151
|
Lee S, Baik C, Pak C. Ordered mesoporous ruthenium oxide with balanced catalytic activity and stability toward oxygen evolution reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
152
|
Ruiz Esquius J, Algara-Siller G, Spanos I, Freakley SJ, Schlögl R, Hutchings GJ. Preparation of Solid Solution and Layered IrOx–Ni(OH)2 Oxygen Evolution Catalysts: Toward Optimizing Iridium Efficiency for OER. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03866] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan Ruiz Esquius
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Gerardo Algara-Siller
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Ioannis Spanos
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Simon J. Freakley
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 2AY, U.K
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Graham J. Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
153
|
Bak J, Heo Y, Yun TG, Chung SY. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS NANO 2020; 14:14323-14354. [PMID: 33151068 DOI: 10.1021/acsnano.0c06411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As chemical reactions and charge-transfer simultaneously occur on the catalyst surface during electrocatalysis, numerous studies have been carried out to attain an in-depth understanding on the correlation among the surface structure and composition, the electrical transport, and the overall catalytic activity. Compared with other catalysis reactions, a relatively larger activation barrier for oxygen evolution/reduction reactions (OER/ORR), where multiple electron transfers are involved, is noted. Many works over the past decade thus have been focused on the atomic-scale control of the surface structure and the precise identification of surface composition change in catalyst materials to achieve better conversion efficiency. In particular, recent advances in various analytical tools have enabled noteworthy findings of unexpected catalytic features at atomic resolution, providing significant insights toward reducing the activation barriers and subsequently improving the catalytic performance. In addition to summarizing important surface issues, including lattice defects, related to the OER and ORR in this Review, we present the current status and discuss future perspectives of oxide- and alloy-based catalysts in terms of atomic-scale observation and manipulation.
Collapse
Affiliation(s)
- Jumi Bak
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yoon Heo
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
154
|
Fan M, Liang X, Chen H, Zou X. Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Trans 2020; 49:15568-15573. [PMID: 33112324 DOI: 10.1039/d0dt02676j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The widespread use of proton-exchange membrane water electrolysis is limited by the dynamically sluggish oxygen evolution reaction (OER), which is mediated by noble iridium-based materials as active and stable electrocatalysts. Significant efforts have been made to decrease the amount of iridium in OER catalysts without sacrificing their catalytic performances. In this frontier paper, we present the main common issues relevant to the iridium-catalyzed OER, including catalytically active species, catalytic mechanisms and activity-stability relation. We also take iridium-based perovskites as an example, and summarize the recent theoretical and experimental advances in available strategies that can lead to highly efficient, low-iridium oxygen evolution electrocatalysts under acidic conditions. Finally, we propose the remaining challenges and future directions for exploring acidic OER catalysts.
Collapse
Affiliation(s)
- Meihong Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
155
|
Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat Commun 2020; 11:5368. [PMID: 33097730 PMCID: PMC7584605 DOI: 10.1038/s41467-020-19212-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Designing highly durable and active electrocatalysts applied in polymer electrolyte membrane (PEM) electrolyzer for the oxygen evolution reaction remains a grand challenge due to the high dissolution of catalysts in acidic electrolyte. Hindering formation of oxygen vacancies by tuning the electronic structure of catalysts to improve the durability and activity in acidic electrolyte was theoretically effective but rarely reported. Herein we demonstrated rationally tuning electronic structure of RuO2 with introducing W and Er, which significantly increased oxygen vacancy formation energy. The representative W0.2Er0.1Ru0.7O2-δ required a super-low overpotential of 168 mV (10 mA cm−2) accompanied with a record stability of 500 h in acidic electrolyte. More remarkably, it could operate steadily for 120 h (100 mA cm−2) in PEM device. Density functional theory calculations revealed co-doping of W and Er tuned electronic structure of RuO2 by charge redistribution, which significantly prohibited formation of soluble Rux>4 and lowered adsorption energies for oxygen intermediates. There is an increasing interest in understanding how defect chemistry can alter material reactivity. Here, authors tune the electronic structure of RuO2 by introducing W and Er dopants that boost acidic oxygen evolution performances by limiting oxygen vacancy formation during catalysis.
Collapse
|
156
|
Yin J, Jin J, Lu M, Huang B, Zhang H, Peng Y, Xi P, Yan CH. Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. J Am Chem Soc 2020; 142:18378-18386. [DOI: 10.1021/jacs.0c05050] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong, SAR, China
| | - Hong Zhang
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
157
|
Wang Q, Xu CQ, Liu W, Hung SF, Bin Yang H, Gao J, Cai W, Chen HM, Li J, Liu B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat Commun 2020; 11:4246. [PMID: 32843622 PMCID: PMC7447631 DOI: 10.1038/s41467-020-18064-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Water electrolysis offers a promising energy conversion and storage technology for mitigating the global energy and environmental crisis, but there still lack highly efficient and pH-universal electrocatalysts to boost the sluggish kinetics for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Herein, we report uniformly dispersed iridium nanoclusters embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for both HER and OER at all pH conditions, reaching a current density of 10 mA cm-2 with only 300, 190 and 220 mV overpotential for overall water splitting in neutral, acidic and alkaline electrolyte, respectively. Based on probing experiments, operando X-ray absorption spectroscopy and theoretical calculations, we attribute the high catalytic activities to the optimum bindings to hydrogen (for HER) and oxygenated intermediate species (for OER) derived from the tunable and favorable electronic state of the iridium sites coordinated with both nitrogen and sulfur.
Collapse
Affiliation(s)
- Qilun Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wei Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sung-Fu Hung
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Hong Bin Yang
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.
| |
Collapse
|
158
|
Wang Y, Hao S, Liu X, Wang Q, Su Z, Lei L, Zhang X. Ce-Doped IrO 2 Electrocatalysts with Enhanced Performance for Water Oxidation in Acidic Media. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37006-37012. [PMID: 32709192 DOI: 10.1021/acsami.0c00389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrocatalytic water splitting in acidic media based on a proton-exchange membrane (PEM) is a promising technique for the large-scale production of hydrogen. However, developing electrocatalysts with high activity and excellent stability for an oxygen evolution reaction (OER) in acidic media is still a big challenge. Herein, a Cex-IrO2 catalyst supported on N-doped porous carbon (NPC) was developed via doping Ce into IrO2 nanoparticles. The Cex-IrO2 nanoparticles were uniformly distributed on NPC due to the high surface area. The optimized Ce0.2-IrO2@NPC delivers a low overpotential of 224 mV and excellent stability of 100 h in 0.5 M H2SO4 at 10 mA cm-2. Density functional theory (DFT) calculations indicated that the introduction of Ce could modify the electronic structure of IrO2, decreasing the energy barrier of the rate-determining step for OER and enhancing the electrochemical OER performance. Our work opens up a new way of developing anodic electrocatalysts, which can be stably applied in acidic media.
Collapse
Affiliation(s)
- Yahui Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
| | - Xiangnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
| | - Qiqi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
| | - Zhiwei Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
| |
Collapse
|
159
|
Ma C, Sun W, Qamar Zaman W, Zhou Z, Zhang H, Shen Q, Cao L, Yang J. Lanthanides Regulated the Amorphization-Crystallization of IrO 2 for Outstanding OER Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34980-34989. [PMID: 32658446 DOI: 10.1021/acsami.0c08969] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research has been focused on regulating the amorphous surface of Ir-based materials to achieve a higher oxygen evolution reaction (OER) activity. The IrOx amorphous layer is generally considered to be substantial enough to break the limitation created by the conventional adsorbate evolution mechanism (AEM) in acidic media. In this work, we used lanthanides to regulate IrOx amorphization-crystallization through inhibiting the crystallization of iridium atoms in the calcination process. The chosen route created abundant crystalline-amorphous (c-a) interfaces, which greatly enhanced the charge transfer kinetics and the stability of the materials. The mass activity of iridium in the synthesized IrO2@LuIr1-nOx(OH)y structure reached 128.3 A/gIr, which is 14.6-fold that of the benchmark IrO2. All the IrO2@LnIr1-nOx(OH)y (Ln = La-Lu) structures reflected 290-300 mV of overpotential at 10 mA/cmgeo2. We demonstrate that a highly active c-a interface possesses an efficient charge transfer capability and is conducive to the stability of the activated oxygen species. The surface-activated oxygen species and the tensile strain [IrO6] octahedron regulated by lanthanides are synergistically beneficial for increasing the intrinsic OER activity. Our research findings introduce c-a interface generation by the regulation of lanthanides as a new method for the rational design of robust OER catalysts.
Collapse
Affiliation(s)
- Chenglong Ma
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Wei Sun
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Zhenhua Zhou
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Hao Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Qicheng Shen
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Limei Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Ji Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| |
Collapse
|
160
|
Kwon T, Jun M, Lee K. Catalytic Nanoframes and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001345. [PMID: 32633878 DOI: 10.1002/adma.202001345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The ever-increasing need for the production and expenditure of sustainable energy is a result of the astonishing rate of consumption of fossil fuels and the accompanying environmental problems. Emphasis is being directed to the generation of sustainable energy by the fuel cell and water splitting technologies. Accordingly, the development of highly efficient electrocatalysts has attracted significant interest, as the fuel cell and water splitting technologies are critically dependent on their performance. Among numerous catalyst designs under investigation, nanoframe catalysts have an intrinsically large surface area per volume and a tunable composition, which impacts the number of catalytically active sites and their intrinsic catalytic activity, respectively. Nevertheless, the structural integrity of the nanoframe during electrochemical operation is an ongoing concern. Some significant advances in the field of nanoframe catalysts have been recently accomplished, specifically geared to resolving the catalytic stability concerns and significantly boosting the intrinsic catalytic activity of the active sites. Herein, general synthetic concepts of nanoframe structures and their structure-dependent catalytic performance are summarized, along with recent notable advances in this field. A discussion on the remaining challenges and future directions, addressing the limitations of nanoframe catalysts, are also provided.
Collapse
Affiliation(s)
- Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
161
|
Zhang J, Tao HB, Kuang M, Yang HB, Cai W, Yan Q, Mao Q, Liu B. Advances in Thermodynamic-Kinetic Model for Analyzing the Oxygen Evolution Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01906] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| | - Hua Bing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Min Kuang
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Qingyu Yan
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qing Mao
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
162
|
Shi Z, Wang X, Ge J, Liu C, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. NANOSCALE 2020; 12:13249-13275. [PMID: 32568352 DOI: 10.1039/d0nr02410d] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen evolution reaction (OER), as the anodic reaction of water electrolysis (WE), suffers greatly from low reaction kinetics and thereby hampers the large-scale application of WE. Seeking active, stable, and cost-effective OER catalysts in acidic media is therefore of great significance. In this perspective, studying the reaction mechanism and exploiting advanced anode catalysts are of equal importance, where the former provides guidance for material structural engineering towards a better catalytic activity. In this review, we first summarize the currently proposed OER catalytic mechanisms, i.e., the adsorbate evolution mechanism (AEM) and lattice oxygen evolution reaction (LOER). Subsequently, we critically review several acidic OER electrocatalysts reported recently, with focus on structure-performance correlation. Finally, a few suggestions on exploring future OER catalysts are proposed.
Collapse
Affiliation(s)
- Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
163
|
Sun W, Tian X, Liao J, Deng H, Ma C, Ge C, Yang J, Huang W. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29414-29423. [PMID: 32496754 DOI: 10.1021/acsami.0c08358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The proton exchange membrane (PEM) electrolyzer for hydrogen production has multiple advantages but is greatly restricted by expensive iridium and sluggish oxygen evolution reaction (OER) kinetics. The most promising way to reduce the precious metal loading is to design and develop highly active Ir-based catalysts. In this study, a versatile approach is reported to prepare a hybrid in the form of a catalyst-support structure (Fe-IrOx@α-Fe2O3, abbreviated Ir@Fe-MF) by utilizing the self-dissolving properties of Fe-MIL-101 under aqueous conditions. The formation of this hybrid is mainly due to the Ir4+ and released Fe3+ ions coprecipitated to assemble into Fe-IrOx nanoparticles, and the Fe3+ released from the inward collapse of the metal-organic framework (MOF) spontaneously forms α-Fe2O3. The prepared Ir@Fe-MF-2 hybrid exhibits enhanced catalytic activity toward OER with a lower onset potential and Tafel slop, and only 260 mV overpotential is required to drive the current density to reach 10 mA cm-2. The performed characterizations clearly indicate that the IrO6 coordination structure is changed significantly by Fe incorporated into the IrO2 lattice. The performed X-ray adsorption spectra (XAS) provides evidence that Ir 5d orbital degeneracy is eliminated because of multiple orbitals being semi-occupied in the presence of Fe, which is mainly responsible for the enhancement of OER activity. These findings open an opportunity for the design and preparation of more efficient OER catalysts of transition metal oxides by utilization of the MOF materials. It should be highlighted that a long-term stability of this catalyst run at a high current density in acidic conditions still faces great challenges.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Chenglong Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
164
|
Chen H, Shi L, Liang X, Wang L, Asefa T, Zou X. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low‐Iridium Oxygen Evolution Catalysts. Angew Chem Int Ed Engl 2020; 59:19654-19658. [DOI: 10.1002/anie.202006756] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
165
|
Chen H, Shi L, Liang X, Wang L, Asefa T, Zou X. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low‐Iridium Oxygen Evolution Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
166
|
Tang YJ, You L, Zhou K. Enhanced Oxygen Evolution Reaction Activity of a Co 2P@NC-Fe 2P Composite Boosted by Interfaces Between a N-Doped Carbon Matrix and Fe 2P Microspheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25884-25894. [PMID: 32412228 DOI: 10.1021/acsami.0c04902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing highly efficient and low-cost transition-metal-based electrocatalysts with a large number of interfaces to increase their active site densities constitutes a major advancement in the development of water-splitting technology. Herein, a bimetallic phosphide composite (Co2P@NC-Fe2P) is successfully synthesized from a ferric hydroxyphosphate-zeolitic imidazolate framework hybrid precursor (FeHP-ZIF-67). Benefitting from morphology and composition regulations, the FeHP-ZIF-67 precursor is prepared by a room-temperature solution synthesis method, which exhibits an optimal morphology, where FeHP microspheres are coated with excess ZIF-67 nanoparticles. During the annealing of FeHP-ZIF-67, FeHP serves as a source of phosphorus to form Fe2P and Co2P simultaneously, where Co2P nanoparticles coated with an N-doped carbon (NC) matrix derived from ZIF-67 are partially adsorbed onto the surface of Fe2P microspheres, thereby forming numerous NC-Fe2P interfaces. The optimal Co2P@NC-Fe2P composite has an overpotential of 260 mV at a current density of 10 mA cm-2, a small Tafel slope of 41 mV dec-1, and long-term stability of over 35 h in an alkaline medium for oxygen evolution reactions (OERs). Such a superior OER performance is attributed to the active NC-Fe2P interfaces in the Co2P@NC-Fe2P composite. This work provides a new strategy to optimize transition-metal phosphides with effective interfaces for OER electrocatalysis.
Collapse
Affiliation(s)
- Yu-Jia Tang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Liming You
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| |
Collapse
|
167
|
Gao J, Huang X, Cai W, Wang Q, Jia C, Liu B. Rational Design of an Iridium-Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25991-26001. [PMID: 32428393 DOI: 10.1021/acsami.0c05906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing highly active and stable water oxidation catalysts with reduced cost in acidic media plays a critical role in clean energy technologies such as fuel cells and electrolyzers. Precious iridium-based oxides are still the only oxygen evolution reaction (OER) catalysts with reasonable activity and stability in acid. Herein, we design iridium-tungsten composites with a metallic tungsten-rich core and an iridium-rich surface by the sol-gel method followed by hydrogen reduction. The thus obtained iridium-tungsten catalyst shows much higher intrinsic water oxidation activity (100 mA/mgIr at an overpotential of 290 mV) and stability (100 h at 10 mA/cm2geom) together with reduced iridium content (33 wt % only) as compared with pure iridium oxide. An operando method using H2O2 as a probe molecule is developed to determine the relative adsorption strength of the reaction intermediates (*OH and *OOH) in the OER process. Detailed characterization shows that the tungsten-incorporated surface not only modulates the adsorption energy of oxygen intermediates on iridium but also enhances the stability of iridium species in acid, while the metallic tungsten core exhibits high electrical conductivity, all of which collectively give rise to the much enhanced catalytic performance of iridium-tungsten composite in acidic water oxidation. A single-membrane electrode assembly is further prepared to demonstrate the advantages and potential application of iridium-tungsten composite in practical proton exchange membrane electrolyzers.
Collapse
Affiliation(s)
- Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Qilun Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Chunmiao Jia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
168
|
Cai W, Chen R, Yang H, Tao HB, Wang HY, Gao J, Liu W, Liu S, Hung SF, Liu B. Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. NANO LETTERS 2020; 20:4278-4285. [PMID: 32391698 DOI: 10.1021/acs.nanolett.0c00840] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalytic water splitting driven by renewable electricity offers a promising strategy to produce molecular hydrogen, but its efficiency is severely restricted by the sluggish kinetics of the anodic water oxidation reaction. Amorphous catalysts are reported to show better activities of water oxidation than their crystalline counterparts, but little is known about the underlying origin, which retards the development of high-performance amorphous oxygen evolution reaction catalysts. Herein, on the basis of cyclic voltammetry, electrochemical impedance spectroscopy, isotope labeling, and in situ X-ray absorption spectroscopy studies, we demonstrate that an amorphous catalyst can be electrochemically activated to expose active sites in the bulk thanks to the short-range order of the amorphous structure, which greatly increases the number of active sites and thus improves the electrocatalytic activity of the amorphous catalyst in water oxidation.
Collapse
Affiliation(s)
- Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Rong Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hua Bing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hsin-Yi Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Song Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Sung-Fu Hung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
169
|
Abstract
AbstractElectrocatalysis offers an alternative solution for the energy crisis because it lowers the activation energy of reaction to produce economic fuels more accessible. Non-noble electrocatalysts have shown their capabilities to practical catalytic applications as compared to noble ones, whose scarcity and high price limit the development. However, the puzzling catalytic processes in non-noble electrocatalysts hinder their advancement. In-situ techniques allow us to unveil the mystery of electrocatalysis and boost the catalytic performances. Recently, various in-situ X-ray techniques have been rapidly developed, so that the whole picture of electrocatalysis becomes clear and explicit. In this review, the in-situ X-ray techniques exploring the structural evolution and chemical-state variation during electrocatalysis are summarized for mainly oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). These approaches include X-ray Absorption Spectroscopy (XAS), X-ray diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The information seized from these in-situ X-ray techniques can effectively decipher the electrocatalysis and thus provide promising strategies for advancing the electrocatalysts. It is expected that this review could be conducive to understanding these in-situ X-ray approaches and, accordingly, the catalytic mechanism to better the electrocatalysis.
Collapse
|
170
|
Babar NUA, Joya KS. Cobalt Colloid-derived Efficient and Durable Nanoscale Electrocatalytic Films for High-Activity Water Oxidation. ACS OMEGA 2020; 5:10651-10662. [PMID: 32455183 PMCID: PMC7240820 DOI: 10.1021/acsomega.9b03576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/09/2020] [Indexed: 05/11/2023]
Abstract
Oxygen evolution reaction is of immense importance and is vitally necessary for devices such as electrolyzers, fuel cells, and other solar and chemical energy conversion devices. The major challenges that remain in this quest are due to the lack of effective catalytic assemblages operating with optimum efficiency and obtainable following much simpler setups and easily accessible methods. Here, we demonstrate that the robust electrocatalytic activity toward water oxidation can be achieved employing straightforwardly obtainable nanoscale electrocatalysts derived from easily made colloidal-cobalt nanoparticles (Co-CNPs) prepared in clean carbonate systems. Thin-film non-noble metal nanoscale electrocatalysts such as simple Co-CNPs/FTO and annealed Co-CNPs/FTO250 and Co-CNPs/FTO500 obtained by depositing Co-CNPs on the FTO substrate are shown to initiate water oxidation at much lower overpotentials such as just 240 mV for Co-CNPs/FTO250 under mildly alkaline conditions while demonstrating an impressive Tafel slope of just 40 mV dec-1. Furthermore, the robust catalyst demonstrated a high electrochemical surface area of 91 cm2 and high turnover frequency and mass activity of 0.26 s-1 and 18.84 mA mg-1, respectively, just at 0.35 V, and superior durability during long-term electrolysis. These outstanding catalytic outcomes using easily prepared Co-CNPs/FTO250-type catalytic systems are comparable and even better than other noble and non-noble metal-based nanoscale catalytic assemblages obtained by much difficult methods. Most advantageously, the colloidal route also offers the easiest approach of incorporating carbon contents in the catalytic layer, which can ultimately increase mechanical stability and mass transfer capability of the system.
Collapse
Affiliation(s)
- Noor-Ul-Ain Babar
- Department of Chemistry, University
of Engineering and Technology (UET), G.T Road, 54890 Lahore, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, University
of Engineering and Technology (UET), G.T Road, 54890 Lahore, Pakistan
| |
Collapse
|
171
|
Tao X, Shi W, Zeng B, Zhao Y, Ta N, Wang S, Adenle AA, Li R, Li C. Photoinduced Surface Activation of Semiconductor Photocatalysts under Reaction Conditions: A Commonly Overlooked Phenomenon in Photocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00462] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoping Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
- University of Science and Technology of China, School of Chemistry and Materials Science, Hefei, 230026, China
| | - Wenwen Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
| | - Shengyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
| | - Abraham Abdul Adenle
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China
- University of Science and Technology of China, School of Chemistry and Materials Science, Hefei, 230026, China
| |
Collapse
|
172
|
Cheng Z, Huang B, Pi Y, Li L, Shao Q, Huang X. Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. Natl Sci Rev 2020; 7:1340-1348. [PMID: 34692162 PMCID: PMC8288892 DOI: 10.1093/nsr/nwaa058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 01/20/2023] Open
Abstract
Ultrathin two-dimensional (2D) materials have attracted considerable attention for their unique physicochemical properties and promising applications; however, preparation of freestanding ultrathin 2D noble metal remains a significant challenge. Here, for the first time, we report use of a wet-chemical method to synthesize partially hydroxylated ultrathin Ir nanosheets (Ir-NSs) of only five to six atomic layers’ thickness. Detailed analysis indicates that the growth confinement effect of carbon monoxide and the partially hydroxylated surface play a critical role in formation of the ultrathin structure. The ultrathin Ir-NSs exhibit excellent performance for both the hydrogen evolution reaction and oxygen evolution reaction in a wide pH range, outperforming the state-of-the-art Pt/C and IrO2, respectively. Density-functional theory calculations reveal that the partial hydroxylation not only enhances the surface electron transfer between Ir-sites and intermediate O-species, but also guarantees efficient initial activation of bond cleavage of H-O-H for first-step H2O splitting. This, ultimately, breaks through barriers to full water splitting, with efficient electron transfer essentially maintained.
Collapse
Affiliation(s)
- Zifang Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Yecan Pi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Leigang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
173
|
Luo F, Hu H, Zhao X, Yang Z, Zhang Q, Xu J, Kaneko T, Yoshida Y, Zhu C, Cai W. Robust and Stable Acidic Overall Water Splitting on Ir Single Atoms. NANO LETTERS 2020; 20:2120-2128. [PMID: 32019309 DOI: 10.1021/acs.nanolett.0c00127] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-atom electrocatalysts (SAEs) can realize the target of low-cost by maximum atomic efficiency. However, they usually suffer performance decay due to high energy states, especially in a harsh acidic water splitting environment. Here, we conceive and realize a double protecting strategy that ensures robust acidic water splitting on Ir SAEs by dispersing Ir atoms in/onto Fe nanoparticles and embedding IrFe nanoparticles into nitrogen-doped carbon nanotubes (Ir-SA@Fe@NCNT). When Ir-SA@Fe@NCNT acts as a bifunctional electrocatalyst at ultralow Ir loading of 1.14 μg cm-2, the required overpotentials to deliver 10 mA cm-2 are 250 and 26 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in 0.5 M H2SO4 electrolyte corresponding to 1370- and 61-fold better mass activities than benchmark IrO2 and Pt/C at an overpotential of 270 mV, respectively, resulting in only 1.51 V to drive overall water splitting. Moreover, remarkable stability is also observed compared to Pt/C-IrO2.
Collapse
Affiliation(s)
- Fang Luo
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Hu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiao Zhao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Zhang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jingxiang Xu
- College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
174
|
Zhou L, Cheng C, Li X, Ding J, Liu Q, Su B. Nanochannel Templated Iridium Oxide Nanostructures for Wide-Range pH Sensing from Solutions to Human Skin Surface. Anal Chem 2020; 92:3844-3851. [PMID: 32043863 DOI: 10.1021/acs.analchem.9b05289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we report the fabrication of highly sensitive solid-state pH sensors based on iridium oxide nanowires (IONWs) for a wide-range of pH measurements. IONWs were confined electrodeposits on the indium tin oxide (ITO) electrode using a highly ordered silica nanochannel membrane as the template. Subsequently removing the template produced amorphous IONWs consisting of hydrated iridium oxyhydroxides. The IONW/ITO sensor can rapidly respond to the pH of the aqueous solutions in a wide range (from 0 to 13), avoiding the acid and alkaline errors encountered by conventional pH electrodes and exhibiting a super-Nernst analytical sensitivity as high as 235.5 mV/pH in the very acidic range of ∼0-2.5 and 90.1 mV/pH beyond (pH = ∼2.5-13). The sensitivity was associated with the interconversion of oxidation states of iridium oxyhydroxides. While in the very acidic range, intercalation of Cl- was proved to be responsible for the exceptionally high pH sensitivity. Moreover, the sensor was also demonstrated to work in organic solutions too. Finally, the flexible IONW/ITO electrode was prepared and interfaced to a wireless electrochemical device for real-time epidermal pH analysis with smartphones.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chen Cheng
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinru Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialian Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Liu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
175
|
Peng C, Ran N, Wan G, Zhao W, Kuang Z, Lu Z, Sun C, Liu J, Wang L, Chen H. Engineering Active Fe Sites on Nickel-Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. CHEMSUSCHEM 2020; 13:811-818. [PMID: 31802649 DOI: 10.1002/cssc.201902841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Nickel-iron layered double hydroxide (NiFe LDH) is a promising oxygen evolution reaction (OER) electrocatalyst under alkaline conditions. Much research has been performed to understand the structure-activity relationship of NiFe LDH under OER conditions. However, the specific role of the Fe species remains unclear and under debate. Herein, based on DFT calculations, it was discovered that the edge Fe sites show higher activity towards OER than either the edge Ni sites or lattice sites. Therefore, a facile acid-etching method was proposed to controllably induce the formation of edge Fe sites in NiFe LDH, and the obtained sample exhibited higher OER activity. X-ray absorption near edge structure and extended X-ray absorption fine structure analyses further revealed that the interaction of the edge Fe species with Ni is believed to contribute to the enhancement of the OER performance. This work provides a new understanding of the structure-activity relationship in NiFe LDH and offers a facile method for the design of efficient electrocatalysts in an alkaline environment.
Collapse
Affiliation(s)
- Chunlei Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nian Ran
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Wanpeng Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoyu Kuang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng Lu
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Chengjun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Jianjun Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Hangrong Chen
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| |
Collapse
|
176
|
Luo X, Wei X, Zhong H, Wang H, Wu Y, Wang Q, Gu W, Gu M, Beckman SP, Zhu C. Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3539-3546. [PMID: 31891249 DOI: 10.1021/acsami.9b17476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The establishment of advanced electrocatalysts with remarkable performance and cost effectiveness for the oxygen evolution reaction (OER) is an emerging need for the production of clean hydrogen fuel. In this work, three-dimensional (3D) amorphous NiFeIrx/Ni core-shell nanowire@nanosheets (NW@NSs) are successfully synthesized through a facile one-step reduction process with atomically isolated Ir atoms anchored on an NiFe-based core. By taking advantage of their unique structure and composition, the resultant NiFeIrx/Ni NW@NSs have a high electrocatalytic activity for OER which can deliver current densities of 10 and 100 mA cm-2 at overpotentials as low as 200 and 250 mV in 1 M KOH, respectively. It is worth noting that NiFeIrx/Ni NW@NSs exhibit outstanding long-term stability over 12 h at a current density of 10 mA cm-2. Theoretical calculations also reveal that the intrinsic activity of the resultant NiFeIrx/Ni NW@NSs is significantly enhanced upon the addition of Ir single atoms, highlighting the critical role of the synergistic effect between Ir single atoms and the support. Due to their easy synthesis and superior electrochemical performance, the newly designed nanostructures may find promising potential applications in water splitting and other related fields.
Collapse
Affiliation(s)
- Xin Luo
- College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xiaoqian Wei
- College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Hong Zhong
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Hengjia Wang
- College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yu Wu
- College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Qi Wang
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Wenling Gu
- College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Meng Gu
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Scott P Beckman
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Chengzhou Zhu
- College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
177
|
Li J, Lian R, Wang J, He S, Jiang SP, Rui Z. Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135395] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
178
|
Zhang Z, Liu C, Feng C, Gao P, Liu Y, Ren F, Zhu Y, Cao C, Yan W, Si R, Zhou S, Zeng J. Breaking the Local Symmetry of LiCoO 2 via Atomic Doping for Efficient Oxygen Evolution. NANO LETTERS 2019; 19:8774-8779. [PMID: 31675477 DOI: 10.1021/acs.nanolett.9b03523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The obstacle for efficient electrochemical water splitting lies in the kinetically sluggish oxygen evolution reaction. Despite the various efforts that have been made to understand and tune the active sites for oxygen evolution reaction, an insight into the configurations of active sites from the electronic perspective is still lacking. Here, we report an atomic doping strategy to break the Oh symmetry of the CoO6 octahedron in LiCoO2. The specific activity of the La-doped LiCoO2 was 3.14 mA cm-2 at the overpotential of 0.35 V, which was 8.3 times higher than that of pristine LiCoO2. The overpotential with a value of 330 mV at 10 mA cm-2 was the lowest among the LiCoO2-based OER electrocatalysts ever reported. Mechanistic studies revealed that the superior activity originated from the asymmetric octahedral coordination of Co, resulting in the enhanced electronic conductivity and Co-O hybridization for the accelerated oxygen evolution kinetics. This work opens a door to enhance the catalytic performance through the manipulation of local symmetry.
Collapse
Affiliation(s)
- Zhirong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Chunxiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Chen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Pengfei Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yulin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Fangning Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yifeng Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Cong Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Wensheng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204 , P. R. China
| | - Shiming Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
179
|
Song CW, Suh H, Bak J, Bae HB, Chung SY. Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
180
|
Wu G, Zheng X, Cui P, Jiang H, Wang X, Qu Y, Chen W, Lin Y, Li H, Han X, Hu Y, Liu P, Zhang Q, Ge J, Yao Y, Sun R, Wu Y, Gu L, Hong X, Li Y. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 2019; 10:4855. [PMID: 31649272 PMCID: PMC6813339 DOI: 10.1038/s41467-019-12859-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
Noble metal nanomaterials have been widely used as catalysts. Common techniques for the synthesis of noble metal often result in crystalline nanostructures. The synthesis of amorphous noble metal nanostructures remains a substantial challenge. We present a general route for preparing dozens of different amorphous noble metal nanosheets with thickness less than 10 nm by directly annealing the mixture of metal acetylacetonate and alkali salts. Tuning atom arrangement of the noble metals enables to optimize their catalytic properties. Amorphous Ir nanosheets exhibit a superior performance for oxygen evolution reaction under acidic media, achieving 2.5-fold, 17.6-fold improvement in mass activity (at 1.53 V vs. reversible hydrogen electrode) over crystalline Ir nanosheets and commercial IrO2 catalyst, respectively. In situ X-ray absorption fine structure spectra indicate the valance state of Ir increased to less than + 4 during the oxygen evolution reaction process and recover to its initial state after the reaction.
Collapse
Affiliation(s)
- Geng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, 230029, Hefei, Anhui, People's Republic of China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, People's Republic of China
| | - Hongyu Jiang
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, People's Republic of China
| | - Xiaoqian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Yunteng Qu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, People's Republic of China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People's Republic of China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Technology University, 211816, Nanjing, Jiangsu, People's Republic of China
| | - Xiao Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Yanmin Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Peigen Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, People's Republic of China
| | - Jingjie Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Yancai Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Rongbo Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, People's Republic of China
| | - Xun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China.
| | - Yadong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Center of Advanced Nanocatalysis (CAN), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China.
| |
Collapse
|
181
|
Meng G, Sun W, Mon AA, Wu X, Xia L, Han A, Wang Y, Zhuang Z, Liu J, Wang D, Li Y. Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic-Layer IrO x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903616. [PMID: 31373731 DOI: 10.1002/adma.201903616] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Strain regulation has become an important strategy to tune the surface chemistry and optimize the catalytic performance of nanocatalysts. Herein, the construction of atomic-layer IrOx on IrCo nanodendrites with tunable IrO bond length by compressive strain effect for oxygen evolution reaction (OER) in acidic environment is demonstrated. Evidenced from in situ extended X-ray absorption fine structure, it is shown that the compressive strain of the IrOx layer on the IrCo nanodendrites decreases gradually from 2.51% to the unstrained state with atomic layer growth (from ≈2 to ≈9 atomic layers of IrOx ), resulting in the variation of the IrO bond length from shortened 1.94 Å to normal 1.99 Å. The ≈3 atomic-layer IrOx on IrCo nanodendrites with an IrO bond length of 1.96 Å (1.51% strain) exhibits the optimal OER activity compared to the higher-strained (2.51%, ≈2 atomic-layer IrOx ) and unstrained (>6 atomic-layer IrOx ) counterparts, with an overpotential of only 247 mV to achieve a current density of 10 mA cm-2 . Density functional theory calculations reveal that the precisely tuned compressive strain effect balances the adsorbate-substrate interaction and facilitates the rate-determining step to form HOO*, thus assuring the best performance of the three atomic-layer IrOx for OER.
Collapse
Affiliation(s)
- Ge Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenming Sun
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Aye Aye Mon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuan Wu
- Petrochemical Research Institute of PetroChina, Beijing, 100195, China
| | - Longyu Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201800, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
182
|
Back S, Tran K, Ulissi ZW. Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02416] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seoin Back
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Kevin Tran
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Zachary W. Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|