151
|
Yang M, Liu Y, Hou W, Zhi X, Zhang C, Jiang X, Pan F, Yang Y, Ni J, Cui D. Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. NANOSCALE 2017; 9:334-340. [PMID: 27922138 DOI: 10.1039/c6nr06851k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Human-induced pluripotent stem cells (iPS) possess an intrinsic tumor tropism ability. However, iPS cells are impeded in clinical applications of tumor therapy due to the formation of teratomas and their survival in normal organs such as the liver, lungs, spleen and kidneys. Mitomycin C (MMC) can overcome this limitation by suppressing iPS proliferation. Herein, we fabricated a safe delivery system of iPS cells treated with MMC loading with gold nanorods (AuNRs) for the targeted photothermal treatment of gastric cancer. Our results showed that the tumor cells were efficiently killed by the heat generated from the gold nanorods, and the iPS cells ultimately died due to the action of MMC seven days after the photothermal treatment. This suggested that pre-treated iPS cells with MMC can be used as a novel and safe approach for targeted tumor therapy. This paves the road for clinical translation in the future.
Collapse
Affiliation(s)
- Meng Yang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Baeza A, Castillo RR, Torres-Pardo A, González-Calbet JM, Vallet-Regí M. Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? J Mater Chem B 2017; 5:2714-2725. [DOI: 10.1039/c6tb03062a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron microscopy applied to the development of inorganic nanoparticles for clinical applications.
Collapse
Affiliation(s)
- A. Baeza
- Dpto. Química Inorgánica y Bioinorgánica
- Facultad de Farmacia
- Universidad Complutense de Madrid
- Plaza Ramon y Cajal s/n
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12
| | - R. R. Castillo
- Dpto. Química Inorgánica y Bioinorgánica
- Facultad de Farmacia
- Universidad Complutense de Madrid
- Plaza Ramon y Cajal s/n
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12
| | - A. Torres-Pardo
- Dpto. de Química Inorgánica Facultad de Químicas
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - J. M. González-Calbet
- Dpto. de Química Inorgánica Facultad de Químicas
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - M. Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica
- Facultad de Farmacia
- Universidad Complutense de Madrid
- Plaza Ramon y Cajal s/n
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12
| |
Collapse
|
153
|
Banskota S, Yousefpour P, Chilkoti A. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600361] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/18/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|
154
|
Marega R, Prasetyanto EA, Michiels C, De Cola L, Bonifazi D. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5431-5441. [PMID: 27510846 DOI: 10.1002/smll.201601447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/26/2016] [Indexed: 05/24/2023]
Abstract
Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites.
Collapse
Affiliation(s)
- Riccardo Marega
- Namur Research College (NARC) and Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Eko Adi Prasetyanto
- Institut de science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, 8 Rue Gaspard Monge, BP 70028, Strasbourg, F-67000, France
- Karlsruher Institut für Technologie KIT-INT, Karlsruhe, D-76131, Germany
| | - Carine Michiels
- Cellular Biology Research Unit - NARILIS, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Luisa De Cola
- Institut de science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, 8 Rue Gaspard Monge, BP 70028, Strasbourg, F-67000, France.
- Karlsruher Institut für Technologie KIT-INT, Karlsruhe, D-76131, Germany.
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium.
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| |
Collapse
|
155
|
Zheng T, Li GG, Zhou F, Wu R, Zhu JJ, Wang H. Gold-Nanosponge-Based Multistimuli-Responsive Drug Vehicles for Targeted Chemo-Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8218-8226. [PMID: 27459898 DOI: 10.1002/adma.201602486] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Gold-nanosponge-based multistimuli-responsive drug vehicles are constructed for combined chemo-photothermal therapy with pinpointed drug delivery and release capabilities and minimized nonspecific systemic spread of drugs, remarkably enhancing the therapeutic efficiency while minimizing acute side effects.
Collapse
Affiliation(s)
- Tingting Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Guangfang Grace Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Fei Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
156
|
Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse. Stem Cells Dev 2016; 25:1513-1531. [PMID: 27460260 DOI: 10.1089/scd.2016.0120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Rozycka
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland .,2 Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
157
|
Timin AS, Lepik KV, Muslimov AR, Gorin DA, Afanasyev BV, Sukhorukov GB. Intracellular redox induced drug release in cancerous and mesenchymal stem cells. Colloids Surf B Biointerfaces 2016; 147:450-458. [PMID: 27573039 DOI: 10.1016/j.colsurfb.2016.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/16/2022]
Abstract
In this report, we investigated intracellular redox induced drug release in cancerous cells and human mesenchymal stem cells (MSCs) as an example of healthy cells using redox-responsive microcapsules with covalently bonded anti-cancer drug (doxorubicin) via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidyl propionate) containing disulfide bond. Such rationally designed capsules with incorporated redox-sensitive cross-linker are capable of controllable Dox release in the presence of glutathione (GSH) due to a thiol-cleavable disulfide bonds. The treatment of human MSCs and human cervical cancer cell line (HeLa) with Dox-conjugated capsules showed that the Dox release was observed only when capsules incubated with HeLa cells which can be induced by high GSH level in cancerous (HeLa) cells. Moreover, the results of cell viability indicated that Dox-conjugated capsules are more effective when inducing cell death of HeLa than free Dox improving the anti-tumor efficacy of chemotherapeutic drug and simultaneously they possess lower cytotoxicity against MSCs compared to cancerous cells. Such properties are important in design of smart drug carriers for efficient cancer therapy.
Collapse
Affiliation(s)
- Alexander S Timin
- RASA center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk, Russian Federation.
| | - Kirill V Lepik
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, Saint-Petersburg, Russian Federation
| | - Albert R Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, Saint-Petersburg, Russian Federation
| | - Dmitry A Gorin
- RASA center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk, Russian Federation; Saratov State University, Astrakhanskaya Street 83, Saratov 410012, Russian Federation
| | - Boris V Afanasyev
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, Saint-Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- RASA center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk, Russian Federation; RASA center in St.Petersburg, Peter The Great St.Petersburg Polytechnic University, St.Petersburg, Russian Federation; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
158
|
Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4056-62. [PMID: 27337109 DOI: 10.1002/smll.201600624] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/18/2016] [Indexed: 05/18/2023]
Abstract
Stem cell membrane-coated nanogels can effectively evade clearance of the immune system, enhance the tumor targeting properties and antitumor chemotherapy efficacy of gelatin nanogels loaded doxorubicin in mice.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871, Madrid, Spain
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| |
Collapse
|
159
|
Wu J, Liu Y, Tang Y, Wang S, Wang C, Li Y, Su X, Tian J, Tian Y, Pan J, Su Y, Zhu H, Teng Z, Lu G. Synergistic Chemo-Photothermal Therapy of Breast Cancer by Mesenchymal Stem Cell-Encapsulated Yolk-Shell GNR@HPMO-PTX Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17927-17935. [PMID: 27356586 DOI: 10.1021/acsami.6b05677] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have attracted increasing attention as vehicles for cancer treatment. Herein, MSC-based synergistic oncotherapy strategy is presented for the first time. To achieve this goal, yolk-shell structured gold nanorod embedded hollow periodic mesoporous organosilica nanospheres (GNR@HPMOs) with high paclitaxel (PTX) loading capability and excellent photothermal transfer ability upon near-infrared (NIR) light irradiation are first prepared. Cytotoxicity and migration assays show that the viability and tumor-homing capability of MSCs are well-retained after internalization of high content of PTX loaded GNR@HPMOs (denoted as GNR@HPMOs-PTX). In vitro experiments show the GNR@HPMOs-PTX loaded MSCs (GNR@HPMOs-PTX@MSCs) possess synergistic chemo-photothermal killing effects for breast cancer cells. Also, photoacoustic imaging shows that the MSCs can improve dispersion and distribution in tumor tissue for GNR@HPMOs-PTX after intratumoral injection. In vivo experiments in breast cancer model of nude mice further demonstrate that the GNR@HPMOs-PTX@MSCs significantly inhibit tumor growth, suggesting their great potential for synergistic therapy of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaodan Su
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210046, P. R. China
| | - Jihong Tian
- Department of Radiotherapy, the Second Affiliated Hospital of Nanjing Medical University , Nanjing 210011, P. R. China
| | | | | | | | | | - Zhaogang Teng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Guangming Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
160
|
Ren G, Jiang M, Xue P, Wang J, Wang Y, Chen B, He Z. A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2273-2282. [PMID: 27389147 DOI: 10.1016/j.nano.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
In contrast with common thought, we generated highly hydrophobic anticancer prodrug self-assembled nanoparticles without the aid of surface active substances, based on the conjugation of docetaxel to d-α-tocopherol succinate. The reduction-sensitive prodrug was synthesized with a disulfide bond inserted into the linker and was compared with a control reduction-insensitive prodrug. The morphology and stability of self-assembled nanoparticles were investigated. Cytotoxicity and apoptosis assays showed that the reduction-sensitive nanoparticles had higher anticancer activity than the reduction-insensitive nanoparticles. The reduction-sensitive nanoparticles exhibited favorable in vivo antitumor activity and tolerance compared with docetaxel Tween80-containing formulation and the reduction-insensitive nanoparticles. Taken together, the unique nanomedicine demonstrated a number of advantages: (i) ease and reproducibility of preparation, (ii) high drug payload, (iii) superior stability, (iv) prolonged circulation, and (v) improved therapeutic effect. This highly reproducible molecular assembly strategy should motivate the development of new nanomedicines.
Collapse
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; School of Pharmacy, Shanxi Medical University, Shanxi, China
| | - Mengjuan Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongjun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
161
|
Shah K. Stem cell-based therapies for tumors in the brain: are we there yet? Neuro Oncol 2016; 18:1066-78. [PMID: 27282399 DOI: 10.1093/neuonc/now096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation.
Collapse
Affiliation(s)
- Khalid Shah
- Stem Cell Therapeutics and Imaging Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts (K.S.)
| |
Collapse
|
162
|
Intraoperative Identification of Liver Cancer Microfoci Using a Targeted Near-Infrared Fluorescent Probe for Imaging-Guided Surgery. Sci Rep 2016; 6:21959. [PMID: 26923919 PMCID: PMC4770417 DOI: 10.1038/srep21959] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/02/2016] [Indexed: 12/22/2022] Open
Abstract
Difficulties in the highly sensitive detection of tumour microfoci represent a critical obstacle toward improved surgical intervention in liver cancer. Conventional preoperative imaging methods and surgeons’ subjective experience are limited by their inability to effectively detect tumour lesions measuring less than 2 mm; however, intraoperative fluorescence molecular imaging may overcome this limitation. Here, we synthesised an arginine-glycine-aspartic acid (RGD)-conjugated mesoporous silica nanoparticle (MSN) highly loaded with indocyanine green (ICG) dye that could accurately delineate liver cancer margins and provide excellent tumour-to-normal tissue contrast intraoperatively. The increased ICG loading capacity and tumour specificity enabled the identification of residual microtumours and satellite lesions measuring less than 1 mm in living mice. Histological analysis validated the sensitivity and accuracy of this approach. We believe this technique utilising a new fluorescent nanoprobe with intraoperative optical imaging may offer a more sensitive and accurate method for liver cancer resection guidance, resulting in better surgical outcomes.
Collapse
|
163
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
164
|
Chen Y, Ma M, Chen H, Shi J. Multifunctional Hollow Mesoporous Silica Nanoparticles for MR/US Imaging-Guided Tumor Therapy. ADVANCES IN NANOTHERANOSTICS II 2016. [DOI: 10.1007/978-981-10-0063-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
165
|
Shegokar R, Sawant S, Al Shaal L. Applications of Cell-Based Drug Delivery Systems: Use of Single Cell Assay. SERIES IN BIOENGINEERING 2016. [DOI: 10.1007/978-3-662-49118-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
166
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
167
|
Li M, Zhang F, Chen K, Wang C, Su Y, Liu Y, Zhou J, Wang W. Nanoparticles and mesenchymal stem cells: a win-win alliance for anticancer drug delivery. RSC Adv 2016; 6:36910-36922. [DOI: 10.1039/c6ra00398b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Schematic illustration of the combination of NPs and MSCs drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Kerong Chen
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng Wang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yujie Su
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yuan Liu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wei Wang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
168
|
Tan L, Liu T, Fu C, Wang S, Fu S, Ren J, Meng X. Hollow ZrO2/PPy nanoplatform for improved drug delivery and real-time CT monitoring in synergistic photothermal-chemo cancer therapy. J Mater Chem B 2016; 4:859-866. [DOI: 10.1039/c5tb02205c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow ZrO2 nanospheres are fabricated to integrate polypyrrole and doxorubicin into one platform for synergistic photothermal-chemo therapy, and in vivo biodistribution is monitored by real-time CT imaging.
Collapse
Affiliation(s)
- Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Tianlong Liu
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Shengping Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Shiyan Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
169
|
Wang L, Yan Y, Wang M, Yang H, Zhou Z, Peng C, Yang S. An integrated nanoplatform for theranostics via multifunctional core–shell ferrite nanocubes. J Mater Chem B 2016; 4:1908-1914. [DOI: 10.1039/c5tb01910a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel integrated nanoplatform facilitates excellent targeted MR imaging guided synergism of magnetothermal and chemotherapy based on magnetic core–shell ferrite nanocubes (MNCs).
Collapse
Affiliation(s)
- Li Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yuping Yan
- The Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Shanghai Normal University
- Shanghai 200234
- China
| | - Min Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Shanghai Normal University
- Shanghai 200234
- China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Shanghai Normal University
- Shanghai 200234
- China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Shanghai Normal University
- Shanghai 200234
- China
| | - Chen Peng
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai 200072
- China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|
170
|
Tang W, Liu B, Wang S, Liu T, Fu C, Ren X, Tan L, Duan W, Meng X. Doxorubicin-loaded ionic liquid–polydopamine nanoparticles for combined chemotherapy and microwave thermal therapy of cancer. RSC Adv 2016. [DOI: 10.1039/c6ra02434c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin-loaded ionic liquid–polydopamine (IL–PDA–DOX) nanocomposites were obtained with high antitumor efficacy for combined chemotherapy and microwave thermal therapy of cancer.
Collapse
Affiliation(s)
- Wenting Tang
- School of Science
- Beijing Jiaotong University
- Beijing
- China
| | - Bo Liu
- School of Science
- Beijing Jiaotong University
- Beijing
- China
| | - Shengping Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Tianlong Liu
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| | - Wubiao Duan
- School of Science
- Beijing Jiaotong University
- Beijing
- China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Center for Micro/nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
171
|
Li Z, Huang H, Tang S, Li Y, Yu XF, Wang H, Li P, Sun Z, Zhang H, Liu C, Chu PK. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 2016; 74:144-54. [DOI: 10.1016/j.biomaterials.2015.09.038] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
|
172
|
Corradetti B, Ferrari M. Nanotechnology for mesenchymal stem cell therapies. J Control Release 2015; 240:242-250. [PMID: 26732556 DOI: 10.1016/j.jconrel.2015.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
173
|
Rhee KJ, Lee JI, Eom YW. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int J Mol Sci 2015; 16:30015-33. [PMID: 26694366 PMCID: PMC4691158 DOI: 10.3390/ijms161226215] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors.
Collapse
Affiliation(s)
- Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Korea.
| | - Jong In Lee
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| |
Collapse
|
174
|
Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1915-24. [DOI: 10.1016/j.nano.2015.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/26/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
|
175
|
He Q, Guo S, Qian Z, Chen X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev 2015; 44:6258-6286. [PMID: 26056688 PMCID: PMC4540626 DOI: 10.1039/c4cs00511b] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulae provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines.
Collapse
Affiliation(s)
- Qianjun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
176
|
Li J, Yang H, Zhang Y, Jiang X, Guo Y, An S, Ma H, He X, Jiang C. Choline Derivate-Modified Doxorubicin Loaded Micelle for Glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21589-21601. [PMID: 26356793 DOI: 10.1021/acsami.5b07045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ligand-mediated polymeric micelles have enormous potential for improving the efficacy of glioma therapy. Linear-dendritic drug-polymer conjugates composed of doxorubicin (DOX) and polyethylene glycol (PEG) were synthesized with or without modification of choline derivate (CD). The resulting MeO-PEG-DOX8 and CD-PEG-DOX8 could self-assemble into polymeric micelles with a nanosized diameter around 30 nm and a high drug loading content up to 40.6 and 32.3%, respectively. The optimized formulation 20% CD-PEG-DOX8 micelles had superior cellular uptake and antitumor activity against MeO-PEG-DOX8 micelles. The subcellular distribution using confocal study revealed that 20% CD-PEG-DOX8 micelles preferentially accumulated in the mitochondria. Pharmacokinetic study showed area under the plasma concentration-time curve (AUC0-t) and Cmax for 20% CD-PEG-DOX8 micelles and DOX solution were 1336.58 ± 179.43 mg/L·h, 96.35 ± 3.32 mg/L and 1.40 ± 0.19 mg/L·h, 1.15 ± 0.25 mg/L, respectively. Biodistribution study showed the DOX concentration of 20% CD-PEG-DOX8 micelles treated group at 48 h was 2.37-fold higher than that of MeO-PEG-DOX8 micelles treated group at 48 h and was 24 fold-higher than that of DOX solution treated group at 24 h. CD-PEG-DOX8 micelles (20%) were well tolerated with reduced cardiotoxicity, as evaluated in the body weight change and HE staining studies, while they induced most significant antitumor activity with longest media survival time in an orthotopic mouse model of U87-luci glioblastoma model as displayed in the bioluminescence imaging and survival curve studies. Our findings consequently indicated that 20% CD-PEG-DOX8 micelles are promising drug delivery system for glioma chemotherapy.
Collapse
Affiliation(s)
- Jianfeng Li
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Huiying Yang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Xutao Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Yubo Guo
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Sai An
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Haojun Ma
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Xi He
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University , Shanghai 201203, China
| |
Collapse
|
177
|
Wang Q, Cheng H, Peng H, Zhou H, Li PY, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv Drug Deliv Rev 2015; 91:125-40. [PMID: 25543006 DOI: 10.1016/j.addr.2014.12.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/04/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions.
Collapse
|
178
|
Salgado AJ, Sousa JC, Costa BM, Pires AO, Mateus-Pinheiro A, Teixeira FG, Pinto L, Sousa N. Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 2015. [PMID: 26217178 PMCID: PMC4499760 DOI: 10.3389/fncel.2015.00249] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.
Collapse
Affiliation(s)
- Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Joao C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Luisa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
179
|
Kim SW, Khang D. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency. Int J Nanomedicine 2015; 10:3989-4008. [PMID: 26124658 PMCID: PMC4476429 DOI: 10.2147/ijn.s83951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs). This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Dongwoo Khang
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
180
|
Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 2015; 204:11-9. [PMID: 25646783 DOI: 10.1016/j.jconrel.2015.01.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/14/2023]
Abstract
The biomimetic delivery system (BDS) based on special types of endogenous cells like macrophages and T cells, has been emerging as a novel strategy for cancer therapy, due to its tumor homing property and biocompatibility. However, its development is impeded by complicated construction, low drug loading or negative effect on the cell bioactivity. The present report constructed a BDS by loading doxorubicin (DOX) into a mouse macrophage-like cell line (RAW264.7). It was found that therapeutically meaningful amount of DOX could be loaded into the RAW264.7 cells by simply incubation, without significantly affecting the viability of the cells. Drug could release from the BDS and maintain its activity. RAW264.7 cells exhibited obvious tumor-tropic capacity towards 4T1 mouse breast cancer cells both in vitro and in vivo, and drug loading did not alter this tendency. Importantly, the DOX loaded macrophage system showed promising anti-cancer efficacy in terms of tumor suppression, life span prolongation and metastasis inhibition, with reduced toxicity. In conclusion, it is demonstrated that the BDS developed here seems to overcome some of the main issues related to a BDS. The DOX loaded macrophages might be a potential BDS for targeted cancer therapy.
Collapse
Affiliation(s)
- Jijun Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Mei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
181
|
Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics 2015; 5:863-81. [PMID: 26000058 PMCID: PMC4440443 DOI: 10.7150/thno.11852] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 01/14/2023] Open
Abstract
Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications.
Collapse
Affiliation(s)
- Songwei Tan
- 1. Tongji School of Pharmacy
- 2. National Engineering Research Center for Nanomedicine
- 3. Hubei Engineering Research Center for Novel DDS, Huazhong University of Science and Technology, Wuhan 430030, P R China
| | | | | | - Zhiping Zhang
- 1. Tongji School of Pharmacy
- 2. National Engineering Research Center for Nanomedicine
- 3. Hubei Engineering Research Center for Novel DDS, Huazhong University of Science and Technology, Wuhan 430030, P R China
| |
Collapse
|
182
|
Li Z, Fan D, Xiong D. Mesenchymal stem cells as delivery vectors for anti-tumor therapy. Stem Cell Investig 2015; 2:6. [PMID: 27358874 DOI: 10.3978/j.issn.2306-9759.2015.03.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/09/2015] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated mesenchymal stem cells (MSCs) are able to migrate specifically to tumors and their metastatic sites when administered intravenously. This characteristic tumor tropism has opened up an emerging field to utilize MSCs as vectors to deliver anti-cancer agents for targeted therapies. Genetically engineered MSCs can specifically migrate to various tumors and locally secrete therapeutic proteins, such as interferon β (IFN-β) and IFN-γ, interleukin 12 and 24, tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or suicide gene/enzyme prodrug. In addition, MSCs have also been engineered to deliver oncolytic viruses and drug-loaded nanoparticles. Here, we present the characteristics of MSCs, the current progress on MSC mediated anti-cancer agents delivery systems and the interaction between MSCs and tumors.
Collapse
Affiliation(s)
- Zhenzhen Li
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China ; 2 National-local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongmei Fan
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China ; 2 National-local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongsheng Xiong
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China ; 2 National-local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
183
|
Su Y, Xie Z, Kim GB, Dong C, Yang J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 2015; 1:201-217. [PMID: 25984572 PMCID: PMC4428174 DOI: 10.1021/ab500179h] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based "live" targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems.
Collapse
Affiliation(s)
- Yixue Su
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Zhiwei Xie
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Gloria B. Kim
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| |
Collapse
|
184
|
He D, Wang S, Lei L, Hou Z, Shang P, He X, Nie H. Core–shell particles for controllable release of drug. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
185
|
Adjei IM, Blanka S. Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach. J Funct Biomater 2015; 6:81-103. [PMID: 25695337 PMCID: PMC4384103 DOI: 10.3390/jfb6010081] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/07/2014] [Accepted: 02/12/2015] [Indexed: 12/26/2022] Open
Abstract
Tumors are complex tissues that consist of stromal cells, such as fibroblasts, immune cells and mesenchymal stem cells, as well as non-cellular components, in addition to neoplastic cells. Increasingly, there is evidence to suggest that these non-neoplastic cell components support cancer initiation, progression and metastasis and that their ablation or reprogramming can inhibit tumor growth. Our understanding of the activities of different parts of the tumor stroma in advancing cancer has been improved by the use of scaffold and matrix-based 3D systems originally developed for regenerative medicine. Additionally, drug delivery systems made from synthetic and natural biomaterials deliver drugs to kill stromal cells or reprogram the microenvironment for tumor inhibition. In this article, we review the impact of 3D tumor models in increasing our understanding of tumorigenesis. We also discuss how different drug delivery systems aid in the reprogramming of tumor stroma for cancer treatment.
Collapse
Affiliation(s)
- Isaac M Adjei
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Sharma Blanka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
186
|
Clavreul A, Montagu A, Lainé AL, Tétaud C, Lautram N, Franconi F, Passirani C, Vessières A, Montero-Menei CN, Menei P. Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules. Int J Nanomedicine 2015; 10:1259-71. [PMID: 25709447 PMCID: PMC4335613 DOI: 10.2147/ijn.s69175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently developed drug delivery nanosystems, such as lipid nanocapsules (LNCs), hold great promise for the treatment of glioblastomas (GBs). In this study, we used a subpopulation of human mesenchymal stem cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, which have endogenous tumor-homing activity, to deliver LNCs containing an organometallic complex (ferrociphenol or Fc-diOH), in the orthotopic U87MG GB model. We determined the optimal dose of Fc-diOH-LNCs that can be carried by MIAMI cells and compared the efficacy of Fc-diOH-LNC-loaded MIAMI cells with that of the free-standing Fc-diOH-LNC system. We showed that MIAMI cells entrapped an optimal dose of about 20 pg Fc-diOH per cell, with no effect on cell viability or migration capacity. The survival of U87MG-bearing mice was longer after the intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells than after the injection of Fc-diOH-LNCs alone. The greater effect of the Fc-diOH-LNC-loaded MIAMI cells may be accounted for by their peritumoral distribution and a longer residence time of the drug within the tumor. These results confirm the potential of combinations of stem cell therapy and nanotechnology to improve the local tissue distribution of anticancer drugs in GB.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, Centre Hospitalier Universitaire, Angers, France
| | - Angélique Montagu
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | - Anne-Laure Lainé
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | - Clément Tétaud
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | - Nolwenn Lautram
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | | | | | | | | | - Philippe Menei
- Département de Neurochirurgie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
187
|
Fu C, Qiang L, Liang Q, Chen X, Li L, Liu H, Tan L, Liu T, Ren X, Meng X. Facile synthesis of a highly luminescent carbon dot@silica nanorattle for in vivo bioimaging. RSC Adv 2015. [DOI: 10.1039/c5ra04311e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon dots embedded in silica nanorattle (CDs@SN) nanocomposites with high luminescence are synthesized and exhibit brighter fluorescence in vitro and in vivo than CDs alone.
Collapse
|
188
|
Liu J, Detrembleur C, Mornet S, Jérôme C, Duguet E. Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 2015; 3:6117-6147. [DOI: 10.1039/c5tb00664c] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review addresses the advantages of remote triggers, e.g. ultrasounds, near infrared light and alternating magnetic fields, the fabrication of the hybrid nanovehicles, the release mechanisms and the next challenges.
Collapse
Affiliation(s)
- Ji Liu
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | - Christophe Detrembleur
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | | | - Christine Jérôme
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | | |
Collapse
|
189
|
Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis. Biomaterials 2015; 36:90-7. [DOI: 10.1016/j.biomaterials.2014.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
|
190
|
Zhang X, Yao S, Liu C, Jiang Y. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy. Biomaterials 2015; 39:269-81. [DOI: 10.1016/j.biomaterials.2014.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
191
|
Mooney R, Roma L, Zhao D, Van Haute D, Garcia E, Kim SU, Annala AJ, Aboody KS, Berlin JM. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS NANO 2014; 8:12450-60. [PMID: 25375246 PMCID: PMC4278682 DOI: 10.1021/nn505147w] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/06/2014] [Indexed: 05/19/2023]
Abstract
Plasmonic photothermal therapy utilizes biologically inert gold nanorods (AuNRs) as tumor-localized antennas that convert light into heat capable of eliminating cancerous tissue. This approach has lower morbidity than surgical resection and can potentially synergize with other treatment modalities including chemotherapy and immunotherapy. Despite these advantages, it is still challenging to obtain heating of the entire tumor mass while avoiding unnecessary collateral damage to surrounding healthy tissue. It is therefore critical to identify innovative methods to distribute an effective concentration of AuNRs throughout tumors without depositing them in surrounding healthy tissue. Here we demonstrate that AuNR-loaded, tumor-tropic neural stem cells (NSCs) can be used to improve the intratumoral distribution of AuNRs. A simple UV-vis technique for measuring AuNR loading within NSCs was established. It was then confirmed that NSC viability is unimpaired following AuNR loading and that NSCs retain AuNRs long enough to migrate throughout tumors. We then demonstrate that intratumoral injections of AuNR-loaded NSCs are more efficacious than free AuNR injections, as evidenced by reduced recurrence rates of triple-negative breast cancer (MDA-MB-231) xenografts following NIR exposure. Finally, we demonstrate that the distribution of AuNRs throughout the tumors is improved when transported by NSCs, likely resulting in the improved efficacy of AuNR-loaded NSCs as compared to free AuNRs. These findings highlight the advantage of combining cellular therapies and nanotechnology to generate more effective cancer treatments.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
- Address correspondence to ,
| | - Luella Roma
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Donghong Zhao
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Desiree Van Haute
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Elizabeth Garcia
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Alexander J. Annala
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Karen S. Aboody
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Jacob M. Berlin
- Department of Neurosciences, Department of Molecular Medicine, and Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
- Address correspondence to ,
| |
Collapse
|
192
|
Priebe M, Fromm KM. Nanorattles or Yolk-Shell Nanoparticles-What Are They, How Are They Made, and What Are They Good For? Chemistry 2014; 21:3854-74. [DOI: 10.1002/chem.201405285] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
193
|
Mooney R, Weng Y, Tirughana-Sambandan R, Valenzuela V, Aramburo S, Garcia E, Li Z, Gutova M, Annala AJ, Berlin JM, Aboody KS. Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution. Future Oncol 2014; 10:401-15. [PMID: 24559447 DOI: 10.2217/fon.13.217] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM The purpose of this work is to determine if tumor-tropic neural stem cells (NSCs) can improve the tumor-selective distribution and retention of nanoparticles (NPs) within invasive brain tumors. MATERIALS & METHODS Streptavidin-conjugated, polystyrene NPs are surface-coupled to biotinylated human NSCs. These NPs are large (798 nm), yet when conjugated to tropic cells, they are too large to passively diffuse through brain tissue or cross the blood-tumor barrier. NP distribution and retention was quantified 4 days after injections located either adjacent to an intracerebral glioma, in the contralateral hemisphere, or intravenously. RESULTS & CONCLUSION In all three in vivo injection paradigms, NSC-coupled NPs exhibited significantly improved tumor-selective distribution and retention over free-NP suspensions. These results provide proof-of-principle that NSCs can facilitate the tumor-selective distribution of NPs, a platform useful for improving intracranial drug delivery.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Neurosciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Mooney R, Weng Y, Garcia E, Bhojane S, Smith-Powell L, Kim SU, Annala AJ, Aboody KS, Berlin JM. Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. J Control Release 2014; 191:82-9. [PMID: 24952368 PMCID: PMC4156897 DOI: 10.1016/j.jconrel.2014.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022]
Abstract
Intratumoral drug delivery is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. This mode of administration is currently used in a number of clinical treatments such as neoadjuvant, adjuvant, and even standalone therapies when radiation and surgery are not possible. However, even when injected locally, it is difficult to achieve efficient distribution of chemotherapeutics throughout the tumor. This is primarily attributed to the high interstitial pressure which results in gradients that drive fluid away from the tumor center. The stiff extracellular matrix also limits drug penetration throughout the tumor. We have previously shown that neural stem cells can penetrate tumor interstitium, actively migrating even to hypoxic tumor cores. When used to deliver therapeutics, these migratory neural stem cells result in dramatically enhanced tumor coverage relative to conventional delivery approaches. We recently showed that neural stem cells maintain their tumor tropic properties when surface-conjugated to nanoparticles. Here we demonstrate that this hybrid delivery system can be used to improve the efficacy of docetaxel-loaded nanoparticles when administered intratumorally. This was achieved by conjugating drug-loaded nanoparticles to the surface of neural stem cells using a bond that allows the stem cells to efficiently distribute nanoparticles throughout the tumor before releasing the drug for uptake by tumor cells. The modular nature of this system suggests that it could be used to improve the efficacy of many chemotherapy drugs after intratumoral administration.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Neurosciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | - Yiming Weng
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Elizabeth Garcia
- Department of Neurosciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Sukhada Bhojane
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Leslie Smith-Powell
- Department of Analytical Pharmacology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Alexander J Annala
- Department of Neurosciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Karen S Aboody
- Department of Neurosciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; Division of Neurosurgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jacob M Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
195
|
Zhao J, Vykoukal J, Abdelsalam M, Recio-Boiles A, Huang Q, Qiao Y, Singhana B, Wallace M, Avritscher R, Melancon MP. Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. NANOTECHNOLOGY 2014; 25:405101. [PMID: 25211057 PMCID: PMC4414337 DOI: 10.1088/0957-4484/25/40/405101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The treatment of liver injuries or hepatocellular carcinoma (HCC) has been hindered by the lack of efficient drug delivery. Even with the help of nanoparticles or other synthetic delivering agents, a large portion of the dose is still sequestered in the reticuloendothelial system. As an alternative, adipose-derived mesenchymal cells (AD-MSCs), which have the capability of homing to the injured liver, can be used as a unique carrier for theranostic agents. Theranostic agents must have the capacity for being non-toxic to host cells during transportation, and for timely activation once they arrive at the injury sites. In this study, we loaded AD-MSCs with superparamagnetic iron oxide-coated gold nanoparticles (SPIO@AuNPs) and tested their effects against liver injury and HCC in cells and in mice. SPIO@AuNP is a non-toxic magnetic resonance (MR)-active contrast agent that can generate heat when irradiated with near-infrared laser. Our results showed that SPIO@AuNPs were successfully transfected into AD-MSCs without compromising either cell viability (P > 0.05) or cell differentiability. In vivo MR imaging and histologic analysis confirmed the active homing of AD-MSCs. Upon laser irradiation, the SPIO@AuNP-loaded AD-MSCs could thermally ablate surrounding HCC tumor cells. SPIO@AuNP-loaded AD-MSCs proved a promising theranostic approach for injured liver and HCC.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Mohamed Abdelsalam
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Alejandro Recio-Boiles
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Yang Qiao
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Burapol Singhana
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Michael Wallace
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Rony Avritscher
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Marites P. Melancon
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
196
|
Abstract
Stem cell-based therapies are emerging as a promising strategy to tackle cancer. Multiple stem cell types have been shown to exhibit inherent tropism towards tumours. Moreover, when engineered to express therapeutic agents, these pathotropic delivery vehicles can effectively target sites of malignancy. This perspective considers the current status of stem cell-based treatments for cancer and provides a rationale for translating the most promising preclinical studies into the clinic.
Collapse
Affiliation(s)
- Daniel W Stuckey
- Molecular Neurotherapy and Imaging Laboratory and the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory and the Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
197
|
Young JS, Morshed RA, Kim JW, Balyasnikova IV, Ahmed AU, Lesniak MS. Advances in stem cells, induced pluripotent stem cells, and engineered cells: delivery vehicles for anti-glioma therapy. Expert Opin Drug Deliv 2014; 11:1733-46. [PMID: 25005767 DOI: 10.1517/17425247.2014.937420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A limitation of small molecule inhibitors, nanoparticles (NPs) and therapeutic adenoviruses is their incomplete distribution within the entirety of solid tumors such as malignant gliomas. Currently, cell-based carriers are making their way into the clinical setting as they offer the potential to selectively deliver many types of therapies to cancer cells. AREAS COVERED Here, we review the properties of stem cells, induced pluripotent stem cells and engineered cells that possess the tumor-tropic behavior necessary to serve as cell carriers. We also report on the different types of therapeutic agents that have been delivered to tumors by these cell carriers, including: i) therapeutic genes; ii) oncolytic viruses; iii) NPs; and iv) antibodies. The current challenges and future promises of cell-based drug delivery are also discussed. EXPERT OPINION While the emergence of stem cell-mediated therapy has resulted in promising preclinical results and a human clinical trial utilizing this approach is currently underway, there is still a need to optimize these delivery platforms. By improving the loading of therapeutic agents into stem cells and enhancing their migratory ability and persistence, significant improvements in targeted cancer therapy may be achieved.
Collapse
Affiliation(s)
- Jacob S Young
- The University of Chicago Pritzker School of Medicine , 5841 South Maryland Ave., M/C 3026, Chicago, IL 60637 , USA
| | | | | | | | | | | |
Collapse
|
198
|
Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014; 66:42-57. [PMID: 24060923 PMCID: PMC3948347 DOI: 10.1016/j.addr.2013.09.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management.
Collapse
Affiliation(s)
- Yu Cheng
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Ramin A Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Alex L Tobias
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
199
|
Sundarraj S, Thangam R, Sujitha MV, Vimala K, Kannan S. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy. Toxicol Appl Pharmacol 2014; 275:232-43. [PMID: 24467950 DOI: 10.1016/j.taap.2014.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA2α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems.
Collapse
Affiliation(s)
- Shenbagamoorthy Sundarraj
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN, India.
| | - Ramar Thangam
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN, India; Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN, India
| | - Mohanan V Sujitha
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN, India
| | - Karuppaiya Vimala
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN, India
| | - Soundarapandian Kannan
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN, India; Department of Zoology, Periyar University, Salem 636 011, TN, India.
| |
Collapse
|
200
|
Qian X, Wang W, Kong W, Chen Y. Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy. RSC Adv 2014. [DOI: 10.1039/c3ra47654e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|