151
|
Khelashvili G, Cheng X, Falzone ME, Doktorova M, Accardi A, Weinstein H. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J Comput Chem 2020; 41:538-551. [PMID: 31750558 PMCID: PMC7261202 DOI: 10.1002/jcc.26105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
Abstract
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| |
Collapse
|
152
|
Nakao H, Sugimoto Y, Ikeda K, Saito H, Nakano M. Structural Feature of Lipid Scrambling Model Transmembrane Peptides: Same-Side Positioning of Hydrophilic Residues and Their Deeper Position. J Phys Chem Lett 2020; 11:1662-1667. [PMID: 32058725 DOI: 10.1021/acs.jpclett.0c00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phospholipid scramblases that catalyze lipid transbilayer movement are associated with intercellular signaling and lipid homeostasis. Although several studies have shown that the hydrophilic residue-rich groove of the proteins mediates lipid scrambling, the interactions between the groove and the lipid bilayers remain poorly understood. Here we have revealed the structural features of model transmembrane peptides that conduct lipid scrambling as well as the interactions between the peptides and the surrounding lipids by means of experimental and simulation techniques. Peptides with two strongly hydrophilic residues located on the same side of the helices and at a deeper position in the membrane exhibited high scramblase activities. All-atom molecular dynamics simulations showed that the interactions between the hydrophilic residues and lipid head groups regulate the membrane thinning and disorder near the peptides in an order that correlates with the scramblase activity of the peptides. These results provide a basis for understanding the lipid scrambling mechanisms by transmembrane regions.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuta Sugimoto
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroaki Saito
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
153
|
Yu CC, Chen LC, Huang CY, Lin VC, Lu TL, Lee CH, Huang SP, Bao BY. Genetic association analysis identifies a role for ANO5 in prostate cancer progression. Cancer Med 2020; 9:2372-2378. [PMID: 32027096 PMCID: PMC7131841 DOI: 10.1002/cam4.2909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
Anoctamins were originally identified as a family of calcium‐activated chloride channels, but recently their roles in the development of different types of malignancies were suggested. Here, we evaluated the associations between 211 common single‐nucleotide polymorphisms in 10 anoctamin genes with biochemical recurrence (BCR) after radical prostatectomy (RP) for localized prostate cancer. Four SNPs (ANO4 rs585335, ANO5 rs4622263, ANO7 rs62187431, and ANO10 rs118005571) remained significantly associated with BCR after multiple test correction (P < .05 and q = 0.232) and adjustment for known prognostic factors. Expression quantitative trait loci analysis found that ANO5 rs4622263 C and ANO10 rs118005571 C alleles were associated with decreased mRNA expression levels. Moreover, lower expression of ANO5 was correlated with more advanced tumors and poorer outcomes in two independent prostate cancer cohorts. Taken together, ANO5 rs4622263 was associated with BCR, and ANO5 gene expression was correlated with patient prognosis, suggesting a pivotal role for ANO5 in prostate cancer progression.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- Division of Urology/Transplant Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
154
|
Nagata S, Sakuragi T, Segawa K. Flippase and scramblase for phosphatidylserine exposure. Curr Opin Immunol 2020; 62:31-38. [DOI: 10.1016/j.coi.2019.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/30/2023]
|
155
|
Lin YC, Chipot C, Scheuring S. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat Commun 2020; 11:230. [PMID: 31932647 PMCID: PMC6957514 DOI: 10.1038/s41467-019-14045-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/11/2019] [Indexed: 02/04/2023] Open
Abstract
Annexins are abundant cytoplasmic proteins, which bind to membranes that expose negatively charged phospholipids in a Ca2+-dependent manner. During cell injuries, the entry of extracellular Ca2+ activates the annexin membrane-binding ability, subsequently initiating membrane repair processes. However, the mechanistic action of annexins in membrane repair remains largely unknown. Here, we use high-speed atomic force microscopy (HS-AFM), fluorescence recovery after photobleaching (FRAP), confocal laser scanning microscopy (CLSM) and molecular dynamics simulations (MDSs) to analyze how annexin-V (A5) binds to phosphatidylserine (PS)-rich membranes leading to high Ca2+-concentrations at membrane, and then to changes in the dynamics and organization of lipids, eventually to a membrane phase transition. A5 self-assembly into lattices further stabilizes and likely structures the membrane into a gel phase. Our findings are compatible with the patch resealing through vesicle fusion mechanism in membrane repair and indicate that A5 retains negatively charged lipids in the inner leaflet in an injured cell. Annexins are cytoplasmic proteins, which bind to membranes exposing negatively charged phospholipids in a Ca2+-dependent manner. Here the authors use high-speed atomic force microscopy and other techniques to show that annexin-V self-assembles into highly structured lattices that lead to a membrane phase transition on PS-rich membranes.
Collapse
Affiliation(s)
- Yi-Chih Lin
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Christophe Chipot
- UMR 7019, Université de Lorraine, Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-lès-Nancy, F-54500, France.,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
156
|
Buchholz B, Eckardt KU. Role of oxygen and the HIF-pathway in polycystic kidney disease. Cell Signal 2020; 69:109524. [PMID: 31904413 DOI: 10.1016/j.cellsig.2020.109524] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/16/2022]
Abstract
Kidney cyst growth in ADPKD is associated with regional hypoxia, presumably due to a mismatch between enlarged cysts and the peritubular capillary blood supply and compression of peritubular capillaries in cyst walls. Regional hypoxia leads to activation of hypoxia-inducible transcription factors, with the two main HIF isoforms, HIF-1 and HIF-2 expressed in cyst epithelia and pericystic interstitial cells, respectively. While HIF-2 activation is linked to EPO production, mitigating the anemia that normally accompanies chronic kidney disease, HIF-1 promotes cyst growth. HIF-dependent cyst growth is primarily due to an increase in chloride-dependent fluid secretion into the cyst lumen. However, given the broad spectrum of HIF-target genes, additional HIF-mediated pathways may also contribute to cyst progression. Furthermore, hypoxia can influence cyst growth through the generation of reactive oxygen species. Since cyst expansion aggravates regional hypoxia, a feedforward loop is established that accelerates cyst expansion and disease progression. Inhibiting the HIF pathway and/or HIF target genes that are of particular relevance for HIF-dependent cyst fluid secretion may therefore represent novel therapeutic approaches to retard the progression of APDKD.
Collapse
Affiliation(s)
- Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
157
|
Kalienkova V, Alvadia C, Clerico Mosina V, Paulino C. Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs. Methods Mol Biol 2020; 2127:245-273. [PMID: 32112327 DOI: 10.1007/978-1-0716-0373-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-particle cryo-electron microscopy has become an indispensable technique in structural biology. In particular when studying membrane proteins, it allows the use of membrane-mimicking tools, which can be crucial for a comprehensive understanding of the structure-function relationship of the protein in its native environment. In this chapter we focus on the application of nanodiscs and use our recent studies on the TMEM16 family as an example.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Carolina Alvadia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Vanessa Clerico Mosina
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Cristina Paulino
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
158
|
Reconstitution of Proteoliposomes for Phospholipid Scrambling and Nonselective Channel Assays. Methods Mol Biol 2020; 2127:207-225. [PMID: 32112325 DOI: 10.1007/978-1-0716-0373-4_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phospholipid scramblases catalyze the rapid trans-bilayer movement of lipids down their concentration gradients. This process is essential for numerous cellular signaling functions including cell fusion, blood coagulation, and apoptosis. The importance of scramblases is highlighted by the number of human diseases caused by mutations in these proteins. Because of their indispensable function, it is essential to understand and characterize the molecular function of phospholipid scramblases. Powerful tools to measure lipid transport in cells are available. However, these approaches provide limited mechanistic insights into the molecular bases of scrambling. Here we describe in detail an in vitro phospholipid scramblase assay and the accompanying analysis which allows for determination of the macroscopic rate constants associated with phospholipid scrambling. Notably, members of the TMEM16 family of scramblases also function as nonselective ion channels. To better understand the physiological relevance of this channel function as well as its relationship to the scrambling activity of the TMEM16s we also describe in detail an in vitro flux assay to measure nonselective channel activity. Together, these two assays can be used to investigate the dual activities of the TMEM16 scramblases/nonselective channels.
Collapse
|
159
|
Tak MH, Jang Y, Son WS, Yang YD, Oh U. EF-hand like Region in the N-terminus of Anoctamin 1 Modulates Channel Activity by Ca 2+ and Voltage. Exp Neurobiol 2019; 28:658-669. [PMID: 31902154 PMCID: PMC6946113 DOI: 10.5607/en.2019.28.6.658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/30/2019] [Indexed: 11/28/2022] Open
Abstract
Anoctamin1 (ANO1) also known as TMEM16A is a transmembrane protein that functions as a Ca2+ activated chloride channel. Recently, the structure determination of a fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase by X-ray crystallography and a mouse ANO1 by cryo-electron microscopy has provided the insight in molecular architecture underlying phospholipid scrambling and Ca2+ binding. Because the Ca2+ binding motif is embedded inside channel protein according to defined structure, it is still unclear how intracellular Ca2+ moves to its deep binding pocket effectively. Here we show that EF-hand like region containing multiple acidic amino acids at the N-terminus of ANO1 is a putative site regulating the activity of ANO1 by Ca2+ and voltage. The EF-hand like region of ANO1 is highly homologous to the canonical EF hand loop in calmodulin that contains acidic residues in key Ca2+-coordinating positions in the canonical EF hand. Indeed, deletion and Ala-substituted mutation of this region resulted in a significant reduction in the response to Ca2+ and changes in its key biophysical properties evoked by voltage pulses. Furthermore, only ANO1 and ANO2, and not the other TMEM16 isoforms, contain the EF-hand like region and are activated by Ca2+. Moreover, the molecular modeling analysis supports that EF-hand like region could play a key role during Ca2+ transfer. Therefore, these findings suggest that EF-hand like region in ANO1 coordinates with Ca2+ and modulate the activation by Ca2+ and voltage.
Collapse
Affiliation(s)
- Min Ho Tak
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Korea
| | - Yongwoo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Woo Sung Son
- College of Pharmacy, CHA University, Seongnam 13488, Korea
| | - Young Duk Yang
- College of Pharmacy, CHA University, Seongnam 13488, Korea
| | - Uhtaek Oh
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Korea.,Sensory Research Center, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
160
|
Guo S, Chen YF, Shi S, Pang CL, Wang XZ, Zhang HL, Zhan Y, An HL. The Molecular Mechanism of Ginsenoside Analogs Activating TMEM16A. Biophys J 2019; 118:262-272. [PMID: 31818463 DOI: 10.1016/j.bpj.2019.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.
Collapse
Affiliation(s)
- Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei F Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli L Pang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Z Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailin L Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yong Zhan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.
| | - Hailong L An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
161
|
Hoffmann PC, Bharat TAM, Wozny MR, Boulanger J, Miller EA, Kukulski W. Tricalbins Contribute to Cellular Lipid Flux and Form Curved ER-PM Contacts that Are Bridged by Rod-Shaped Structures. Dev Cell 2019; 51:488-502.e8. [PMID: 31743663 PMCID: PMC6863393 DOI: 10.1016/j.devcel.2019.09.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/06/2019] [Accepted: 09/25/2019] [Indexed: 11/25/2022]
Abstract
Lipid flow between cellular organelles occurs via membrane contact sites. Extended-synaptotagmins, known as tricalbins in yeast, mediate lipid transfer between the endoplasmic reticulum (ER) and plasma membrane (PM). How these proteins regulate membrane architecture to transport lipids across the aqueous space between bilayers remains unknown. Using correlative microscopy, electron cryo-tomography, and high-throughput genetics, we address the interplay of architecture and function in budding yeast. We find that ER-PM contacts differ in protein composition and membrane morphology, not in intermembrane distance. In situ electron cryo-tomography reveals the molecular organization of tricalbin-mediated contacts, suggesting a structural framework for putative lipid transfer. Genetic analysis uncovers functional overlap with cellular lipid routes, such as maintenance of PM asymmetry. Further redundancies are suggested for individual tricalbin protein domains. We propose a modularity of molecular and structural functions of tricalbins and of their roles within the cellular network of lipid distribution pathways.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, UK
| | - Michael R Wozny
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jerome Boulanger
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Elizabeth A Miller
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Wanda Kukulski
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
162
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
163
|
Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, Weinstein H. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca 2+-bound nhTMEM16. Nat Commun 2019; 10:4972. [PMID: 31672969 PMCID: PMC6823365 DOI: 10.1038/s41467-019-12865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/01/2019] [Indexed: 12/05/2022] Open
Abstract
Both lipid and ion translocation by Ca2+-regulated TMEM16 transmembrane proteins utilizes a membrane-exposed hydrophilic groove. Several conformations of the groove are observed in TMEM16 protein structures, but how these conformations form, and what functions they support, remains unknown. From analyses of atomistic molecular dynamics simulations of Ca2+-bound nhTMEM16 we find that the mechanism of a conformational transition of the groove from membrane-exposed to occluded from the membrane involves the repositioning of transmembrane helix 4 (TM4) following its disengagement from a TM3/TM4 interaction interface. Residue L302 is a key element in the hydrophobic TM3/TM4 interaction patch that braces the open-groove conformation, which should be changed by an L302A mutation. The structure of the L302A mutant determined by cryogenic electron microscopy (cryo-EM) reveals a partially closed groove that could translocate ions, but not lipids. This is corroborated with functional assays showing severely impaired lipid scrambling, but robust channel activity by L302A. A membrane-exposed groove in Ca2+-gated TMEM16 scramblases forms the translocation pathway for ions and lipids. Here authors combine molecular dynamics with cryo-EM and functional assays to uncover the conformational transitions of the groove leading to a non-selective ion channel pore.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Byoung-Cheol Lee
- Research Group for the Neurovascular Unit, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
164
|
Alternative chloride transport pathways as pharmacological targets for the treatment of cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S37-S41. [PMID: 31662238 DOI: 10.1016/j.jcf.2019.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
Cystic fibrosis is a hereditary disease that originates from mutations in the epithelial chloride channel CFTR. Whereas established therapies for the treatment of cystic fibrosis target CFTR to repair its function, alternative therapeutic strategies aim for the restoration of chloride transport by the activation of other chloride transport proteins such as TMEM16A or SLC26A9 or by the application of synthetic anionophores. TMEM16A is an anion-selective channel that is activated by the binding of Ca2+ from the cytoplasm. Pharmacological efforts aim for the increase of its open probability at resting Ca2+ concentrations. SLC26 is an uncoupled chloride transporter, which shuttles chloride across the membrane by an alternate-access mechanism. Its activation requires its mobilization from intracellular stores. Finally, anionophores are small synthetic molecules that bind chloride to form lipid-soluble complexes, which shuttle the anion across the membrane. All three approaches are currently pursued and have provided promising initial results.
Collapse
|
165
|
Soler DC, Manikandan M, Gopal SR, Sloan AE, McCormick TS, Stepanyan R. An uncharacterized region within the N-terminus of mouse TMC1 precludes trafficking to plasma membrane in a heterologous cell line. Sci Rep 2019; 9:15263. [PMID: 31649296 PMCID: PMC6813322 DOI: 10.1038/s41598-019-51336-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Mechanotransduction by hair cell stereocilia lies at the heart of sound detection in vertebrates. Considerable effort has been put forth to identify proteins that comprise the hair cell mechanotransduction apparatus. TMC1, a member of the transmembrane channel-like (TMC) family, was identified as a core protein of the mechanotransduction complex in hair cells. However, the inability of TMC1 to traffic through the endoplasmic reticulum in heterologous cellular systems has hindered efforts to characterize its function and fully identify its role in mechanotransduction. We developed a novel approach that allowed for the detection of uncharacterized protein regions, which preclude trafficking to the plasma membrane (PM) in heterologous cells. Tagging N-terminal fragments of TMC1 with Aquaporin 3 (AQP3) and GFP fusion reporter, which intrinsically label PM in HEK293 cells, indicated that residues at the edges of amino acid sequence 138–168 invoke intracellular localization and/or degradation. This signal is able to preclude surface localization of PM protein AQP3 in HEK293 cells. Substitutions of the residues by alanine or serine corroborated that the information determining the intracellular retention is present within amino acid sequence 138–168 of TMC1 N-terminus. This novel signal may preclude the proper trafficking of TMC1 to the PM in heterologous cells.
Collapse
Affiliation(s)
- D C Soler
- The Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. .,Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - M Manikandan
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA
| | - S R Gopal
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA
| | - A E Sloan
- The Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Brain Tumor and Neuro-Oncology Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - T S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.,Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH, USA
| | - R Stepanyan
- Department of Otolaryngology - HNS, Case Western Reserve University, Cleveland, OH, USA. .,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
166
|
Siggel M, Bhaskara RM, Hummer G. Phospholipid Scramblases Remodel the Shape of Asymmetric Membranes. J Phys Chem Lett 2019; 10:6351-6354. [PMID: 31566982 DOI: 10.1021/acs.jpclett.9b02531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell membrane and many organellar membranes are asymmetric and highly curved. In experiments, it is challenging to reconstitute and characterize membranes that differ in the lipid composition of their leaflets. Here we use molecular dynamics simulations to study the large-scale membrane shape changes associated with lipid shuttling between asymmetric leaflets. We exploit leaflet asymmetry to create a stable, near-spherical vesicle bud connected to a flat bilayer under periodic boundary conditions. Then we demonstrate how the lipid scramblase nhTMEM16 relaxes the lipid-number asymmetry. By mediating the flipping of lipids, this transmembrane protein dissipates the mechanochemical gradient between the leaflets and drives a large-scale membrane reorganization, converting the vesicle bud into a flat membrane. Our procedure to exploit bilayer asymmetry for simulations of highly curved membranes can be used to study the function of other lipid transporters and membrane-shaping proteins.
Collapse
Affiliation(s)
- Marc Siggel
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany
| | - Ramachandra M Bhaskara
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany
- Institute of Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| |
Collapse
|
167
|
Corey DP, Akyuz N, Holt JR. Function and Dysfunction of TMC Channels in Inner Ear Hair Cells. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033506. [PMID: 30291150 DOI: 10.1101/cshperspect.a033506] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The TMC1 channel was identified as a protein essential for hearing in mouse and human, and recognized as one of a family of eight such proteins in mammals. The TMC family is part of a superfamily of seven branches, which includes the TMEM16s. Vertebrate hair cells express both TMC1 and TMC2. They are located at the tips of stereocilia and are required for hair cell mechanotransduction. TMC1 assembles as a dimer and its similarity to the TMEM16s has enabled a predicted tertiary structure with an ion conduction pore in each subunit of the dimer. Cysteine mutagenesis of the pore supports the role of TMC1 and TMC2 as the core channel proteins of a larger mechanotransduction complex that includes PCDH15 and LHFPL5, and perhaps TMIE, CIB2 and others.
Collapse
Affiliation(s)
- David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
168
|
Rizzo J, Stanchev LD, da Silva VK, Nimrichter L, Pomorski TG, Rodrigues ML. Role of lipid transporters in fungal physiology and pathogenicity. Comput Struct Biotechnol J 2019; 17:1278-1289. [PMID: 31921394 PMCID: PMC6944739 DOI: 10.1016/j.csbj.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
The fungal cell wall and membrane are the most common targets of antifungal agents, but the potential of membrane lipid organization in regulating drug-target interactions has yet to be investigated. Energy-dependent lipid transporters have been recently associated with virulence and drug resistance in many pathogenic fungi. To illustrate this view, we discuss (i) the structural and biological aspects of ATP-driven lipid transporters, comprising P-type ATPases and ATP-binding cassette transporters, (ii) the role of these transporters in fungal physiology and virulence, and (iii) the potential of lipid transporters as targets for the development of novel antifungals. These recent observations indicate that the lipid-trafficking machinery in fungi is a promising target for studies on physiology, pathogenesis and drug development.
Collapse
Affiliation(s)
- Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lyubomir Dimitrov Stanchev
- Department of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780 Bochum, Germany
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,Denmark
| | - Vanessa K.A. da Silva
- Programa de Pós-Graduação em Biologia Parasitária do Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780 Bochum, Germany
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,Denmark
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| |
Collapse
|
169
|
Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, Carpenter EP. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun 2019; 10:3956. [PMID: 31477691 PMCID: PMC6718402 DOI: 10.1038/s41467-019-11753-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity. TMEM16K is a member of the TMEM16 family of integral membrane proteins that are either lipid scramblases or chloride channels. Here the authors combine cell biology, electrophysiology measurements, X-ray crystallography, cryo-EM and MD simulations to structurally characterize TMEM16K and show that it is an ER-resident lipid scramblase.
Collapse
Affiliation(s)
- Simon R Bushell
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,OxSyBio, Atlas Building, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Chau M Ta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Department of Cardiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Thomas D Newport
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.,Oxford Nanopore Technologies, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - John C Christianson
- Nuffield Department of Rheumatology, Orthopaedics and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Lara F Scofano
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Chitra A Shintre
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Vertex Pharmaceuticals Ltd, Milton Park, Oxfordshire, OX14 4RW, UK
| | - Annamaria Tessitore
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Nuffield Division of Clinical Laboratory Sciences, Oxford University, Oxford, OX3 9DU, UK
| | - Amy Chu
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, Oxford University, Oxford, OX1 3QT, UK
| | - Qinrui Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shubhashish M M Mukhopadhyay
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461-1602, USA.,Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nicola A Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA.,Department of Anesthesiology, Weill Cornell Medical School, 25 East 68th Street, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
170
|
Ayon RJ, Hawn MB, Aoun J, Wiwchar M, Forrest AS, Cunningham F, Singer CA, Valencik ML, Greenwood IA, Leblanc N. Molecular mechanism of TMEM16A regulation: role of CaMKII and PP1/PP2A. Am J Physiol Cell Physiol 2019; 317:C1093-C1106. [PMID: 31461344 DOI: 10.1152/ajpcell.00059.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.
Collapse
Affiliation(s)
- Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, College of Medicine, The University of Arizona College of Medicine, Arizona Health Sciences Center, Tucson, Arizona
| | - Matthew B Hawn
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Joydeep Aoun
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Michael Wiwchar
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abigail S Forrest
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Fiona Cunningham
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Maria L Valencik
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Iain A Greenwood
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Normand Leblanc
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
171
|
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C, Le Calvé B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 2019; 60:96-106. [PMID: 31454669 DOI: 10.1016/j.semcancer.2019.08.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.
Collapse
Affiliation(s)
- Sébastien Marx
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thomas Dal Maso
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Jia-Wei Chen
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Marina Bury
- de Duve Institute, 75 Avenue Hippocrate, 1200 Bruxelles, Belgium
| | - Johan Wouters
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Carine Michiels
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Benjamin Le Calvé
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
172
|
Le SC, Jia Z, Chen J, Yang H. Molecular basis of PIP 2-dependent regulation of the Ca 2+-activated chloride channel TMEM16A. Nat Commun 2019; 10:3769. [PMID: 31434906 PMCID: PMC6704070 DOI: 10.1038/s41467-019-11784-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022] Open
Abstract
The calcium-activated chloride channel (CaCC) TMEM16A plays crucial roles in regulating neuronal excitability, smooth muscle contraction, fluid secretion and gut motility. While opening of TMEM16A requires binding of intracellular Ca2+, prolonged Ca2+-dependent activation results in channel desensitization or rundown, the mechanism of which is unclear. Here we show that phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates TMEM16A channel activation and desensitization via binding to a putative binding site at the cytosolic interface of transmembrane segments (TMs) 3-5. We further demonstrate that the ion-conducting pore of TMEM16A is constituted of two functionally distinct modules: a Ca2+-binding module formed by TMs 6-8 and a PIP2-binding regulatory module formed by TMs 3-5, which mediate channel activation and desensitization, respectively. PIP2 dissociation from the regulatory module results in ion-conducting pore collapse and subsequent channel desensitization. Our findings thus provide key insights into the mechanistic understanding of TMEM16 channel gating and lipid-dependent regulation.
Collapse
Affiliation(s)
- Son C Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
173
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
174
|
Pan B, Akyuz N, Liu XP, Asai Y, Nist-Lund C, Kurima K, Derfler BH, György B, Limapichat W, Walujkar S, Wimalasena LN, Sotomayor M, Corey DP, Holt JR. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 2019; 99:736-753.e6. [PMID: 30138589 DOI: 10.1016/j.neuron.2018.07.033] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/10/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.
Collapse
Affiliation(s)
- Bifeng Pan
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nurunisa Akyuz
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xiao-Ping Liu
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yukako Asai
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoto Kurima
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Bruce H Derfler
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bence György
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Walrati Limapichat
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lahiru N Wimalasena
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - David P Corey
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
175
|
Ye W, Han TW, He M, Jan YN, Jan LY. Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity. eLife 2019; 8:e45187. [PMID: 31318330 PMCID: PMC6690719 DOI: 10.7554/elife.45187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
TMEM16F is activated by elevated intracellular Ca2+, and functions as a small-conductance ion channel and as a phospholipid scramblase. In contrast to its paralogs, the TMEM16A/B calcium-activated chloride channels, mouse TMEM16F has been reported as a cation-, anion-, or non-selective ion channel, without a definite conclusion. Starting with the Q559K mutant that shows no current rundown and less outward rectification in excised patch, we found that the channel shifted its ion selectivity in response to the change of intracellular Ca2+ concentration, with an increased permeability ratio of Cl- to Na+ (PCl-/PNa+) at a higher Ca2+ level. The gradual shift of relative ion permeability did not correlate with the channel activation state. Instead, it was indicative of an alteration of electrostatic field in the permeation pathway. The dynamic change of ion selectivity suggests a charge-screening mechanism for TMEM16F ion conduction, and it provides hints to further studies of TMEM16F physiological functions.
Collapse
Affiliation(s)
- Wenlei Ye
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Tina W Han
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Mu He
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Yuh Nung Jan
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Lily Yeh Jan
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
176
|
Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon AK, Jaiswal JK. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov 2019; 5:118. [PMID: 31341644 PMCID: PMC6639303 DOI: 10.1038/s41420-019-0197-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
Autosomal recessive mutations in Anoctamin 5 (ANO5/TMEM16E), a member of the transmembrane 16 (TMEM16) family of Ca2+-activated ion channels and phospholipid scramblases, cause adult-onset muscular dystrophies (limb girdle muscular dystrophy 2L (LGMD2L) and Miyoshi Muscular Dystrophy (MMD3). However, the molecular role of ANO5 is unclear and ANO5 knockout mouse models show conflicting requirements of ANO5 in muscle. To study the role of ANO5 in human muscle cells we generated a myoblast line from a MMD3-patient carrying the c.2272C>T mutation, which we find causes the mutant protein to be degraded. The patient myoblasts exhibit normal myogenesis, but are compromised in their plasma membrane repair (PMR) ability. The repair deficit is linked to the poor ability of the endoplasmic reticulum (ER) to clear cytosolic Ca2+ increase caused by focal plasma membrane injury. Expression of wild-type ANO5 or pharmacological prevention of injury-triggered cytosolic Ca2+ overload enable injured patient muscle cells to repair. A homology model of ANO5 shows that several of the known LGMD2L/MMD3 patient mutations line the transmembrane region of the protein implicated in its channel activity. These results point to a role of cytosolic Ca2+ homeostasis in PMR, indicate a role for ANO5 in ER-mediated cytosolic Ca2+ uptake and identify normalization of cytosolic Ca2+ homeostasis as a potential therapeutic approach to treat muscular dystrophies caused by ANO5 deficit.
Collapse
Affiliation(s)
- Goutam Chandra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Aurelia Defour
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,7Present Address: Aix Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, 13385 Marseille, France
| | - Kamel Mamchoui
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kalpana Pandey
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Soumya Mishra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Vincent Mouly
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - SenChandra Sreetama
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Mohammad Mahad Ahmad
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Ibrahim Mahjneh
- 4Department of Neurology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hiroki Morizono
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| | | | - Anant K Menon
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Jyoti K Jaiswal
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| |
Collapse
|
177
|
Takayama Y, Derouiche S, Maruyama K, Tominaga M. Emerging Perspectives on Pain Management by Modulation of TRP Channels and ANO1. Int J Mol Sci 2019; 20:E3411. [PMID: 31336748 PMCID: PMC6678529 DOI: 10.3390/ijms20143411] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Sandra Derouiche
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Kenta Maruyama
- National Institute for Physiological Sciences, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Makoto Tominaga
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
178
|
Tembo M, Wozniak KL, Bainbridge RE, Carlson AE. Phosphatidylinositol 4,5-bisphosphate (PIP 2) and Ca 2+ are both required to open the Cl - channel TMEM16A. J Biol Chem 2019; 294:12556-12564. [PMID: 31266809 DOI: 10.1074/jbc.ra118.007128] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
Transmembrane member 16A (TMEM16A) is a widely expressed Ca2+-activated Cl- channel with various physiological functions ranging from mucosal secretion to regulating smooth muscle contraction. Understanding how TMEM16A controls these physiological processes and how its dysregulation may cause disease requires a detailed understanding of how cellular processes and second messengers alter TMEM16A channel gating. Here we assessed the regulation of TMEM16A gating by recording Ca2+-evoked Cl- currents conducted by endogenous TMEM16A channels expressed in Xenopus laevis oocytes, using the inside-out configuration of the patch clamp technique. During continuous application of Ca2+, we found that TMEM16A-conducted currents decay shortly after patch excision. Such current rundown is common among channels regulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Thus, we sought to investigate a possible role of PIP2 in TMEM16A gating. Consistently, synthetic PIP2 rescued the current after rundown, and the application of PIP2 modulating agents altered the speed kinetics of TMEM16A current rundown. First, two PIP2 sequestering agents, neomycin and anti-PIP2, applied to the intracellular surface of excised patches sped up TMEM16A current rundown to nearly twice as fast. Conversely, rephosphorylation of phosphatidylinositol (PI) derivatives into PIP2 using Mg-ATP or inhibiting dephosphorylation of PIP2 using β-glycerophosphate slowed rundown by nearly 3-fold. Our results reveal that TMEM16A regulation is more complicated than it initially appeared; not only is Ca2+ necessary to signal TMEM16a opening, but PIP2 is also required. These findings improve our understanding of how the dysregulation of these pathways may lead to disease and suggest that targeting these pathways could have utility for potential therapies.
Collapse
Affiliation(s)
- Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Katherine L Wozniak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
179
|
Timcenko M, Lyons JA, Januliene D, Ulstrup JJ, Dieudonné T, Montigny C, Ash MR, Karlsen JL, Boesen T, Kühlbrandt W, Lenoir G, Moeller A, Nissen P. Structure and autoregulation of a P4-ATPase lipid flippase. Nature 2019; 571:366-370. [DOI: 10.1038/s41586-019-1344-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
|
180
|
Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc Natl Acad Sci U S A 2019; 116:14309-14318. [PMID: 31227607 DOI: 10.1073/pnas.1900774116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.
Collapse
|
181
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
182
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
183
|
Jha A, Chung WY, Vachel L, Maleth J, Lake S, Zhang G, Ahuja M, Muallem S. Anoctamin 8 tethers endoplasmic reticulum and plasma membrane for assembly of Ca 2+ signaling complexes at the ER/PM compartment. EMBO J 2019; 38:embj.2018101452. [PMID: 31061173 DOI: 10.15252/embj.2018101452] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Communication and material transfer between membranes and organelles take place at membrane contact sites (MCSs). MCSs between the ER and PM, the ER/PM junctions, are the sites where the ER Ca2+ sensor STIM1 and the PM Ca2+ influx channel Orai1 cluster. MCSs are formed by tether proteins that bridge the opposing membranes, but the identity and role of these tethers in receptor-evoked Ca2+ signaling is not well understood. Here, we identified Anoctamin 8 (ANO8) as a key tether in the formation of the ER/PM junctions that is essential for STIM1-STIM1 interaction and STIM1-Orai1 interaction and channel activation at a ER/PM PI(4,5)P2-rich compartment. Moreover, ANO8 assembles all core Ca2+ signaling proteins: Orai1, PMCA, STIM1, IP3 receptors, and SERCA2 at the ER/PM junctions to mediate a novel form of Orai1 channel inactivation by markedly facilitating SERCA2-mediated Ca2+ influx into the ER. This controls the efficiency of receptor-stimulated Ca2+ signaling, Ca2+ oscillations, and duration of Orai1 activity to prevent Ca2+ toxicity. These findings reveal the central role of MCSs in determining efficiency and fidelity of cell signaling.
Collapse
Affiliation(s)
- Archana Jha
- The Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Woo Young Chung
- The Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Laura Vachel
- The Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Sarah Lake
- The Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Guofeng Zhang
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS) National Institute of Biomedical Imaging & Bioengineering, Bethesda, MD, USA
| | - Malini Ahuja
- The Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shmuel Muallem
- The Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
184
|
Manna M, Nieminen T, Vattulainen I. Understanding the Role of Lipids in Signaling Through Atomistic and Multiscale Simulations of Cell Membranes. Annu Rev Biophys 2019; 48:421-439. [DOI: 10.1146/annurev-biophys-052118-115553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell signaling controls essentially all cellular processes. While it is often assumed that proteins are the key architects coordinating cell signaling, recent studies have shown more and more clearly that lipids are also involved in signaling processes in a number of ways. Lipids do, for instance, act as messengers, modulate membrane receptor conformation and dynamics, and control membrane receptor partitioning. Further, through structural modifications such as oxidation, the functions of lipids as part of signaling processes can be modified. In this context, in this article we discuss the understanding recently revealed by atomistic and coarse-grained computer simulations of nanoscale processes and underlying physicochemical principles related to lipids’ functions in cellular signaling.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Tuomo Nieminen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
185
|
Ousingsawat J, Schreiber R, Kunzelmann K. TMEM16F/Anoctamin 6 in Ferroptotic Cell Death. Cancers (Basel) 2019; 11:E625. [PMID: 31060306 PMCID: PMC6562394 DOI: 10.3390/cancers11050625] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
Ca2+ activated Cl- channels (TMEM16A; ANO1) support cell proliferation and cancer growth. Expression of TMEM16A is strongly enhanced in different types of malignomas. In contrast, TMEM16F (ANO6) operates as a Ca2+ activated chloride/nonselective ion channel and scrambles membrane phospholipids to expose phosphatidylserine at the cell surface. Both phospholipid scrambling and cell swelling induced through activation of nonselective ion currents appear to destabilize the plasma membrane thereby causing cell death. There is growing evidence that activation of TMEM16F contributes to various forms of regulated cell death. In the present study, we demonstrate that ferroptotic cell death, occurring during peroxidation of plasma membrane phospholipids activates TMEM16F. Ferroptosis was induced by erastin, an inhibitor of the cystine-glutamate antiporter and RSL3, an inhibitor of glutathione peroxidase 4 (GPX4). Cell death was largely reduced in the intestinal epithelium, and in peritoneal macrophages isolated from mice with tissue-specific knockout of TMEM16F. We show that TMEM16F is activated during erastin and RSL3-induced ferroptosis. In contrast, inhibition of ferroptosis by ferrostatin-1 and by inhibitors of TMEM16F block TMEM16F currents and inhibit cell death. We conclude that activation of TMEM16F is a crucial component during ferroptotic cell death, a finding that may be useful to induce cell death in cancer cells.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
186
|
Le T, Jia Z, Le SC, Zhang Y, Chen J, Yang H. An inner activation gate controls TMEM16F phospholipid scrambling. Nat Commun 2019; 10:1846. [PMID: 31015464 PMCID: PMC6478717 DOI: 10.1038/s41467-019-09778-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
Transmembrane protein 16F (TMEM16F) is an enigmatic Ca2+-activated phospholipid scramblase (CaPLSase) that passively transports phospholipids down their chemical gradients and mediates blood coagulation, bone development and viral infection. Despite recent advances in the structure and function understanding of TMEM16 proteins, how mammalian TMEM16 CaPLSases open and close, or gate their phospholipid permeation pathways remains unclear. Here we identify an inner activation gate, which is established by three hydrophobic residues, F518, Y563 and I612, in the middle of the phospholipid permeation pathway of TMEM16F-CaPLSase. Disrupting the inner gate profoundly alters TMEM16F phospholipid permeation. Lysine substitutions of F518 and Y563 even lead to constitutively active CaPLSases that bypass Ca2+-dependent activation. Strikingly, an analogous lysine mutation to TMEM16F-F518 in TMEM16A (L543K) is sufficient to confer CaPLSase activity to the Ca2+-activated Cl- channel (CaCC). The identification of an inner activation gate can help elucidate the gating and permeation mechanism of TMEM16 CaPLSases and channels.
Collapse
Affiliation(s)
- Trieu Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Son C Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003, MA, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, 27710, NC, USA.
| |
Collapse
|
187
|
Salzer I, Boehm S. Calcium-activated chloride channels: Potential targets for antinociceptive therapy. Int J Biochem Cell Biol 2019; 111:37-41. [PMID: 31005634 DOI: 10.1016/j.biocel.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
The molecular identity of calcium-activated chloride channels (CaCCs) was clarified only some ten years ago when it was linked to the family of "transmembrane proteins of unknown function 16″ (TMEM16). Since then, numerous studies have been conducted both to define their role in physiology and identify their biophysical functions. For the latter, the ultrastructural description of mouse TMEM16 A was a breakthrough. CaCCs were functionally described in a number of different tissues including first-order sensory neurons. The activating rise in intracellular calcium concentration can be caused by an influx of calcium through other calcium permeable ion channels. Calcium release from intracellular stores, mediated by G-protein coupled receptors, also leads to CaCC activation. Prominent inflammatory mediators like bradykinin or serotonin stimulate CaCCs via such a mechanism. The (patho) physiological function of these ion channels renders them promising targets for antinociceptive treatment.
Collapse
Affiliation(s)
- Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| |
Collapse
|
188
|
Kuk ACY, Hao A, Guan Z, Lee SY. Visualizing conformation transitions of the Lipid II flippase MurJ. Nat Commun 2019; 10:1736. [PMID: 30988294 PMCID: PMC6465408 DOI: 10.1038/s41467-019-09658-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
The biosynthesis of many polysaccharides, including bacterial peptidoglycan and eukaryotic N-linked glycans, requires transport of lipid-linked oligosaccharide (LLO) precursors across the membrane by specialized flippases. MurJ is the flippase for the lipid-linked peptidoglycan precursor Lipid II, a key player in bacterial cell wall synthesis, and a target of recently discovered antibacterials. However, the flipping mechanism of LLOs including Lipid II remains poorly understood due to a dearth of structural information. Here we report crystal structures of MurJ captured in inward-closed, inward-open, inward-occluded and outward-facing conformations. Together with mutagenesis studies, we elucidate the conformational transitions in MurJ that mediate lipid flipping, identify the key ion for function, and provide a framework for the development of inhibitors. MurJ is the flippase for the lipid-linked peptidoglycan precursor Lipid II, a key player in bacterial cell wall synthesis, but the flipping mechanism remains poorly understood. Here authors report crystal structures of MurJ in different conformations which shed light on the MurJ transitions that mediate lipid flipping.
Collapse
Affiliation(s)
- Alvin C Y Kuk
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Aili Hao
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
189
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
190
|
Perez C, Mehdipour AR, Hummer G, Locher KP. Structure of Outward-Facing PglK and Molecular Dynamics of Lipid-Linked Oligosaccharide Recognition and Translocation. Structure 2019; 27:669-678.e5. [PMID: 30799077 DOI: 10.1016/j.str.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/29/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
PglK is a lipid-linked oligosaccharide (LLO) flippase essential for asparagine-linked protein glycosylation in Campylobacter jejuni. Previously we have proposed a non-alternating-access LLO translocation mechanism, where postulated outward-facing states play a primary role. To investigate this unusual mechanistic proposal, we have determined a high-resolution structure of PglK that displays an outward semi-occluded state with the two nucleotide binding domains forming an asymmetric closed dimer with two bound ATPγS molecules. Based on this structure, we performed extensive molecular dynamics simulations to investigate LLO recognition and flipping. Our results suggest that PglK may employ a "substrate-hunting" mechanism to locally increase the LLO concentration and facilitate its jump into the translocation pathway, for which sugars from the LLO head group are essential. We further conclude that the release of LLO to the outside occurs before ATP hydrolysis and is followed by the closing of the periplasmic cavity of PglK.
Collapse
Affiliation(s)
- Camilo Perez
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Kaspar P Locher
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
191
|
Kalienkova V, Clerico Mosina V, Bryner L, Oostergetel GT, Dutzler R, Paulino C. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. eLife 2019; 8:e44364. [PMID: 30785398 PMCID: PMC6414200 DOI: 10.7554/elife.44364] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/08/2019] [Indexed: 12/26/2022] Open
Abstract
Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+ binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.
Collapse
Affiliation(s)
| | - Vanessa Clerico Mosina
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Laura Bryner
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Gert T Oostergetel
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Raimund Dutzler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Cristina Paulino
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
192
|
Alvadia C, Lim NK, Clerico Mosina V, Oostergetel GT, Dutzler R, Paulino C. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. eLife 2019; 8:e44365. [PMID: 30785399 PMCID: PMC6414204 DOI: 10.7554/elife.44365] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
The lipid scramblase TMEM16F initiates blood coagulation by catalyzing the exposure of phosphatidylserine in platelets. The protein is part of a family of membrane proteins, which encompasses calcium-activated channels for ions and lipids. Here, we reveal features of murine TMEM16F (mTMEM16F) that underlie its function as a lipid scramblase and an ion channel. The cryo-EM data of mTMEM16F in absence and presence of Ca2+ define the ligand-free closed conformation of the protein and the structure of a Ca2+-bound intermediate. Both conformations resemble their counterparts of the scrambling-incompetent anion channel mTMEM16A, yet with distinct differences in the region of ion and lipid permeation. In conjunction with functional data, we demonstrate the relationship between ion conduction and lipid scrambling. Although activated by a common mechanism, both functions appear to be mediated by alternate protein conformations that are at equilibrium in the ligand-bound state.
Collapse
Affiliation(s)
| | - Novandy K Lim
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Vanessa Clerico Mosina
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Gert T Oostergetel
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Raimund Dutzler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Cristina Paulino
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| |
Collapse
|
193
|
Anoctamin-4 is a bona fide Ca 2+-dependent non-selective cation channel. Sci Rep 2019; 9:2257. [PMID: 30783137 PMCID: PMC6381168 DOI: 10.1038/s41598-018-37287-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Changes in cell function occur by specific patterns of intracellular Ca2+, activating Ca2+-sensitive proteins. The anoctamin (TMEM16) protein family has Ca2+-dependent ion channel activity, which provides transmembrane ion transport, and/or Ca2+-dependent phosphatidyl-scramblase activity. Using amino acid sequence analysis combined with measurements of ion channel function, we clarified the so far unknown Ano4 function as Ca2+-dependent, non-selective monovalent cation channel; heterologous Ano4 expression in HEK293 cells elicits Ca2+ activated conductance with weak selectivity of K+ > Na+ > Li+. Endogenously expressed Ca2+-dependent cation channels in the retinal pigment epithelium were identified as Ano4 by KO mouse-derived primary RPE cells and siRNA against Ano4. Exchanging a negatively charged amino acid in the putative pore region (AA702–855) into a positive one (E775K) turns Ano4-elicited currents into Cl− currents evidencing its importance for ion selectivity. The molecular identification of Ano4 as a Ca2+-activated cation channel advances the understanding of its role in Ca2+ signaling.
Collapse
|
194
|
Le T, Le SC, Yang H. Drosophila Subdued is a moonlighting transmembrane protein 16 (TMEM16) that transports ions and phospholipids. J Biol Chem 2019; 294:4529-4537. [PMID: 30700552 DOI: 10.1074/jbc.ac118.006530] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Transmembrane protein 16 (TMEM16) family members play numerous important physiological roles, ranging from controlling membrane excitability and secretion to mediating blood coagulation and viral infection. These diverse functions are largely due to their distinct biophysical properties. Mammalian TMEM16A and TMEM16B are Ca2+-activated Cl- channels (CaCCs), whereas mammalian TMEM16F, fungal afTMEM16, and nhTMEM16 are moonlighting (multifunctional) proteins with both Ca2+-activated phospholipid scramblase (CaPLSase) and Ca2+-activated, nonselective ion channel (CAN) activities. To further understand the biological functions of the enigmatic TMEM16 proteins in different organisms, here, by combining an improved annexin V-based CaPLSase-imaging assay with inside-out patch clamp technique, we thoroughly characterized Subdued, a Drosophila TMEM16 ortholog. We show that Subdued is also a moonlighting transport protein with both CAN and CaPLSase activities. Using a TMEM16F-deficient HEK293T cell line to avoid strong interference from endogenous CaPLSases, our functional characterization and mutagenesis studies revealed that Subdued is a bona fide CaPLSase. Our finding that Subdued is a moonlighting TMEM16 expands our understanding of the molecular mechanisms of TMEM16 proteins and their evolution and physiology in both Drosophila and humans.
Collapse
Affiliation(s)
- Trieu Le
- From the Departments of Biochemistry and
| | - Son C Le
- From the Departments of Biochemistry and
| | - Huanghe Yang
- From the Departments of Biochemistry and .,Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
195
|
Bricogne C, Fine M, Pereira PM, Sung J, Tijani M, Wang Y, Henriques R, Collins MK, Hilgemann DW. TMEM16F activation by Ca 2+ triggers plasma membrane expansion and directs PD-1 trafficking. Sci Rep 2019; 9:619. [PMID: 30679690 PMCID: PMC6345885 DOI: 10.1038/s41598-018-37056-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
TMEM16F is a Ca2+ -gated ion channel that is required for Ca2+ -activated phosphatidylserine exposure on the surface of many eukaryotic cells. TMEM16F is widely expressed and has roles in platelet activation during blood clotting, bone formation and T cell activation. By combining microscopy and patch clamp recording we demonstrate that activation of TMEM16F by Ca2+ ionophores in Jurkat T cells triggers large-scale surface membrane expansion in parallel with phospholipid scrambling. With continued ionophore application,TMEM16F-expressing cells then undergo extensive shedding of ectosomes. The T cell co-receptor PD-1 is selectively incorporated into ectosomes. This selectivity depends on its transmembrane sequence. Surprisingly, cells lacking TMEM16F not only fail to expand surface membrane in response to elevated cytoplasmic Ca2+, but instead undergo rapid massive endocytosis with PD-1 internalisation. These results establish a new role for TMEM16F as a regulator of Ca2+ activated membrane trafficking.
Collapse
Affiliation(s)
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA
| | - Pedro M Pereira
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, UK
| | - Julia Sung
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - Maha Tijani
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - Youxue Wang
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, UK
| | - Mary K Collins
- UCL Cancer Institute, University College London, Gower St, London, UK.
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK.
- Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan.
| | - Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA.
| |
Collapse
|
196
|
Han TW, Ye W, Bethel NP, Zubia M, Kim A, Li KH, Burlingame AL, Grabe M, Jan YN, Jan LY. Chemically induced vesiculation as a platform for studying TMEM16F activity. Proc Natl Acad Sci U S A 2019; 116:1309-1318. [PMID: 30622179 PMCID: PMC6347726 DOI: 10.1073/pnas.1817498116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Calcium-activated phospholipid scramblase mediates the energy-independent bidirectional translocation of lipids across the bilayer, leading to transient or, in the case of apoptotic scrambling, sustained collapse of membrane asymmetry. Cells lacking TMEM16F-dependent lipid scrambling activity are deficient in generation of extracellular vesicles (EVs) that shed from the plasma membrane in a Ca2+-dependent manner, namely microvesicles. We have adapted chemical induction of giant plasma membrane vesicles (GPMVs), which require both TMEM16F-dependent phospholipid scrambling and calcium influx, as a kinetic assay to investigate the mechanism of TMEM16F activity. Using the GPMV assay, we identify and characterize both inactivating and activating mutants that elucidate the mechanism for TMEM16F activation and facilitate further investigation of TMEM16F-mediated lipid translocation and its role in extracellular vesiculation.
Collapse
Affiliation(s)
- Tina W Han
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Wenlei Ye
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Neville P Bethel
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Mario Zubia
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Andrew Kim
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Kathy H Li
- Mass Spectrometry Facility, University of California, San Francisco, CA 94143
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA 94143
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143;
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| |
Collapse
|
197
|
Nguyen DM, Chen LS, Yu WP, Chen TY. Comparison of ion transport determinants between a TMEM16 chloride channel and phospholipid scramblase. J Gen Physiol 2019; 151:518-531. [PMID: 30670476 PMCID: PMC6445582 DOI: 10.1085/jgp.201812270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
The I-V relation of the TMEM16A channel is linear, whereas that of the TMEM16F scramblase is outwardly rectifying. Nguyen et al. show that rectification of TMEM16A is regulated by the charge of residue 584 but that rectification of TMEM16F is affected by aromatic residues at the equivalent position. Two TMEM16 family members, TMEM16A and TMEM16F, have different ion transport properties. Upon activation by intracellular Ca2+, TMEM16A—a Ca2+-activated Cl− channel—is more selective for anions than cations, whereas TMEM16F—a phospholipid scramblase—appears to transport both cations and anions. Under saturating Ca2+ conditions, the current–voltage (I-V) relationships of these two proteins also differ; the I-V curve of TMEM16A is linear, while that of TMEM16F is outwardly rectifying. We previously found that mutating a positively charged lysine residue (K584) in the ion transport pathway to glutamine converted the linear I-V curve of TMEM16A to an outwardly rectifying curve. Interestingly, the corresponding residue in the outwardly rectifying TMEM16F is also a glutamine (Q559). Here, we examine the ion transport functions of TMEM16 molecules and compare the roles of K584 of TMEM16A and Q559 of TMEM16F in controlling the rectification of their respective I-V curves. We find that rectification of TMEM16A is regulated electrostatically by the side-chain charge on the residue at position 584, whereas the charge on residue 559 in TMEM16F has little effect. Unexpectedly, mutation of Q559 to aromatic amino acid residues significantly alters outward rectification in TMEM16F. These same mutants show reduced Ca2+-induced current rundown (or desensitization) compared with wild-type TMEM16F. A mutant that removes the rundown of TMEM16F could facilitate the study of ion transport mechanisms in this phospholipid scramblase in the same way that a CLC-0 mutant in which inactivation (or closure of the slow gate) is suppressed was used in our previous studies.
Collapse
Affiliation(s)
- Dung M Nguyen
- Graduate Group of Pharmacology and Toxicology, University of California, Davis, Davis, CA
| | - Louisa S Chen
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Wei-Ping Yu
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA .,Department of Neurology, University of California, Davis, Davis, CA
| |
Collapse
|
198
|
Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, Accardi A. Structural basis of Ca 2+-dependent activation and lipid transport by a TMEM16 scramblase. eLife 2019; 8:e43229. [PMID: 30648972 PMCID: PMC6355197 DOI: 10.7554/elife.43229] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases, but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
| | - Jan Rheinberger
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Byoung-Cheol Lee
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Structure and Function on Neural NetworkKorea Brain Research InstituteDeaguRepublic of Korea
| | - Thasin Peyear
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Linda Sasset
- Department of PathologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy CenterNew York Structural Biology CenterNew YorkUnited States
| | - Edward T Eng
- Simons Electron Microscopy CenterNew York Structural Biology CenterNew YorkUnited States
| | | | - Olaf S Andersen
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Crina M Nimigean
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Alessio Accardi
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
199
|
Dayal A, Ng SFJ, Grabner M. Ca 2+-activated Cl - channel TMEM16A/ANO1 identified in zebrafish skeletal muscle is crucial for action potential acceleration. Nat Commun 2019; 10:115. [PMID: 30631052 PMCID: PMC6328546 DOI: 10.1038/s41467-018-07918-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
The Ca2+-activated Cl- channel (CaCC) TMEM16A/Anoctamin 1 (ANO1) is expressed in gastrointestinal epithelia and smooth muscle cells where it mediates secretion and intestinal motility. However, ANO1 Cl- conductance has never been reported to play a role in skeletal muscle. Here we show that ANO1 is robustly expressed in the highly evolved skeletal musculature of the euteleost species zebrafish. We characterised ANO1 as bonafide CaCC which is activated close to maximum by Ca2+ ions released from the SR during excitation-contraction (EC) coupling. Consequently, our study addressed the question about the physiological advantage of implementation of ANO1 into the euteleost skeletal-muscle EC coupling machinery. Our results reveal that Cl- influx through ANO1 plays an essential role in restricting the width of skeletal-muscle action potentials (APs) by accelerating the repolarisation phase. Resulting slimmer APs enable higher AP-frequencies and apparently tighter controlled, faster and stronger muscle contractions, crucial for high speed movements.
Collapse
Affiliation(s)
- Anamika Dayal
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| | - Shu Fun J Ng
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Manfred Grabner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
200
|
Newport TD, Sansom MS, Stansfeld PJ. The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res 2019; 47:D390-D397. [PMID: 30418645 PMCID: PMC6324062 DOI: 10.1093/nar/gky1047] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Integral membrane proteins fulfil important roles in many crucial biological processes, including cell signalling, molecular transport and bioenergetic processes. Advancements in experimental techniques are revealing high resolution structures for an increasing number of membrane proteins. Yet, these structures are rarely resolved in complex with membrane lipids. In 2015, the MemProtMD pipeline was developed to allow the automated lipid bilayer assembly around new membrane protein structures, released from the Protein Data Bank (PDB). To make these data available to the scientific community, a web database (http://memprotmd.bioch.ox.ac.uk) has been developed. Simulations and the results of subsequent analysis can be viewed using a web browser, including interactive 3D visualizations of the assembled bilayer and 2D visualizations of lipid contact data and membrane protein topology. In addition, ensemble analyses are performed to detail conserved lipid interaction information across proteins, families and for the entire database of 3506 PDB entries. Proteins may be searched using keywords, PDB or Uniprot identifier, or browsed using classification systems, such as Pfam, Gene Ontology annotation, mpstruc or the Transporter Classification Database. All files required to run further molecular simulations of proteins in the database are provided.
Collapse
Affiliation(s)
- Thomas D Newport
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|