju
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, China
| | - Jinzhuo Duan
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, China
| | - Haitong Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, China
| | - Weihui Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, China
| |
Collapse
|
191
|
Spin State Switching in Heptauthrene Nanostructure by Electric Field: Computational Study. Int J Mol Sci 2021; 22:ijms222413364. [PMID: 34948161 PMCID: PMC8705984 DOI: 10.3390/ijms222413364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Recent experimental studies proved the presence of the triplet spin state in atomically precise heptauthrene nanostructure of nanographene type (composed of two interconnected triangles with zigzag edge). In the paper, we report the computational study predicting the possibility of controlling this spin state with an external in-plane electric field by causing the spin switching. We construct and discuss the ground state magnetic phase diagram involving S=1 (triplet) state, S=0 antiferromagnetic state and non-magnetic state and predict the switching possibility with the critical electric field of the order of 0.1 V/Å. We discuss the spin distribution across the nanostructure, finding its concentration along the longest zigzag edge. To model our system of interest, we use the mean-field Hubbard Hamiltonian, taking into account the in-plane external electric field as well as the in-plane magnetic field (in a form of the exchange field from the substrate). We also assess the effect of uniaxial strain on the magnetic phase diagram.
Collapse
|
192
|
Li R, Ma B, He RY, Zhang B, Zhang YK, Feng SY, An P. Azepine- or Oxepine-embedded Double Saddle-Helix Nanographenes. Chem Asian J 2021; 17:e202101365. [PMID: 34904381 DOI: 10.1002/asia.202101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/09/2022]
Abstract
The azepine- and oxepine-embedded polycyclic aromatic hydrocarbons (PAH) 1-3, as the hexa-peri-hexabenzocoronene (HBC)-based nanographenes (NG) were designed and synthesized by Diels-Alder reaction of cyclic alkene with tetrachlorothiophene-S,S-dioxide, followed by Suzuki-Miyaura cross-coupling and Scholl-type cyclodehydrogenation. Due to the strained seven-membered ring and the inherent structural pattern, heteroatom-doped NGs 1-3 show Cs symmetrical, double saddle-helix hybrid conformation, which represents a new shape for HBC based nanographenes. The calculation studies reveal the low aromaticity of the 8π heterocycles themselves and the heterocycles also decrease the electron delocalization of benzenes surrounding them. Dynamics-based calculation suggests the Cs symmetry would maintain druing the saddle-inversion process. Meanwhile, we show property perturbation by doping with different heteroatoms.
Collapse
Affiliation(s)
- Ranran Li
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| | - Bin Ma
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| | - Run-Ying He
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| | - Bin Zhang
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| | - Yi-Kang Zhang
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| | - Shi-Yu Feng
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| | - Peng An
- School of Chemical Science and Technology, Ynunan University, Kunming, 650500, P. R. China
| |
Collapse
|
193
|
Li QQ, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2021; 61:e202112638. [PMID: 34863045 DOI: 10.1002/anie.202112638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Polycyclic aromatic molecules are promising functional materials for a wide range of applications, especially in organic electronics. However, their largely hydrophobic nature has impeded further applications. As such, imparting high solubility/hydrophilicity to polycyclic aromatic molecules leads to a breakthrough in this research field. Herein, we report the synthesis of diazapentabenzocorannulenium, a cationic nitrogen-embedded buckybowl bearing a central imidazolium core, by a bottom-up strategy from polycyclic aromatic azomethine ylide. X-ray crystallography analyses have revealed a bowl-shaped molecular structure that is capable of forming charge-segregated one-dimensional columns by bowl-in-bowl packing. In addition to its fluorescence capabilities and high dispersibility in water, the molecule was found to selectively localize in the mitochondria of various tumor cells, showing potential as viable mitochondria-selective fluorescent probes.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
194
|
Zhang L, Jin T, Guo Y, Martin AC, Sun K, Dudley GB, Yang J. Synthesis of gem-Dimethylcyclopentane-Fused Arenes with Various Topologies via TBD-Mediated Dehydro-Diels-Alder Reaction. J Org Chem 2021; 86:16716-16724. [PMID: 34709035 DOI: 10.1021/acs.joc.1c01957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of efficient methods for the synthesis of substituted polycyclic arenes with various topologies is in high demand due to their excellent electrical and optical properties. In this work, a series of gem-dimethylcyclopentane-fused arenes with more than ten topologies were synthesized via a 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD)-mediated dehydro-Diels-Alder reaction with moderate to good yields. The introduction of the near-planar gem-dimethylcyclopentane moiety not only impacts the molecular conjugative system but also regulates the intermolecular π-π interactions and crystal packing, which are critical for the photoelectric performance of arenes. The photophysical properties, molecular geometry, molecular packing of these compounds, and electrochemical properties were investigated by UV-vis absorption, fluorescence emission spectra, DFT calculations, single-crystal X-ray structure analysis, and cyclic voltammetry study.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tengda Jin
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yingjie Guo
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - A C Martin
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Keju Sun
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Gregory B Dudley
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jingyue Yang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
195
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration. Angew Chem Int Ed Engl 2021; 61:e202115979. [PMID: 34854182 DOI: 10.1002/anie.202115979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol-1 . These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.
Collapse
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
196
|
Zhen CJ, Lu SF, Lin MH, Wu JT, Chao I, Lin CH. Singlet Biradical Versus Triplet Biradical/Zwitterion Characteristics in Isomers of C 6 -C 5 -C 6 -C 7 -C 6 -Fused Pentacyclic Aromatic Hydrocarbons Revealed through Reactivity Patterns. Chemistry 2021; 27:16682-16689. [PMID: 34611945 DOI: 10.1002/chem.202102781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/11/2022]
Abstract
Among various polycyclic aromatic hydrocarbons, C6 -C5 -C6 -C7 -C6 fused pentacyclic aromatic hydrocarbons have the unique potential to adopt quinonoid, zwitterion, singlet, or triplet biradical electronic configurations. Two such hybrid structures between pentacene and azulene were synthesized and their ground state electronic configurations were deduced from the reactivity patterns they exhibit respectively. Compound 6, where the radicaloid carbons are linked through a para-phenylene, forms a head-to-head dimer like a singlet biradical. In contrast, isomer 7, where the para-linkage was switched to meta, reacts readily with oxygen which resembles the reactivity of a triplet state. The oxidized intermediate(s) then undergoes rearrangement to furnish the C6 -C5 -C6 -C6 -C6 ring contraction product 13. Cation 14, the protonated form of 7, was synthesized, which implies 7 also reacts like a zwitterion. It was revealed the oxidative rearrangement takes place even with mesityl dibenzotropylium cation despite its perceived aromaticity. DFT calculations confirm the most stable forms of 6 and 7 are singlet and triplet diradical, which is consistent with the observed reactivity of respective molecules.
Collapse
Affiliation(s)
- Cian-Jhe Zhen
- Institute of Chemistry, Academia Sinica, No. 127 Sec. 2 Academia Rd. Taipei, Taiwan, Republic of China
| | - Shu-Feng Lu
- Institute of Chemistry, Academia Sinica, No. 127 Sec. 2 Academia Rd. Taipei, Taiwan, Republic of China
| | - Min-Hwa Lin
- Institute of Chemistry, Academia Sinica, No. 127 Sec. 2 Academia Rd. Taipei, Taiwan, Republic of China
| | - Jay-Tai Wu
- Institute of Chemistry, Academia Sinica, No. 127 Sec. 2 Academia Rd. Taipei, Taiwan, Republic of China
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, No. 127 Sec. 2 Academia Rd. Taipei, Taiwan, Republic of China
| | - Chih-Hsiu Lin
- Institute of Chemistry, Academia Sinica, No. 127 Sec. 2 Academia Rd. Taipei, Taiwan, Republic of China
| |
Collapse
|
197
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O 2 Sensitization. Angew Chem Int Ed Engl 2021; 61:e202113075. [PMID: 34847268 DOI: 10.1002/anie.202113075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/12/2022]
Abstract
The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine-tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N-directed electrophilic borylation of 2,6-di(pyrid-2-yl)anthracene offers access to linearly extended acene derivatives Py-BR (R=Et, Ph, C6 F5 ). In comparison to indeno-fused 9,10-diphenylanthracene, the formal "BN for CC" replacement in Py-BR selectively lowers the LUMO, resulting in a much reduced HOMO-LUMO gap. An even more extended conjugated system with seven six-membered rings in a row (Qu-BEt) is obtained by borylation of 2,6-di(quinolin-8-yl)anthracene. Fluorinated Py-BPf shows particularly advantageous properties, including relatively lower-lying HOMO and LUMO levels, strong yellow-green fluorescence, and effective singlet oxygen sensitization, while resisting self-sensitized conversion to its endoperoxide.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Ashutosh Sahoo
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
198
|
Abstract
Transition metal catalyzed coupling reaction strategy has been utilized in the synthesis of two novel BN-perylenes starting from halogenated BN-naphthalene derivatives. The molecular structures and packing modes of BN-perylenes were confirmed by NMR spectroscopy and X-ray single-crystal diffraction experiments. Their photophysical properties were further investigated using UV-vis and fluorescence spectroscopy and DFT calculations. Interestingly, the isosteric BN-insertion in perylene system resulted in stronger π-π stacking interaction both in solid and solution phases. The synthesized BN-perylenes are proved to be highly stable and thus provide a new valuable platform for novel organic materials applications which is otherwise inaccessible to date.
Collapse
|
199
|
Rison S, Rajeev R, Bhat VS, Mathews AT, Varghese A, Hegde G. Non-enzymatic electrochemical determination of salivary cortisol using ZnO-graphene nanocomposites. RSC Adv 2021; 11:37877-37885. [PMID: 35498093 PMCID: PMC9043917 DOI: 10.1039/d1ra07366d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Electrochemically deposited ZnO nanoparticles on a pencil graphite electrode (PGE) coated with graphene generate a noteworthy conductive and selective electrochemical sensing electrode for the estimation of cortisol. Electrochemical techniques such as cyclic voltammetry (CV) analysis and electrochemical impedance spectroscopic (EIS) tests were adopted to analyze and understand the nature of the modified sensor. Surface morphological analysis was done using various spectroscopic and microscopic techniques like X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Structural characterization was conducted by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The effect of scan rate, concentration, and cycle numbers was optimized and reported. Differential pulse voltammetric (DPV) analysis reveals that the linear range for the detection of cortisol is 5 × 10−10M − 115 × 10−10 M with a very low-level limit of detection value (0.15 nM). The demonstrated methodology has been excellently functional for the determination of salivary cortisol non-enzymatically at low-level concentration with enhanced selectivity despite the presence of interfering substances. Electrochemically deposited ZnO nanoparticles on a pencil graphite electrode (PGE) coated with graphene generate a noteworthy conductive and selective electrochemical sensing electrode for the estimation of cortisol.![]()
Collapse
Affiliation(s)
- Sherin Rison
- Christ Academy Institute For Advanced Studies Christ Nagar Bangalore 560083 India.,Department of Chemistry, CHRIST (Deemed to be University) Bangalore 560029 India
| | - Rijo Rajeev
- Department of Chemistry, CHRIST (Deemed to be University) Bangalore 560029 India
| | - Vinay S Bhat
- Centre for Nano-materials and Displays, B.M.S College of Engineering Bull Temple Road Bangalore 560019 India
| | - Agnus T Mathews
- Department of Chemistry, CHRIST (Deemed to be University) Bangalore 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University) Bangalore 560029 India
| | - Gurumurthy Hegde
- Department of Chemistry, CHRIST (Deemed to be University) Bangalore 560029 India .,Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University) Bangalore 560029 India
| |
Collapse
|
200
|
Biswas K, Urgel JI, Xu K, Ma J, Sánchez‐Grande A, Mutombo P, Gallardo A, Lauwaet K, Mallada B, Torre B, Matěj A, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. On‐Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - José I. Urgel
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Kun Xu
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ana Sánchez‐Grande
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University CZ-180 00 Praha Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Benjamin Mallada
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Bruno Torre
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Adam Matěj
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco 28049 Madrid Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
- Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - David Écija
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|